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Two-mode light states before and after delocalized single-photon addition
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We studied the effect of delocalized single-photon addition (DPA â†
1 + eiϕ â†

2) on two input modes containing
four cases: two independent coherent states (CSs), two independent thermal states (TSs), two independent
single-mode squeezed vacuums (SVs), and an entangled two-mode squeezed vacuum (TMSV). In essence,
four types of non-Gaussian entangled light states are generated. We studied three different resources (including
entanglement, discorrelation, and Wigner negativity) for each two-mode light state. The output states after
DPA are entangled, with more parameters and complex structures, characterizing more Wigner negativity or
even discorrelation. In contrast, the CSs case is the most tunable protocol, because its negativity under partial
transposition, discorrelation, and Wigner logarithmic negativity are more sensitive to superposition phase ϕ than
those in TSs, SVs, and TMSV cases.
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I. INTRODUCTION

Gaussian entangled states play important roles in
continuous-variable (CV) quantum physics [1,2]. As the pri-
mary entangled resource, the two-mode squeezed vacuum
(TMSV) has been used in many quantum protocols, such
as quantum teleportation [3] and quantum computation [4].
However, non-Gaussian states and operations are necessary
for many quantum tasks [5]. For example, the NOON state
is a useful entangled resource, which has been generated
[6] and applied in quantum metrology [7]. The subject of
non-Gaussian quantum states has become a very active area
of research. A recent tutorial on non-Gaussian states was
reported by Walschaers [8]. He provided a roadmap for the
physics and an overview of several experimental realizations
of non-Gaussian quantum states. Lvovsky et al. also reported
another review, which covered theoretical and experimental
efforts to extend the applications from the Gaussian to the
non-Gaussian domain [9]. In essence, non-Gaussian quantum
states can be created by applying non-Gaussian operations
on the initial states. Moreover, non-Gaussian operations, like
single-photon subtraction (by annihilation operator â) [10]
and single-photon addition (by creation operator a†) [11],
together with sequence and superpositions of these two oper-
ations [12], are essential to exploit quantum resources. These
resources (such as entanglement, discorrelation, and Wigner
negativity) can provide different quantum advantages in dif-
ferent quantum protocols.

Many efforts have been devoted to classifying and quan-
tifying entanglement for bipartite systems [13,14]. For
example, one can measure pure-state entanglement by entropy
of entanglement [15] and measure mixed-state entanglement
by entanglement of formation [16], entanglement cost [17],
relative entropy of entanglement [18], and so on. Vidal and
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Werner introduced a computable measure of entanglement
for the bipartite mixed state. They constructed negativity
or a logarithmic negativity base on negativity under partial
transposition (NPT) [19]. Later, important developments were
made in the optical hybrid approach to quantum information
[20,21]. Morin et al. proposed and experimentally tested a
witness for single-photon entanglement [22]. This witness
specially identified entanglement present in the single-photon
subspace ({|0〉, |1〉}) and used it to witness entanglement for
CV quantum states [23–25].

Discorrelation, as a new joint statistical property of mul-
timode quantum light states, was introduced recently by
Meyer-Scott et al. [26]. Discorrelation is characterized by the
fact that the photon number in each mode can take any values,
but two modes together never exhibit the same. Indeed, dis-
correlation can exhibit correlation of photon numbers between
different modes. Recently, Biagi et al. generated discorrelated
states based on delocalized photon addition (DPA) [27,28]
and provided experimental observation and application [29].
Indeed, discorrelation can be applied to manipulating the se-
cure distribution of information among untrusted parties, in
scenarios such as distributed voting schemes [30] or “mental
poker” games [31].

Wigner negativity is an essential resource to reaching a
quantum advantage with CVs [32,33]. It has been identified
as a necessary ingredient for implementing processes that
cannot be simulated efficiently with classical resources [4,34].
Wigner negativity is arguably one of the most striking non-
classical and non-Gaussian features of quantum states. Wigner
negativity implies nonclassicality and non-Gaussianity. So far,
researchers have proposed many witnesses to quantify Wigner
negativity [35–38].

In quantum-state engineering, there is a trend for re-
searchers to prepare multimode [39] or multiphoton non-
Gaussian quantum states [40,41]. In the study of states that are
both highly non-Gaussian and highly multimode, Walschaers
et al. even provided a framework which is suited to obtain
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general analytical results [42]. Chabaud et al. also derived
a theoretical framework for the experimental certification
of non-Gaussian features of quantum states [43]. Moreover,
it has been demonstrated that the entanglement of multi-
mode states can be increased via local or nonlocal operations
[44–51]. Indeed, nonlocal operations have the effect of delo-
calization, which can entangle the input independent states or
change the entanglement of the input entangled states.

Then, what is the “delocalized” quantum operation? We
consider that if Ô j ≡ Ô j (â

†
j , â j ) denotes the local quan-

tum operation in the jth mode, the coherent superpositions∑n
j=1 c jÔ j are referred to as a delocalized quantum opera-

tion [where c j is the superposition coefficient and â†
j (â j )

is the creation (annihilation) operator]. Undoubtedly, the ef-
fect of the coherent superposition

∑n
j=1 c jÔ j is different

from that of the local product Ô1Ô2 · · · Ôn. The delocalized
quantum operation can change properties of n-mode (inde-
pendent or entangled) light states and generate new n-mode
entangled light states. The possibility of arbitrarily “adding”
and “subtracting” single photons to and from a light field
may give access to a complete engineering of quantum states
[52]. Photon subtraction has been demonstrated as extremely
useful for de-Gaussification [53], enhancing nonclassicality
[54], and distilling entanglement [55]. Ourjoumtsev et al.
demonstrated that entanglement can be increased via de-
localized single-photon subtraction (DPS c1â1 + c2â2) [56].
Conversely, photon addition has been demonstrated to create
nonclassicality. Recently, Biagi et al. presented a scheme to
entangle two identical coherent states (CSs) based on the de-
localized single-photon addition (â†

1 + eiϕ â†
2, where ϕ denotes

the superposition phase) [27–29]. Indeed, all these mode-
selective photon additions and subtractions are experimentally
promising processes to create multimode non-Gaussian entan-
gled states [57–61].

In this paper, we theoretically study the effect of DPA (i.e.,
â†

1 + eiϕ â†
2) on different input two-mode states. We extend

Biagi et al.’s work [27] to include additional input states.
Therefore, we generate entangled light states and study their
entanglement, discorrelation, and Wigner negativity. The re-
maining paper is organized as follows: In Sec. II, we introduce
theoretical schemes and entangled light states. In Sec. III, we
witness entanglement for two-mode light states. In Sec. IV,
we study their discorrelation. In Sec. V, we study their Wigner
negativity. Main results are summarized and discussions are
given in Sec. VI.

II. ENTANGLED LIGHT STATES

In 1991, Agarwal and Tara introduced the photon-added
coherent state by operating the creation operator on the co-
herent state [62]. Since then, a lot of similar works (including
multimode cases) have been done one after another [63–65].
As depicted schematically in Fig. 1, we consider four types of
non-Gaussian entangled light states by employing DPA Âdl =
â†

1 + eiϕ â†
2 on different input two-mode states, including two

independent CSs, two independent thermal states (TSs), two
independent single-mode squeezed vacuums (SVs), and an
entangled TMSV.

FIG. 1. Conceptual generating schemes of entangled light states
ρout,ϕ by performing DPA a†

1 + eiϕa†
2 on different two-mode light

states ρin including (a) two independent CSs, (b) two independent
TSs, (c) two independent SVs, and (d) an entangled TMSV.

A. Case CS-CS

The CS in the jth mode is expressed as |z j〉 =
e−|z j |2/2 ∑∞

n=0
zn

j√
n!

|n〉 (where z j is an arbitrary complex num-
ber) [66]. Inputting two independent CSs (i.e., |z1〉 and |z2〉),
the generated state yields

|ψcc,ϕ (z1, z2)〉12 = 1√
Ncc

Âdl |z1〉|z2〉 (1)

with normalization factor Ncc = |z1 + e−iϕz2|2 + 2. In this
case, the input state is ρcc(z1, z2) = |z1〉〈z1| ⊗ |z2〉〈z2|, and
the output state is ρcc,ϕ (z1, z2) = |ψcc,ϕ (z1, z2)〉〈ψcc,ϕ (z1, z2)|.
In particular, when z1 = z2 = α, the input is reduced to two
identical CSs of light in different modes, which is just the
case studied in Refs. [27–29]. When z1 = 0 and α, it will
degenerate to the case in other literature [67,68].

B. Case TS-TS

The TS in the jth mode is diagonal in the Fock state
basis and is expressed as ρT (n̄ j ) = ∑∞

n j=0 Pnj |n j〉〈n j | [where

Pnj = n̄ j
n j /(n̄ j + 1)n j+1 with mean thermal photon number

n̄ j]. Inputting two independent TSs [i.e., the input state is
ρtt (n̄1, n̄2) = ρT (n̄1) ⊗ ρT (n̄2)], the output state yields

ρtt,ϕ (n̄1, n̄2) = 1

Ntt
ÂdlρT (n̄1)ρT (n̄2)Â†

dl (2)

with normalization factor Ntt = n̄1 + n̄2 + 2. The TS is the
most classical light state and possesses a completely incoher-
ent character. Zavatta and coworkers have realized many light
states by manipulating TSs [69,70].

C. Case SV-SV

The SV in the jth mode is expressed as Ŝ(r j )|0〉 j =
(1 − λ2

j )
1/4eλ j â

†2
j /2|0〉 j with λ j = tanh r j [where S(r j ) =

er j (â
†2
j −â2

j )/2 is the single-mode squeezing operator with real
r j] [71]. Inputting two independent SVs [i.e., Ŝ(r1)|0〉 and
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Ŝ(r2)|0〉], the generated state yields

|ψss,ϕ (r1, r2)〉 = 1√
Nss

Âdl Ŝ(r1)|0〉Ŝ(r2)|0〉 (3)

with normalization factor Nss = κ1 + κ2 [here, κ j = (1 −
λ2

j )
−1]. In this case, the input state is ρss(r1, r2) =

Ŝ(r1)|0〉〈0|Ŝ†(r1) ⊗ Ŝ(r2)|0〉〈0|Ŝ†(r2) and the output state is
ρss,ϕ (r1, r2) = |ψss,ϕ (r1, r2)〉〈ψss,ϕ (r1, r2)|.

D. Case TMSV

The TMSV is written by Ŝ2(r)|0102〉 =√
1 − λ2eλâ†

1 â†
2 |0102〉 with λ = tanh r [where Ŝ2(r) =

er(â†
1 â†

2−â1â2 ) is the two-mode squeezing operator with real
r] [72]. Inputting the TMSV, the generated state yields

|ψtms,ϕ (r)〉 = 1√
Ntms

Âdl Ŝ2(r)|0102〉 (4)

with normalization factor Ntms = 2κ [here κ = (1 −
λ2)−1]. In this case, the input state is ρtms(r) =
Ŝ2(r)|0102〉〈0102|Ŝ†

2 (r), and the output state is ρtms,ϕ (r) =
|ψtms,ϕ (r)〉〈ψtms,ϕ (r)|. Unlike the above three separable cases,
the input is an entangled state in itself.

The input-output states in the above schemes can be
unified as

ρout,ϕ = 1

N
ÂdlρinÂ†

dl (5)

with normalization factor N . Here ρins include ρcc(z1, z2),
ρtt (n̄1, n̄2), ρss(r1, r2), and ρtms(r) and ρout,ϕs include
ρcc,ϕ (z1, z2), ρtt,ϕ (n̄1, n̄2), ρss,ϕ (r1, r2), and ρtms,ϕ (r). Density
operators are provided in Appendix A and normalization fac-
tors are derived in Appendix B. In order to compare, we
often simulate properties by using the same n̄T,in (input total
mean photon number), that is, |z1|2 + |z2|2 = n̄T,in, n̄1 + n̄2 =
n̄T,in, sinh2 r1 + sinh2 r2 = n̄T,in, and 2 sinh2 r = n̄T,in. When
inputting |0〉1|0〉2, the output will be a single-photon mode-
entangled state |ψ00〉 = 1√

2
(|1〉1|0〉2 + eiϕ |0〉1|1〉2) [67].

Once we let z1 = z2 = 0, n̄1 = n̄2 = 0, r1 = r2 = 0, or r = 0,
states in Eqs. (1)–(4) are reduced to ρ00 = |ψ00〉〈ψ00|.

In what follows, we shall analyze entanglement, discorrela-
tion, and Wigner negativity for all these two-mode light states.

III. ENTANGLEMENT OF TWO-MODE LIGHT STATES

In this section, we shall quantify their entanglement by
NPT [13,14,19,73], a witness proposed by Morin et al. [22].
The remarkable feature of this witness lies in dimension inde-
pendence for the measured state. Here, we make a brief review
of NPT.

First, we project measured state ρ into subspace {|00〉,
|01〉, |10〉 and |11〉} and obtain a 4 × 4 matrix with form

X = 1

T

⎛
⎜⎝

p00,00 p00,01 p00,10 p00,11

p01,00 p01,01 p01,10 p01,11

p10,00 p10,01 p10,10 p10,11

p11,00 p11,01 p11,10 p11,11

⎞
⎟⎠, (6)

where pk1k2,l1l2 = 〈k1, k2|ρ|l1, l2〉 and T = p00,00 + p01,01 +
p10,10 + p11,11 (ensuring TrX = 1) [22–25]. Thus, the full
density matrix was restricted to such subspace. Here, X is

Hermitian and has non-negative eigenvalues, the trace norm
of which holds ‖X‖1 ≡ Tr(

√
X †X ) = TrX = 1 [19].

Second, performing partial transposition in mode 2 for X ,
we obtain a matrix with form

X T2 = 1

T

⎛
⎜⎜⎜⎝

p00,00 p01,00 p00,10 p01,10

p00,01 p01,01 p00,11 p01,11

p10,00 p11,00 p10,10 p11,10

p10,01 p11,01 p10,11 p11,11

⎞
⎟⎟⎟⎠, (7)

with X T2
k1l2,l1,k2

= Xk1k2,l1,l2 = 〈k1, k2|X |l1, l2〉, and further cal-
culate eigenvalues of X T2 . Certainly, X T2 also satisfies
TrX T2 = 1. In general, the trace norm of X T2 reads ‖X T2‖1 ≡
1 − 2

∑
i λ

−
i , where λ−

i denotes negative eigenvalues of X T2

[19].
Lastly, we quantify entanglement by NPT defined as

NPT(ρ) = −2
∑

i

λ−
i , (8)

where the factor of −2 ensures 0 � NPT(ρ) � 1 [43–45].
Indeed, NPT measures entanglement by considering how

much X T2 fails to be positive definite. If X T2 has at least one
negative eigenvalue, ρ is inseparable (or entangled). NPT is
zero for a completely separable state (the X T2 of which has
no negative eigenvalues) and 1 for a maximally entangled one
[74].

One can resort to pk1k2,l1,l2 = 〈k1, k2|ρ|l1, l2〉 in Ap-
pendix C and eigenvalues of X T2 s in Appendix D to obtain
NPTs.

(1) NPT of ρcc,ϕ is calculated as

NPT[ρcc,ϕ (z1, z2)] = 2

|z1 + e−iϕz2|2 + 2
. (9)

This result can be reduced to NPT[ρcc,ϕ (z, z)] = 1/[1 +
|z|2(1 + cos ϕ)] [27].

(2) NPT of ρtt,ϕ is calculated as

NPT[ρtt,ϕ (n̄1, n̄2)] =
√

4A2 + �2 − �

2A + �
, (10)

with A = (1 + n1)(1 + n2) and � = n1 + n2 + 2n1n2. Note
that NPT(ρtt,ϕ ) is independent of ϕ.

(3) NPT of ρss,ϕ is calculated as

NPT[ρss,ϕ (r1, r2)] = 1. (11)

This means that ρss,ϕ keeps maximum entanglement indepen-
dently of r1, r2, and ϕ.

(4) NPT of ρtms,ϕ is calculated as

NPT[ρtms,ϕ (r)] = 1. (12)

This means that ρtms,ϕ keeps maximum entanglement inde-
pendently of r and ϕ.

In Fig. 2, we plot NPTs for ρcc,ϕ in (z1, z2) space with
different ϕ (0, π/2, π ) and for ρtt,ϕ in (n̄1, n̄2) space with arbi-
trary ϕ. Without loss of generality, z1 and z2 take real numbers.
It is noteworthy that NPT(ρcc,ϕ ) can reach 1 at z1 = z2 = 0
for any ϕ [see Figs. 2(a) and 2(b)] and NPT[ρcc,π (z, z)] = 1
is always satisfied [see Fig. 2(c)]. From Fig. 2(d), we see
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FIG. 2. Plots of NPTs for (a) ρcc,0, (b) ρcc,π/2, and (c) ρcc,π in
(z1, z2) space and (d) ρtt,ϕ in (n̄1, n̄2) space.

that NPT(ρtt,ϕ ) reaches 1 at n̄1 = n̄2 = 0 and decreases as n̄1

(or n̄2) increases. But NPTs of ρss,ϕ and ρtms,ϕ are always
1 independent of parameters. All cases can be reduced to
NPT(ρ00) = 1 as expected.

In Fig. 3, we plot several NPTs as functions of
n̄T,in. We find that NPT[ρcc,π (z, z)], NPT[ρss,ϕ (r1, r2)], and
NPT[ρtms,ϕ (r)] are always 1, showing their robust entangle-
ments. These states maintain constant maximum entangle-
ment independently of parameters, while NPT[ρcc,ϕ (z, z)]s
except ϕ = π are monotone decreasing functions of n̄T,in. For
a given n̄T,in, the larger ϕ is, the larger NPT[ρcc,ϕ (z, z)] is.
Of course, NPT[ρtt,ϕ (n̄, n̄)] is also a monotonically decreasing
function of n̄T,in, which is independent of ϕ.
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FIG. 3. NPTs as functions of n̄T,in for different ρout,ϕs.
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FIG. 4. JPNDs of states (a) ρcc,π (z, z), (b) ρtt,ϕ (n̄, n̄),
(c) ρss,ϕ (r, r), and (d) ρtms,ϕ (r), with n̄T,in = 3.

IV. DISCORRELATION OF TWO-MODE LIGHT STATES

Discorrelation is used to show correlation of joint photon
number distributions (JPNDs). For two-mode light states, the
JPND is defined by Pn1,n2 = 〈n1, n2|ρ|n1, n2〉 (where n j de-
notes the photon number in mode j ). If Pn,n ≡ 0 for all n,
but Pn1,· = ∑∞

n2=0 Pn1,n2 and P·,n2 = ∑∞
n1=0 Pn1,n2 are nonzero,

then this two-mode state is a discorrelated state [26–29]. All
JPNDs can be calculated from pk1k2,l1l2 = 〈k1, k2|ρ|l1, l2〉 in
Appendix C.

JPNDs for ρcc,π (z, z), ρtt,ϕ (n̄, n̄), ρss,ϕ (r, r), and ρtms,ϕ (r)
with n̄T,in = 3 are plotted in Fig. 4. From Fig. 4(a), we can
affirm that only ρcc,π (z, z) is a discorrelated state because
Pn,n = 0 may hold only if z1 = z2 and ϕ = π . From Fig. 4(b),
we can affirm that ρtt,ϕ (n̄1, n̄2) is not a discorrelated state
except n̄1 = n̄2 = 0. As n̄1 and n̄2 increase, JPNDs of ρtt,ϕ

cannot meet characteristics of discorrelation. From Fig. 4(c),
we can affirm that ρss,ϕ (r1, r2) is a discorrelated state because
Pn,n ≡ 0 is always right regardless of r1, r2, and ϕ. From
Fig. 4(d), we can affirm that ρtms,ϕ (r) is a discorrelated state,

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

P
n,

n

FIG. 5. Pn,ns as functions of phase ϕ for ρcc,ϕ (
√

1.5,
√

1.5), with
Pn,n ≡ 0 at ϕ = π .
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FIG. 6. Plots of Wρ (q1, 0; q2, 0) in (q1, q2) space for (a) ρcc and ρcc,ϕ with ϕ = 0, π/2, π ; (b) ρtt and ρtt,ϕ with ϕ = 0, π/2, π ; (c) ρss and
ρss,ϕ with ϕ = 0, π/2, π ; and (d) ρtms and ρtms,ϕ with ϕ = 0, π/2, π . Here, their inputs are symmetrical with n̄T,in = 3.

which also can be analyzed from twin-Fock distribution of
TMSV [75]. Of course, ρ00 is a special discorrelated state.

Figure 5 presents Pn,ns (with n = 0, 1, 2, 3, 4) as functions
of phase ϕ for ρcc,ϕ (

√
1.5,

√
1.5). As ϕ increases in inter-

val [0, π ], each Pn,n (except n = 0) decreases monotonically.
Until ϕ = π , we always have Pn,n = 0, which is a necessary
condition of discorrelation. However, ρcc,ϕs with ϕ 	= π are
not discorrelated states because Pn,n = 0 is not always satis-
fied for any nonzero z1, z2.

V. WIGNER NEGATIVITY OF TWO-MODE LIGHT STATES

The Wigner function (WF) can exhibit negative values
for some non-Gaussian states. Wigner negativity, as a non-
classical indicator [36,76–78] with non-Gaussian character
[37,38,79], plays an essential role in quantum computing and

simulation [4,80]. Of course, Wigner negativity can be de-
tected [81] or demonstrated [82] in current technology.

The WF of a two-mode light state ρ can be cal-
culated as Wρ (β1, β2) = 〈�(β1)�(β2)〉ρ . Here, �(β j ) =
2
π

D(β j )(−1)â†
j â j D†(β j ) and D(β j ) = eβ j â

†
j −β j â j denote the

Wigner operator and displacement operator for mode j, re-
spectively, with β j = (q j + ip j )/

√
2. Obviously, Wρ (β1, β2)

is real and bounded by −4/π2 � Wρ (β1, β2) � 4/π2.
Interestingly, Wρin and Wρout,ϕ can be linked by

Wρout,ϕ (β1, β2) = T NG

N
Wρin (β1, β2), (13)

where T NG and N denote the non-Gaussian term and normal-
ization factor, respectively. All analytical expressions can be
obtained from Appendix E. The results show that all Wρin s
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are Gaussian and all Wρout,ϕ s are non-Gaussian. If condition
T NG < 0 is satisfied, the negativity of Wρout,ϕ is exhibited.

A. Case CS-CS

We can obtain Wρcc,ϕ after knowing

Wρcc = 4e−2|z1−β1|2−2|z2−β2|2

π2
, (14)

and

T NG
cc = |(z1 − 2β1) + e−iϕ (z2 − 2β2)|2 − 2. (15)

B. Case TS-TS

We can obtain Wρtt,ϕ after knowing

Wρtt = 4e− 2
2n̄1+1 |β1|2− 2

2n̄2+1 |β2|2

π2(2n̄1 + 1)(2n̄2 + 1)
(16)

and

T NG
tt = 4|ε1β1 + e−iϕε2β2|2 − (ε1 + ε2) (17)

with ε j = (n̄ j + 1)/(2n̄ j + 1).

C. Case SV-SV

We can obtain Wρss,ϕ after knowing

Wρss = 4e−2κ1|λ1β1−β∗
1 |2−2κ2|λ2β2−β∗

2 |2

π2
(18)

and

T NG
ss = 4|κ1(λ1β1 − β∗

1 ) + e−iϕκ2(λ2β2 − β∗
2 )|2 − (κ1 + κ2).

(19)

D. Case TMSV

We can obtain Wρtms,ϕ after knowing

Wρtms = 4

π2
e−2κ (|λβ1−β∗

2 |2+|λβ2−β∗
1 |2 ) (20)

and

T NG
tms = 4κ2|(λβ1 − β∗

2 ) + e−iϕ (λβ2 − β∗
1 )|2 − 2κ. (21)

Using the above expressions, we can obtain Wρout,ϕ for each
case, which can be reduced to the following extreme case:

Wρ00 = 4(2|β1 + e−iϕβ2|2 − 1)

π2
e−2(|β1|2+|β2|2 ). (22)

The distribution Wρ (β1, β2) can be expressed in the four-
dimensional phase space as Wρ (q1, p1; q2, p2), which shows
correlations existing in four quadratures (q̂1, p̂1, q̂2, p̂2).
Here, q̂ j = (â j + â†

j )/
√

2 and p̂ j = (â j − â†
j )/(i

√
2) denote

the position operator and momentum operator of mode j,
respectively. Wρ00 (β1, β2) was pictorially demonstrated by
Ourjoumtsev et al. [56]. Figure 6 presents contour plots of
Wρ (q1, 0; q2, 0) in the (q1, q2) section for each case with
one-input ρin and three-output ρout,ϕ (ϕ = 0, π/2, π ). Before
DPA, the input WFs are Gaussian without Wigner negativity.
But after DPA, the output WFs will be non-Gaussian with
Wigner negativity.
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(c) case:SS-SS
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(d) case:TMSV

FIG. 7. WLNs as functions of ϕ for states (a) ρcc,ϕ (z1, z2) with
different z1 and z2, where the maximal WLN values at ϕ = π are
corresponding to 0.35, 0.328, 0.244, and 0.233 from top to bottom;
(b) ρtt,ϕ (n̄1, n̄2) with different (n̄1, n̄2), where the WLN values are
corresponding to 0.144, 0.139, 0.084, 0.074, 0.051, and 0.046 from
top to bottom; (c) ρss,ϕ (r1, r2) with different r1 and r2, where the
WLN values are equal to 0.35; and (d) ρtms,ϕ (r) with different r,
where the WLN values are equal to or slightly smaller than 0.35.
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TABLE I. Results of NPT and entanglement for all two-mode
light states considered in this paper.

NPT Entangled or separable

ρcc(z1, z2) 0 Separable

ρcc,ϕ (z1, z2) 2
|z1+e−iϕ z2 |2+2

Entangled

ρtt (n̄1, n̄2) 0 Separable

ρtt,ϕ (n̄1, n̄2)
√

4A2+�2−�

2A+�
Entangled

ρss(r1, r2) 0 Separable

ρss,ϕ (r1, r2) 1 Entangled

ρtms(r) 2λ

1+λ2 Entangled

ρtms,ϕ (r) 1 Entangled

From a quantitative perspective, we can measure Wigner
negativity by quantifying Wigner logarithmic negativity
(WLN) [37,38]. Here, the WLN is defined by

WLN = ln

[∫
|Wρ (β1, β2)|d2β1d2β2

]
, (23)

which shows non-Gaussianity of the quantum state. By fixing
n̄T,in = 1, 2, and 3, we plot WLN behaviors as functions of ϕ

in the interval [0, π ] for different ρout,ϕs in Fig. 7. The results
show the following.

(1) WLNs of ρcc,ϕs are monotone increasing functions of
ϕ. For symmetrical z1 = z2 cases, the maximum WLNs are
equal to 0.35 at ϕ = π , while for asymmetrical z1 	= z2 cases,
the maximum WLNs are smaller than 0.35 at ϕ = π .

(2) WLNs of ρtt,ϕs are independent of ϕ but determined
by n̄1 and n̄2. The larger n̄T,in is, the smaller WLN is. As n̄T,in

increases, the WLNs limit to zero. Moreover, WLN for the
asymmetrical case is bigger than that for the symmetrical case
for fixing n̄T,in.

(3) WLNs of ρss,ϕ (r) will remain at 0.35 for any r1, r2,
and ϕ.

(4) WLNs of ρss,ϕ (r) will be about 0.35 for any r and ϕ.
Indeed WLN of ρ00 is always 0.35 for any ϕ.

VI. CONCLUSION AND DISCUSSION

In summary, we have studied NPT, discorrelation, and
WLN for four different two-mode states subjected to a DPA
operator. The four two-mode states are two independent CSs,
two independent TSs, two independent SVs, and a TMSV,
which are the common quantum states in the field of quantum
optics. We calculated that all four of these states lead to non-
Gaussian entangled states following DPA. Based on NPTs, we
concluded entanglement in Table I. Based on proper criteria,
we concluded discorrelation in Table II. We also calculated
WLNs to exhibit Wigner negativity. In contrast, we still think
that the CSs protocol is the most tunable. This is because
NPT, discorrelation, and WLN in the CSs case are all very
sensitive to ϕ and reach maximal values (or effects) at ϕ = π .
So ρcc,ϕs have good controllability by adjusting ϕ, while,
in TSs, SVs, and TMSV protocols, NPT, discorrelation, and
WLN are independent of ϕ. Moreover, SVs and TMSV after
DPA do not exhibit more entanglement and Wigner negativity
than |0〉1|0〉2 after DPA, which can be seen from their NPTs

TABLE II. Results of discorrelation for all two-mode light states
considered in this paper.

Discorrelation Conditions

ρcc(z1, z2) No For arbitrary z1 and z2

ρcc,ϕ (z1, z2) Yes Only if z1 = z2 and ϕ = π

ρtt (n̄1, n̄2) No For arbitrary n̄1 and n̄2

ρtt,ϕ (n̄1, n̄2) No For nonzero n̄1, n̄2, and ϕ

ρss(r1, r2) No For arbitrary r1 and r2

ρss,ϕ (r1, r2) Yes For arbitrary r1, r2, and ϕ

ρtms(r) No For arbitrary r
ρtms,ϕ (r) Yes For arbitrary r and ϕ

and WLNs. Worst of all, as thermal photon number increases,
TSs after DPA have lower NPT and WLN than |0〉1|0〉2 after
DPA, with discorrelation disappearance.

We regret that our schemes are ideal without consider-
ing decoherence (including losses or detection efficiency).
Recently, Walschaers et al. used the framework of open quan-
tum systems and master equations to describe losses in all
modes of the considered protocol [83]. This provided us a
reference for our future works. Rather than changing input
states, we can also generalize â†

1 + eiϕ â†
2 to multiphoton cases,

such as â†m1
1 + eiϕ â†m2

2 or (â†
1 + eiϕ â†

2)m. Broadly, â†
1 + eiϕ â†

2

can be extended to c1Ô1(â†
1, â1) + c2Ô2(â†

2, â2), including
â1 + eiϕ â2. In addition, we can extend from two-mode to
multimode cases.

So far, in relation to applications or quantum technolo-
gies, many breakthroughs of delocalized photon addition or
subtraction were reported. Roeland et al. developed a gen-
eral framework for mode-selective single-photon addition to
a multimode quantum field [84]. Barral and Linares proposed
a versatile integrated optical chip and generated both nonlocal
addition and subtraction on SVs [85]. Barral et al. produced
a reconfigurable superposition of photon subtraction on two
SVs [86]. Nehra et al. produced a variety of non-Gaussian
states by using coherent photon subtraction from a TMSV
[87]. So, we also anticipate that our considered states will be
generated in state-of-the-art quantum optics experiments and
will be used as resources in quantum technologies.
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APPENDIX A: UNIFYING EXPRESSIONS
OF DENSITY OPERATORS

Obviously, once we assume

ρh1,h2,t1,t2 = â†h1
1 â†h2

2 ρinât1
1 ât2

2 (A1)

(here, h1, h2, t1, and t2 are non-negative integers), we can
obtain ρin by using ρin = ρ0,0,0,0 and ρout,ϕ by using

ρout,ϕ = N−1(ρ1,0,1,0 + ρ0,1,0,1 + e−iϕρ1,0,0,1 + eiϕρ0,1,1,0).

(A2)
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In the following calculation, we rewrite ρh1,h2,t1,t2 as

ρh1,h2,t1,t2 = ∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

eμ1â†
1 eμ2 â†

2ρineν1â1 eν2 â2 |μ1=μ2=v1=ν2=0, (A3)

where a
†h j

j = ∂
h j
μ j e

μ j â
†
j |μ j=0 and a

t j

j = ∂
t j
ν j e

ν j â j |v j=0 have been used.

APPENDIX B: NORMALIZATION FACTORS OF ρout,ϕ

As long as we know Trρh1,h2,t1,t2 , we can obtain normalization factor N for ρout,ϕ by

N = Trρ1,0,1,0 + Trρ0,1,0,1 + e−iϕTrρ1,0,0,1 + eiϕTrρ0,1,1,0. (B1)

Next we give Trρh1,h2,t1,t2 for each case.
(I) For case CS-CS, we have

Trρcc
h1,h2,t1,t2 = ∂h1

μ1
∂h2
μ2

∂ t1
ν1

∂ t2
ν2

eμ1ν1+ν1z1+μ1z∗
1 eμ2ν2+ν2z2+μ2z∗

2 |μ1=μ2=v1=ν2=0, (B2)

which determines Trρcc
1,0,1,0 = |z1|2 + 1, Trρcc

0,1,0,1 = |z2|2 + 1, Trρcc
1,0,0,1 = z∗

1z2, Trρcc
0,1,1,0 = z1z∗

2, and Ncc = |z1 + e−iϕz2|2 + 2.
(II) For case TS-TS, we have

Trρtt
h1,h2,t1,t2 = ∂h1

μ1
∂h2
μ2

∂ t1
ν1

∂ t2
ν2

e(n̄1+1)μ1ν1 e(n̄2+1)μ2ν2 |μ1=μ2=v1=ν2=0, (B3)

which determines Trρtt
1,0,1,0 = n̄1 + 1, Trρtt

0,1,0,1 = n̄2 + 1, Trρtt
1,0,0,1 = 0, Trρtt

0,1,1,0 = 0, and Ntt = n̄1 + n̄2 + 2.
(III) For case SV-SV, we have

Trρss
h1,h2,t1,t2 = ∂h1

μ1
∂h2
μ2

∂ t1
ν1

∂ t2
ν2

eκ1μ1ν1+λ1κ1(ν2
1 +μ2

1 )/2eκ2μ2ν2+λ2κ2(ν2
2 +μ2

2 )/2|μ1=μ2=v1=ν2=0, (B4)

which determines Trρss
1,0,1,0 = κ1, Trρss

0,1,0,1 = κ2, Trρss
1,0,0,1 = 0, Trρss

0,1,1,0 = 0, and Nss = κ1 + κ2.
(IV) For case TMSV, we have

Trρtms
h1,h2,t1,t2 = ∂h1

μ1
∂h2
μ2

∂ t1
ν1

∂ t2
ν2

eκ (μ1ν1+μ2ν2 )eλκ (μ1μ2+ν1ν2 )|μ1=μ2=v1=ν2=0, (B5)

which determines Trρtms
1,0,1,0 = Trρtms

0,1,0,1 = κ , Trρ12
1,0,0,1 = Trρ12

0,1,1,0 = 0, and Ntms = 2κ .

APPENDIX C: DENSITY-MATRIX ELEMENTS IN FOCK BASIS

If we know

ph1,h2,t1,t2,k1k2,l1l2 = 〈k1|〈k2|ρh1,h2,t1,t2 |l1〉|l2〉, (C1)

we can easily obtain pin
k1k2,l1l2

= p0,0,0,0,k1k2,l1l2 for ρin and

pout
k1k2,l1l2 = N−1(p1,0,1,0,k1k2,l1l2 + p0,1,0,1,k1k2,l1l2 + e−iϕ p1,0,0,1,k1k2,l1l2 + eiϕ p0,1,1,0,k1k2,l1l2 ) (C2)

for ρout,ϕ . By employing 〈k j | = 1√
k j !

∂
k j
mj 〈0|emj â j |mj=0 and |l j〉 = 1√

l j !
∂

l j
n j e

n j â
†
j |0〉|n j=0, we have

ph1,h2,t1,t2,k1k2,l1l2 = 1√
k1!k2!l1!l2!

∂k1
m1

∂k2
m2

∂ l1
n1

∂ l2
n2

∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

〈0|1〈0|2em1â1 em2 â2 eμ1â†
1 eμ2 â†

2ρineν1â1 eν2 â2

× en1â†
1 en2 â†

2 |0〉1|0〉2|μ1=μ2=v1=ν2=m1=m2=n1=n2=0. (C3)

(I) For case CS-CS, we have

pcc
h1,h2,t1,t2,k1k2,l1l2 = 1√

k1!l1!k2!l2!
∂k1

m1
∂k2

m2
∂ l1

n1
∂ l2

n2
∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

× e−|z1|2+m1(μ1+z1 )+n1(ν1+z∗
1 )−|z2|2+m2(μ2+z2 )+n2(ν2+z∗

2 )|m1=μ1=v1=n1=m2=μ2=ν2=n2=0. (C4)

(II) For case TS-TS, we have

ptt
h1,h2,t1,t2,k1,k2,l1,l2 = A−1

√
k1!l1!k2!l2!

∂k1
m1

∂k2
m2

∂ l1
n1

∂ l2
n2

∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

em1μ1+m2μ2+ν1n1+ν2n2+ n̄1
n̄1+1 m1n1+ n̄2

n̄2+1 m2n2 |m1=μ1=v1=n1=m2=μ2=ν2=n2=0.

(C5)

(III) For case SV-SV, we have

pss
h1,h2,t1,t2,k1k2,l1l2 = (κ1κ2)−1/2

√
k1!l1!k2!l2!

∂k1
m1

∂k2
m2

∂ l1
n1

∂ l2
n2

∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

em1μ1+ λ1
2 m2

1+ν1n1+ λ1
2 n2

1+m2μ2+ λ2
2 m2

2+ν2n2+ λ2
2 n2

2 |μ1=μ2=ν1=ν2=m1=m2=n1=n2=0.

(C6)
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(IV) For case TMSV, we have

ptms
h1,h2,t1,t2,k1k2,l1l2 = κ−1

√
k1!k2!l1!l2!

∂k1
m1

∂k2
m2

∂ l1
n1

∂ l2
n2

∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

em1μ1+m2μ2+n1ν1+n2ν2+λm1m2+λn1n2 |m1=m2=μ1=μ2=v1=ν2=n1=n2=0. (C7)

APPENDIX D: X T2 OF THESE STATES AND THEIR
EIGENVALUES

Using pk1,k2,l1,l2 in Appendix C, we obtain X T2 s and calcu-
late their eigenvalues.

(I) Case CS-CS: For ρcc(z1, z2), we obtain matrix

X T2
ρcc (z1,z2 ) = 1

M

⎛
⎜⎜⎜⎜⎝

1 z2 z∗
1 z2z∗

1

z∗
2 |z2|2 z∗

1z∗
2 |z2|2z∗

1

z1 z1z2 |z1|2 z2|z1|2
z1z∗

2 z1|z2|2 z∗
2|z1|2 |z1|2|z2|2

⎞
⎟⎟⎟⎟⎠ (D1)

with M = (1 + |z1|2)(1 + |z2|2), the eigenvalues of which in-
clude 1, 0, 0, and 0. Obviously, there is no negative eigenvalue.
For ρcc,ϕ (z1, z2), we obtain matrix

X T2
ρcc,ϕ (z1,z2 ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 e−iϕ

Ncc

0 1
Ncc

0 z1+e−iϕz2
Ncc

0 0 1
Ncc

e−iϕz∗
1+z∗

2
Ncc

eiϕ

Ncc

z∗
1+eiϕz∗

2
Ncc

eiϕz1+z2
Ncc

|z1+e−iϕz2|2
Ncc

⎞
⎟⎟⎟⎟⎟⎟⎠

(D2)

with Ncc = 2 + |z1 + e−iϕz2|2, the eigenvalues of
which include −N−1

cc , N−1
cc , 1

2 (1 − √
1 − 4N−2

cc ), and
1
2 (1 − √

1 + 4N−2
cc ). It has a negative eigenvalue −N−1

cc .
(II) Case TS-TS: For ρtt (n1, n2), we obtain matrix

X T2
ρtt (n1,n2 ) =

⎛
⎜⎜⎜⎜⎝

A
B 0 0 0

0 (1+n1 )n2
B 0 0

0 0 n1(1+n2 )
B 0

0 0 0 n1n2
B

⎞
⎟⎟⎟⎟⎠ (D3)

with A = (1 + n1)(1 + n2) and B = (1 + 2n1)(1 + 2n2), the
eigenvalues of which include n1n2B−1, AB−1, n1(1 + n2)B−1,
and (1 + n1)n2B−1. Clearly, there was no negative eigenvalue.
For ρtt,ϕ (n1, n2), we obtain matrix

X T2
ρtt,ϕ (n1,n2 ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 Aeiϕ

2A+�

0 A
2A+�

0 0

0 0 A
2A+�

0

Ae−iϕ

2A+�
0 0 �

2A+�

⎞
⎟⎟⎟⎟⎟⎠

, (D4)

the eigenvalues of which include A/(2A + �), A/(2A +
�), − 1

2 (
√

4A2 + �2 − �)/(2A + �), and 1
2 (

√
4A2 + �2 +

�)/(2A + �) with � = n1 + n2 + 2n1n2. It has a negative
eigenvalue.

(III) Case SV-SV: For ρss(r1, r2), we obtain matrix

X T2
ρss (r1,r2 ) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (D5)

the eigenvalues of which include 1, 0, 0, and 0. Obviously,
there is no negative eigenvalue. For ρss,ϕ (r1, r2), we obtain
matrix

X T2
ρss,ϕ (r1,r2 ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 eiϕ

2

0 1
2 0 0

0 0 1
2 0

e−iϕ

2 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (D6)

the eigenvalues of which include − 1
2 , 1

2 , 1
2 , and 1

2 . It has one
negative eigenvalue − 1

2 .
(IV) Case TMSV: For ρtms(r), we obtain matrix

X T2
ρtms (r) =

⎛
⎜⎜⎜⎜⎜⎝

1
1+λ2 0 0 0

0 0 λ
1+λ2 0

0 λ
1+λ2 0 0

0 0 0 λ2

1+λ2

⎞
⎟⎟⎟⎟⎟⎠

(D7)

the eigenvalues of which include 1
λ2+1 , − λ

λ2+1 , λ2

λ2+1 , and
λ

λ2+1 . Obviously, there is one negative eigenvalue − λ
λ2+1 . For

ρss,ϕ (r1, r2), we obtain matrix

X T2
ρtms,ϕ (r) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 eiϕ

2

0 1
2 0 0

0 0 1
2 0

e−iϕ

2 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (D8)

the eigenvalues of which include − 1
2 , 1

2 , 1
2 , and 1

2 . It has one
negative eigenvalue − 1

2 .

APPENDIX E: WIGNER FUNCTIONS OF THESE STATES

In normal ordering form, we have �(β j ) = 2
π

:

e−2(â†
j −β∗

j )(â j−β j ) : (: · · · : denotes normal ordering). As
long as we know Wρh1 ,h2 ,t1 ,t2

(β1, β2), we can obtain
Wρin (β1, β2) = Wρ0,0,0,0 (β1, β2) and

Wρout,ϕ (β1, β2)

= N−1[Wρ1,0,1,0 (β1, β2) + Wρ0,1,0,1 (β1, β2)

+ e−iϕWρ1,0,0,1 (β1, β2) + eiϕWρ0,1,1,0 (β1, β2)]. (E1)

Next we give Wρh1,h2 ,t1 ,t2
(β1, β2) for each case.
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(I) For case CS-CS, we have

Wρcc
h1 ,h2 ,t1 ,t2

(β1, β2) =Wρcc (z1,z2 )(β1, β2)∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

e(2β∗
1 −z∗

1 )μ1+(2β1−z1 )ν1−μ1ν1

× e(2β∗
2 −z∗

2 )μ2+(2β2−z2 )ν2−μ2ν2 |μ1=μ2=v1=ν2=0. (E2)

(II) For case TS-TS, we have

Wρtt
h1 ,h2 ,t1 ,t2

(β1, β2) =Wρtt (n̄1,n̄2 )(β1, β2)∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

× eε1(2β∗
1 μ1+2β1ν1−μ1ν1 )+ε2(2β∗

2 μ2+2β2ν2−μ2ν2 )|μ1=μ2=v1=ν2=0. (E3)

(III) For case SV-SV, we have

Wρss
h1,h2 ,t1 ,t2

(β1, β2) =Wρss (r1,r2 )(β1, β2)∂h1
μ1

∂h2
μ2

∂ t1
ν1

∂ t2
ν2

eκ1(2β∗
1 μ1+2β1ν1−ν1μ1 )+κ2(2β∗

2 μ2+2β2ν2−ν2μ2 )

× eλ1κ1(+ 1
2 ν2

1 + 1
2 μ2

1−2ν1β
∗
1 −2β1μ1 )eλ2κ2(+ 1

2 ν2
2 + 1

2 μ2
2−2ν2β

∗
2 −2β2μ2 )|μ1=μ2=v1=ν2=0. (E4)

(IV) For case TMSV, we have
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1 ν2−2β∗

2 ν1−2β2μ1 )|μ1=μ2=v1=ν2=0. (E5)
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