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Analysis of the signal measured in spectral-domain optical coherence tomography
based on nonlinear interferometers
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We analyze and compare the output signals obtained in three different configurations of optical coherence
tomography (OCT). After appropriate processing, these signals are used to retrieve an image of the sample
under investigation. One of the configurations considered is the common choice in most OCT applications
and is based on the use of a Michelson interferometer. For brevity, here we refer to it as standard OCT. The
other two configurations are two types of optical coherence tomography based on the use of so-called nonlinear
interferometers, interferometers that contain optical parametric amplifiers inside. The goal is to highlight the
differences and similarities between the output signals measured in standard OCT and in these two OCT schemes,
with the aim of evaluating if retrieval of information about the sample can be better done in one case over the
others. We consider schemes where the optical sectioning of the sample is obtained by measuring the output
signal spectrum (spectral or Fourier-domain OCT), since it shows better performance in terms of speed and
sensitivity than the counterpart time-domain OCT.
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I. INTRODUCTION

Optical coherence tomography (OCT) is a three-
dimensional high-resolution imaging scheme that produces
tomographic images of a variety of objects, such as biological
systems, by measuring light backscattered from the samples
[1]. In order to obtain good transverse resolution (in the
plane perpendicular to the beam propagation axis), OCT
focuses light into a small spot that is scanned over the sample.
To obtain good resolution in the axial direction (optical
sectioning along the beam propagation direction), OCT uses
light with a large bandwidth. Optical coherence tomography
is a highly mature optical imaging technology as well as a
very active topic of research (see, for instance, [2] for reports
on advances in optical coherence tomography).

*dlopezmago@tec.mx
†juanp.torres@icfo.eu

The first OCT systems were put forward and demonstrated
in [3,4] and most of the current OCT systems follow the
same general structure of these pioneering experiments. They
use a broadband light beam that splits into two beams in a
Michelson interferometric setup: the reference and object
beams. The output signal results from the combination of the
reference beam with the object beam after being reflected
from the sample. We will refer to these OCT systems as
standard OCT, although we should remark that there is still
a rich variety among these conventional OCT systems.

In the past few years several research groups have demon-
strated new OCT schemes based on nonlinear interferometers
[5–8] and interferometers that contain parametric amplifiers
[9]. The main advantage of these quantum schemes is that they
allow probing the sample at a chosen wavelength, for instance,
in the far infrared, to achieve higher penetration depth into the
sample, while at the same time using an optimum wavelength
for efficient detection. Nonlinear interferometers are key ele-
ments in numerous applications, namely, in imaging [10,11],
sensing [12], spectroscopy [13–15], and microscopy [16,17].
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FIG. 1. Sketch of the three OCT configurations considered: (a) standard FD-OCT, (b) FD-OCT based on induced coherence, and (c) FD-
OCT based on an SU(1,1) interferometer. Here Si(k) (i = 1, 2, 3) are the spectral densities measured for each configuration, which are labeled
with different subscripts for the sake of clarity; r(k) is the reflection coefficient of the sample, which depends on its internal layer structure; and
z1, z2, and z3 are optical paths taken by light beams. Different colors depict light beams (photons) at different central wavelengths. In (b) and
(c), NLC refers to nonlinear crystal.

There are two general configurations considered. One scheme
in based on the concept of induced coherence [18–20]; the
other scheme is an SU(1,1) interferometer [21]. We will ana-
lyze the OCT signal obtained in both configurations. For the
sake of comparison, we will also consider the signal obtained
in a standard OCT scheme.

There are two procedures to obtain the internal axial struc-
ture of samples (optical sectioning) in OCT. In time-domain
OCT (TD-OCT), each axial scan of the sample consists of the
signal measured for an array of different delays introduced in
the reference arm of the interferometer. For each delay, the
intensity of the signal resulting from the combination of the
reference and object beams is measured. The internal structure
of the sample is reconstructed from the interferogram ob-
tained plotting the signal measured versus delays. In spectral
or Fourier-domain OCT (FD-OCT) [22] (see also Chap. 5
in Ref. [1]) one retrieves the structure of the sample along
the axial direction by Fourier transforming the spectrum of
the interferogram with a fixed delay in the reference arm.
FD-OCT avoids the need of TD-OCT for displacing mechan-
ically a mirror and consequently is more robust and allows
faster data acquisition. Moreover, it shows better sensitivity
than TD-OCT [23]. Here we will restrict ourselves to the
analysis of OCT signal obtained in FD-OCT in all cases
considered.

We will show (see Secs. III and IV) that the sig-
nal measured in the FD-OCT scheme based on nonlinear
interferometers shows a fundamental and advantageous dif-
ference when compared with the signal measured in standard
OCT. In standard OCT peaks appear in the output signal
whose location does not depend on the optical path im-
balance of the interferometer, the so-called autocorrelation
terms. In certain regimes, these terms are not present in
the OCT schemes based on nonlinear interferometers con-
sider here. These autocorrelation terms appear as artifacts
in typical OCT schemes and should be suppressed when
possible [1].

We will also show (see Sec. IV) that the signal measured
in the FD-OCT scheme based on an SU(1,1) nonlinear in-
terferometer is larger than the signal that probes the sample.
This might be important to probe highly sensitive samples,
since it allows one to probe the sample with a low-photon
flux while detecting a high-photon flux signal at the detection

stage, which might make easier the election of the detection
system.

Finally, the observation that certain features of the OCT
signals in nonlinear interferometers are also present in stan-
dard OCT might benefit the new schemes since they can
profit from the wealth of research and technology related to
conventional OCT systems. This is the case of the sensitivity
decay observed in all systems that make use of FD-OCT (see
Sec. V). We show that the same techniques applied in standard
OCT to correct this effect can also be used in OCT schemes
based on nonlinear interferometers.

II. STANDARD FOURIER-DOMAIN OPTICAL
COHERENCE TOMOGRAPHY

For the sake of comparison, we begin by describing a stan-
dard OCT configuration [see Fig. 1(a)], which will constitute
the benchmark for all nonclassical OCT schemes (see, for in-
stance, [1] for an excellent description of OCT and a detailed
mathematical derivation of main equations). The sample of
reference used in the calculations is a single layer with low
reflectivity at both faces. Its reflectivity r(k) with respect to
the field can thus be written as

r(k) = r1 + r2 exp(2ik0n0d + 2ikngd ), (1)

where R1 = |r1|2 and R2 = |r2|2 are the reflectivities of the
first and second faces, n0 is the refractive index at the central
frequency, ng is the group index, d is the sample thickness,
k = �/c is the wave-number deviation from the central wave
number k0 = ω0/c, and � is the angular frequency deviation
from the central frequency ω0.

FD-OCT uses light with a large bandwidth: The coher-
ence length, which determines the axial resolution of OCT, is
inversely proportional to the spectral bandwidth. We charac-
terize the spectral density of the light source with a Gaussian
function

�(k) = 1

π1/2W
exp

(
− k2

W 2

)
, (2)

The function �(k) is normalized so that
∫

dk �(k) = 1. The
FWHM spectral bandwidth of the laser source �λ is related to
the parameter W as �λ = (λ2

0

√
ln 2/π )W , with λ0 the central

wavelength of the laser source. For the sake of simplicity,
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throughout this paper we consider as the main variable the
wave number, since the axial structure of samples is obtained
from Fourier transforming the output signal written with k as
variable.

Light is divided by a beam splitter into the reference and
object beams in a Michelson interferometer. We consider a
50:50 beam splitter with reflection and transmission coeffi-
cients 1/

√
2 and i/

√
2, respectively. The distance traversed

by the reference beam is denoted by 2z1 and the distance
traversed by the object beam is 2z2 = 2(z1 + s). Thus 2s is the
optical path imbalance between the reference and object paths
in the Michelson interferometer. The beams finally recombine
at the beam splitter and a spectrometer measures the spectral
density S1(k) of the output beam, which is given by

S1(k) = �(k)

4
|exp[2i(k0 + k)z1]

+ r(k) exp[2i(k0 + k)z2]|2. (3)

This is the general expression of the spectral density of the
OCT signal for an arbitrary reflection coefficient. After ex-
panding the modulus in Eq. (3), the terms independent of s are
the autocorrelation terms [1], while the two s-dependent terms
are the cross-correlation terms. For the sample described by
Eq. (1), the spectral density is

S1(k) = 1 + R1 + R2

4
�(k)

+ 2(R1R2)1/2

1 + R1 + R2
�(k) cos(2ngdk + ϕ1)

+ 2R1/2
1

1 + R1 + R2
�(k) cos(2sk + ϕ2)

+ 2R1/2
2

1 + R1 + R2
�(k) cos(2sk + 2ngdk + ϕ3), (4)

where ϕ1 = 2k0n0d , ϕ2 = 2k0s, and ϕ3 = 2k0(s + n0d ).
In order to retrieve information about the sample, e.g., the

location of the interfaces and reflection coefficients, we obtain
the Fourier transform of the spectral density measured S1(k),
i.e., Ŝ1(z) = F[S1(k)] = 1/(2π )1/2

∫
dk S(k) exp(−ikz). We

find that

S̃1(z) = 1 + R1 + R2

4
�̃(z)

+ (R1R2)1/2

4
[�̃(z − 2ngd ) exp(iϕ1)

+ �̃(z + 2ngd ) exp(−iϕ1)]

+ R1/2
1

4
[�̃(z − 2s) exp(iϕ2) + �̃(z + 2s) exp(−iϕ2)]

+R1/2
2

4
[�̃(z − 2s − 2ngd ) exp(iϕ3)

+ �̃(z + 2s + 2ngd ) exp(−iϕ3)], (5)

where �̃(z) = F[�(k)] designates the Fourier transform.
In order to clearly identify the location and height of the

peaks corresponding to the cross-correlation terms, it is im-
portant to have a sufficiently large value of the path-length
difference s. If we define �z1 as the width of the function

�̃(z), which determines the axial resolution of OCT, an un-
equivocal identification of the characteristics of the sample
requires 2s � �z1, 2s + 2ngd � �z1, and 2ngd � �z1. In
this case the typical shape of S̃1(z) contains seven charac-
teristic peaks: a central peak at z = 0, three peaks located at
z > 0, and another three peaks at z < 0. The peaks at z �= 0 are
located symmetrically around z = 0. The separation between
the two cross-correlation peaks at z > 0 (or z < 0) is 2ngd ,
twice the optical thickness of the sample. For low reflectivity
R1,2 � 1, the heights of the cross-correlation terms in com-
parison with the height of the peak at z = 0 are R1/2

1 and R1/2
2 .

III. FOURIER-DOMAIN OPTICAL COHERENCE
TOMOGRAPHY IN AN INDUCED COHERENCE

CONFIGURATION

Figure 1(b) shows a sketch of an OCT scheme based on
the concept of induced coherence [5]. Signal (s1) and idler (i1)
photons are generated in the first nonlinear crystal (NLC1) by
means of spontaneous parametric down-conversion (SPDC).
The signal and idler photons have different central wave-
lengths, represented in the figure by different colors. The
quantum state of the photons generated can be described in
the Heisenberg picture by the Bogoliubov transformations
[24–26]

as1 (k) = Us1 (k)bs(k) + Vs1 (k)b†
i (−k),

ai1 (k) = Ui1 (k)bi(k) + Vi1 (k)b†
s (−k), (6)

where as1 and ai1 are the signal and idler photon annihilation
operators at the output face of the first nonlinear crystal and
bs and bi are the operators at the input face. See Appendix A
for expressions of the functions Us1,i1 and Vs1,i1 .

The idler photons are reflected from the sample. The idler
annihilation operator transforms as

ai1 (k) �⇒ r(k)ai1 (k) + f (k), (7)

where the operators f (k) fulfill the commutation relations
[ f (k), f †(k′)] = [1 − |r(k)|2]δ(k − k′). These operators take
into account the reflection of the idler photons from a sample
with reflectivity r(k) [27]. After reflection the idler photons
are injected into a second nonlinear crystal (NLC2), where
signal photons s2 and outgoing idler photons, indistinguish-
able from the injected idler photons, are generated by means
of parametric amplification. Signal photons s1 and s2 are com-
bined on a beam splitter and the spectral density S2(k) of the
resulting interference signal is measured. One can show that
the spectral density of the output beam is (see Appendix A for
details)

S2(k) = |Vs2 (k)|2[1 − |r(−k)|2] + |Vs1 (k) exp[iks(k)z1]

+ r∗(−k)U ∗
i1 (−k)Vs2 (k)

× exp[−iki(−k)z2 + iks(k)z3]|2, (8)

where z1,2,3 are distances that signal and idler photons tra-
verse as indicated in Fig. 1(b). In particular, z1 is the distance
traversed by signal photons s1 from the output face of
NLC1 to the beam splitter; z2 is the distance that idler photons
i1 traverse, from the output face of NLC1 to the sample and
from there to the input face of NLC2; and z3 is the distance
that signal photons s2 traverse from the output face of NLC2 to
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the beam splitter. We can write z3 + z2 = z1 + 2s, so 2s is the
path imbalance between signal photons s1 and s2 that interfere
at the beam splitter.

There are two important regimes in parametric down-
conversion: the low- and high-parametric-gain regimes.
Which regime takes place depends on the value of the non-
linear coefficient [26]

σ =
(

h̄ωpωsωi[χ (2)]2F0

8ε0c3Snpnsni

)1/2

, (9)

where F0 = P0/h̄ωp is the flux rate density of pump photons
(photons/s), S is the area of the pump beam, P0 is the pump
power, χ (2) is the value of the second-order nonlinear suscep-
tibility of the crystal, ωp,s,i are the central angular frequencies
of all waves involved, and np,s,i are the corresponding refrac-
tive indices. The parametric gain is defined as G = σL.

At G � 1, the number of down-converted photons gen-
erated per mode is much lower than 1 and the total photon
flux is low. Although this can be a drawback of OCT in the
low-gain regime, this low photon flux can also be beneficial
in applications that require a minimal photodose and where
imaging at the video rate can still be achieved [28]. Most
implementations of OCT based on nonlinear interferometers
are in the low-gain regime [5–7]. In the high-parametric-gain
regime G � 1, the number of photons per mode is higher
than one [8,29]. Higher photon fluxes can be achieved in
this regime and effects like induced coherence can still be
observed [30,31].

In the low-parametric-gain regime (G � 1), we can write
Us(k) ∼ exp[iks(k)L] and Ui(k) ∼ exp[iki(k)L]. We obtain a
simpler expression for the spectrum S2(k),

S2(k) = |Vs1 (k)|2{1 + R1/2
1 cos[k(2s + cDiL) − ϕ1]

+ R1/2
2 cos[k(2s + 2ngd + cDiL) − ϕ2]

}
,

(10)

where ϕ1 = k0
s z1 + k0

i niL − k0
i z2 − k0

s z3 + �ϕp, ϕ2 = ϕ1 +
2k0

i n0d , and �ϕp = ϕp1 − ϕp2 is the phase difference between
the two pump beams that pump the two nonlinear crystals.
They originate from the same laser, but they can bear differ-
ent phases. Here k0

s,i are central wave numbers at the signal
and idler wavelengths, ns,i are the refractive indices inside
the nonlinear crystals, and Ds,i are the corresponding inverse
group velocities.

The Fourier transform of the spectral density S2(k) in the
low-parametric-gain regime is

S̃2(z) = Ṽs(z) + R1/2
1

2
[Ṽs(z + 2s + cDiL) exp(iϕ1)

+ Ṽs(z − 2s − cDiL) exp(−iϕ1)]

+R1/2
2

2
[Ṽs(z + 2s + 2ngd + cDiL) exp(iϕ2)

+ Ṽs(z − 2s − 2ngd − cDiL) exp(−iϕ2)], (11)

where Ṽs(z) is the Fourier transform of |Vs1 (k)|2. We define
the width of the function Ṽs(z) as �z2. To observe clear peaks
in the output signal Ŝ2, which allows the unequivocal deter-
mination of the position of the interfaces of the sample, it is
necessary that 2s + cDiL � �z2 and 2ngd � �z2.

One important difference with the signal in standard OCT
[see Eq. (3)] is that the Fourier-transformed spectrum shows
only five peaks: one peak at z = 0, two peaks for z > 0, and
two peaks for z < 0. The peaks at z �= 0 are located sym-
metrically around z = 0. There are no terms equivalent to the
autocorrelation peaks of standard OCT. The distance between
the two peaks at z > 0 (or z < 0) is 2ngd , which gives the
optical thickness of the sample.

Finally, for the sake of clarity, we caution the follow-
ing. In [32] an OCT scheme was demonstrated that was
termed as quantum OCT (QOCT). QOCT uses paired pho-
tons generated in SPDC and quantum interference in a
Hong-Ou-Mandel scheme. Therefore, it requires the measure-
ment of second-order correlation functions that translate into
the detection of two-photon coincidences [33]. Optical coher-
ence tomography schemes based on nonlinear interferometers
are fundamentally different. While they also make use of
paired photons generated in SPDC, they do not require the
detection of coincidences and are therefore much simpler.
A comparison of the advantages and disadvantages of both
quantum schemes is an interesting topic but it is outside the
scope of our present analysis.

IV. FOURIER-DOMAIN OPTICAL COHERENCE
TOMOGRAPHY IN AN SU(1,1) CONFIGURATION

Figure 1(c) shows a sketch of an OCT scheme based on
an SU(1,1) interferometer [7,8,17]. Signal (s1) and idler (i1)
photons generated in the first pass by the nonlinear crystal
are separated with the help of a dichroic mirror. Signal pho-
tons are reflected and injected back into the same nonlinear
crystal. The idler photons are reflected from the sample be-
fore traveling back to the nonlinear crystal. After parametric
amplification in the second pass of the pump through the non-
linear crystal, the signal photon s2 is sent to a spectrometer.
The spectral density of the signal photons is (see Appendix A
for further details)

S3(k) = |Vs2 (k)|2[1 − |r(−k)|2]|Us2 (k)Vs1 (k) exp[iϕs(k)]

+ r∗(−k)U ∗
i1 (−k)Vs2 (k) exp[−iϕi(−k)]|2, (12)

where ϕs(k) = 2(k0
s + k)z1 and ϕi(k) = 2(k0

i + k)z2, with 2z1

and 2z2 the distances traversed by signal and idler photons
before entering the nonlinear crystal.

In the low-parametric-gain regime, the expression for the
spectral density simplifies to

S3(k) = 2|Vs1 (k)|2{1 + R1/2
1 cos[k(2s + cDL) − ϕ1]

+ R1/2
2 cos[k(2s + 2ngd + cDL) − ϕ2]}, (13)

where the group-velocity mismatch is D = Di − Ds, the path
imbalance between signal and idler photons is 2s = 2(z2 −
z1), ϕ1 = k0

s nsL + k0
i niL + 2k0

s z1 + 2k0
i z2 + �ϕp, and ϕ2 =

ϕ1 + 2k0
i n0d . The Fourier transform of S3(k) in the low-

parametric-gain regime is

S̃3(z) = 2Ṽs(z) + R1/2
1 [Ṽs(z + 2s + cDL) exp(iϕ1)

+Ṽs(z − 2s − cDL) exp(−iϕ1)]

+ R1/2
2 [Ṽs(z + 2s + 2ngd + cDL) exp(iϕ2)

+ Ṽs(z − 2s − 2ngd − cDL) exp(−iϕ2)], (14)
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where Ṽs(z) is the Fourier transform of |Vs1 (k)|2. Again the
Fourier-transformed spectrum shows five peaks. The signal
for OCT in an SU(1,1) scheme is very similar to the OCT
signal for an induced coherence scheme. The main difference
is that now, to observe clear peaks in the output signal S̃3(z),
it is necessary that 2s + cDL � �z2, where D = Di − Ds,
in contrast to the case of induced coherence, that is, 2s +
cDiL � �z2. Since Di � D, in an induced coherence scheme
the requirement of large path imbalance is not so stringent.

In certain applications, for instance, in biological imag-
ing and in art conservation studies, the power of the light
beam that interacts with the sample is low to avoid dam-
age to the sample if too many photons are absorbed. An
important advantage of the SU(1,1) configuration in the high-
parametric-gain regime, when compared with standard and
induced coherence OCT schemes, is that the flux rate of
photons that interacts with the sample, Ni1 = 〈a†

i1
(t )ai1 (t )〉, is

much lower than the flux rate of photons that are detected,
Ns2 = 〈a†

s2
(t )as2 (t )〉. We define the amplification factor as γ =

Ns2/Ni1 . We should note that even though the theoretical anal-
ysis in the high-parametric-gain regime considers a cw pump
with the corresponding nonlinear coefficient, in experiments
one needs to use a pulsed pump with high-energy pulses that
are highly focused. Notwithstanding, the approximation of cw
and plane-wave pump beams is still valid [25,34].

In Fig. 2 we plot the maximum (red dotted line) and min-
imum (blue dotted line) values of the amplification factor γ

as a function of the reflectivity of a single-layer sample r.
The value of the amplification factor depends on the phase
difference between the pump beams in the two nonlinear crys-
tals and the phases that the signal and idler photons acquire
before seeding the nonlinear parametric amplification process
in the second pass by the nonlinear crystal. The maximum of
the amplification factor takes place for a global phase differ-
ence of 0, while the minimum of the amplification factor takes
place for a phase difference of π .

To get further insight, we consider the single-mode de-
scription of OCT based on an SU(1,1) interferometer. This
is equivalent to considering a single frequency k = 0 in the
spectral density given by Eq. (12). We obtain that the flux rate
of photons interacting with the sample is

Ni1 = |V |2 (15)

and the flux rate of the signal photons detected is

Ns2 = |V |2[(1 − |r|2) + (1 + |r|2)|U |2 + 2|r||U |2 cos θ ].

(16)

Here |U | = |Us(k = 0)| = |Ui(k = 0)|, |V | = |Vs(k = 0)| =
|Vi(k = 0)|, and θ summarizes the phases that appear in
Eq. (12). The maximum and minimum values of the ampli-
fication factor in the single-mode approximation are

max(γ ) = 1 − |r|2 + (1 + |r|)2|U |2,
min(γ ) = 1 − |r|2 + (1 − |r|)2|U |2. (17)

These values are also plotted in Fig. 2 as solid lines (red
depicts the maximum and blue the minimum value).

For low parametric gain, the approximate (single-mode)
and exact values of the amplification factor are barely dis-
tinguishable. For high parametric gain we observe that the
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FIG. 2. Amplification factor γ , i.e., the ratio of the signal power
at the detection stage and the idler power probing the sample, as a
function of the single-interface reflectivity r for two values of the
parametric gain G: (a) G = 0.01 (low parametric gain) and (b) G =
10 (high parametric gain). Dotted lines show the exact solution and
solid lines the results obtained using the single-mode approximation.
Red lines indicate the maximum value of the amplification factor for
a given r and blue lines the minimum value of the amplification factor
for a given r.

simple consideration of single-mode parametric amplification
provides a very good approximation to the exact values of
the amplification factor. For low reflectivity the amplification
factor can be approximated as γ = 1 + |U |2 = 1 + cosh2 G
and does not depend on the phase θ . For high reflectivity
the amplification factor can vary between 0 and γ = 4|U |2 =
4 cosh2 G.

For comparison, in the case of induced coherence the flux
rate of photons interacting with the sample is, similarly to the
case of an SU(1,1) interferometer, Ni1 = |V |2. Now there are
two signal beams: The flux rate of signal photons generated in
the first nonlinear crystal s1 is Ns1 = |V |2, while the flux rate
of signal photons generated in the second nonlinear crystal is
Ns2 = |V |2(1 + |r|2|V |2).

V. COMPARISON OF THE SIGNALS OBTAINED IN THE
THREE OCT CONFIGURATIONS CONSIDERED

Figure 3 shows the spectrum Si(k) (i = 1, 2, 3) and its
Fourier transform |Ŝi(z)| for the three cases considered here in
the low-parametric-gain regime. Due to the symmetry of the
figure, we plot only the signal for z � 0. In standard OCT we
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FIG. 3. Spectral density and its Fourier transform in the three
OCT schemes considered: (a) and (b) standard OCT, (c) and (d) OCT
with induced coherence, and (e) and (f) OCT with an SU(1,1) inter-
ferometer. The sample thickness of the bilayer structure considered
is d = 100 μm, the refractive index n0 and group index ng are equal
to 2.33, and the path imbalance is s = 730 μm. The spectral density
and its Fourier transform are depicted in arbitrary units.

consider a light beam with central wavelength λ = 810 nm
and bandwidth �λ = 10 nm. For the quantum schemes, we
consider a MgO-doped lithium niobate crystal with length
L = 1 mm and parameters cDL = −79.1 μm and cDiL =
2.2 mm. The wavelength of the signal and idler photons gen-
erated in parametric down-conversion are λ0

s = 810 nm and
λ0

i = 1550 nm, respectively. The wavelength of the pump
beam is λp = 532 nm. We consider a layer with thickness d =
100 μm and refractive index n0 and group refractive index ng

equal to 2.33. The optical thickness is thus n0d = 233 μm.
We consider reflection coefficients R1 = 0.16 and R2 = 0.11
for the first and second interfaces of the sample, respectively.

The main difference between standard OCT and the two
other schemes is that the signal obtained in standard OCT
shows peaks corresponding to autocorrelation and cross-
correlation terms, while there are no autocorrelation terms in
the two other cases. When comparing the OCT signals based
on induced coherence and an SU(1,1) interferometer, we ob-
serve that the only appreciable difference between them is that
the peaks at z �= 0 are farther away from the central peak at
z = 0 for the case of induced coherence. The reason for this
is that the peaks are located at 2s + cDL for the SU(1, 1)
configuration and at 2s + cDiL for the induced coherence
configuration.

Equations (3), (8), and (12) are exact expressions that give
the spectral density that should be obtained in the three OCT
systems considered, for a sample with an arbitrary reflection
coefficient r(k). To retrieve the sought-after internal struc-
ture of the sample under investigation, one needs to Fourier
transform these expressions. Since most experiments take
place in the low-parametric-gain regime, we have also derived
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FIG. 4. Fourier transform of the spectral density for OCT based
in a SU(1,1) configuration for two values of the parametric gain:
(a) and (b) G = 0.01 (low parametric gain) and (c) and (d) G = 10.
Blue solid lines show the analytical approximation valid for the low
parametric gain regime given by Eq. (14) for a value of the gain G =
0.01. Red dotted lines correspond to the exact expression obtained by
Fourier transforming Eq. (12). We consider a nonlinear crystal with
the parameters Ds = 7.61×10−9 s/m and Di = 7.34×10−9 s/m. We
have cDL = −79.1 μm and cDiL = 2.2 mm. The reflection coeffi-
cients are R1 = 0.16 and R2 = 0.11 for the first and second interfaces
of the single-layer sample, respectively. (b) and (d) Result of the
subtraction of two measurements are shown with the phases in the
reference arm differing by π .

simplified expressions (10) and (13) for the spectral density
that should be obtained in this regime. We have done it for the
specific benchmark sample we are considering.

The question arises how the shape of the OCT signal ex-
pected in the high-parametric-gain regime, given by Eq. (12)
in general, compares with the equivalent signal in the low-
parametric-gain regime, given by Eq. (14). We consider the
case of OCT based on an SU(1,1) scheme, where OCT
experiments has been reported in both the low- [6,7] and
high-parametric-gain [8] regimes.

Figures 4(a) and 4(c) show the Fourier transform of the
expression given by Eq. (12) (red dotted lines) and the an-
alytical approximation of the Fourier transform (blue solid
lines) given by Eq. (14) and valid in the low-parametric-gain
regime. As expected, both expressions give the same result
for a low gain of G = 0.01 [Fig. 4(a)]. For large gain G = 10
[Fig. 4(c)], we still observe the two peaks corresponding to the
two interfaces of the single layer separated a distance 2ngd .
However, the amplitudes of the peaks of the Fourier transform
change and do not have a straightforward relationship with
the reflectivity of the layers of the sample as it is the case in
the low-parametric-gain regime. Moreover, a new peak at a
distance 2ngd appears that can make it difficult, in principle,
to resolve the axial structure of the sample. All parametric
regimes share the presence of an intense dc component that
otherwise bears no relevant information about the sample.

In standard OCT it has been demonstrated [35–37] that one
can obtain a signal without the autocorrelation and dc terms
by subtracting the spectral densities obtained in two measure-
ments. In one of these measurements, a π phase is introduced
into the beam propagating in the reference arm. In OCT based
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FIG. 5. Sensitivity decay in an OCT scheme based on an SU(1,1)
interferometer. The idler photons are reflected from a mirror with
ideal reflectivity r = 1 located at different axial positions. The spec-
tral density of signal photons is measured for each position and we
plot here the Fourier transform of the spectral density, which shows
the location of the mirror and its reflectivity. The heights of all peaks
would be the same for ideal pointlike pixels. However, the finite size
of the pixels at the detection stage causes an apparent decay of the
value of the reflectivity. Experimental data were obtained from [8].
Different colors correspond to different positions of the mirror.

on nonlinear interferometers, the dc term is still present. We
apply this procedure to the signals S3(k) shown in Figs. 4(a)
and 4(c). In our case we need to subtract two spectral densi-
ties given by Eq. (12) with phases ϕs(k) and ϕs(k) + π and
from Eq. (13) with phases ϕ1(k) and ϕ1(k) + π . Figures 4(b)
and 4(d) show the results. The central peak is removed as
expected. However, also the new peak that appears for G = 10
is removed, so in this respect this peak behaves similarly to the
self-correlation term in standard OCT.

One important result of the present work is that all OCT
schemes might share similar technological limitations. For
instance, it is well known that the finite size of pixels in
spectrometers in general and in high-sensitivity CCD cameras
in particular leads to a sensitivity decay as a function of
path imbalance [38–41]. This sensitivity decay needs to be
corrected to obtain high-resolution and accurate images of
samples. Figure 5 shows an example of this sensitivity decay
for an OCT scheme based on an SU(1,1) interferometer with
gain G = 1.7. These experimental data are obtained from [8].
This is an example that shows that the experience obtained
in research associated with standard OCT schemes can be
beneficial also for new OCT schemes based on nonlinear
interferometers.

VI. CONCLUSION

We have analyzed the signal of interest in three different
OCT schemes. The characteristics of the signal enable the
optical sectioning of samples in axial scans. For the sake
of comparison, we considered standard OCT and two other
schemes that make use of nonlinear interferometers. One is
based on the concept of induced coherence and the other on an
SU(1, 1) interferometer. We have considered Fourier-domain
OCT, where the axial internal structure of the sample is

obtained from the Fourier transform of the signal. Our analy-
sis provides an overview of tomographic images acquired with
OCT schemes that make use of nonlinear interferometers.

The signal in standard OCT shows both unwanted auto-
correlation terms and cross-correlation terms, which carry the
sought-after information about the sample. A distinguishing
characteristic of OCT schemes based on nonlinear interfer-
ometers in the low-parametric-gain regime is that they do
not show any autocorrelation terms. However, there are tech-
niques that make use of the phases that accompany each term
to remove self-reference terms and even the peak at z = 0
[35–37]. When considering these techniques, which have been
successfully demonstrated in several OCT schemes, the signal
obtained in the three OCT schemes turns out to be essentially
the same for the representative sample consider here. We
expect a similar behavior for other types of samples.

The only difference remaining is in the location of peaks
of interest at z �= 0. For our benchmark example, in the low-
parametric-gain regime, the peaks at z > 0 corresponding to
the first interface, after Fourier transform, are located at 2s,
2s + cDiL, and 2s + cDL for the three OCT schemes con-
sidered, respectively. This was clearly seen in Fig. 3. This
puts different conditions on the path imbalance s required to
obtain a clear image of the internal structure of the sample in
Fourier-domain OCT.

Optical coherence tomography based on nonlinear inter-
ferometers has the advantage that the sample can be probed
at one wavelength, while detection occurs at another wave-
length. Both wavelengths can be chosen independently to
optimize probing and detection.
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APPENDIX A: QUANTUM STATE OF PAIRED PHOTONS
GENERATED IN PARAMETRIC DOWN-CONVERSION

1. Input-output relationships in parametric down-conversion

A nonlinear crystal (length L) is pumped by an intense cw
laser beam with wavelength λp. The wave number of the pump
beam is kp = 2πnp/λp, with np the refractive index at λp. The
interaction of the pump beam with the crystal mediates the
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generation of pairs of correlated photons (signal and idler)
by means of spontaneous parametric down-conversion. The
paired photons generated are frequency anticorrelated, i.e.,
ks = k0

s + k and ki = k0
i − k, where ks,i are the wave numbers

of signal or idler photons, k0
s,i are the corresponding central

wave numbers, and ±k is the wave-number deviation from
the corresponding central wave number.

We assume that the bandwidth of the photons is much
larger than the bandwidth of the pump beam. We also assume
that the Rayleigh length (LR = k0

pw
2
p/2) of the pump beam is

much larger than the crystal length. Here wp is the pump beam
waist and k0

p = 2πnp/λ
0
p is the pump beam wave number.

Under these conditions we can describe the spatiotemporal
characteristics of parametric down-conversion using the cw
and plane-wave pump beam approximations. The Bogoliubov
transformations that relate the quantum operators for signal
and idler photons (as and ai) at the output face of the nonlin-
ear crystal to the quantum operators at the input face of the
nonlinear crystal (bs and bi) are [24–26]

as(k) = Us(k)bs(k) + Vs(k)b†
i (−k),

ai(k) = Ui(k)bi(k) + Vi(k)b†
s (−k), (A1)

where

Us,i(k) =
(

cosh(�s,iL) − i
�s,i

2�s,i
sinh(�s,iL)

)

× exp

(
iδs,i

L

2

)
,

Vs,i(k) = −i
σ

�s,i
sinh(�s,iL) exp

(
iδs,i

L

2
+ iϕp

)
, (A2)

with δs,i = kp + ks,i(k) − ki,s(−k) and ϕp the phase of the
pump beam. The signal and idler beams fulfill the paraxial
approximation, so we can expand the corresponding wave
numbers in a Taylor series as ks,i = k0

s,i + cDs,ik, where Ds,i

are inverse group velocities. We assume phase matching at the
central frequencies, i.e., kp = k0

s + k0
i ± 2π/�, where � is

the poling period of the nonlinear crystal. The phase-matching
function is thus �s = −�i = cDLk, with D = Di − Ds. The
nonlinear coefficient σ is

σ =
(

h̄ωpωsωi[χ (2)]2F0

8ε0c3Snpnsni

)1/2

(A3)

and

�s,i =
(

σ 2 − �2
s,i

4

)1/2

. (A4)

Here F0 = P0/h̄ωp is the flux rate density of pump photons
(photons/s), S is the area of the pump beam, and P0 is the
pump power.

The parametric gain is defined as G = σL. It provides a
measure of the number of photons per mode generated in a
parametric down-conversion (PDC) process. Depending on
the value of the gain G, the PDC process is said to be in
the low-parametric-gain regime if G � 1, i.e., the number of
photons generated per mode is much smaller than one. On
the other hand, if the number of photons per mode generated
is greater than one, the PDC process is said to be in the
high-parametric-gain regime (G > 1).

2. Spectrum of signal photons in optical coherence tomography

In an induced coherence scheme, the signal photon anni-
hilation operator at the output facet of the second nonlinear
crystal as2 (k) reads

as2 (k) = Us2 (k)cs(k) + Vs2 (k)a†
i1

(−k)

= Us2 (k)cs(k) + r∗(−k)Vs2 (k)U ∗
i1 (−k)b†

i (−k)

+ r∗(−k)Vs2 (k)V ∗
i1 (−k)bs(k) + Vs2 (k) f †

i (−k). (A5)

The signal photons spectrum is S2(k) = 〈a†
s2

(k)as2 (k)〉.
Substituting Eq. (A5) into this expression, we obtain the spec-
trum given in Eq. (8).

In an SU(1,1) nonlinear interferometer, the signal photon
annihilation operator at the output facet of the second nonlin-
ear crystal as2 (k) reads

as2 (k) = Us(k)as1 (k) + Vs(k)a†
i1

(−k)

= [Us1 (k)Us2 (k) + r∗(−k)Vs2 (k)V ∗
i1 (−k)]bs(k)

+Vs2 (k)[Us2 (k) + r∗(−k)U ∗
i2 (−k)]b†

i (k)

+Vs2 (k) f †
i (−k). (A6)

The signal photons spectrum is S3(k) = 〈a†
s2

(k)as2 (k)〉. Sub-
stituting Eq. (A6) into this expression, we obtain the spectrum
given in Eq. (12).

APPENDIX B: DESCRIPTION OF THE EFFECT ON THE
QUANTUM STATE OF IDLER PHOTONS OF REFLECTION

FROM A SAMPLE WITH FREQUENCY-DEPENDENT
REFLECTIVITY

The idler beam interacts with a sample with reflectivity
r(k). The operator that describes the quantum state of idler
photons after reflection from the sample is [27]

ai(k) �⇒ r(k)ai(k) + f (k), (B1)

where f (k) fulfills the commutation relationship

[ f (k), f †(k′)] = [1 − |r(k)|2]δ(k − k′). (B2)

The operator f (k) takes into account the frequency-dependent
losses and reflectivity of the sample.

One can obtain in a straightforward way Eqs. (B1) and
(B2) considering an ideal situation when idler photons im-
pinge on a beam splitter (BS) with transmissivity t (k) and
reflectivity r(k). The BS aims at simulating in a very simple
way reflection from the sample. Idler photons enter the BS
through input port 1 and we are interested in idler photons
reflected from the BS through output port 3. The operator that
describes the quantum states of photons in output port 3 is
a3(k) = r(k)a1(k) + t (k)a2(k). If we define f (k) ≡ t (k)a2(k)
we obtain Eq. (B1). Moreover, we can write

[ f (k), f †(k′)] = [t (k)a2(k), t∗(k′)a†
2(k′)

= |t (k)|2δ(k − k′)

= (1 − |r(k)|2)δ(k − k′), (B3)

that is, Eq. (B2). We have made use of the relationship
|r(k)|2 + |t (k)|2 = 1.
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