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Operative approach to quantum electrodynamics in dispersive dielectric objects based on a
polarization-mode expansion
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In this paper, we deal with the macroscopic electromagnetic response of a finite size dispersive dielectric
object, in unbounded space, in the framework of quantum electrodynamics, using the Heisenberg picture. We
keep the polarization and the electromagnetic field distinct to enable the treatment of the polarization and
electromagnetic fluctuations on equal footing in a self-consistent QED Hamiltonian. We apply a Hopfield type
scheme to account for the dispersion and dissipation of the matter. We provide a general expression of the
time evolution of the polarization density field observable as function of the initial conditions of the matter
field observables and of the electromagnetic field observables. It is an integral operator whose kernel is a linear
combination of the impulse responses of the dielectric object that we obtain within the framework of classical
electrodynamics. The electric field observable is expressed in terms of the polarization density field observable
by means of the full wave dyadic Green’s function for the free space. The statistical functions of the observables
of the problem can be expressed through integral operators of the statistics of the initial conditions of the matter
field observables and of the electromagnetic field observables, whose kernels are linear or multilinear expressions
of the impulse responses of the dielectric object. We expand the polarization density field observable in terms of
the static longitudinal and transverse modes of the object to diagonalize the Coulomb and Ampere interaction
energy terms of the Hamiltonian in the Coulomb gauge. Few static longitudinal and transverse modes are needed
to calculate each element of the impulse response matrix for dielectric objects with sizes of the order up to
min

ω
{c0/[ω

√|χ (ω)|]}, where χ (ω) is the susceptibility of the dielectric. We apply the proposed approach to

different scenarios describing the dielectric susceptibility by the Drude-Lorentz model.

DOI: 10.1103/PhysRevA.106.033701

I. INTRODUCTION

In the last twenty years, there has been a large interest for
macroscopic quantum electrodynamics in presence of metal
and dielectric structures motivated by the prospect of using
plasmonic and photonic devices for quantum optics and quan-
tum technology applications (e.g., Refs. [1–4]). While the
problem of quantization of the macroscopic electromagnetic
field in nondispersive and homogeneous dielectrics has been
successfully tackled since the work of Jauch and Watson
[5], for dispersive and finite size dielectric objects in the
unbounded space the problem has been significantly more
difficult.

Glauber and Lewenstein [6] proposed two quantization
schemes for the electromagnetic field in the presence of
nondispersive and non homogeneous dielectrics in the un-
bounded space, both based on the generalized Coulomb gauge
∇ · [ε(r)A] = 0. In the first scheme, they expand the electro-
magnetic field in terms of the full wave eigenmodes of the
dielectric object, which is a continuum set of basis functions.
In the second scheme, they expand the electromagnetic field
in terms of a continuum set of basis functions based on plane
waves that satisfy the generalized Coulomb gauge. They also

*carlo.forestiere@unina.it
†miano@unina.it

discuss the relation between the two quantization schemes in
the framework of electromagnetic scattering theory.

To deal with dispersive dielectrics, there is the need to
introduce dynamical variables that represent the degrees of
freedom of the matter. The established models are mainly
based on either Hopfield type schemes or Langevin-noise
schemes (e.g., Refs. [7–10]).

Hopfield represented the polarization field of a homo-
geneous dielectric as a harmonic oscillating bosonic field
linearly coupled to the electromagnetic field [7] and quantized
the entire system by applying the Coulomb gauge. This model
was introduced by Fano [11], who justified it in terms of an
atomic medium. It can also be applied to the oscillations of
free electrons in metals.

Huttner and Barnett [12] extended the Hopfield model to
include the losses of the matter by coupling the polariza-
tion field to the electromagnetic field and to a continuum of
reservoir bosonic fields. They used the Hamiltonian in the
Coulomb gauge, applied the standard canonical quantization
method to the entire system and, assuming the homogeneity
of the medium, diagonalized the Hamiltonian in a closed
form using the Fano method. Suttorp and Wubs [13] have
dealt with the response of an inhomogeneous dielectric in the
Heisenberg picture using the classical dyadic Green’s function
for the electric field in the presence of the dielectric object.

In the Huttner-Barnet model, the diagonalization of the
matter Hamiltonian (polarization field + reservoir field) yields
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a set of dressed continuum fields that are coupled to the elec-
tromagnetic field. This fact suggests that absorptive dielectrics
can be equivalently described by a single continuum set of
harmonic oscillating fields directly coupled to the electro-
magnetic field [14,15]. In Ref. [14], following Ref. [6], the
electromagnetic field is expressed in terms of the full wave
eigenmodes of a nondispersive reference dielectric object,
then the Hamiltonian is quantized, and eventually it is diag-
onalized by the Fano method. In Ref. [15] the Hamiltonian
based on the Coulomb gauge is quantized and diagonalized
using the dyadic Green’s function for the electric field in the
presence of the dielectric object.

The Hopfield-type models have been applied in com-
bination with the Power-Zienau-Wooley Lagrangian (e.g.,
Refs. [16,17]) and the Hamiltonian has been diagonalized by
the Fano method. In these approaches, the diagonalization
requires the solution of a classical electromagnetic scattering
problem or the solution of a Lippmann-Schwinger type equa-
tion.

The Hopfield model has been also used to quantize
plasmons in metal particles in the full-retarded regime by
expanding the current density field in terms of the electrostatic
modes of the particle [18]. A canonical quantization scheme
with numerical mode decomposition for diagonalizing the
Hamiltonian has been recently proposed [19].

The Langevin-noise schemes are based on the introduction
of phenomenological fluctuating currents to deal with the
problem of dissipation and dispersion [8,20,21]. The electro-
magnetic field operators are expressed in terms of the noise
current operator by using the dyadic Green’s function for the
electric field in the presence of the dielectric object [9,22].
These schemes are widely applied in many contexts (e.g.,
Refs. [10,23,24]).

The Hopfield-type schemes and the Langevin noise
schemes are equivalent if in the Langevin noise schemes
the quantized photonic degrees of freedom associated with
the fluctuating radiation field are added to the degrees of
freedom of the material oscillators [25,26]. In both schemes,
the diagonalization of the Hamiltonian requires the full wave
solution of a classical electromagnetic scattering problem in
unbounded space: either the computation of the wave eigen-
modes of the dielectric object or the computation of the
Green’s function in the presence of the dielectric object or
the solution of three dimensional Lippmann-Schwinger type
equations.

In this paper, we propose an “operative” full wave ap-
proach to evaluate the macroscopic electromagnetic response
of a dispersive dielectric of finite size in unbounded space
that does not involve a complete diagonalization of the
Hamiltonian. We use the Heisenberg picture to describe
the time evolution of the observables of the matter and of
the electromagnetic field. We keep the matter and the elec-
tromagnetic field distinct. We use a Hopfield type model to
describe the matter and the coupling with the electromagnetic
field. We expand the matter field observables through the
electroquasistatic (longitudinal) modes [27,28] and the mag-
netoquasistatic (transverse) modes [29] of the object. These
modes are size-independent, and do not depend on the mate-
rial [27–29]. They are the natural modes of the polarization
field in the small-size limit. We apply the Coulomb gauge,

and we use the transverse plane waves to represent the ra-
diation field observables. The separation between matter and
electromagnetic field allows us to include on an equal footing
both electromagnetic field and matter fluctuations in a self-
consistent QED Hamiltonian (e.g., Ref. [30] and references
therein). The expansion of the matter field observables in
terms of the static longitudinal and transverse modes of the
object allows to diagonalize the Coulomb and Ampere inter-
action energy terms of the Hamiltonian. Using this approach,
we obtain a general expression for the time evolution of the
polarization density field observable as function of the initial
conditions of the matter field observables and of the elec-
tromagnetic field observables. It is a linear integral operator
whose kernel is a linear expression of the impulse responses
of the dielectric object that we obtain within the framework of
classical electrodynamics [31]. The electric field observable is
expressed in terms of the polarization density field observable
by means of the dyadic Green’s function for the free space.
The statistical functions of these observables are integral op-
erators of the statistics of the initial conditions of the matter
field observables and of the electromagnetic field observables.
The kernels are linear or multilinear expressions of the im-
pulse responses of the dielectric object. The use of the static
modes significantly reduces the computational burden for the
evaluation of the impulse responses of dielectric objects with
sizes of the order up to min

ω
{c0/[ω

√|χ (ω)|]}, where χ (ω) is

the susceptibility of the dielectric.
The paper is organized as follows. In Sec. II, we introduce

the classical Hamiltonian formulation, in the Coulomb gauge,
of the electromagnetic response of dispersive dielectrics of
finite size in unbounded space. In Sec. III, we quantize the
matter and the radiation fields. In Sec. IV, we represent the
matter field observables in terms of the static longitudinal
and transverse modes of the object, and the radiation field
observables in terms of the transverse plane wave in free
space. In Sec. V, we express the Hamiltonian observable of
the system in terms of the coordinate and conjugate momen-
tum operators of the matter and radiation field observables. In
Sec. VI, we first derive the Heisenberg equations of motion
for the coordinate and conjugate momentum operators. We
then reduce the full set of equations to a system of differential
- integral equations of convolution type for the coordinate
operators of the matter field. In Sec. VII, we first obtain the
equations governing the evolution of the coordinate operators
of the polarization. We then give an expression of the polar-
ization density field observable based on the impulse response
of the dielectric object that we obtain within the framework of
classical electrodynamics. In Sec. VIII, we give the expression
of the electric field observable in terms of the polarization den-
sity field operator. In Sec. IX, we first summarize the principal
steps of the numerical procedure to calculate the impulse re-
sponses, then we analyze the computational burden. In Sec. X,
we apply this approach to an infinite homogeneous dielectric,
a dielectric slab, and a dielectric sphere. We use the sphere
to validate the numerical procedure for the computation of
the impulse responses. In Sec. XI, we consider a disk with
rounded edges, which is very relevant in nano-photonic. We
used the Drude-Lorentz model to describe the susceptibility
of the material. In Sec. XII, we conclude with a summary and
a discussion of the main achievements.
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FIG. 1. Region V occupied by a dispersive dielectric with sus-
ceptibility χ (ω) and boundary ∂V ; the overall unbounded space
is denoted as V∞. The dielectric is described by a Hopfield
type model. The conjugate operators {Ŷν (r, t ), Q̂ν (r, t )} describe the
matter field observables in the Heisenberg picture. The conjugate
operators {Â(r, t ), �̂(r, t )} describe the radiation field observables
in the same picture. The polarization density field observable in the
Heisenberg picture is described by the operator P̂(r; t ). It is related
to the matter field operator Ŷν (r; t ) through the coupling parameter
αν that characterizes the linear interaction between the matter and the
electric field. The temporal evolution of the polarization density field
operator is driven by the free electric field operator Êfree(r; t ) and
the free polarization field operator P̂free(r; t ). They take into account
the influence of the initial condition of the matter and radiation field
operators, through which the initial quantum state of the system
comes into play.

II. CLASSICAL FIELD EQUATIONS

We consider a linear, isotropic, homogeneous, dispersive,
and absorptive dielectric of finite size, shown in Fig. 1. We de-
note the space occupied by the dielectric with V , its boundary
by ∂V , the (unit vector) normal to ∂V that points outward by
n, the unbounded space by V∞, and the radius of the smallest
sphere that contains V by a. The diameter 2a of such sphere
is equal to the largest linear dimension of the dielectric object.
Throughout this manuscript, we use the scalar product

〈F, G〉W =
∫

W
d3r F∗(r) · G(r), (1)

and the norm ‖F‖W = √〈F, F〉W . The scalar product is de-
fined in W = V if the domain is not explicitly indicated.

A. Dielectric constitutive relation

The electric polarization density field P(r; t ) describes
the macroscopic state of the dielectric. Due to the linearity,
isotropy, and homogeneity of the dielectric, the field P(r; t ) is
solenoidal in V but its normal component to ∂V is different
from zero. Therefore a surface polarization charge lies on
∂V with a surface density equal to Pn = P · n. We denote
by E(r; t ) the macroscopic electric field and by B(r; t ) the
macroscopic magnetic field. The macroscopic response of the
dielectric for t � 0 is described by

P(r; t ) =
{
ε0 ζ (t ) ∗ E(r; t ) + Pfree(r; t ) in V,

0 in V∞\V,
(2)

where ∗ denotes the time convolution product, ε0 is the vac-
uum permittivity, ζ (t ) is the inverse Fourier transform of the
dielectric susceptibility χ (ω),

ζ (t ) = 1

2π

∫ +∞

−∞
dω χ (ω)eiωt . (3)

Pfree(r; t) takes into account the contribution of the initial state
(at t = 0) of the polarization.

The real part of susceptibility χr (ω) is an even function
of ω, and the imaginary part χi(ω) is an odd function, thus
χ (−ω) = χ∗(ω). Since the dielectric is absorptive, χi(ω) is
negative for ω > 0. The causality implies that ζ (t ) = 0 for
t < 0, therefore, χ (ω) obeys the Kramers-Kronig relations for
−∞ < ω < +∞,

χr (ω) = 2

π
P

∫ ∞

0
dω′ ω′χi(ω′)

ω′ 2 − ω 2
, (4a)

χi(ω) = −2ω

π
P

∫ ∞

0
dω′ χr (ω′)

ω′ 2 − ω 2
, (4b)

where P denotes the Cauchy principal value.
The electrodynamics of a dispersive and absorptive dielec-

tric can be studied through a Hamiltonian formulation by
modeling the medium as a continuum set of harmonic oscil-
lators (e.g., Refs. [14,15]). The harmonic oscillator field with
natural frequency ν, where 0 � ν < ∞, is described by the
coordinate vector field Yν (r; t ) defined in V . Throughout the
paper, we indicate the continuum set {Yν (r; t )} as the “matter
fields.” The polarization density field is expressed in terms of
the matter fields as

P(r; t ) =
∫ ∞

0
dν ανYν (r; t ), (5)

where αν is the coupling parameter characterizing the interac-
tion between the matter field and the electric field. The choice

αν =
√

2σ (ν)

π
, (6)

where

σ (ω) = −ε0ωχi(ω) (7)

returns the constitutive relation 2 in the region V (see Ap-
pendix A). The term Pfree is given by

Pfree(r; t ) =
∫ ∞

0
dν

√
2σ (ν)

π
Yfree

ν (r; t ), (8)

where

Yfree
ν (r; t ) = Y(0)

ν (r) cos(νt ) + 1

ν
Ẏ(0)

ν (r) sin(νt ). (9)

Y(0)
ν (r) and Ẏ(0)

ν (r) denote, respectively, the vector field Yν

and its partial derivative with respect to the time evaluated at
t = 0.

B. Lagrangian in the Coulomb gauge

It is convenient to represent the electric field E in V∞ as

E = Es + Ec, (10)
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where Es(r; t ) is its solenoidal component (radiation field)
and Ec(r; t ) is its irrotational component (Coulomb field).
The vector field Es and the vector field Ec are orthogonal
according to the scalar product 〈Es, Ec〉V∞ . We introduce the
vector potential A(r; t) in the Coulomb gauge,

∇ · A = 0 in V∞. (11)

The solenoidal component of the electromagnetic field is
given by

Es = −Ȧ, (12)

B = ∇ × A, (13)

where the dot above A denotes the partial derivative with
respect to time. The Coulomb electric field is given by

Ec(r; t ) = − 1

4πε0
∇

∮
∂V

d2r′ Pn(r′; t )

|r − r′| inV∞. (14)

The field Ec is solenoidal in V and V∞\V but its normal com-
ponent to ∂V is discontinuous due to the surface polarization
charge Pn.

The degrees of freedom of the whole system are the matter
fields {Yν (r; t )} and the vector potential A(r; t). The La-
grangian in the Coulomb gauge is the sum of four terms: the
matter term Lmat = Lmat(Yν, Ẏν ), the Coulomb term LCoul =
LCoul(P), the radiation term Lrad = Lrad(A, Ȧ), and the inter-
action term between matter and radiation Lint = Lint (Ṗ, A)
(e.g., Refs. [13,15,31]). The expression of the Lagrangian is

L = Lmat + LCoul + Lrad + Lint, (15)

where

Lmat =
∫

V
d3r

∫ ∞

0
dν

(
1

2
Ẏ2

ν − ν2

2
Y2

ν

)
, (16a)

LCoul = −
∮

∂V
d2r

∮
∂V

d2r′ Pn(r; t )Pn(r′; t )

8πε0|r − r′| , (16b)

Lrad =
∫

V∞
d3r

[
ε0

2
Ȧ2 − 1

2μ0
(∇ × A)2

]
, (16c)

Lint =
∫

V
d3r Ṗ · A. (16d)

Pn and P are functions of Yν through relation (5).

C. Canonical variables and Hamiltonian

We now introduce the conjugate momenta of matter and ra-
diation fields in the Coulomb gauge. The momentum Qν (r; t )
conjugated to the matter field Yν (r; t ) is

Qν = Ẏν + ανA in V. (17)

The momentum �(r; t ) conjugated to the vector potential
A(r; t ) is

� = ε0Ȧ in V∞. (18)

The Hamiltonian has three terms: the contribution of the mat-
ter Hmat = Hmat(Qν, Yν, A), the contribution of the Coulomb
interaction HCoul = HCoul(P) and the contribution of the

radiation field Hrad = Hrad(�, A). The expression of the
Hamiltonian is

H = Hmat + HCoul + Hrad, (19)

where

Hmat =
∫

V
d3r

∫ ∞

0
dν

[
1

2
(Qν − ανA)2 + ν2

2
Y2

ν

]
, (20a)

HCoul =
∮

∂V
d2r

∮
∂V

d2r′ Pn(r; t )Pn(r′; t )

8πε0|r − r′| , (20b)

Hrad =
∫

V∞
d3r

[
1

2ε0
�2 + 1

2μ0
(∇ × A)2

]
. (20c)

The Hamilton’s equations for the matter field and the con-
jugate momentum are in V and for 0 � ν < ∞

Ẏν = Qν − ανA, (21a)

Q̇ν = −ν2Yν + ανEc{Pn}. (21b)

The Hamilton’s equations for the radiation field and the con-
jugate momentum are in V∞

Ȧ = 1

ε0
�, (22a)

�̇ = 1

μ0
∇2A + (Ṗ + ε0Ėc{Pn}). (22b)

The Coulomb field Ec is a function of the normal component
of P on ∂V through relation (14); P, in turn, is a function of
Yν through relation (5). The vector field Ṗ is the polarization
current density and the vector field ε0Ėc is the displacement
current density due to the Coulomb electric field: their sum,
(Ṗ + ε0Ėc), is solenoidal in V∞.

Equations (21) and (22) give, for 0 � ν < ∞,

Ÿν + ν2Yν = αν (−Ȧ + Ec{Pn}) in V, (23a)

Ä − c2
0∇2A = 1

ε0
(Ṗ + ε0Ėc{Pn}) in V∞. (23b)

Equation (23a) governs the classical motion of the matter
field. Equation (23b) governs the classical evolution of the
vector potential. They have to be solved with the initial con-
ditions for the matter field Y(0)

ν (r) and Q̇(0)
ν (r), and with the

initial conditions for the radiation field A(0)(r) and �̇(0)(r).
The initial conditions are the sources of the problem. The
solution of Eq. (23a) gives the constitutive relation (2) (see
Appendix A).

III. QUANTIZATION

First, we quantize the matter and radiation fields in a
standard fashion (e.g., Refs. [13,15,32]) by enforcing the
canonical commutation relations between the field operators
and their conjugate momenta. Then, we introduce the Heisen-
berg equations.

A. Operators and commutation relations

The vector field operators Q̂ν (r; t ) and Ŷν (r; t ) correspond,
respectively, to the canonically conjugate matter vector fields
Qν and Yν ; the vector field operators �̂(r; t ) and Â(r; t ) cor-
respond, respectively, to the canonically conjugate radiation
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vector fields � and A. These are the vector field operators
that describe the fundamental observables of the problem, as
sketched in Fig. 1. They obey the commutation relations for
ν, ν ′ ∈ [0,∞)

[Q̂ν (r; t ), Ŷν ′ (r′; t )] = −ih̄ I
↔

δ(ν − ν ′)δ(r − r′) r, r′ ∈ V,

(24)

[�̂(r; t ), Â(r′; t )] = −ih̄δ⊥(r − r′) r, r′ ∈ V∞, (25)

while all remaining commutators vanish; here I
↔

is the three-
dimensional unit tensor, δ⊥(r) = I

↔
δ(r) − δ‖(r) and δ‖(r) =

∇∇(1/4πr) (e.g., Ref. [32]). According to relation (5), we
introduce the vector field operator P̂(r; t ) corresponding to the
polarization density field P,

P̂(r; t ) =
∫ ∞

0
dν ανŶν (r; t ). (26)

The Hamiltonian operator is given by

Ĥ = ĤCoul + Ĥrad + Ĥmat, (27)

where Ĥmat, ĤCoul, and Ĥrad are obtained from (20a)–(20c)
by substituting each physical variable with the corresponding
operator.

B. Heisenberg picture

In this paper, we study the evolution of the matter and
radiation field observables in the Heisenberg picture. With an
abuse of notation, we indicate with Ô(t ) the operator Ô in
the Heisenberg picture and with Ô(S) the same operator in the
Schrödinger picture, thus Ô(t = 0) = Ô(S).

The Heisenberg equation for a time-invariant operator Ô is
(e.g., Ref. [32])

˙̂O = 1

ih̄
[Ô, Ĥ ], (28)

where the Hamiltonian operator is given by (27). This equa-
tion has to be solved with the initial condition Ô(t = 0) =
Ô(S). The time evolution of the expectation value of the ob-
servable Ô(t ) is given by 〈Ô〉ψ0 = 〈ψ0|Ô(t )ψ0〉 where |ψ0〉 is
the initial quantum state of the system.

The equations of motion for the matter field opera-
tors Q̂ν (r; t ), Ŷν (r; t ) and for the radiation field operators
�̂(r; t ), Â(r; t ) follow by evaluating their commutators with
the Hamiltonian. They have the same algebraic structure of
the equation governing the corresponding classical quantities
(e.g., Refs. [13,32]): they coincide with Eqs. (21) and (22)
as long as we substitute the classical vector fields with the
corresponding operators in the Heisenberg picture.

Due to the intrinsic spatial inhomogeneity of the problem, a
direct solution of the Heisenberg equations for the matter field
operators and the radiation field operators is very challenging.
We overcome this problem in the following way. First, we
expand the matter field operators and the radiation field opera-
tors in terms of suitable sets of vector fields depending only on
space (modal expansion). Then, we express the Hamiltonian
operator in terms of the coordinate operators of the matter
fields and the coordinate operators of the radiation fields and
their conjugate momenta. Eventually, we derive the Heisen-
berg equations for the coordinate and conjugate momentum

operators that we solve using standard techniques. Once the
polarization density field operator has been evaluated, the
electric field operator is evaluated using the dyadic Green’s
function for vacuum.

IV. MODAL EXPANSION OF THE VECTOR FIELD
OPERATORS

In this section, we introduce the bases that we use to ex-
pand the fundamental vector field operators of the problem.

A. Matter field operators

We represent the matter field operators, which are defined
in V , by applying the Helmholtz decomposition for vector
fields defined in a bounded domain. The vector field operator
Ŷν (r), for any ν, is expressed as

Ŷν (r) = Ŷ‖
ν (r) + Ŷ⊥

ν (r), (29)

where Ŷ‖
ν is the longitudinal component of Ŷν and Ŷ⊥

ν is the
transverse component. The longitudinal component is irrota-
tional and solenoidal in V , and its normal component to ∂V
is equal to Ŷ‖

ν · n̂. The transverse component is solenoidal
in V , its normal component on ∂V is equal to zero, and its
curl in V is equal to the curl of Ŷν . This decomposition is
unique. The vector fields Ŷ‖

ν and Ŷ⊥
ν are orthogonal according

to the scalar product 〈Ŷ‖
ν, Ŷ⊥

ν 〉. We represent the vector field
operators {Q̂ν} in the same way.

By following Ref. [31], we now expand the longitudinal
components of Ŷν and Q̂ν in terms of the static longitudinal
modes of the dielectric object, and the transverse components
in terms of the static transverse modes. The static longitudinal
modes are the eigenfunctions of the electrostatic integral oper-
ator defined in Eq. (B1) of Appendix B. The static transverse
modes are the eigenfunctions of the magnetostatic integral
operator defined in Eq. (B2) of Appendix B. Both integral op-
erators have a discrete spectrum. Both the longitudinal modes
and the transverse modes are orthonormal according to the
scalar product 〈F, G〉. The set of static longitudinal modes
{U‖

m(r), m = 1, 2, . . . } is a base for the space of longitudinal
vector fields defined on V , and the set of static transverse
modes {U⊥

m (r), m = 1, 2, . . . } is a base for the space of trans-
verse vector fields defined in V . They satisfy the closure
relation ∑

m

[U‖
m(r)U‖

m(r′) + U⊥
m (r)U⊥

m (r′)]

= ←→
I δ(r − r′) r, r′ ∈ V. (30)

Both sets of modes are dimensionless quantities.
The vector field operators Q̂a

ν and Ŷa
ν , with a =‖,⊥, are

represented as

Ŷa
ν (r; t ) =

∑
m

ŷa
ν,m(t )Ua

m(r), (31)

Q̂a
ν (r; t ) =

∑
m

q̂a
ν,m(t )Ua

m(r), (32)

where {ŷa
ν,m} is the set of the coordinate operators of Ŷa

ν and
{q̂a

ν,m} is the set of the coordinate operators of Q̂a
ν . Since the

static longitudinal and transverse modes are real functions, the
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coordinate operators are Hermitian. They obey the equal time
commutation relations[

q̂a
ν,m, ŷa′

ν ′,m′
] = −ih̄δ(ν − ν ′)δmm′δaa′ , (33)

for m, m′ = 1, 2, . . . and a, a′ =‖,⊥, while all other commu-
tators vanish. The operator q̂a

m is canonically conjugate to the
operator ŷa

m.
The polarization field operator P̂ is expressed as

P̂(r; t ) =
∑

m

[ p̂‖
m(t )U‖

m(r) + p̂⊥
m(t )U⊥

m (r)], (34)

where

p̂a
m =

∫ ∞

0
dν αν ŷa

ν,m, (35)

with a =‖,⊥; { p̂‖
m} and { p̂⊥

m} are the sets of coordinate opera-
tors of P̂.

B. Radiation field operators

We use the transverse-plane wave modes

wμ(r) = 1

(2π )3/2 εs,keik·r (36)

to represent the radiation field operators Â(r) and �̂(r); k ∈
R3 is the propagation vector, {εs,k} are the polarization unit
vectors with εs,k = εs,−k and s = 1, 2. The two polarization
vectors are orthogonal among them, ε1,k · ε2,k = 0, and are
both transverse to the propagation vector, ε1,k · k = ε2,k · k =
0. We introduce the multi-index μ that represents the pair of
parameters k and s, μ = (k, s), and we denote the set of all

possible μ by M. Furthermore, we denote
∑

s

∫
R3

d3k (·) by∑
μ(·). The modes {wμ} are orthonormal in V∞,

〈wμ, w′
μ〉V∞ = δs,s′δ(k − k′). (37)

These modes are also dimensionless quantities.
We represent Â(r) and �̂(r) as

Â(r; t ) =
∑

μ

Âμ(t )wμ(r), (38)

�̂(r; t ) =
∑

μ


̂μ(t )wμ(r), (39)

where {Âμ} is the set of coordinate operators of Â and {
̂μ}
is the set of coordinate operators of �̂. Since Â and �̂ are
Hermitian and the modes {wμ} are complex with w∗

μ = w−μ,
we have Â†

μ = Â−μ and 
̂†
μ = 
̂−μ, where the multi-index

−μ denotes the set (−k, s). The coordinate operators {Âμ}
and {
̂μ} obey the equal time commutation relations

[
̂μ′, Â†
μ] = −ih̄δs,s′δ(k − k′), (40)

for any couple μ,μ′ ∈ M, while all other commutators van-
ish. The operator 
̂μ is canonically conjugate to the operator
Â†

μ. The coordinate operators of the radiation field commutate
with the coordinate operators of the matter fields.

V. MODAL EXPANSION OF THE HAMILTONIAN
OPERATOR

The terms of the Hamiltonian operator (27) are given by the
expressions (20a)–(20c) by substituting each classical physi-
cal variable with the corresponding operator. Now, we express
the individual terms of Ĥ as functions of the coordinate oper-
ators and their conjugate momenta introduced in the previous
section.

A. Coulomb energy

Only the longitudinal component of the matter field con-
tributes to the Coulomb interaction energy ĤCoul. We have

ĤCoul = 1

2ε0

∑
m

1

κ
‖
m

∫ ∞

0
dν

∫ ∞

0
dν ′αναν ′ ŷ‖

ν,mŷ‖
ν ′,m, (41)

where κ‖
m is the eigenvalue associated with U‖

m [see Eq. (B1)
of Appendix B]. By using (35) we obtain

ĤCoul = 1

2ε0

∑
m

1

κ
‖
m

p̂‖ 2
m . (42)

The static longitudinal modes of the dielectric object diago-
nalize the Coulomb interaction energy [18].

B. Radiation energy

The expression of Ĥrad in terms of the canonically conju-
gate coordinate operators of the radiation field is

Ĥrad =
∑

μ

(
1

2ε0

̂†

μ
̂μ + ε0ω
2
μ

2
Â†

μÂμ

)
, (43)

where

ωμ = c0k. (44)

The transverse plane wave modes diagonalize Ĥrad.

C. Matter energy

The matter term Ĥmat has three contributions:

Ĥmat = Ĥ ′
mat + Ĥ ′′

mat + Ĥ ′′′
mat, (45)

where

Ĥ ′
mat =

∑
m

∫ ∞

0
dν

[
1

2

(
q̂‖ 2

ν,m + q̂⊥ 2
ν,m

) + ν2

2

(
ŷ‖ 2
ν,m + ŷ⊥ 2

ν,m

)]
,

(46)

Ĥ ′′
mat = −

∑
m,μ

∫ ∞

0
dν αν

(
q̂‖

ν,mR‖
mμ + q̂⊥

ν,mR⊥
mμ

)
Âμ, (47)

Ĥ ′′′
mat =

∫ ∞

0
dν

α2
ν

2

∑
μ′,μ

Wμ′μÂ†
μ′ Âμ, (48)

and

Ra
mμ = 〈

Ua
m, wμ

〉
, (49)

Wμ′μ = 〈wμ′ , wμ〉, (50)

with a =‖,⊥.
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The terms ĤCoul, Ĥrad, and Ĥ ′
mat are diagonal because of

the expansion bases we have used, whereas Ĥ ′′
mat and Ĥ ′′′

mat are
not diagonal. The term Ĥ ′′

mat takes into account the interaction
between matter and radiation fields; Ĥ ′′′

mat is the diamagnetic
term, which is also called the A2 term (e.g., Ref. [33]). As
we shall see, our approach allows us to take into account the
diamagnetic term Ĥ ′′′

mat without making any approximation.
Therefore we only have to address the difficulties arising from
the nondiagonal term Ĥ ′′

mat. The use of static longitudinal and
transverse modes of the dielectric object allows us to over-
come these difficulties as in the classical framework [31].

VI. HEISENBERG EQUATIONS

In this section, we first formulate the equations of motion
for the coordinate operators of the matter fields and the ra-
diation field in the Heisenberg picture. Then, we eliminate
the coordinate operators of the radiation field and derive the
equation of motion for the coordinate operators of the matter
fields.

A. Matter and radiation fields

1. Matter

The equations governing the time evolution of ŷ‖
ν,m and

q̂‖
ν,m, with m = 1, 2, 3 . . . and 0 � ν < ∞, are

˙̂y‖
ν,m = q̂‖

ν,m − αν

∑
μ

R‖
mμÂμ, (51a)

˙̂q‖
ν,m = −ν2ŷ‖

ν,m − αν

ε0κ
‖
m

∫ ∞

0
dν ′ αν ′ ŷ‖

ν ′,m. (51b)

The equations governing the time evolution of ŷ⊥
ν,m and q̂⊥

ν,m,
with m = 1, 2, 3 . . . and 0 � ν < ∞, are

˙̂y⊥
ν,m = q̂⊥

ν,m − αν

∑
μ

R⊥
mμÂμ, (52a)

˙̂q⊥
ν,m = −ν2ŷ⊥

ν,m. (52b)

These equations are solved with the initial conditions ŷa
ν,m(t =

0) = ŷa (S)
ν,m and q̂a

ν,m(t = 0) = q̂a (S)
ν,m , where a =‖,⊥.

Combining Eqs. (51) and (52), we eliminate conjugate
momenta q̂‖

ν,m and q̂⊥
ν,m, and obtain for m = 1, 2, 3 . . . and

0 � ν < ∞:

¨̂y‖
ν,m + ν2ŷ‖

ν,m + αν

ε0κ
‖
m

∫ ∞

0
dν ′ αν ′ ŷ‖

ν ′,m = −αν

∑
μ

R‖
mμ

˙̂Aμ,

(53a)

¨̂y⊥
ν,m + ν2ŷ⊥

ν,m = −αν

∑
μ

R⊥
mμ

˙̂Aμ. (53b)

These equations are solved with the initial conditions ŷa
ν,m(t =

0) = ŷa (S)
ν,m and ˙̂ya

ν,m(t = 0) = ˙̂ya (S)
ν,m , where

˙̂ya (S)
ν,m = q̂a (S)

ν,m − αν

∑
μ

Ra
mμÂ(S)

μ , (54)

with a =‖,⊥. Once {ŷ‖
ν,m}, {ŷ⊥

ν,m}, and {Âμ} have been evalu-
ated, equations (51a) and (52a) allow us to calculate conjugate
momenta {q̂‖

ν,m} and {q̂⊥
ν,m}.

2. Radiation

The equations that govern the time evolution of Âμ and 
̂μ,
with μ belonging to M, are

˙̂Aμ = 1

ε0

̂μ, (55a)

˙̂
μ = −ε0ω
2
μÂμ +

∑
m,a

∫ ∞

0
dν ανRa

μmq̂a
ν,m +

−
(∫ ∞

0
α2

νdν

) ∑
μ′

Wμμ′ Âμ′ (55b)

where

Ra
μm = 〈

wμ, Ua
m

〉 = (
Ra

mμ

)∗
. (56)

These equations are solved with the initial conditions Âμ(t =
0) = Â(S)

μ and 
̂μ(t = 0) = 
̂(S)
μ .

Combining Eqs. (51a), (52a), (55a), (55b) and using the
closure relation (30) we eliminate the conjugate momenta 
̂μ,
q̂‖

ν,m and q̂⊥
ν,m. We obtain for any μ ∈ M:

¨̂Aμ + ω2
μÂμ = 1

ε0

∑
m,a

Ra
μm

∫ ∞

0
dν αν

˙̂ya
ν,m. (57)

These equations are solved with the initial conditions Âμ(0) =
Â(S)

μ and ˙̂Aμ(0) = 
̂(S)
μ /ε0. The coupling terms involving

Wμμ′ , originating from the diamagnetic term Ĥ ′′′
mat, cancel

out. This is a mere consequence of elimination of the conju-
gate momenta. Once the operators {Âμ} have been evaluated,
Eq. (55a) allow to calculate the conjugate momenta operators
{
̂μ}. Solving Eq. (57), we obtain

˙̂Aμ = 1

ε0

∑
m,a

Ra
μm

∫ ∞

0
dν αν wμ(t ) ∗ ˙̂ya

ν,m(t ) − ε̂μ(t ), (58)

where

wμ(t ) = u(t ) cos(ωμt ), (59)

u(t ) is the Heaviside function, and

ε̂μ(t ) = ωμÂ(S)
μ sin(ωμt ) − 1

ε0

̂(S)

μ cos(ωμt ). (60)

The operators {ε̂μ(t )} take into account the contribution of the
initial conditions of the vector potential operator Â(r; t ) and
the conjugate momentum �̂(r; t ). They are the coordinates of
the vector field operator

Êfree
s (r; t ) =

∑
μ

[ωμÂ(S)
μ sin(ωμt ) − 
̂(S)

μ

ε0
cos(ωμt )]wμ(r).

(61)
The operator Êfree

s would describe the evolution of the
solenoidal component of the electric field operator if the
coupling between matter and electric field was absent. For
this reason, throughout the paper, we call it “free solenoidal
electric field operator.”
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B. Equations of motion for the matter coordinate operators

We now derive the equations governing the dynamics of
the coordinate operators of the matter field in the time domain,
then, we rewrite them in the Laplace domain.

1. Time domain

Using expressions (58) we eliminate the operators {Âμ}
in the systems of equations (53a) and (53b). Therefore the
coordinate operators of the matter fields are governed by the
system of integrodifferential equations of convolution type
(for m = 1, 2, 3 . . . and 0 � ν < ∞),

¨̂y‖
ν,m + ν2ŷ‖

ν,m + αν

ε0κ
‖
m

∫ ∞

0
dν ′ αν ′ ŷ‖

ν ′,m + αν

ε0

∑
m′,a′

∫ ∞

0
dν ′ αν ′s‖ a′

mm′ (t ) ∗ ˙̂ya′
ν ′,m′ (t ) = αν

ε0
d̂‖

m, (62)

¨̂y⊥
ν,m + ν2ŷ⊥

ν,m + αν

ε0

∑
m′,a′

∫ ∞

0
dν ′ αν ′s⊥ a′

mm′ (t ) ∗ ˙̂ya′
ν ′,m′ (t ) = αν

ε0
d̂⊥

m , (63)

where

sa a′
mm′ (t ) =

∑
μ

〈
Ua

m, wμ

〉〈
wμ, Ua′

m′
〉
wμ(t ), (64)

d̂ a
m (t ) = ε0

∑
μ

Ra
mμε̂μ(t ), (65)

and a, b =‖,⊥. The operators {d̂a
m} take into account the ini-

tial conditions of the radiation field operators.
The kernel sa a′

mm′ in the convolution integrals can be ex-
pressed as (Appendix D)

sa a′
mm′ (t ) = 1

c2
0

∫
V

d3r
∫

V
d3r′ Ua

m(r)←̇→g ⊥(r − r′; t )Ua′
m′ (r′),

(66)
where ←→g ⊥(r; t ) is the transverse dyadic Green’s function
for the vector potential, in the Coulomb gauge and in free
space; the dot indicates the partial derivative with respect to

time. The expression of ←̇→g ⊥(r; t ) is given by Eq. (D11) of
Appendix D. The convolution integrals describe the energy
exchange between the longitudinal and transverse coordinate
operators of the matter fields that is mediated by the radiation
field. This is a nonconservative process because of the energy
radiated toward infinity.

2. Laplace domain

To algebrize the system of equations (62) and (63) we
use the unilateral Laplace transform. We denote the uni-
lateral Laplace transform of x(t ) by X (s) [namely, X (s) =
L{x(t )} = ∫ ∞

0 x(t )e−st dt], and the inverse Laplace transform
by L−1{X (s)}. In our problem, the region of convergence of
the Laplace transform includes the imaginary axis because of
the loss due to matter and radiation.

Equations (62) and (63) become in the Laplace domain

(s2 + ν2)Ŷ ‖
ν,m + αν

ε0κ
‖
m

∫ ∞

0
dν ′αν ′Ŷ ‖

ν ′,m + αν

ε0

∑
m′,a′

s S‖ a′
mm′

∫ ∞

0
dν ′αν ′Ŷ a′

ν ′,m′ = αν

ε0
D̂‖

ν,m + Ĉ‖
ν,m, (67)

(s2 + ν2)Ŷ ⊥
ν,m + αν

ε0

∑
m′,a′

s S⊥ a′
mm′

∫ ∞

0
dν ′αν ′Ŷ a′

ν ′,m′ = αν

ε0
D̂⊥

ν,m + Ĉ⊥
ν,m. (68)

The unknown operators Ŷ ‖
ν,m(s) and Ŷ ⊥

ν,m(s) are the Laplace
transform of ŷ‖

ν,m(t ) and ŷ⊥
ν,m(t ), respectively. The c-functions

Sa a′
mm′ = s

c2
0

∫
V

d3r
∫

V
d3r′ Ua

m(r)
←→
G ⊥(r − r′; s)Ua′

m′ (r′) (69)

is the Laplace transform of sa a′
mm′ (t ), where

←→
G ⊥(r; s) is the

Laplace transform of ←→g ⊥(r; s), whose expression is given
by (D6) in Appendix D. The operators D̂a

ν,m(s) are the Laplace
transforms of d̂a

ν,m(t ) and the operators

Ĉa
ν,m(s) = [

sŷa (S)
ν,m + ˆ̇ya (S)

ν,m

]
+ αν

ε0

∑
m′,a′

Sa a′
mm′ (s)

∫ ∞

0
dν ′ αν ′ ŷa′ (S)

ν ′,m′ (70)

take into account the contribution due to the initial conditions
of the coordinate operators of the matter fields.

VII. EVOLUTION OF THE POLARIZATION DENSITY
FIELD OPERATOR

In this section, we first obtain the equations governing the
evolution of the polarization coordinate operators and then we
give the expressions for the polarization density field operator
in terms of the driving operators.

A. Coordinate operators in the Laplace domain

The coordinate operators of the polarization field in the
Laplace domain {P̂‖

m(s)} and {P̂⊥
m (s)} are related to the coor-

dinates of the matter field by P̂a
m = ∫ ∞

0 ανŶ a
ν,mdν [see relation

(35)].

1. Governing equations

Multiplying both sides of Eqs. (67) and (68) by αν/(s2 +
ν2), and integrating each term with respect to ν over (0,∞),
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we obtain the system of equations governing the coordinate
operators of the polarization for m = 1, 2, 3 . . .,(

1

χ̃
+ 1

κ
‖
m

)
P̂‖

m +
∑

m′
s(S‖ ‖

mm′ P̂
‖
m′ + S‖⊥

mm′ P̂⊥
m′ ) = F̂ ‖

m , (71)

1

χ̃
P̂⊥

m +
∑

m′
s(S⊥‖

mm′ P̂
‖
m′ + S⊥⊥

mm′ P̂⊥
m′ ) = F̂⊥

m , (72)

where

χ̃ (s) = 1

ε0

∫ ∞

0
dν

α2
ν

s2 + ν2
. (73)

The function χ̃ (s) is the susceptibility of the dielectric in the
Laplace domain (see Appendix A). In this paper we use the
Drude-Lorentz model for the susceptibility of the medium,

χ̃ (s) = ω2
P

s2 + s� + ω2
0

, (74)

where ωP is the plasma frequency of the medium, ω0 is the
resonance frequency, and � is the damping rate of the mate-
rial.

The operators F̂ ‖
m (s) and F̂⊥

m (s) are known. They are given
by

F̂ a
m (s) = F̂ a (e)

m + F̂ a (p)
m , (75)

where

F̂ a (e)
m = ε0

∑
μ

Ra
mμÊμ(s), (76a)

F̂ a (p)
m = 1

χ̃

∫ ∞

0
dν

αν

s2 + ν2

[
sŷa (S)

ν,m + ˙̂ya (S)
ν,m

]
+

∑
m′,a′

Sa a′
mm′

∫ ∞

0
dν αν ŷa′ (S)

ν,m′ , (76b)

and Êμ(s) is the Laplace transform of ε̂μ(t ),

Êμ(s) = Â(S)
μ

c2
0k2

s2 + c2
0k2

− 1

ε0

̂(S)

μ

s

s2 + c2
0k2

. (77)

Equations (71) and (72) govern the evolution of the co-
ordinate operators of polarization in the Laplace domain.
The coefficients {sSa a′

mm′ } and the susceptibility χ̃ (s) are c-
functions. The known operators, which take into account the
initial conditions of the matter field operators and the radiation
field operators, are the driving terms of the coordinate opera-
tors of polarization. These equations have the same algebraic
structure as the corresponding classical problem [31].

2. Transfer matrix

In this context, it is convenient to express the transverse
dyadic Green’s function

←→
G ⊥(r; s) as

←→
G ⊥(r; s) = ←→g ⊥

0 (r) +←→
G ⊥

d (r; s) (see Appendix D), where ←→g ⊥
0 is the static trans-

verse dyadic Green’s function in free space and
←→
G ⊥

d is the

dynamic part: ←→g ⊥
0 diverges as 1/r for r → 0, while

←→
G ⊥

d
is a regular function of r. From the definition of the static
transverse modes of the dielectric object (see Appendix B),

we obtain

S⊥⊥
mm′ (s) = a2s

c2
0κ

⊥
m

δmm′ + δS⊥⊥
mm′ (s), (78)

where κ⊥
m is the eigenvalue associated to the transverse mode

U⊥
m (r) and

δS⊥⊥
mm′ = s

c2
0

∫
V

d3r
∫

V
d3r′ U⊥

m (r)
←→
G ⊥

d (r − r′; s)U⊥
m′ (r′).

(79)
Equation (78) is a consequence of the orthogonality of the
static transverse modes. Extracting the singularity 1/r also
allows us to adopt a simpler numerical scheme for the compu-
tation of the coefficients δS⊥ ⊥

mm′ .
We now rewrite Eqs. (71) and (72) using a matrix notation.

We have

M(s)

∣∣∣∣ P̂
‖

P̂
⊥

∣∣∣∣ =
∣∣∣∣ F̂

‖

F̂
⊥

∣∣∣∣, (80)

where P̂
‖ = |P̂‖

1 , P̂‖
2 , . . . |ᵀ is the column vector of the lon-

gitudinal coordinate operators of the polarization, P̂
⊥ =

|P̂⊥
1 , P̂⊥

2 , . . . |ᵀ is the column vector of the transverse coordi-
nate operators, and M is the block matrix

M =
∣∣∣∣M‖‖ M‖⊥

M⊥‖ M⊥⊥

∣∣∣∣. (81)

The elements of the blocks M‖‖, M⊥⊥, M‖⊥, M⊥‖ are given
by

M‖‖
mm′ (s) =

{ 1
χ̃ (s) + 1

κ
‖
m

+ s S‖‖
mm(s) m = m′

s S‖ ‖
mm′ (s) m �= m′ , (82)

M⊥⊥
mm′ (s) =

{ 1
χ̃ (s) + a2s2

c2
0κ

⊥
m

+ s δS⊥⊥
mm (s) m = m′

s δS⊥⊥
mm′ (s) m �= m′ , (83)

M‖⊥
mn (s) = s S‖⊥

mn (s), M⊥‖
mn (s) = s S⊥‖

mn (s). (84)

The vectors F̂
‖ = |F̂ ‖

1 , F̂ ‖
2 , . . . |ᵀ and F̂

⊥ = |F̂⊥
1 , F̂⊥

2 , . . . |ᵀ
are column vectors describing the driving coordinate opera-
tors of the polarization.

The coordinate operators of the polarization field operator
are obtained by inverting (80). We have∣∣∣∣ P̂

‖

P̂
⊥

∣∣∣∣ = H (s)

∣∣∣∣ F̂
‖

F̂
⊥

∣∣∣∣, (85)

where H = M−1 is the transfer matrix of the dielectric object.
It is equal to the Laplace transform of the impulse responses
of the dielectric object in the corresponding classical problem,
which has been extensively studied in Ref. [31]. The prod-
uct between the element Ha a′

mm′ (s) of the matrix H (s) and the

driving coordinate operator F̂ a′
m′ (s) gives the contribution of

F̂ a′
m′ (s) to the coordinate operator P̂a

m(s) with a, a′ =‖,⊥, and
m, m′ = 1, 2, . . . .

3. General properties

The susceptibility of the material χ̃ (s) accounts for the
strength of the coupling between the matter and the electric
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field. It appears in the diagonal elements of the matrix M and
in the expressions of the driving terms.

The susceptibility χ̃ (s) tends to zero for |s| → ∞, while
the amplitudes of sSa a′

mm′ (s) and sδSa a′
mm′ (s) tend to finite limits

different from zero. For |s| → ∞ the diagonal elements of
the matrix M(s) diverge as 1/χ̃ (s) and the off-diagonal ele-
ments remain bounded, hence the elements of the matrix H (s)
tend to zero as χ̃ (s) for |s| → ∞. Furthermore, the driving
operators diverge as the square root of susceptibility. As a
consequence, the coordinate operators of the polarization tend
to the null operator for |s| → ∞. Therefore we must consider
only a limited frequency interval (0, ωmax ) to evaluate the
impulse response h(t ).

The second term on the left-hand side of Eq. (71) is respon-
sible for the electroquasistatic (plasmon) oscillations of the
medium. The first term in the expression (78) is responsible
for the magnetoquasistatic oscillations of the medium. The
eigenvalues κ‖

m and κ⊥
m are positive dimensionless quantities

that depend only on the shape of the object, they do not depend
on its size; furthermore, κ‖

m � 2 [27–29].
The coefficients {sSa a′

mm′ }, with a, a′ = {‖,⊥}, and {s δS⊥ ⊥
mm′ }

describe the coupling between the longitudinal and the trans-
verse coordinate operators due to the interaction of the
polarization with the radiation. They account for the exchange
of electromagnetic energy between the modes Ua

m and Ua′
m′ ,

which is a nonconservative process due to the radiated energy
toward infinity.

We introduce the dimensionless parameter γ = |s|a/c0.
The amplitude of sSa a′

mm′ tends to zero as γ 2 for γ → 0, and the
amplitude of s δS⊥ ⊥

mm′ tends to zero as γ 4 (Appendix F). The
dimensionless parameter γ allows to discriminate the regime
in which the effects of the coupling between the coordinates
operators of the polarization are negligible from the one in
which the coupling role is important. For |χ̃ |γ 2 � 1, we
can disregard the coupling terms in Eqs. (71) and (72), and
Eq. (85) reduces to

P̂‖
m

∼= κ‖
m

κ
‖
m + χ̃ (s)

χ̃ (s)F̂ ‖
m , (86a)

P̂⊥
m

∼= c2
0κ

⊥
m

c2
0κ

⊥
m + a2s2χ̃ (s)

χ̃ (s)F̂⊥
m . (86b)

The constraint |χ |γ 2 � 1 is certainly satisfied in the small-
size limit a � λc where λc = min

ω
(c0/[ω

√|χ (ω)|]) and

χ (ω) = χ̃ (s = iω).
The static longitudinal modes diagonalize the contribution

to the Hamiltonian of the electroquasistatic (Coulomb) in-
teraction energy between the longitudinal modes, while the
static transverse modes diagonalize the magnetostatic (Am-
pere) interaction energy between the transverse modes. The
other interaction energy terms between the modes are not
diagonalized. However, in the small-size limit a � λc, the
contribution of these terms becomes negligible and the matrix
M is quasi diagonal. Therefore we expect that only a few static
longitudinal and transverse modes are needed to calculate
each element of the transfer matrix H of a dielectric object
even when its size 2a is of the order of the characteristic
length λc.

B. Polarization density field operator in the Laplace domain

In the Laplace domain, the polarization density field oper-
ator is given by

P̂ (r; s) =
∑

m

[P̂‖
m(s)U‖

m(r) + P̂⊥
m (s)U⊥

m (r)]. (87)

To express this operator in terms of the driving operators, it is
useful to introduce the driving vector field operator

F̂(r; s) = F̂
(e)

(r; s) + F̂
(m)

(r; s), (88)

where

F̂
(e) = ε0Ê

free
s , (89a)

F̂
(m) = 1

χ̃
P̂ free + 1

c2
0

∫
V

d3r′ s
←→
G ⊥(r − r′; s)P̂(S)(r),

(89b)

with

P̂ free
(r; s) =

∫ ∞

0
dν

αν

s2 + ν2

[
sŶ(S)

ν (r) + ˙̂Y(S)
ν (r)

]
, (90)

˙̂Y(S)
ν (r) = Q(S)

ν (r) − ανA(S)(r), (91)

and

P̂(S)(r) =
∫ ∞

0
dνανŶ(S)

ν (r). (92)

The vector field operator Ê free
s (r; s) is the Laplace transform

of the free solenoidal electric field operator Êfree
s (r; t ),

Ê free
s (r; s) =

∑
μ

Êμ(s)wμ(r). (93)

where Êμ(s) is given by (77).
Using (85), we obtain for the polarization density field

operator

P̂ (r; s) = Uᵀ(r)H (s) 〈U(r′), F̂(r′; s)〉, (94)

where U = |U‖
1, U‖

2, . . . , U⊥
1 , U⊥

2 , . . . |ᵀ. We rewrite this rela-
tion as follows:

P̂ (r; s) =
∫

V
d3r′ ←→� (r, r′; s)F̂(r′; s), (95)

where the c-dyad
←→
� (r, r′; s) is defined as

←→
� (r, r′; s) =

∑
m,m′,a,a′

Ha a′
mm′ (s)Ua

m(r)Ua′
m′ (r′). (96)

Relation (95) is one of the most important results we have
obtained with our approach. It allows to evaluate directly in
the Laplace domain statistical functions like the expectation
values of the polarization observable, the uncertainty and the
correlation functions. For example, the expectation value of
the polarization density field observable is given by

〈P̂ (r; s)〉ψ0 =
∫

V
d3r′ ←→� (r, r′; s) 〈F̂(r′; s)〉ψ0 , (97)

where 〈F̂(r′; s)〉ψ0 = 〈ψ0|F̂(r′; s)|ψ0〉 is the expectation value

of the driving field operator. The c-dyadic field
←→
� (r, r′; s)

and, hence, the transfer matrix play a crucial role.
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C. Polarization density field operator in the time domain

The polarization density field operator in the time domain
has the expression

P̂(r; t ) =
∑

m

[ p̂‖
m(t )U‖

m(r) + p̂⊥
m(t )U⊥

m (r)], (98)

where p̂‖(t ) and p̂⊥(t ) are the inverse Laplace transforms of

P̂
‖
(s) and P̂

⊥
(t ), respectively. The operators p̂‖(t ) and p̂⊥(t )

are given by ∣∣∣∣ p̂‖(t )
p̂⊥(t )

∣∣∣∣ = h(t ) ∗
∣∣∣∣∣ f̂

‖
(t )

f̂
⊥

(t )

∣∣∣∣∣, (99)

where

h(t ) = L−1{H (s)} (100)

is the impulse response matrix of the dielectric object; f̂
‖
(t )

and f̂
⊥

(t ) are the inverse Laplace transforms of F̂
‖
(s) and

F̂
⊥

(s), respectively. The convolution product between the el-
ement ha a′

mm′ (t ) of the matrix h(t ) and the driving coordinate

operator f̂ a′
m′ (t ) gives the contribution of f̂ a′

m′ (t ) to the coordi-
nate operator of the polarization p̂a

m(t ) with a, a′ =‖,⊥ and
m, m′ = 1, 2, . . . .

The matrix h(t ), whose elements are c-functions, is the
impulse response matrix of the dielectric object in the classical
framework. Therefore the representation of the polarization
field operator in terms of the static longitudinal and transverse
modes of the dielectric object leads to the same advantages
[31].

By applying the inverse Laplace transform to (95), we
immediately obtain

P̂(r; t ) =
∫

V
d3r′ ←→θ (r, r′; t ) � f̂ (r′; t ), (101)

where the c-dyad
←→
θ (r, r′; t ) is given by

←→
θ (r, r′; t ) =

∑
m,m′,a,a′

ha a′
mm′ (t )Ua

m(r)Ua′
m′ (r′); (102)

� denotes the time convolution product between a dyad and a
vector field. The driving operator f̂ (r; t ) has two contributions,

f̂ (r; t ) = f̂ (e)(r; t ) + f̂ (m)(r; t ). (103)

The first contribution is given by

f̂ (e) = ε0Êfree
s . (104)

The expression of the second contribution is

f̂ (m)(r; t ) = η(t ) ∗ P̂
free

(r; t )

+ 1

c2
0

∫
V

d3r′ ←̇→g ⊥
(r − r′; t )P̂

free
(r; 0),

(105)

where

P̂
free

(r; t ) =
∫ ∞

0
dν ανŶfree

ν (r; t ), (106)

Ŷfree
ν (r; t ) = Ŷ(S)

ν (r) cos(νt ) + 1

ν

˙̂Y(S)
ν (r) sin(νt ), (107)

and η(t ) = L−1{1/χ̃}.
The vector field operator P̂free takes into account the con-

tribution of the initial conditions of the matter field operator
Ŷν (r; t ) and the conjugate momentum Q̂ν (r; t ) for 0 � ν <

∞. P̂free would describe the evolution of the polarization den-
sity field operator if the interaction between the matter and the
electromagnetic field was absent. For this reason, throughout
the paper, we call it the “free polarization field operator”. The
free polarization field operator P̂free coincides with the “fluc-
tuating dipole density distribution,” and the free solenoidal
electric field operator Êfree coincides with the “purely fluctuat-
ing” electric field introduced in Ref. [30]. They account for the
initial quantum state of the system in the Heisenberg picture
and guarantee the unitarity of the full evolution of the system,
as pointed out in Ref. [30]. In particular, the contribution of
the free solenoidal electric field operator is very important in
the inhomogeneous medium problems [17,25,26].

The scheme shown in Fig. 2 summarizes the approach that
this paper proposes. Once the evolution of the polarization
density field operator has been evaluated, the evolution of
the electric field operator is determined as described in the
next section. We highlight that in the limit of zero interaction
between the matter field and the electric field we obtain the
expressions corresponding to the uncoupled matter and the
vacuum electromagnetic field. This is a very important check
of consistency as already pointed out in the recent literature
[17,25,26,30].

D. Statistical functions of the polarization density field operator
in the time domain

The knowledge of the impulse responses allows to evaluate
the statistical functions such as the expectation values of the
polarization observable, the uncertainty, and the correlation
functions. In the following, as examples, we consider the
expectation value and the correlation.

When the system is in the initial quantum state |ψ0〉 the
time evolution of the expectation value of the polarization
density field operator 〈P̂(r; t )〉ψ0 is given by

〈P̂(r; t )〉ψ0 =
∫

V
d3r′ ←→θ (r, r′; t ) � 〈f̂ (r′; t )〉ψ0 (108)

where 〈f̂ (r; t )〉ψ0 = 〈ψ0|f̂ (r; t )|ψ0〉 is the expectation value of
the driving field operator in the time domain.

We now introduce the c-functions representing the two-
time correlation function between the coordinates of the
driving field operators

F a1,a2
m1,m2

(t1, t2) =
∫

V

∫
V

d3r1d3r2Ua1
m1

(r1)〈f̂ (r1; t1)f̂ (r2; t2)〉ψ0 Ua2
m2

(r2) (109)

and the function

Za1,a2
m1,m2

(r1, r2) = Ua1
m1

(r1) · Ua2
m2

(r2), (110)
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FIG. 2. The above scheme summarizes the proposed approach. The conjugate operators in the Schrödinger picture {Â(S)(r), �̂
(S)

(r)} and
{Ŷ(S)

ν (r), Q̂(S)
ν (r)} play the role of initial conditions for the radiation field and the matter field operators, respectively. They determine the “free

solenoidal electric field operator” Êfree
s (r; t ) and the “free polarization field operator” P̂free(r; t ), which in turn determine the “driving field

operator” f̂ (r; t ). In particular, P̂free(r; t ) contributes to f̂ both directly and through its contribution to the radiation field operators. The operator
f̂ is then decomposed in terms of its “coordinate operators” along the longitudinal U‖

m and transverse U⊥
m modes of the objects. The coordinates

of polarization density field operator P̂(r; t ) are given by the convolution between the impulse response matrix h(t ) defined in Eq. (100) and

the coordinate operators of f̂ (r; t ). h(t ) is the impulse response matrix that we obtain in the framework of classical electrodynamics.
↔
θ is the

kernel of the integral operator that gives the polarization density field operator as functions of f̂ [Eq. (101)], and it is a linear combinations of
the elements of h. Eventually, P̂(r; t ) and Êfree(r; t ) determine the electric field operator Ê(r; t ) through the dyadic Green’s function for the
free space, see Eqs. (115) and (G17).

where 〈f̂ (r1; t1)f̂ (r2; t2)〉ψ0 = 〈ψ0|f̂ (r1; t1)f̂ (r2; t2)|ψ0〉 is a dyad. The correlation of the polarization density field operator
〈P̂(r1; t1) · P̂(r2; t2)〉ψ0 = 〈ψ0|P̂†(r1; t1) · P̂(r2; t2)|ψ0〉 is given by

〈P̂(r1; t1) · P̂(r2; t2)〉ψ0 =
∑

m1,m′
1,m2,m′

2
a1,a′

1,a2,a′
2

Za1,a2
m1,m2

(r1, r2)
∫ ∞

0

∫ ∞

0
dτ1dτ2h

a1,a′
1

m1,m′
1
(t1 − τ1)ha2,a′

2
m2,m′

2
(t2 − τ2)F a′

1,a
′
2

m′
1,m

′
2
(τ1, τ2). (111)

The time evolution of these statistical functions depends on
the convolutions between the impulse responses and the sta-
tistical functions of the driving field operator.

VIII. ELECTRIC FIELD OPERATOR

The electric field operator Ê(r; t ) is given by

Ê(r; t ) = − 1

ε0
�̂(r; t ) + Êc(r; t ), (112)

where Êc(r; t ) is given by (14) with the operator P̂n instead of
the classical variable Pn. We now give the expression of the
electric field operator Ê as function of the polarization field
density operator P̂. In Appendix G, we give the expression of
Ê(r; t ) at any point of the space. However, it is convenient to
distinguish between the region V occupied by the dielectric
object and the external region V∞\V in order to avoid dealing
with principal value integrals.

A. Inside the dielectric object

The polarization density field operator is related to the
electric field operator by equation

P̂(r; t ) = ε0ζ (t ) ∗ Ê(r; t ) + P̂free(r; t ). (113)

From this relation, we obtain

Ê(r; t ) = 1

ε0
η(t ) ∗ [P̂(r; t ) − P̂free(r; t )] inV. (114)

B. Outside the dielectric object

In the region outside the dielectric object V∞\V , the elec-
tric field operator is given by (Appendix G)

Ê(r; t ) = −μ0

∫
V

d3r′ ←̇→g (r − r′; t ) � ˙̂P(r′; τ ) + Êfree(r; t ),

(115)
where ←→g is the time domain dyadic Green’s function for the
vector potential in the temporal gauge and in the free space,

Êfree = Êfree
s + Êfree

c , (116)

Êfree
c (r; t ) = −u(t )

ε0

∫
V

d3r′ ←→g 0(r − r′)P̂free(r′; 0),

(117)

and ←→g 0(r) is the static dyadic Green’s function. The ex-
pression of ←̇→g (r; t ) is given by (G18) and the expression of←→g 0(r) is given by (G21).
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The statistical functions of any operator, including the elec-
tric field, can be derived starting from the expression of the
polarization density field operator.

IX. NUMERICAL PROCEDURE FOR THE CALCULATION
OF THE IMPULSE RESPONSES

Any desired statistical function of the observables can be
expressed as an integral operator of the driving field operators,
whose kernel is a multilinear expressions of the elements of
the impulse response matrix (see Sec. VII D). In this section,
we summarize the main steps of the numerical procedure for
the calculation of the impulse response matrix of the dielectric
object.

The procedure for the calculation of the impulse response
matrix consists of five steps.

Step (a). Numerical calculation of the static modes of
the object following Appendix C. The static modes and the
corresponding eigenvalues are independent of the size of the
object thus, for any given shape, they must be computed only
once. The integral operators are real, symmetric and positive.
The linear dimensions of the mesh elements must be much
smaller than the minimum spatial variation of the highest
order mode we consider. LAPACK routines [34], specialized
for symmetric eigenvalue problems, require a computational
time Tmode that scales as N3 where N is the dimension of the
matrix [35].

Step (b). Numerical calculation of the coupling coefficients
{Sa b

mm′ (s)} at s = iω + ε with ε ↓ 0 following Appendix E.
We indicate with ta the time required for the calculation of
a coupling coefficient at a single frequency. Even though ta is
negligible compared to the time required for the calculation
of the static modes, many frequency samples are required to
accurately compute the impulse responses.

Step (c). Assembly of the matrix M. If Q is the number of
modes required to describe the matter field, the matrix M has
dimension Q × Q. If NF is the number of required frequency
samples, the overall assembly time is Ta = NF × Q2 × ta.

Step (d). Calculation of the element Haa′
mm′ of the matrix H

solving the system of equations (71) and (72) with F̂ a′
m′ = 1

and F̂ c
m′′ = 0 for m′′ �= m′ and c �= a′, using the standard LU

decomposition. The inversion time ti scales as Q3 for each fre-
quency step, thus the overall inversion time Ti = NFti scales as
NF Q3.

Step (e). Numerical calculation of the inverse Fourier
transform of H (ω). The computational time t f f t for the in-
verse Fourier transform of the single element of H scales
as NF × log NF , thus the total computational time to calcu-
late the impulse response matrix Tf f t = Q2 × t f f t scales as
Q2 × NF × log NF .

Summarizing, the total computational time is T = Tmode +
Q2 × (NF × ta + t f f t ) + NF × ti. The static mode must be
calculated only one time, at the beginning, thus Tmode is neg-
ligible with respect to the remaining terms. Furthermore, the
computational time for the evaluation of coupling coefficient
NF × ta is dominant compared to t f f t . Therefore we have
T ≈ NF × (Q2 × ta + ti ).

We point out that the set of static modes we need to rep-
resent adequately the matter field operators depends on the

initial conditions of the state of the entire system. Let us indi-
cate with λs the smallest spatial length on which the statistical
functions of the driving field operator varies. When the sizes
of the object is of the order up to min

ω
{c0/[ω

√|χ (ω)|]} and λs

the number of required static modes Q is of the order of unity.
In these cases, ti is negligible with respect to ta because we
need to invert very small matrices, and the total computational
time reduces to T ≈ NF × Q2 × ta.

X. INFINITE HOMOGENEOUS DIELECTRIC,
DIELECTRIC SLAB AND SPHERE

Even if the proposed approach has been developed to deal
with finite size dielectric objects of arbitrary shapes, it is
instructive to apply it to elementary cases such as an infinite
homogeneous dielectric, a dielectric slab, and a sphere. We
use the sphere to validate the numerical procedure presented
in the previous section by comparing it against the semi-
analytical expression of the impulse response [31].

A. Infinite homogeneous dielectric

We first consider an infinite homogeneous dielectric. In this
case, the polarization density field and the electric field have
the same support, V∞. The irrotational components of both
fields are equal to zero because the electric field is solenoidal
everywhere in V∞ due to homogeneity. In finite size objects,
the normal component of the electric field is discontinuous
on the boundary of the object due to the discontinuity of the
permittivity. In infinite homogeneous dielectric, we exclude
the presence of charges at infinity; otherwise the energy stored
in the electromagnetic field would be infinite. As a conse-
quence, we only need the transverse modes to represent the
polarization density field. A complete set of transverse modes
in V∞ is composed by the transverse plane waves, the same set
we have used to represent the vector potential. Therefore we
represent the polarization density field operator in the Laplace
domain as

P̂(r; s) =
∑

μ

P̂⊥
μ (s)wμ(r), (118)

where P̂⊥
μ (s) are the coordinate operators of the polarization.

The coordinate operators of the matter field and the conjugate
momentum operators obey the same commutation relation
between the coordinate operators of the vector potential and
the conjugate momentum operators.

The coefficient S⊥⊥
μμ′ (s) is given by

S⊥⊥
μμ′ (s) = s

s2 + ω2
μ

δs,s′δ(k − k′), (119)

where ωμ = c0k. Equation (72), which governs the transverse
coordinate operator of the polarization, reduces to(

1

χ̃
+ s2

s2 + ω2
μ

)
P̂⊥

μ = F̂⊥
μ (s), (120)

where

F̂⊥
μ (s) = ε0Êμ(s) + 1

χ̃
P̂ free

μ (s), (121)
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Êμ(s) is given by Eq. (77) and the coordinate operator of the
free polarization field is given by

P̂ free
μ (s) = 〈wμ, P̂ free〉V∞ . (122)

The transfer function H⊥ ⊥
μ (s) is given by

H⊥ ⊥
μ (s) = χ̃ (s)

s2 + ω2
μ

[1 + χ̃ (s)]s2 + ω2
μ

. (123)

The impulse response h⊥ ⊥
μ (t ) is the inverse Laplace transform

of this expression.
Using Eq. (114) in the Laplace domain, we obtain the

following expression for the coordinate operator of the electric
field Êμ(s) :

Êμ(s) = 1

(1 + χ̃ )s2 + ω2
μ

1

ε0

(
ĵ (p)
μ + ĵ (e)

μ

)
, (124)

where

ĵ (p)
μ = sP̂ free

μ (s) − P̂ (0)
μ (125)

and

ĵ (e)
μ = k2

μ0
Â(0)

μ + s
̂(0)
μ . (126)

This result coincides with the solution we would obtain by
solving directly in the Laplace wave-number domain the equa-
tions of motion for the polarization density field operator and
the vector potential operator,

P̂(r; t ) = −ε0ζ (t ) ∗ ˙̂A(r; t ) + P̂free(r; t ), (127a)

¨̂A − c2
0∇2Â = 1

ε0

˙̂P. (127b)

These equations must be solved with the initial conditions
for the radiation field operators. Differently from Huttner and
Barnett’s paper, we have the additional contribution of ĵ (e)

μ ,
which takes into account the fluctuation of the electromag-
netic field. This is consistent with what Drezet had already
observed [30]. The origin of this discrepancy is in the fact that
in the Huttner and Barnett model only the scattered modes
are taken into account, while the free modes are disregarded.
Drezet has also pointed out that this discrepancy “does not
impact too much the homogeneous medium case considered
by Huttner and Barnett” [30], while it has a strong impact in
the inhomogeneous medium problems [17,25,26].

B. Dielectric slab

We now consider a homogeneous dielectric slab of thick-
ness 2a and a linearly polarized electromagnetic waves
that propagate normally to the slab. The problem is one-
dimensional. We introduce a Cartesian coordinate system
(x, y, z) with the x axis orthogonal to the slab and the z axis
parallel to the electric field. In this case, also, the electric field
and the polarization density fields are everywhere solenoidal,
therefore we only need the transverse modes to represent the
polarization density field. A complete set of transverse modes

is composed by

U⊥
m (x) = 1

2a
eikmx ẑ (128)

for −∞ < m < +∞ and −a � x � +a, where ẑ denotes
the unit vector parallel to the z axis and km = m(π/a). The
polarization density field operator in the Laplace domain is
expressed as

P̂(r; s) =
∑

m

P̂⊥
m (s)Um(x). (129)

In this case, the coordinates of the matter field operator and the
conjugate momentum operator obey commutation relations
similar to the commutation relation between the coordinates
of the vector potential operator and the conjugate momentum
operator.

The expression of the Green’s function
←→
G ⊥(r; s) is given

by

←→
G ⊥(x; s) = c0

2s
e−s|x|/c0 . (130)

We now evaluate the coefficients S⊥ ⊥
mm′ . We obtain

S⊥ ⊥
mm′ = a

4c0
[B+

mm′ (s) + B−
mm′ (s)]

×[(−1)m+m′
e−as/c0 − (−1)m′−m],

(131)

where

B±
mm′ = c0

as ± imπc0

c0

as ± im′πc0
. (132)

The elements of the matrix M⊥⊥ are given by

M⊥⊥
mm′ (s) = 1

χ̃ (s)
δmm′ + s S⊥⊥

mm′ (s). (133)

The transfer matrix H⊥⊥ is the inverse of M⊥⊥. In this case,
unlike the infinite homogeneous dielectric case, we have an
infinite discrete set of coupled equations governing the coor-
dinate operators. In the small-size limit, a � λc, the modes
are decoupled, and

H⊥⊥
mm′ (s) ∼= χ̃ (s)

1 + s S⊥⊥
mm (s)χ̃ (s)

δmm′ . (134)

When a is of the order of λc the modes are coupled, never-
theless each mode is coupled to a few modes. To calculate the
elements of the transfer matrix H⊥⊥ we have to resort to the
step d) of the numerical procedure summarized in Sec. IX.
The expressions of the polarization density operator and the
electric field operator are consistent with those described in
the literature (e.g., Ref. [8]).

Alternatively, the dielectric slab problem can also be
solved analytically by applying standard techniques (e.g.,
Refs. [8,36]) to the one-dimensional system of equations (the
subscript z denotes the z component)

P̂z = −ε0ζ ∗ ˙̂Az + P̂free
z − a � x � a,

(135a)

¨̂Az − c2
0
∂2Âz

∂x2
= 1

ε0

˙̂Pz − ∞ � x � ∞. (135b)
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FIG. 3. Impulse responses of a lossless metal sphere (ω0 = 0,
� = 0) with β = π , where β = kPa, a is the radius and kP = ωP/c0

obtained by the semianalytical and numerical procedures. The im-
pulse responses h‖‖

1,1(t ) and h⊥‖
2,1 (b) are associated with the modes U‖

1

and U⊥
2 , which are shown in the inset above.

These equations must be solved with the initial conditions
for the radiation field operators.

C. Sphere and validation

We now compare the impulse responses of a sphere ob-
tained with the numerical procedure with those obtained
semianalytically following [31]. In particular, we consider
the elements of the impulse response matrix associated with
the modes with lowest multipolar order. Unlike the infinite
dielectric and the dielectric slab, for a sphere we need both
longitudinal and transverse modes to represent the polariza-
tion because the Coulomb electric field is different from zero.
These modes can be expressed analytically in terms of the
vector spherical functions, and the coefficient Saa′

mm′ can be
calculated semianalytically [31]. We use the Drude-Lorentz
model given by (74) for the susceptibility of the sphere. We
introduce the size parameter β = kPa where kP = ωP/c0.

In Fig. 3, we show the impulse response of a lossless
metal sphere (ω0 = 0, � = 0) with β = π obtained by the
semianalytical and the numerical procedures. In particular,
we investigate the coupling of the electric dipole mode to
other modes, beyond the small-size limit. From the numerical
analysis we have found that the electric dipole mode U‖

1 sig-
nificantly couples only to the mode U⊥

2 due to the symmetries
of the sphere. The distribution of the electric dipole mode U‖

1
and of the mode U⊥

2 are shown on the equatorial plane of
the sphere on the top of Fig. 3. Impulse responses h‖‖

1,1 and

h⊥‖
2,1 are shown in Figs. 3(a) and 3(b), respectively. Very good

agreement is found.
Next, we investigate the impulse response of a dielectric

sphere with ω0 = ωP/4 and β = π . First, we investigate the
coupling of the magnetic dipole mode to other modes. From
the numerical analysis, we have found that for β = π the
magnetic dipole U⊥

1 significantly couples only with the higher
order magnetic dipole U⊥

4 due to the symmetry of the prob-
lem. The transverse modes U⊥

1 and U⊥
4 are shown on the

top of Fig. 4. Both modes have a non vanishing magnetic
dipole moment: the first is a current loop, the second mode
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FIG. 4. Impulse responses of a lossless dielectric sphere (ω0 =
ωp/4, � = 0) with β = π , where β = kPa, a is the radius and kP =
ωP/c0 obtained by the semianalytical and numerical procedures. The
impulse responses h⊥⊥

1,1 (t ) and h⊥⊥
4,1 (b) are associated with the modes

U⊥
1 and U⊥

4 , which are shown in the inset above.

is made by two counter-rotating current loops. In Figs. 4(a)
and 4(b), we show the impulse responses h⊥⊥

1,1 (t ) and h⊥⊥
4,1 (t ),

which are obtained by using the numerical and the semi-
analytic calculations. We found very good agreement between
them.

Eventually, we consider the same dielectric sphere, but
we now focus on the coupling of the electric dipole mode
with other modes. As in the case of the metal sphere, from
the numerical analysis, we have found that the electric dipole
mode U‖

1 significantly couples to the mode U⊥
2 due to the

symmetry of the problem. The two modes are shown at the
top of Fig. 5. Impulse responses h‖‖

1,1 and h⊥‖
2,1 are shown in

Figs. 5(a) and 5(b), respectively. Also in this case, we found
very good agreement between the numerical and the semi-
analytic solutions.
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FIG. 5. Impulse responses of a lossless dielectric sphere (ω0 =
ωp/4, � = 0) with β = π , where β = kPa, a is the radius and kP =
ωP/c0 obtained by the semi-analytical and numerical procedures.
The impulse responses h‖‖

1,1(t ) and h⊥‖
2,1 (b) are associated with the

modes U‖
1 and U⊥

2 .
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FIG. 6. Longitudinal static modes U‖
m of a dielectric disk with rounded edges (radius a, height a/2, and radius of curvature a/4). The

modes are sorted according to the associated eigenvalue κ‖
m in descending order. The surface charge density is shown on the boundary of disk.

The vertically aligned modes are degenerate. Only the first 11 eigenmodes are shown. In the color bar, max|U‖
m · n| is such that ‖U‖

m‖ = 1.

XI. DISK

In this section, we evaluate the elements of the transfer
matrix H (s) and the impulse response matrix h(t ) for a disk
with rounded edges, radius a, height a/2 and radius of cur-
vature a/4. The behavior of the disk material is described
by the Drude-Lorentz model (74) with plasma frequency ωP,
resonant frequency ω0 and damping rate of the material �.
We study how the elements of H (s) and h(t ) associated with
the modes with lowest multipolar order change in terms of the
size parameter β = kPa, for different values of �. We consider
two types of materials, a metal disk, ω0 = 0, and a dielectric
disk, ω0 = ωP/4.

A. Longitudinal and transverse static modes

We compute numerically the static modes following Ap-
pendix C. We discretize the domain of the disk V together
with its boundary ∂V . The volume and the surface meshes
have been generated by the mesh generator GMSH [37].

The longitudinal modes are shown in Fig. 6, while the
corresponding eigenvalues κ‖

m are shown in Fig. 8(a). In
particular, the eigenvalues and the corresponding modes are
ordered in descending order: in this way, the first modes are
associated with lower multipolar order (electric dipole, elec-
tric quadrupole,...).

The transverse modes are shown in Fig. 7, while the corre-
sponding eigenvalues κ⊥

m are shown in Fig. 8(b). In particular,
the eigenvalues and the corresponding modes are ordered in
ascending order: in this way the first modes are associated

with lower multipolar order (magnetic dipole, Pe2 dipole mo-
ment [38,39], magnetic quadrupole,...).

B. Small-size limit

In the small-size limit β = kPa � 1, the static longitudinal
and the transverse modes of the disk are the natural modes of
the polarization. The matrix H is quasi diagonal. Combining
(86a), (86b), and (74), we obtain

H‖‖
mm(s) ∼= ω2

P

s2 + s� + (
ω2

0 + ω2
P/κ

‖
m
) , (136a)

H⊥⊥
mm (s) ∼= ω2

P

(1 + β2/κ⊥
m )s2 + �s + ω2

0

. (136b)

The corresponding impulse responses in the time domain
are given by

h‖‖
mm(t ) ∼= ω2

P

�
‖
m

u(t )e−t/τ ‖
m sin(�‖

mt ), (137a)

h⊥⊥
mm (t ) ∼= ω2

P

δm�⊥
m

u(t )e−t/τ⊥
m sin(�⊥

mt ), (137b)

where τ ‖ = 2/�, τ⊥
m = 2δm/�, δm = (1 + β2/κ⊥

m ), �‖
m =√

(ω2
0 + ω2

P/κ‖
m) − �2/4, and �⊥

m =
√
ω2

0/δm − �2/4δ2
m, and

u(t ) is the Heaviside function. Since the eigenvalue κ‖
m de-

creases as m increases and the eigenvalue κ⊥
m increases as m

increases, both the natural frequencies �‖
m and �⊥

m increase as
the mode index m increases. The electric dipole mode and the
magnetic dipole mode have the smallest natural frequencies:

FIG. 7. Transverse static modes U⊥
m of a dielectric disk with rounded edges (radius a, height a/2, and radius of curvature a/4). The modes

are sorted according to the associated eigenvalue κ⊥ in ascending order. The magnitude and the direction of the vector field U⊥
m are shown in

representative section planes of the disk. The vertically aligned modes are degenerate. Only the first 14 eigenmodes are shown. In the colorbar,
max|U⊥

m | is such that ‖U⊥
m‖ = 1, where |U⊥

m | = √
U⊥

m · U⊥
m .
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FIG. 8. Eigenvalues κ‖
m (a) and κ⊥

m (b) associated to the longitu-
dinal and transverse static modes of a dielectric disk with rounded
edges (radius a, height a/2, and radius of curvature a/4). Only the
first 100 eigenvalues are shown in each case.

they are the fundamental natural modes of polarization in the
small-size limit.

In the small-size limit, the decay rate of the impulse re-
sponse (137) depends only on material losses, because the
radiation damping rate goes to zero at least as β3 as β → 0
[40].

Beyond the small-size limit, the coupling among longitu-
dinal and transverse modes may become significant due to the
radiation. As in the case of the sphere [31], also in the case of
a rotationally invariant disk, symmetry prevents some modes
from coupling. In the following, we investigate the coupling
of the electric dipole mode and the magnetic dipole mode with
higher order modes.

Beyond the small-size limit, the decay rates increase due
to the radiative losses, the natural frequencies shift due to
the coupling among modes, the impulse responses may show
beatings due to the interplay among coupled modes, ad-
ditional peaks arise due to the transverse electromagnetic
standing wave modes of the object.

C. Metal

We now investigate the coupling of the electric dipole
mode to other modes for a metal disk, ω0 = 0, beyond the
small-size limit, as the size parameter β varies in the interval
[0, 2π ]. To highlight the role of radiation losses, we initially
disregard material losses, � = 0. In this limit case, we have
�‖

m = ωP

√
1/κ‖

m and �⊥
m = 0. The impulse response h⊥ ⊥

m m of
the transverse modes degenerates in a ramp function in the
small-size limit. From the numerical analysis we have found
that the electric dipole mode U‖

1 significantly couples to the
mode U⊥

3 , which carries a Pe2 dipole moment [38], due to the
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FIG. 9. Amplitude responses of a lossless metal disk (ω0 = 0,
� = 0) with β = π/2, π , 2π , where β = kPa, a is the radius, and
kP = ωP/c0. The elements H ‖‖

1,1 (a), H⊥‖
3,1 (b), H ‖⊥

1,3 (c), and H⊥⊥
3,3 (d) are

associated to the modes U‖
1 and U⊥

3 shown in the inset above; H ‖⊥
1,3 =

H⊥‖
3,1 for the reciprocity.

symmetries of the disk. Their interaction with other modes
is negligible as the size parameter β varies in the interval
[0, 2π ]. The magnitudes of U‖

1, U⊥
3 and their field lines are

shown in the equatorial plane of the disk at the top of Fig. 9.
In Figs. 9(a) and 9(b), we show the amplitude of H‖‖

1,1 and

H⊥‖
3,1 as function of the normalized frequency ω/ωP. They

account for the contribution of the driving coordinate operator
F̂ ‖

1 to the coordinate operators P̂‖
1 and P̂⊥

3 of the polarization
as the frequency ω varies. In Figs. 9(c) and 9(d), we show
the amplitude responses of H‖⊥

1,3 and H⊥⊥
3,3 . They account for

the contribution of the driving coordinate operator F̂⊥
3 to the

coordinate operators P̂‖
1 and P̂⊥

3 of the polarization as the
frequency varies. For 0 � β � 2π , the self and mutual cou-
pling between the modes U‖

1 and U⊥
3 dominate the frequency

response, being the coupling with the remaining modes neg-
ligible. As expected, the curves in panels (b) and (c) are
identical because of reciprocity.

First, we describe the amplitude response of H‖‖
1,1 in

Fig. 9(a). For β = π/2, H‖‖
1,1 exhibits a low-frequency peak,

which is located close to the quasistatic natural frequency of
the electric dipole mode U‖

1. A “bump” is present at higher
frequencies, revealing the presence of a second pole in the fre-
quency response. For β = π , the frequency response broadens
around the first peak, and the bump becomes a secondary
peak: the contribution of the radiation starts to be significant.
Eventually, for β = 2π , the second peak becomes the highest
one. Similar considerations also hold for the “mutual” fre-
quency responses H‖⊥

1,3 = H⊥‖
3,1 , shown in Figs. 9(b) and 9(c).
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FIG. 10. Impulse responses of a lossless metal disk (ω0 = 0,
� = 0) with β = π/2, π , 2π , where β = kPa, a is the radius and
kP = ωP/c0. The impulse response h‖‖

1,1(t ) (a) corresponds to the

amplitude response shown in Fig. 9(a) and the impulse response h⊥‖
3,1

(b) corresponds to the amplitude response shown in Fig. 9(b).

We show in Fig. 9(d) the frequency response H⊥⊥
3,3 , which has

been scaled by (ω/ωp)2 to obtain a finite value for ω → 0.
Indeed, in the small-size limit H⊥⊥

3,3 ≈ ω2
P/(δ3s2) has a double

pole at the origin. The high frequency bump is due to the
transverse electromagnetic standing waves of the particle, as
found for the case of a sphere in Ref. [31]. By increasing
the size parameter β, the bump undergoes a red-shift, and for
β = 2π it eventually becomes a peak.

Figure 10 shows the impulse responses h‖‖
1,1(t ) and h⊥‖

3,1(t ).
For β = π/2, they are dominated by a single harmonic with
a frequency corresponding to the low-frequency peak of the
amplitude response shown in Fig. 9(a) and 9(b), respectively.
As β increases to π the radiative damping determines faster
decay. For β = 2π the interaction between the poles associ-
ated with the first two peaks of H‖‖

1,1 shown in Fig. 9(a) gives

rise to a beating of h‖‖
1,1. Similar considerations also apply to

h‖‖
3,1.

Eventually, we investigate the role that material losses play.
Specifically, in Figs. 11 and 12, we show the frequency and
impulse responses of the disk for β = π by varying the matter
damping rate �. It is apparent that an increase of � up to 0.1ωp

only determines a slightly modification of the frequency and
impulse responses. This is because, for the considered values
of � and β, the radiative losses are dominant.

D. Dielectric

We now investigate the coupling of the electric dipole
mode and the magnetic dipole mode to other modes for a
dielectric disk with ω0 = ωP/4 as β varies in the interval
[0, 2π ]. In the lossless limit, the susceptibility is positive
when ω < ω0 and negative when ω > ω0; when ω → 0 the
susceptibility is equal to 16.

1. Magnetic dipole coupling

Once again, to highlight the role of radiation losses, we
initially disregard material losses, � = 0. From the numerical
analysis, we have found that the magnetic dipole U⊥

1 signifi-
cantly couples only with the higher order magnetic dipole U⊥

9
due to the symmetry of the problem. As the size parameter β

varies in the interval [0, 2π ], the interaction with other modes
is negligible. The transverse modes U⊥

1 and U⊥
9 are shown on
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FIG. 11. Amplitude responses of a metal disk (ω0 = 0, β = π )
for � = 0, 0.01ωP, 0.1ωP, where β = kPa, a is the radius and kP =
ωP/c0. The elements H ‖‖

1,1 (a), H⊥‖
3,1 (b), H ‖⊥

1,3 (c) and H⊥⊥
3,3 (d) are

associated to the modes U‖
1 and U⊥

3 shown in the inset above Fig. 9;
H ‖⊥

1,3 = H⊥‖
3,1 for the reciprocity.

the top of Fig. 13. Both modes have a nonvanishing magnetic
dipole moment: the first is a current loop, and the second mode
is made by two counter-rotating current loops.

In Fig. 13(a), we show the amplitude response of H⊥⊥
1,1 for

β = π/2, π , 2π , and � = 0. For β = π/2 the peak of the
amplitude of H⊥⊥

1,1 is located in the neighborhood of the natu-
ral frequency of the mode U⊥

1 . As for the amplitude response
associated with the longitudinal dipolar mode in the metal
disk, a bump arises at higher frequencies, which is associated
with a second pole in the response. Increasing β = π , the first
peak undergoes a broadening, while the high-frequency bump
becomes a secondary peak. Both peaks experience a red shift.
For β = 2π , the first peak is still dominant, but the second
peak increases in intensity.

As expected, the amplitude responses of H⊥⊥
9,1 and H⊥⊥

1,9
shown in Figs. 13(b) and 13(c) are identical due to reciprocity.
For β = π/2, these curves exhibit only one peak, which arises
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FIG. 12. Impulse responses of a metal disk (ω0 = 0, β = π ) for
� = 0, 0.01ωP, 0.1ωP, where β = kPa, a is the radius and kP =
ωP/c0. The impulse response h‖‖

1,1(t ) (a) corresponds to the amplitude

response shown in Fig. 11(a) and the impulse response h⊥‖
3,1 (b) cor-

responds to the amplitude response shown in Fig. 11(b).
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FIG. 13. Amplitude responses of a lossless dielectric disk (ω0 =
ωp/4, � = 0) with β = π/2, π , 2π , where β = kPa, a is the radius,
and kP = ωP/c0. The elements H⊥⊥

1,1 (a), H⊥⊥
9,1 (b), H⊥⊥

1,9 (c), and H⊥⊥
9,9

(d) are associated to the modes U⊥
1 and U⊥

9 shown in the inset above;
H⊥⊥

1,9 = H⊥⊥
9,1 for the reciprocity.

from the resonant contribution of the two modes U⊥
1 and

U⊥
9 , whose natural frequencies are approximately ω0 in the

small-size limit. For β = π , they show two peaks of compa-
rable magnitude, which are located in the neighborhood of
the natural frequency of the modes U⊥

1 and U⊥
9 , respectively.

A bump appears at higher frequencies due to the standing
electromagnetic waves of the object. Increasing β to 2π , the
first two peaks undergo a shift and broadening, and the sec-
ond peak becomes dominant. In addition, the high-frequency
bump becomes a third peak.

In Fig. 13(d), we show the amplitude response H⊥⊥
9,9 (ω). In

this case, the first peak on the left is associated with the natu-
ral frequency of the mode U⊥

9 . Increasing β a second bump
arises for β = π ; for β = 2π , a multitude of minor peaks
appear corresponding to the natural frequencies of standing
transverse electromagnetic waves.

In Figs. 14(a) and 14(b), we show the impulse responses
h⊥⊥

1,1 (t ) and h⊥⊥
9,1 (t ) that correspond, respectively, to the ampli-

tude responses shown in Figs. 10(a) and 10(b). The impulse
response h⊥⊥

1,1 is dominated by the natural frequency of the
mode U⊥

1 . When the value of β increases, the impulse
response shows a faster decay rate, which is consistent with
the broadening observed in the amplitude response. The im-
pulse response h⊥⊥

9,1 for β = π and β = 2π shows a beating
between the natural frequencies of the first two modes, as
expected from the analysis of the amplitude responses.

We now investigate the role of material losses. Specifically,
in Figs. 15 and 16, we show the same frequency and impulse
responses for β = π by varying �. In Fig. 15, we observe
that an increase of � determines a smoothing and broadening
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FIG. 14. Impulse responses of a lossless dielectric disk (ω0 =
ωp/4, � = 0) with β = π/2, π, 2π , where β = kPa, a is the radius,
and kP = ωP/c0. The impulse response h⊥⊥

1,1 (t ) (a) corresponds to the
amplitude response shown in Fig. 13(a) and the impulse response
h⊥⊥

9,1 (b) corresponds to the amplitude response shown in Fig. 13(b).

of the peaks of the amplitude responses. In particular, in
Figs. 15(b) and 15(c), it is apparent that for � = 0.1ωP the two
peaks associated to the two transverse modes merge into one.
In Fig. 16, we show that the impulse responses exhibit a faster
decay, as expected from the broadening of the corresponding
frequency responses. In Fig. 16(b), we show that, while for
low losses, (� = 0 and 0.01ωP), the impulse response h⊥,⊥

9,1
shows a beating between the resonance frequencies of the
longitudinal and transverse modes, this beating is no longer
visible for � = 0.1ωP. This is consistent with the fact that in
the frequency response the two peaks broaden and merge.

2. Electric dipole coupling

We consider the same dielectric disk, but we now focus on
the coupling of the electric dipole mode to other modes. As in
the case of a metal disk, from the numerical analysis, we have
found that the electric dipole mode U‖

1 significantly couples
to the mode U⊥

3 , which carries a Pe2 dipole moment [38],
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FIG. 15. Amplitude responses of a dielectric disk (ω0 = ωp/4,
β = π ) for � = 0, 0.01ωP, 0.1ωP, where β = kPa, a is the radius,
and kP = ωP/c0. The elements H⊥⊥

1,1 (a), H⊥⊥
9,1 (b), H⊥⊥

1,9 (c), and H⊥⊥
9,9

(d) are associated to the modes U⊥
1 and U⊥

9 shown in the inset above
Fig. 13; H⊥⊥

1,9 = H⊥⊥
9,1 for the reciprocity.
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FIG. 16. Impulse responses of a dielectric disk (ω0 = ωp/4, β =

π ) for � = 0, 0.01ωP, 0.1ωP, where β = kPa, a is the radius, and
kP = ωP/c0. The impulse response h⊥⊥

1,1 (t ) (a) corresponds to the
amplitude response shown in Fig. 15(a) and the impulse response
h⊥⊥

9,1 (b) corresponds to the amplitude response shown in Fig. 15(b).

due to the symmetry of the problem. As the size parameter β

varies in the interval [0, 2π ] the interaction with other modes
is negligible. The two modes are shown in the equatorial plane
of the disk on top of Fig. 17.

In Figs. 17(a) and 17(b), we show the amplitude response
of H‖‖

1,1 and H⊥‖
3,1 . In Figs. 17(c) and 17(d), we show the

amplitude responses of H‖⊥
1,3 and H⊥⊥

3,3 .
First, we describe the behavior of the amplitude response of

H‖‖
1,1. For β = π , it shows only one peak located in proximity

of the natural frequency of the longitudinal mode U‖
1. It is ap-

parent that a zero cancels the pole associated with the natural
frequency of the transverse mode. At higher frequencies there
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FIG. 17. Amplitude responses of a dielectric disk (ω0 = ωp/4,
� = 0) with β = π/2, π, 2π , where β = kPa, a is the radius and
kP = ωP/c0. The elements H ‖‖

1,1 (a), H⊥‖
3,1 (b), H ‖⊥

1,3 (c), and H⊥⊥
3,3 (d) are

associated to the modes U⊥
1 and U⊥

3 shown in the inset above; H ‖⊥
1,3 =

H⊥‖
3,1 for the reciprocity.
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FIG. 18. Impulse responses of a lossless dielectric disk (ω0 =
ωp/4, � = 0) with β = π/2, π , 2π , where β = kPa, a is the radius
and kP = ωP/c0. The impulse response h‖‖

1,1(t ) (a) corresponds to the

amplitude response shown in Fig. 17(a) and the impulse response h⊥‖
3,1

(b) corresponds to the amplitude response shown in Fig. 17(b).

is a “bump” due to the transverse electromagnetic standing
waves of the particle, as the case of the sphere [31]. For
β = 2π , this bump becomes a secondary peak.

The amplitudes of H‖⊥
1,3 and H⊥‖

3,1 are identical for reci-

procity. For β = π/2, the amplitude of H⊥‖
3,1 has two peaks and

one bump. The first peak is located in proximity of the natural
frequency of transverse mode U⊥

3 , the second one is located
in proximity of the natural frequency of the longitudinal mode
U‖

1. By increasing β to π the second peak becomes a bump,
and a second high-frequency bump arises due to the transverse
electromagnetic standing waves of the particle. For β = 2π ,
the low-frequency bump disappears, while the second high-
frequency bump becomes a peak.

The amplitude response of H⊥⊥
3,3 for β = π/2 is dominated

by the peak associated with the natural frequency of the trans-
verse mode U⊥

3 . For β = π a high frequency bump appears,
associated with transverse electromagnetic standing waves.
The first peak also dominates the response for β = 2π , while
the second bump becomes a secondary peak.

The impulse response h‖‖
1,1 is shown in Fig. 18(a). For

β = π/2, it oscillates with the natural frequency of the lon-
gitudinal mode. It shows a fast decay rate due to radiation
losses. For β = π , the decay rate is even faster. For β = 2π ,
the impulse response oscillates with the frequency associated
with the transverse electromagnetic standing waves of the
disk as for the sphere [31]. It exhibits a slower decay. The
impulse response h⊥‖

3,1 is shown in Fig. 18(b). For β = π/2,
it shows a beating between the natural frequencies of the
transverse and longitudinal modes. For β = π , the impulse
response oscillates with the natural frequency of the transverse
mode. For β = 2π , the impulse response h‖‖

3,1 shows a very
slow decay with oscillation given by the natural frequency
of the transverse mode. Furthermore, these oscillations are
modulated by ripples that oscillate with the natural frequency
of the transverse electromagnetic standing waves of the disk.

Now, we investigate the role of material losses. Specifi-
cally, in Figs. 19 and 20, we study the frequency and impulse
responses for β = π by varying �. In Fig. 19, we observe
that an increase of � determines a smoothing and broadening
of the peaks of the amplitude responses associated with both
longitudinal and transverse modes of the disk. In Fig. 20(a),
we show that the impulse responses exhibit a faster decay as �
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FIG. 19. Amplitude responses of a dielectric disk (ω0 = ωp/4,
β = π ) for � = 0, 0.01ωP, 0.1ωP, where β = kPa, a is the radius
and kP = ωP/c0. The elements H ‖‖

1,1 (a), H⊥‖
3,1 (b), H ‖⊥

1,3 (c), and H⊥⊥
3,3

(d) are associated to the modes U‖
1 and U⊥

3 shown in the inset above
Fig. 17; H ‖⊥

1,3 = H⊥‖
3,1 for the reciprocity.

increases, as expected by the broadening of the corresponding
frequency response.

XII. SUMMARY AND CONCLUSIONS

We introduced an operative full-wave approach for mod-
eling the quantum electrodynamics of dispersive dielectric
objects of finite size in unbounded space in the Heisenberg
picture. It is based on a Hopfield type scheme. Its principal
characteristics are:

(i) the matter and the electromagnetic field are kept distinct,
enabling the treatment of the polarization and electromagnetic
fluctuations on equal footing;

(ii) the polarization density field observable is expanded
in terms of the static longitudinal and transverse modes of
the object. In this way, the Coulomb and Ampere interaction
energy terms of the Hamiltonian are diagonalized.

(a) (b)
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FIG. 20. Impulse responses of a dielectric disk (ω0 = ωp/4, β =
π ) with � = 0, 0.01ωP, 0.1ωP, where β = kPa, a is the radius, and
kP = ωP/c0. The impulse response h‖‖

1,1(t ) (a) corresponds to the
amplitude response shown in Fig. 19(a) and the impulse response
h⊥‖

3,1 (b) corresponds to the amplitude response shown in Fig. 19(b).

(iii) The radiation field observables are expanded in terms
of transverse plane waves.

(iv) The equations of motion for the longitudinal and trans-
verse coordinate operators of the polarization field observable
are coupled. The coupling is due to the interaction of the
polarization with the solenoidal component of the electromag-
netic field, which is described through the full-wave transverse
dyadic Green’s function for the vector potential in free space.
The driving terms of the equations are operators that take into
account the initial conditions of the matter field observables
and the radiation field observables.

(v) When the size of the dielectric object is much smaller
than λc = min

ω
{c0/[ω

√|χ (ω)|]} the static longitudinal and

transverse modes are the natural modes of the polarization,
and their mutual coupling due to radiation is weak. As the
size increases, the modes become increasingly coupled, but as
long as the size of the object is up to λc, each mode couples to
a few modes.

The principal outcomes of this approach, which advance
the literature, are:

(a) the polarization density field observable is expressed
in terms of the driving term operators, through the impulse re-
sponse of the dielectric object that we obtain in the framework
of the classical electrodynamics.

(b) The electric field observable is expressed in terms of the
polarization density field observable by means of the dyadic
Green’s function for the free space.

(c) The statistical functions of the polarization density field
observable and of the radiation field observables are integral
operators of the statistics of the driving term operators. The
kernels of the integral operators are linear/multilinear expres-
sions of the impulse responses of the dielectric object.

(d) Few static longitudinal and transverse modes are im-
plicated in the numerical calculation of each element of the
impulse response matrix of dielectric objects with sizes of the
order up to λc.

We evaluated the impulse response matrix for different
object shapes by using the Drude-Lorentz model for the
susceptibility. First, we consider the case of an infinite homo-
geneous dielectric. Differently from the Huttner and Barnett’s
paper, we have the additional contribution of ĵ (e)

μ , which takes
into account the fluctuation of the electromagnetic field. This
is consistent with what Drezet had already observed [30].
Second, we treated the case of a dielectric slab with a linearly
polarized electromagnetic wave propagating normally to the
slab. Both in this case and in the previous one the longitudinal
modes are absent due to homogeneity. Then, we validated the
impulse response matrix against a semi-analytical solution in
the case of a sphere. Eventually, we analysed a metal disk and
a dielectric disk, which are very relevant for nanophotonics.
We investigated the frequency response and the impulse re-
sponse of modes with low multipolar order. We consider a
disk with size parameters β ∈ [0, 2π ] without and with losses.
For β = π/2, we verified that the modes are weakly coupled,
and the elements of the impulse response matrix are close
to the impulse responses of damped harmonic oscillators,
while for β = 2π , the mode becomes coupled, nevertheless
the coupling is limited to few modes.
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APPENDIX A: MACROSCOPIC CLASSICAL DIELECTRIC
SUSCEPTIBILITY

We show, in the classical framework, that the macroscopic
polarization density field is given by Eq. (2) when the polar-
ization density field is expressed in terms of matter fields {Yν}
through Eq. (5), and the coupling coefficient αν is given by the
expression (6).

The classical time evolution of the matter field is governed
by the equation [see Eq. (23a)]

Ÿν + ν2Yν = ανE in V (A1)

for 0 � ν < ∞. In the Laplace domain, it becomes

(s2 + ν2)Yν = ανE + [
sY(0)

ν (r) + Ẏ(0)
ν (r)

]
, (A2)

where Yν (r; s) is the Laplace transform of Yν (r; t ) and E (r; s)
is the Laplace transform of E(r; t ). Y(0)

ν (r) and Ẏ(0)
ν (r) de-

note, respectively, the vector field Yν and its partial derivative
with respect to the time evaluated at t = 0. Therefore, in the
Laplace domain, the polarization density field is given by

P = ε0χ̃ (s)E + P free, (A3)

where

χ̃ (s) = 1

ε0

∫ ∞

0
dν

α2
ν

s2 + ν2
(A4)

and

P free(r; s) =
∫ ∞

0
dν

αν

s2 + ν2
[sY(0)

ν (r) + Ẏ(0)
ν (r)]. (A5)

The region of convergence of the Laplace transform con-
tains the imaginary axis; therefore, we evaluate χ̃ (s) for s =
iω + ε where ε ↓ 0. By using the relation (e.g., Ref. [41])

1

x − iε
= iπδ(x) + P 1

x
, (A6)

where P denotes the Cauchy principal value, we obtain for
χ (ω) = χ̃ (s = iω + ε) the following expression:

ε0χ (ω) = P
∫ ∞

0
dν

α2
ν

ν2 − ω2
− i

π

2

α2
ω

ω
. (A7)

Expressing the susceptibility in the frequency domain χ (ω) as
χ = χr + iχi, we obtain

αν =
√

2σ (ν)

π
, (A8)

where σ (ν) = −ε0νχi(ν).
In the time domain, we have (in the region V )

P(r; t ) = ε0ζ (t ) ∗ E(r; t ) + Pfree(r; t), (A9)

where ζ (t ) is the inverse Fourier transform of the susceptibil-
ity of the dielectric χ (ω),

Pfree(r; t ) =
∫ ∞

0
dν

√
2σ (ν)

π
Yfree

ν (r; t ) (A10)

and

Yfree
ν (r; t ) = Y(0)

ν (r) cos(νt ) + 1

ν
Ẏ(0)

ν (r) sin(νt ). (A11)

Pfree(r; t) takes into account the contribution of the initial
state of the matter field to the polarization dynamics: it would

describe the evolution of the polarization density field if the
interaction of the dielectric with the electric field was absent.
It depends only on the initial state of the matter fields.

APPENDIX B: LONGITUDINAL AND TRANSVERSE
STATIC MODES OF THE DIELECTRIC BODY

Following Ref. [31], we exploit the static longitudinal
(electrostatic) modes and the static transverse (magnetostatic)
modes of the dielectric body to represent, respectively, the
longitudinal and transverse components of the matter vector
field operators.

The static longitudinal modes of the body are solutions of
the eigenvalue problem [27,28,40]

∇r

∮
∂V

d2r′ U‖
m(r′) · n̂(r′)
4π |r − r′| = 1

κ
‖
m

U‖
m(r) in V, (B1)

where κ‖
m is the eigenvalue associated with the eigenmode

U‖
m(r). The eigenvalues κ‖

m, which are dimensionless quanti-
ties, are discrete, real, positive, and equal to or greater than
two (κ‖

m � 2). The longitudinal eigenmodes and the corre-
sponding eigenvalues depend only on the shape of the body,
they do not depend on its size. The solution of problem (B1)
can be evaluated numerically using the method outlined in
Refs. [28,42] and summarized in Appendix C.

The static transverse modes of the body are solutions of the
eigenvalue problem [29,43]

1

a2

∫
V

d3r′ U⊥
m (r′)

4π |r − r′| = 1

κ⊥
m

U⊥
m (r) in V, (B2)

with

U⊥
m (r) · n̂(r) = 0 on ∂V, (B3)

where a is the radius of the smallest sphere that surrounds the
dielectric and κ⊥

m is the eigenvalue associated to the eigen-
mode U⊥

m . Equation (B2) with constraint (B3) holds in a weak
form in the functional space of the solenoidal vector field in
V with a normal component to ∂V equal to zero, equipped
with the inner product 〈F, G〉. The eigenvalues κ⊥

m , which are
dimensionless quantities, are discrete, real and positive. As
for the longitudinal eigenmodes, the transverse eigenmodes
and the corresponding eigenvalues depend only on the shape
of the body; they do not depend on its size. The problem
(B2) can be solved by using standard tools of computational
electromagnetism as outlined in Ref. [29] and summarized in
Appendix C.

APPENDIX C: COMPUTATIONAL OF LONGITUDINAL
AND TRANSVERSE STATIC MODES

1. Longitudinal modes

To compute the longitudinal modes of the object we pre-
liminary solve the eigenvalue problem [28,42]

σm(r) = κ‖
m

[
σm

2
(r) −

∮
∂V

d2r′ σm(r′)
(r − r′) · n(r)

4π |r − r′|3
]
,

(C1)
where r ∈ ∂V and σm(r) = U‖

m(r) · n̂(r) is the eigenfunction.
This problem is equivalent to the eigenvalue problem (B1).
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Then, we determine the longitudinal mode U‖
m of the object

that is given by

U‖
m(r) = 1

4πε0

∮
∂V

d2r′ σm(r′)
(r − r′)
|r − r′|3 . (C2)

For solving numerically Eq. (C1), we discretize the boundary
∂V of the object with a triangular surface mesh having trian-
gles Tj with j = 1, 2, . . . , Nt . The charge density distribution
is represented in terms of a basis of piecewise constant func-
tions u j on such triangles

σm(r) =
Nt∑
j=1

IS
j u j (r). (C3)

Each basis function is defined as

u j (r) =
{ 1

Aj
in Tj,

0 otherwise,
(C4)

where Aj is the area of the triangle Tj . Since the surface is
overall neutral, the true unknowns are Nt − 1. The discrete
form of the integral equation (C1) is

R I = κ‖
m

2
[R − C]I, (C5)

where the elements of the matrices R and L are

Ri j =
∮

∂V
d2r u j (r)ui(r) =

{ 1
Aj

i = j,
0 i �= j,

(C6)

Ci j = 1

Ai

1

Aj

∮
Ti

∮
Tj

d2r′d2r
(r − r′) · n(r)

2π |r − r′|3 . (C7)

The singular surface integral in (C7) involving the static Green
function have been computed using the analytical formulas
[44].

The problem (C5) is reduced to a standard symmetric
eigenvalue problem by exploiting the LAPACK [34] routine
DSYGST. All eigenvalues and eigenvectors of the resulting real
symmetric matrices are computed through the routine DSYEV.

2. Transverse modes

Equation (B2) can be numerically solved by drawing on
the standard repertoire of computational electromagnetics for
volume integral equations [36,45]. We introduce a tetrahedral
mesh of the volume V with Nnode nodes, Ntetra tetrahedral
elements, and Nedge edges. To discretize the current density
field we use loop functions {uk} as a discrete basis [46].

The loop basis function associated to the kth edge is given
by (e.g. Ref. [46]):

uk (r) =
Nk∑

h=1

eh

Vh
fh(r), (C8)

where Nk is the total number of tetrahedrons attached to
the kth edge. The unit vector eh is parallel with the edge
of the tetrahedron Th that is not adjacent to the kth edge. Vh

is the volume of the tetrahedron Th and

fh(r) =
{

1 in Th,

0 otherwise. (C9)

A generic edge may be either a “boundary” edge or an
“interior” edge. The loop functions associated to the inte-
rior edges are inherently solenoidal. We can also associate
a “half-loop” basis function with each boundary edges (e.g.,
Ref. [46]), but they give a nonvanishing surface charge. How-
ever, because of boundary condition (B3), we disregard the
“half-loop” basis functions.

The basis function associates to the interior edges are not
linearly independent. There are several ways available to set
up a maximum and independent loop basis set. We take ad-
vantage of the fact that nodes and edges in a geometrical mesh
can also be used to set up an undirected graph. We recall some
concept from graph theory.

A tree T of a connected graph G is a connected subgraph
that contains all the nodes of G, but without any loop. For any
given graph G, many possible choices of trees are possible.
Given a connected graph and a chosen tree, the branches of
G are partitioned in two disjoint sets: the ones belonging to
T , called twigs, and the ones that do not belong to T that are
called links.

We introduce the graph G associated with all the nodes and
edges of the mesh of V and the sub-graph GS associated with
the boundary nodes and edges. We consider a tree T ′ of G,
that has the additional constraint of including a tree of GS . We
use as a basis for the current density field the loop functions
{ui

h(r)} associated with the internal links of the tree T ′.
We represent the unknown J(r) in terms of the NL loop

functions

J(r) =
NL∑

h=1

Ihui
h. (C10)

The discrete generalized eigenvalue problem is obtained by
substituting expansion (C10) into Eq. (B2) and applying the
Galerkin method

κ⊥
m

a2
L I = R I. (C11)

The elements of these matrices are given by

Rpq =
∫

V
d3r ui

p(r) · ui
q(r), (C12a)

Lpq =
∫

V

∫
V

d3r d3r′ ui
p(r) · ui

q(r′)

4π |r − r′| . (C12b)

The problem (C11) is reduced to a standard symmetric
eigenvalue problem by exploiting the LAPACK [34] routine
DSYGST, then all the eigenvalues and eigenvectors of the
resulting real symmetric matrix are computed through the
routine DSYEV.

APPENDIX D: EXPRESSION OF THE KERNEL sa a′
mm′ (t ) IN

TERMS OF THE TRANSVERSE DYADIC GREEN
FUNCTION IN FREE SPACE

In this Appendix, we express the kernel sa a′
mm′ (t ) defined by

(64) in terms of the transverse dyadic Green function for the
vector potential in free space.

The Laplace transform of the kernel sa a′
mm′ (t ) is

Sa a′
mm′ (s) =

∑
μ

s

s2 + c2
0k2

〈
Ua

m, wμ

〉〈
wμ, Ua′

m′
〉
. (D1)
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We rewrite it as follows:

Sa a′
mm′ (s) = s

c2
0

∫
V

d3r
∫

V
d3r′ Ua

m(r)
←→
G ⊥(r − r′; s)Ua′

m′ (r′),

(D2)
where

←→
G ⊥(r − r′; s) is the dyad

←→
G ⊥(r − r′; s) =

∑
μ

1

k2 + s2/c2
0

wμ(r) w∗
μ(r′). (D3)

Using the expression of wq(r) [see (36)], we obtain

←→
G ⊥(r; s) = 1

(2π )3

∫
d3k

←→G ⊥(k; s) eik·r, (D4)

where

←→G ⊥(k; s) = 1

k2 + s2/c2
0

(
←→

I − k̂ k̂) (D5)

is the transverse dyadic Green function for the electric field in
the wave-number domain and in free space. By evaluating the
Fourier integral (D4) we obtain (e.g., Ref. [47])

←→
G ⊥(r; s) = ←→

G (r; s) − ←→
G ‖(r; s), (D6)

where

←→
G (r; s) = e−sr/c0

4πr

×
[

(
←→

I − erer ) + c0
(
←→

I − 3erer )

sr
(1 + c0

sr
)

]
,

(D7)

er = r/r, and

←→
G ‖(r; s) = c2

0

s2

(
←→

I − 3erer )

4πr3
. (D8)

←→
G (r; s) is the dyadic Green for the vector potential in the

temporal gauge,
←→
G ⊥(r; s) is the transverse component, and←→

G ‖(r; s) is the longitudinal component.
In the time domain, the transverse dyadic Green function

in free space is given by

←→g ⊥(r; t )

= (
←→

I − erer )

4πr
δ(t − r/c0)

+ c0
(
←→

I − 3erer )

4πr2
u(t − r/c0)

[
1 + c0

r
(t − r/c0)

]

− c2
0

(
←→

I − 3erer )

4πr3
u(t )t . (D9)

The expression of sa a′
mm′ (t ) is

sa a′
mm′ (t ) = 1

c2
0

∫
V

d3r
∫

V
d3r′ Ua

m(r)←̇→g ⊥(r − r′; t )Ua′
m′ (r′),

(D10)

where

←̇→g ⊥
(r; t ) = (

←→
I − erer )

4πr
δ̇(t − r/c0) + c0

(
←→

I − 3erer )

4πr2

×
[
δ(t − r/c0) + c0

r
u(t − r/c0))

]

− c2
0

(
←→

I − 3erer )

4πr3
u(t ). (D11)

It is convenient to express
←→
G ⊥(r; s) as

←→
G ⊥(r; s) = ←→g ⊥

0 (r) + ←→
G ⊥

d (r; s), (D12)

where

←→g ⊥
0 (r) = ←→

G ⊥(r; s = 0) = (
←→

I + r̂ r̂)
1

8πr
(D13)

and

←→
G ⊥

d (r; s) = ←→
G ⊥(r; s) − ←→g ⊥

0 (r). (D14)

The term ←→g ⊥
0 is the static transverse dyadic Green function

for the free space, which diverges as 1/r for r → 0. The
dynamic part

←→
G ⊥

d , which tends to zero as s for s → 0, is a
regular function of r. Indeed, we have

←→
G ⊥

d (s) = − s

4πc0
e−sr/2c0 f1(sr/2c0)

(←→
I − erer

)
+ (

←→
I − 3erer )

s

12πc0
f2(sr/c0), (D15)

where

f1(ξ ) = sinh ξ

ξ
, (D16)

f2(ξ ) = 3

2x3
(−2 + ξ 2 + 2ξe−ξ + 2e−ξ ). (D17)

The functions f1(ξ ) and f2(ξ ) are regular as ξ → 0, in partic-
ular f1, f2 → 1.

APPENDIX E: EVALUATION OF THE COEFFICIENTS Saa′
mm′

We first consider the coefficients S‖‖
mm′ (s) and S⊥⊥

mm′ (s).
Starting from expression (69) and applying the Green decom-
position (D12) and the integral identity (F7), we obtain

c2
0

s
S‖‖

mm′ (s)

=
∫

V
d3r

∫
V

d3r′ U‖
m(r)

←→
G ⊥

d (r − r′; s)U‖
m′ (r′)

+
∫

V
d3r

∫
V

d3r′ U‖
m(r) · 1

4π |r − r′|U‖
m′ (r′)

+
∮

∂V
d2r

∮
∂V

d2r′ U‖
m(r) · n̂

|r − r′|
8π

U‖
m′ (r′) · n̂ (E1)
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and

δS⊥⊥
mm′ (s)

= 1

c2
0

∫
V

d3r
∫

V
d3r′ U⊥

m (r) s
←→
G ⊥

d (r − r′; s)U⊥
m′ (r′).

(E2)

We now consider the coefficient S‖⊥
mm′ . Proceeding as above

we obtain

c2
0

s
S‖⊥

mm′ (s)

=
∫

V
d3r

∫
V

d3r′ U‖
m(r)

←→
G ⊥

d (r − r′; s)U⊥
m′ (r′)

+
∫

V
d3r

∫
V

d3r′ U‖
m(r) · U⊥

m′ (r′)
4π |r − r′| , (E3)

where we have exploited the fact that the normal component
of U⊥

m′ to the boundary ∂V is zero.

APPENDIX F: SMALL-SIZE LIMIT

We here analyze the behavior of the coefficients sSa b
mm′ (s)

in the small-size limit, i.e., γ = (a|s|/c0) � 1. We have:

sS‖ ‖
mm′ (s) = γ 2�

‖ ‖
mm′ + O

(
γ 4

)
, (F1)

sS‖ ⊥
mm′ (s) = γ 2�

‖ ⊥
mm′ + O

(
γ 5

)
, (F2)

and

sS⊥⊥
mm′ (s) = a2γ 2

κ⊥
m

δmm′ + γ 4�⊥ ⊥
mm′ + O

(
γ 4

)
, (F3)

where

�⊥ ⊥
mm′ = 1

8πa4

∫
V

d3r
∫

V
d3r′ U⊥

m (r) · U⊥
m′ (r′)|r − r′|,

(F4)

�
‖ ⊥
mm′ = 1

4πa2

∫
V

d3r
∫

V
d3r′ U‖

m(r) · U⊥
m′ (r′)

|r − r′| , (F5)

and

�
‖ ‖
mm′ = 1

4πa2

∫
V

d3r
∫

V
d3r′ U‖

m(r) · U‖
m′ (r′)

|r − r′|
+ 1

8πa2

∮
∂V

d2r
∮

∂V
d2r′U‖

m(r) · n̂|r − r′|U‖
m′ (r′) · n̂′.

(F6)

The quantities �⊥⊥
mm′ , �

‖ ⊥
mm′ , �

‖ ‖
mm′ , and 1/κ⊥

p do not depend on
the size of the dielectric object a and on the complex variable
s, they only depend on the object shape.

Equations (F1)–(F3) have been obtained by using the iden-
tities∫

V
d3r

∫
V

d3r′ Ua
p(r)

(r − r′) (r − r′)
|r − r′|3 Ua′

p′ (r′)

=
∮

∂V
d2r

∮
∂V

d2r′(Ua
p(r) · n̂

)|r − r′|(Ua′
p′ (r′) · n̂′)

+
∫

V
d3r

∫
V

d3r′ Ua
p(r) · Ua′

p′ (r′)

|r − r′| , (F7)

∫
V

d3r
∫

V
d3r′ Ua

p(r)
(r − r′) (r − r′)

|r − r′| Ua′
p′ (r′)

= −
∮

∂V
d2r

∮
∂V

d2r′(Ua
p(r) · n̂

)|r − r′|2(Ua′
p′ (r′) · n̂′)

−1

2

∫
V

d3r
∫

V
d3r′ |r − r′|Ua

p(r) · Ua′
p′ (r′), (F8)

and the asymptotic expression of the transverse dyadic Green
function

←→
G ⊥(r; s) = ←→g ⊥

0 (r) − 2

12πr

( s r

c0

)

+
(
3
←→

I − er er
)

32πr

( s r

c0

)2
+ O

( s r

c0

)3
, (F9)

where ←→g ⊥
0 (r) is given by (D13).

APPENDIX G: ELECTRIC FIELD OPERATOR

In this Appendix, we evaluate the expressions for the elec-
tric field operator in terms of the polarization field operator.
The electric field operator Ê has two contributions in V∞: the
solenoidal component Ês and the irrotational component Êc,

Ê = Ês + Êc. (G1)

1. Solenoidal component

In the time domain, the solenoidal component of electric
field operator is given by

Ês = − ˙̂A, (G2)

hence
Ês(r; t ) = −

∑
μ

˙̂Aμ(t )wμ(r). (G3)

Using Eqs. (58) and (35) in Eq. (G3), we obtain

Ês(r; t ) = − 1

ε0

∑
μ

∑
m,a

Ra
μmwμ(t ) ∗ ˙̂pa

m(t )wμ(r) + Êfree
s (r; t ),

(G4)
where Êfree

s is given by (61). In the Laplace domain, this
relation becomes

Ê s(r; s) = − 1

ε0

∑
μ

∑
m,a

Ra
μmWμ(s)

[
sP̂

a
m(s) − p̂a (S)

m

]
wμ(r)

+ Ê free
s (r; s), (G5)

where Wμ(s) = s/(s2 + ω2
μ) is the Laplace transform of

wμ(t ). By using (D3), we obtain from (G5)

Ê s(r; s) = −μ0

∫
V

d3r′ s
←→
G ⊥(r − r′; s)[sP̂ (r′; s) − P̂(S)(r′)]

+ Ê free
s (r; s), (G6)

where P̂ (r′; s) is the Laplace transform of the polarization
field operator and P̂(S) is the polarization density field oper-
ator in the Schrödinger picture. In time domain, this relation
becomes

Ês(r; t ) = −μ0

∫
V

d3r′
∫ ∞

0
dτ←̇→g ⊥

(r − r′; t − τ ) ˙̂P(r′; τ )

+ Êfree
s (r; t ). (G7)
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2. Irrotational component

In the time domain, the Coulomb field operator is given by

Êc(r; t ) = − 1

4πε0
∇r

∮
∂V

d2r′ P̂(r′; t ) · n̂(r′)
|r − r′| . (G8)

It is convenient to move the gradient operator under the inte-
gral sign in (G8). For r /∈ ∂V , we obtain

Êc(r; t ) = 1

4πε0

∮
∂V

d2r′ (r − r′)
|r − r′|3 P̂(r′; t ) · n̂(r′). (G9)

When r ∈ ∂V an additional additive term for the normal com-
ponent is needed, it is given by

δÊc(r; t ) · n̂(r)
∣∣
∂V ± = ∓ 1

2ε0
P̂(r; t ) · n̂(r)

∣∣
∂V

, (G10)

where ∂V ± are the external and internal pages of the surface
∂V . Nevertheless, inside the dielectric, using Eq. (B1), we
obtain

Êc(r; t ) = − 1

ε0

∑
m=1,2,...

1

κ
‖
m

p̂‖
m(t )U‖

m(r). (G11)

3. Total electric field operator

The electric field operator Ê can be expressed as function
of the polarization field operator P̂ by using the dyadic Green
function for the vector potential in the temporal gauge and in
the free space

←→g (r; t ) = 1

4πr

{
(
←→

I − er er )δ(t ′)

+ c2
0

r
(
←→

I − 3er er ) u(t ′)
(

1

c0
+ t ′

r

)}
, (G12)

where t ′ = t − r/c0. To show this, we first need to express
the Coulomb field operator as a volume integral of the po-
larization field operator. By using the Gauss theorem, from
Eq. (G8), we obtain

Êc(r; t ) = 1

4πε0
∇r

∫
V

d3r′ ∇r

(
1

|r − r′|
)

· P̂(r′; t ). (G13)

For r /∈ V , we can move the gradient operator on the left hand
side under the integral operator

Êc(r; t ) = 1

4πε0

∫
V

d3r′ ∇r∇r
1

|r − r′| P̂(r′; t ). (G14)

For r ∈ V , the singularity in 1/|r − r′| yields an additional
term (e.g., Ref. [48]),

Êc(r; t ) = 1

4πε0

[
−4π

3
P̂(r; t )

+ lim
δ→0

∫
V −Vδ

d3r′ ∇r∇r
1

|r − r′| P̂(r′; t )

]
,

(G15)

where Vδ is a sphere of radius δ centered at r, and

∇∇ 1

r
= 1

r3
(3er er − ←→

I ) r ∈ V − Vδ. (G16)

The expression between the square brackets on the right hand
side of Eq. (G15) is the irrotational component of the polar-
ization density field in V∞. Therefore the total electric field
operator is given by

Ê(r; t ) = − P̂(r; t )

3ε0

−μ0 lim
δ→0

∫
V −Vδ

d3r′←̇→g (r − r′; t ) ∗ ˙̂P(r′; τ )

+ Êfree(r; t ), (G17)

where

←̇→g (r; t ) = 1

4πr

{
(
←→

I − er er )δ̇(t ′)

+ c2
0

r
(
←→

I − 3er er )

[
1

c0
δ(t ′) + 1

r
u(t ′)

]}
,

(G18)

Êfree = Êfree
s + Êfree

c , (G19)

Êfree
c (r; t ) = u(t )

ε0
lim
δ→0

∫
V −Vδ

d3r′←→g 0(r − r′)P̂(S)(r′),

(G20)

and

←→g 0(r) = 1

4πr3
(3er er − ←→

I ). (G21)
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