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Topology and retardation effect of a giant atom in a topological waveguide
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The interaction between the quantum emitter and topological photonic system makes both the emitter and
the photon behave in exotic ways. We here study a system where a giant atom is coupled to two points of a
one-dimensional topological waveguide formed by the Su-Schrieffer-Heeger (SSH) chain. The topological nature
of the hybrid system is studied. We find that the giant atom can act as an effective boundary and induce the chiral
zero-energy modes for the waveguide under the periodical boundary. The properties of these modes are similar
to those in the SSH model with open boundary. Meanwhile, the SSH waveguide, as a structured environment,
induces the retarded effect and the non-Markovian dissipation of the giant atom. Our work may promote more
studies on the interaction between matter and topological environment. Experimental demonstration for our
study using superconducting quantum circuits is very possible within current technology.
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I. INTRODUCTION

Topological physics, which was originally explored in
electronic systems [1,2], has been promoted to photonic sys-
tems [3] for engineering unconventional light behaviors. In the
seminal work [4], the topological band structure was studied
in photonic crystal with broken time-reversal symmetry. From
then on, various photonic systems, e.g., the two-dimensional
photonic crystal structures [5], coupled waveguides or res-
onators [6–9], exciton-polaritons [10], metamaterials [11],
were proposed to study topological states of light, photonic
analog to electronic quantum Hall effects, and synthetics of
artificial gauge fields. These studies also further stimulate a
new research direction for the interaction between topological
photonic system and quantum emitters [12–20], which are
natural atoms and treated as point particles without consid-
ering their spatial shapes, and thus the quantum emitters are
coupled to the topological photonic system via one point.

Simulations for topological physics using superconduct-
ing quantum circuits [21] have recently attracted extensive
attention. Topological transitions [22–24], invariants [25],
and bands [26,27] were experimentally demonstrated us-
ing single superconducting qubits. Photonic localization and
chiral ground-state currents using several superconducting
qubits [28,29] were experimentally observed. The topological
waveguide was also constructed [30,31] via the Su-Schrieffer-
Heeger (SSH) [32] chain, which is characterized by nonzero
winding number or zero-mode edge state(s) in the topological
nontrivial phase with periodical or open boundary condition.
The manipulation on topological states in SSH chain by
quantized microwave field has further been studied [33,34].
Thus, the interaction between matter and topological photonic
waveguide can be conveniently applied to study the coupling
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between the superconducting qubit and the topological mi-
crowave waveguide. However, in contrast to natural atoms,
the superconducting qubits, acting as giant artificial atoms
[35–47], can be engineered to be coupled with the waveguide
via multiple points. Such nonlocal coupling in topological
setup will provide some opportunities in superconducting
quantum computation, which can not with local couplings,
and deserves to be investigated.

We here study the coupling between a giant artificial atom
and a SSH chain waveguide via two coupling points under
the periodical boundary condition for the SSH chain. We
study the exotic property of both the SSH chain and the
giant atom. On the one hand, we study the behaviors of the
SSH chain. We find that the giant atom induced non-Bloch
winding number [48] for the bulk state is the same as that
of the bare SSH waveguide. Also, the giant atom results in
the zero mode in the topologically nontrivial phase even when
the topological waveguide is considered within the periodical
boundary condition. This means that the giant atom acts as an
effective boundary for the SSH chain. Our analytical results
also show the chirality of the zero mode and the symmetry of
the atom-waveguide dressed states. The zero mode is robust
to the disorder and decoherence of the system. On the other
hand, the giant atom exhibits nontrivial dynamical behaviors
in topological environment. The nonlocal two-point coupling
between the giant atom and the topological waveguide re-
sults in the photon interference between the coupling points,
which further induces the retardation effect and leads to non-
Markovian dynamics.

II. THEORETICAL MODEL AND ENERGY SPECTRUM

A. Theoretical model

As schematically shown in Fig. 1(a), we consider that a
two-level giant atom, with ground state |g〉 and excited state
|e〉, is coupled to a SSH chain waveguide via two points. The
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FIG. 1. (a) Schematics of the SSH chain coupled to a giant atom
via either A-A coupling (dashed) or A-B coupling (solid). The energy
spectrum versus θ in (b) for A-A coupling where the two-level is
coupled to the waveguide via two A-type resonators, and in (c) for A-
B coupling under the periodical boundary condition. (d) The enlarged
zoom in (c). The parameters are set as: L = 100, n = 50, m = 51,
ω = �, δ = 0.5q, and g = q.

Hamiltonian of the SSH chain, consisting of L unit cells, is

HSSH =
L∑

l=1

[t1Ĉ
†
A,lĈB,l + t2Ĉ

†
A,l+1ĈB,l ] + H.c. (1)

in the rotating reference frame with ω. Here, we assume that
each unit cell hosts A and B two resonators with the identical
frequency ω, ĈA(B),l is the annihilation operator of the point
A (B) in the lth unit cell. The parameters t1 = q(1 + δ cos θ )
and t2 = q(1 − δ cos θ ) are intracell and intercell couplings
with δ being the dimerization strength. The parameter θ can
vary from 0 to 2π continuously. Applying Fourier transform
Ĉα,l = 1/

√
L�keiklĈα,k with α = A or B to Eq. (1) under the

periodical boundary condition, we can obtain the energy spec-

trum Ek± = ±ωk with ωk =
√

t2
1 + t2

2 + 2t1t2 cos(k), which is
twofold degenerate with ωk = ω−k . The topological property
of the system is characterized by the winding number γ±. As
shown in Appendix A, γ± = 0 for t1 > t2 (0 � θ < π/2 and
3π/2 < θ � 2π ) and γ± = 1 for t1 < t2 (π/2 < θ < 3π/2),
correspond to topologically trivial and nontrivial phases, re-
spectively. The energy spectrum for open boundary is given
in Appendix A for odd and even sublattices, respectively. The
zero-mode edge states are the topological signature of the
waveguide.

The interaction Hamiltonian between the giant atom and
the topological waveguide for the A-A (or A-B) coupling as
shown in Fig. 1(a) is given as HAA = HSSH + HI,AA (or HAB =
HSSH + HI,AB) with

HI,AA = �|e〉〈e| + gσ+(CA,n + CA,m) + H.c., (2a)

HI,AB = �|e〉〈e| + gσ+(CA,n + CB,m) + H.c. (2b)

Here, � is the transition frequency of the two-level giant
atom. In the following discussion of energy spectrum, we set

� = ω = 0. g is the atom-waveguide coupling strength, σ+
is the raising operator of the giant atom. n and m denote the
positions of the unit cells. Without loss of generality, hereafter
we assume n < m.

In the single-excitation subspace, the eigenwave function
of the system can be expressed as

|ψ〉 = Ue|e, G〉 +
∑

k

AkĈ
†
A,k|g, G〉 +

∑
k

BkĈ
†
B,k|g, G〉, (3)

where |G〉 is the ground state of the SSH chain. Using
the Schrödinger equation H |ψ〉 = E |ψ〉, we can obtain the
eigenenergy E corresponding to |ψ〉.

B. Energy spectrum equations

For A-A coupling, the eigenenergy E is given as (see
Appendix B)

E = g2

π

∫
dk

[
E (1 + cos[k(m − n)])

E2 − ω2
k

]
, (4)

which implies that E = 0 is always a solution. Moreover,
for any state with the eigenenergy E , there is a partner state
with −E . This particle-hole symmetry [49,50] is shown in
Fig. 1(b), where the energy spectrum is plotted as a function
of θ . For A-B coupling, the eigen-energy satisfies (see Ap-
pendix B)

E = g2

π

∫
dk

[
E + Q(k)

E2 − ω2
k

]
, (5)

with

Q(k) = t1 cos[k(m − n)] + t2 cos[k(n − m − 1)]. (6)

To discuss the existence of the zero mode, we set E = 0,
the right side of Eq. (5) can be simplified to

g2

π

∫ π

−π

dk

(
−Q(k)

ω2
k

)
=

{− 2g2

t1

( − t2
t1

)m−n
(t1 > t2)

0 (t2 � t1)
. (7)

Therefore, Eq. (5) demonstrates that E = 0 is the solution
only for t2 > t1, which is in the topological nontrivial phase
(π/2 < θ < 3π/2) of the waveguide. However, for the state
with the nonzero eigenenergy E , we cannot find a partner state
with the eigenenergy −E . That is, the particle-hole symmetry
is broken for the A-B coupling. This has also been numerically
verified in Fig. 1(c). Moreover, the giant atom breaks the
translation symmetry of the SSH waveguide, there are bound
states outside the energy bands.

As shown in Fig. 1(c), we find that there is still an energy
level in the gap for the A-B coupling. The nonzero energy
level Eg in the gap (in topological trivial phase) for the A-B
coupling can be tuned on demand via adjusting the size of
the giant atom, that is, the values of n and m. In Fig. 2, we
show the energy level diagram for different d = |m − n|. For
even d , as shown in Figs. 2(a) and 2(c), Eg is always negative,
which is otherwise positive for odd d as shown in Figs. 2(b)
and 2(d). Moreover, as the increase of d , the value of |Eg|
approaches zero gradually. This can be understood from the
expression of Q. Because Q is a oscillation function of the
wave vector k, and d characterizes the oscillation frequency.
Therefore, a large d will naturally lead to a fast oscillation,
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FIG. 2. The energy level diagram for A-B coupling setup. The
parameters are set as: L = 100, δ = 0.5, and g = q and d = |m −
n| = 0, 3, 2, 5 for (a), (b), (c), and (d), respectively.

and the contribution to Q can be neglected via integration. As
a result, the eigenenergy approaches to zero.

Particularly, from Eq. (7), we obtain (−t2/t1)m−n → 0
when (n − m) → +∞. Therefore, in this case, we predict
that the eigenenergy approaches to zero even in topologi-
cally trivial phase for the A-B coupling. To understand it, we
can regard the system as a combination of two open waveg-
uides, which are separated by the giant atom. The energy
spectrum of the system is governed by the collective effect
of two open waveguides. When (n − m) → +∞, two open
waveguides with the A-B and B-A open boundaries will lead
to the existence of the zero mode in θ ∈ (π/2, 3π/2) and
θ ∈ (0, π/2) ∪ (3π/2, 2π ), respectively. As a result, the zero
mode exists in arbitrary phase.

C. Nontrivial degeneracy lifted by giant atom

In Sec. II B, we have shown that the twofold degeneracy of
the energy levels starts to be lifted in Fig. 1(d). To understand
this nontrivial phenomenon in the A-B coupling setup, we
rewrite the Hamiltonian in the momentum space as

HSSH =
∑

k

[Ek+|Ek+〉〈Ek+| + Ek−|Ek−〉〈Ek−|],

HI,AB =
∑

k,σ=±
[gkσ |G〉〈Ekσ |σ+ + H.c.], (8)

where

gk± = g√
2L

(
ωkeikn

t1 + t2eik
± eikm

)
. (9)

We recall that the frequencies of the atom and the bare res-
onator are set to be zero, the atomic excited state is separated
from the energy levels inside the bands by the energy gap
Ek± 	 g, and therefore can be adiabatically eliminated by use
of the Schrieffer-Wolff transformation (also called Frölich-
Nakajima transformation) [51–55]. Keeping up to the second
order of atom-waveguide coupling g, we hence obtain the
virtual coupling between the different energy levels of the

SSH waveguide as

Heff =
∑

k,σ=±
Ekσ |Ekσ 〉〈Ekσ |

+
∑

k,k′,(σ,σ ′ )=±
Gkσ,k′σ ′ |Ekσ 〉〈Ek′σ ′ |, (10)

where the effective coupling strength is explicitly given in Ap-
pendix C. It shows that the giant atom will induce the virtual
coupling between the bulk modes of the SSH waveguide with
same and different wave vectors, both inside the same band or
different bands.

For the parameters used in Fig. 1(d), further nu-
merical results show that the (|Gk+,k′+|, |Gk−,k′−|) 	
(|Gk+,k′−|, |Gk−,k′+|) (not shown here) and therefore the
interband coupling can be neglected. Moreover, |Gk−,k′−| is
nearly flat except near the regime of (k, k′) = π as shown
in Fig. 3(a). Therefore, for the lower band of the SSH
waveguide, the giant atom only trivially lifts the degeneracy
[see Fig. 1(d)]. On the contrary, at the regime of θ = 0.4π

where the degeneracy is lifted, we plot |Gk+,k′+| in Fig. 3(b).
It shows that the maximum value appears when k + k′ = 2π .
We note that, for the bare SSH waveguide, Ek+ = E(2π−k)+,
therefore a strong effective coupling gives birth to the
degeneracy lifted. Further evidence can be found in Fig. 3(c)
where the dependence of |Gk+,(2π−k)+| on θ is plotted for
different k. It shows that for k = 1.1π , the high peaks of
|Gk+,(2π−k)+| appear at θ ≈ 0.4π and θ ≈ 1.6π , where the
degenercy broken is always lifted as shown in Fig. 1(d).
For k = 1.3π and k = 1.5π , the value of |Gk+,(2π−k)+|
is relatively small compared to k = 1.1π , therefore the
degeneracy is not lifted when the energy level is far away
from the lower boundary, which agrees with the energy
spectra in Fig. 1(d).

III. TOPOLOGY OF THE SYSTEM AND
WINDING NUMBER

The A-B coupling setup also allows us to study the topo-
logical property for d = 0, in which the two-level giant atom
is coupled to the waveguide through two different resonators
in the same unit cell. Different from the periodical boundary
condition, the giant atom together with coupled two resonators
forms an effective boundary. That is, the giant atom divides
the SSH waveguide with periodical boundary condition into
two waveguides with open boundary condition. However,
when d = 0, the length of one of which is zero and so we
will get a single open SSH chain. In this case, we use the
approach of the generalized Brillouin zone to study the non-
Bloch winding number, which can be calculated directly for
the open SSH chain [48]. To this end, we take an ansatz of
(φn+l,A, φn+l,B) = β l (φA, φB) (l > 0), with φn+l,A and φn+l,B

being the single-photon excitation probabilities for the A and
B resonators in the (n + l )th unit cell. β is a parameter to be
determined.

Considering the Hamiltonian

H = HSSH + �|e〉〈e| + g[σ+(CA,n + CB,n) + H.c.], (11)
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FIG. 3. |Gk−,k′−| and |Gk+,k′+| versus k and k′ are plotted in (a) and (b), respectively, for θ = 0.4π . (c) |Gk+,(2π−k)+| versus θ for different
k. The parameters for (a), (b), and (c) are θ = 0.4π , L = 100, n = 50, m = 51 in the case of the A-B coupling. The parameters shared by all
of the figures are δ = 0.5 and g = q.

we have

(t1 + t2β
−1)φB = EφA,

(t1 + t2β )φA = EφB, (12)

via the Schrödinger equation, where l ∈ (1, L − 1). Then we
have

(t1 + t2β
−1)(t1 + t2β ) = E2. (13)

There are two solutions for β with

β±(E ) =
E2 − t2

1 − t2
2 ±

√(
E2 − t2

1 − t2
2

)2 − 4t2
1 t2

2

2t1t2
. (14)

The corresponding eigenfunctions are

φ
(±)
A = E

t1 + t2β±
φ

(±)
B (15)

or

φ
(±)
B = E

t1 + t2β
−1
±

φ
(±)
A . (16)

Then, the general solution of the wave function can be
written as a linear combination

(
φn+l,A

φn+l,B

)
= β l

+

(
φ

(+)
A

φ
(+)
B

)
+ β l

−

(
φ

(−)
A

φ
(−)
B

)
. (17)

Substituting Eq. (17) into the boundary condition, we obtain

t1(βL−1
+ φ

(+)
A + βL−1

− φ
(−)
A ) + t2φx = E (βL−1

+ φ
(+)
B + βL−1

− φ
(−)
B ),

t2(βL−1
+ φ

(+)
B + βL−1

− φ
(−)
B ) + t1φy + gφc = Eφx

t1φx + t2(β+φ
(+)
A + β−φ

(−)
B ) + gφc = Eφy

t2φy + t1(β+φ
(+)
B + β−φ

(−)
B ) = E (β+φ

(+)
A + β−φ

(−)
A ),

g(φx + φy) = Eφc, (18)

where (φx, φy) = (φn,A, φn,B) represents the photonic excitation at the site of the giant atom. Together with Eqs. (15) and (16),
we find that β+ and β− satisfy the relation α(β+) = α(β−) where α is a function of β, and is expressed as

α(β ) =
βL

(
g2√

(t1+t2β )(t1+t2β−1 )
− t1

)
+

(
g2

t1+t2β
+ t1

)

βL

(
g2√

(t1+t2β )(t1+t2β−1 )
+ t1

√
t1+t2β−1

t1+t2β

)
+

(
g2

t1+t2β
− t1

√
t1+t2β−1

t1+t2β

) . (19)

Actually, under the periodical boundary condition, β± is
nothing but exp(±ik). For the bulk state inside the continuous
band with the presence of the giant atom, that is, (t1 − t2)2 <

E2 < (t1 + t2)2 in our model, we obtain |β+| = |β−| = 1. In
Fig. 4(a), we numerically plot β± in the complex plane, which
forms the generalized Brillouin zone. Here, we emphasize
that although the translation invariance is broken by the giant
atom, the whole system is still Hermitian, and the generalized
Brillouin zone also forms a unit circle, which is different from
that for the non-Hermitian system [48].

With the assistance of generalized Brillouin zone, we
can calculate the winding number. We define the non-Bloch
Hamiltonian

H (β ) =
(

0 t1 + t2β−1

t1 + t2β 0

)
, (20)

which is obtained from Eq. (12). The Hamiltonian is consis-
tent with the SSH model when β is replaced by eik . Following
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FIG. 4. (a) The real (imaginary) part of β, which includes β− and
β+ two branches. (b) The winding number versus θ . The parameters
are set as δ = 0.5q, θ = 0.8π , L = 100, g = q, ω = �, and n = m =
50.

the procedure in Ref. [48], we define the Q matrix:

Q(β ) = |μ̃(β )〉〈μ̃(β )| − |μ(β )〉〈μ(β )|, (21)

where |μ(β )〉 is the eigenstate of H (β ) and |μ̃(β )〉 =
σz|μ(β )〉. The Q matrix is off diagonal with the structure

Q =
(

0 q
q−1 0

)
. (22)

Integrating the q function with q = −√
(t1 + t2β−1)/(t1 + t2β ), we can apply the non-Bloch

winding number [48]

W = i

2π

∫
Cβ

q−1dq (23)

to demonstrate the topology property of the whole system,
where the integral is performed on the loop Cβ . In Fig. 4(b),
we plot W as a function of θ , and show the topological phase
transition at θ = π/2 and θ = 3π/2, which is similar to that
of the bare SSH waveguide. In other words, the giant atom
does not change the winding number of the bulk state. The A-
A coupling or the A-B coupling with d �= 0 are very different
from the traditional open boundary, and therefore we cannot
use the non-Bloch winding number to discuss the topology.
We emphasize this analogical properties between the tradi-
tional open boundary and the atom-type open boundary just
shows the boundary effect of the giant atom.

IV. ZERO MODE AND BOUND STATES

A. Analytical solutions for zero modes

In Fig. 5, we show the photonic spatial distributions for
the zero-energy and bound states, which are both the atom-
waveguide dressed states, and bound states locate outside
the upper and lower energy bands. Here, we focus on the
topologically nontrivial phase (t2 > t1, π/2 < θ < 3π/2) and
the physics for the topologically trivial phase can be found
in Appendix D. In Fig. 5, the bars and empty circles denote
the numerical and the analytical results, respectively. The
analytical solutions are obtained as follows.

For the zero mode corresponding to E = 0 in the
topologically nontrivial phase under the condition of the
A-A coupling, the photon population can be obtained in

FIG. 5. Photon distribution of zero mode in (a) for A-A and
(b) for A-B coupling. Photon distribution in the upper bound state in
(c) for the A-A and (d) for the A-B coupling. The bars are numerical
results and the empty circles are the analytical ones. The parame-
ters are chosen as L = 100, n = 50, m = 55, θ = 0.8π, δ = 0.5, and
g = q.

Appendix D as Al = 0 and

Bl

Ue
= Y2 ×

⎧⎨
⎩

(−τ )−(l−n) + (−τ )−(l−m) (l < n)
(−τ )−(l−m) (n � l < m)
0 (m � l )

,

(24)

where Al (Bl ) denotes the photonic amplitude of probability
in A-type (B-type) resonator of the lth unit cell, and we
have defined Y2 = g/t1 and τ = t1/t2. Equation (24) shows
that the photons only occupy B-type resonators, whose label
numbers are smaller than m and satisfies the spatial symmetry
|Br | = |Br+m−n| with r < n. That is, as shown in Fig. 5(a),
the photons only distribute in the resonators in the left side
of the giant atom or between two coupling points. However,
for the A-B coupling, the eigenstate of the zero mode can be
obtained as (Appendix D)

Al

Ue
= Y2 ×

{
(−τ )(l−m) (l > m)
0 (l � m)

,

Bl

Ue
= Y2 ×

{
(−τ )−(l−n) (l < n)
0 (l � n)

, (25)

which shows that the photons occupy B(A)-type resonators
on the left (right) side of the giant atom. The photon dis-
tributions satisfy the spatial symmetry |Ar | = |Bm+n−r |, but
the resonators between two coupling points are not occupied.
This has been clearly shown in Fig. 5(b). That is, the photon
occupations for zero mode have chirality for both the A-A and
A-B couplings.
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FIG. 6. The evolution of the photon in the SSH chain coupling
with the giant atom via the A-B coupling in (a) and (b) or the A-
A coupling in (c) and (d). The parameters are set as (� − ω)/q =
0, δ = 0.5q, L = 100, g = q, n = 50, and m = 55. θ = 0.8π for (a),
(c) and θ = 0.2π for (b), (d).

For the two bound states, the photon distributions are lack
of the chirality, as shown in Figs. 5(c) and 5(d), where the
photon distributions for the upper bound state are plotted
for the A-A and A-B couplings, respectively. Figures 5(c)
and 5(d) show that the photons occupy both A- and B-type
resonators in the chain, and the occupation probabilities decay
exponentially around the two coupling points. More interest-
ingly, as shown in Figs. 5(c) and 5(d), the bound states satisfy
the spatial symmetry |Ar | = |Am+n−r |, |Br | = |Bm+n−r | for the
A-A coupling and |Ar | = |Bm+n−r |, |Br | = |Am+n−r | for the A-
B coupling. Such symmetry can also be analytically verified
as shown in Appendix D.

B. Probing zero modes

In Sec. II B, we have demonstrated that the coupling to the
giant atom modifies the energy structure of the SSH waveg-
uide. In principle, the energy structure can be detected by
the scattering approach, that is, when the incident particle
is resonant with the system, it is completely reflected [56].
Another issue is how to detect the profile of the wave function.
Here, we propose two approaches to deal with such problem.

In the first approach, we prepare the giant atom in its
excited state initially, and observe the photonic distributions
during the emission of the atom by setting ω = �. Remember
that the zero mode exists in the A-A coupling setup and
topologically nontrivial phase for the A-B coupling setup.
In these situations, we have exhibited the evolution of the
photonic state in the waveguide in Figs. 6(a)–6(d). They show
that the photons are bounded in the coupling points and be-
have as an oscillation function (see the sites of l = 50 and
l = 55) and the oscillation frequency is determined by the
atom-waveguide coupling strength g. A more detailed obser-
vation also permits the oscillation in the adjacent sites, which
manifests the chiral nature of the zero mode. For example,
in Fig. 6(a), we find the oscillation in the sites outside the
giant atom [l = 49 and l = 56], and on the left (right) and

FIG. 7. The evolution of the population in the excited state for
the probing atom. The parameters are set as L = 100, n = 50, m =
55, δ = 0.5, g = q, f = 0.1q, and γ = 0.2q.

inside the giant atom in Figs. 6(c) (l = 49 and l = 54) and
6(d) (l = 51 and l = 56), respectively. These results predict
the profile of the zero mode, which is given in Figs. 11 and 12
in Appendix D and Figs. 5(a) and 5(b) in Sec. IV A of the main
text. For the A-B coupling, in the topologically trivial phase,
the eigenstate located in the gap detunes with the giant atom,
and the photonic distribution is demonstrated in Fig. 6(b). The
detuning is manifested by the two distinguishable frequen-
cies.

As for the second approach, we introduce an auxiliary
probing atom, which is resonant with the zero mode, and
observe its excitation evolution. Taking the A-A coupling as
an example, we can write the Hamiltonian as

H = HSSH + HI,AA + f (τ+CB,l + H.c.) − iγ |e〉p〈e|, (26)

which demonstrates that the probing atom is coupled to the
site B in the lth unit cell with the coupling strength f . γ

and τ+ = |e〉p〈g| are the spontaneous emission and raising
operator of the probing atom.

Preparing the probe atom in the excited state, while the
giant atom and the waveguide in their ground states initially,
we plot the evolution of the excited state population P(p)

e (t ) =
〈|e〉〈e|〉p of the probe atom in Fig. 7 when it is coupled to
different sublattices. As shown in Fig. 7, the population shows
an obvious Rabi oscillation when the probe atom is coupled
to the site near the atom-waveguide connecting points. On
the contrary, the population undergoes an exponential decay,
which is dominated by the spontaneous emission of the probe
atom when it locates far away from the connecting points.

The underlying physics can be explained by a single-mode
light-matter interaction model. Since the probe atom is largely
detuned from the bulk energy bands, it only exchanges energy
with the zero mode of the probed system, and the effective
Hamiltonian can be expressed as

H = −iγ |e〉p〈e| + (ξlτ+|z〉〈G| + H.c.), (27)

where |z〉 is the zero mode and ξl = f 〈G|CB,l |z〉 = f Bl . As
a result, the period of the Rabi oscillation in Fig. 7 is Tl =
2π/|ξl |. In this sense, the dynamical behavior of P(p)

e (t )
directly witnesses that the photon distributes nearby the cou-
pling points for the zero mode. Furthermore, the coincidence
of some curves (for example l = 48 and l = 53) manifests the
symmetry given in Sec. IV A [also see Eq. (D12)].
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C. Robustness of the zero mode

We further study the robustness of the zero-mode and
bound states to the disorder, atomic dissipation, the asym-
metric atom-waveguide coupling as well as the next-nearest-
neighbor coupling in the SSH waveguide (Appendix E). We
find that the topological protection makes the chirality of
zero mode more robust to the disorder and asymmetric atom-
waveguide coupling, but the symmetries of the bound states
are lost. Furthermore, considering the atomic dissipation in a
non-Hermitian manner, the real part of the energy spectrum
can also reveal the topological nature of the system. However,
by introducing the next-nearest-neighbor coupling, the zero
mode does not exist anymore even where the two-level giant
atom is coupled to the topological waveguide, the energy
spectrum in this situation is similar to that of the generalized
SSH model with the next-nearest-neighbor coupling and open
boundary [50].

V. ENERGY BAND

In this section, we discuss the states inside the energy band.
We consider an energy level, which localizes inside the energy
band. Such energy level can be mathematically characterized
by E2 = t2

1 + t2
2 + 2t1t2 cos(λ), where λ is an arbitrary real

number. Then we have

f (k) = 1

2[cos(λ) − cos(k)]
≈ 1

2λ

(
1

k − λ
− 1

k + λ

)
, (28)

according to the definition of f (k) in Eq. (D2), where the
approximate condition holds when λ, k → 0. For the A-A
coupling, according to Eqs. (D1) and (28), we have

Al

Ue
≈ −T

λ
cos

[
λ(m − n)

2

]
sin

[
λ
(

l − n + m

2

)]
(29)

and

Bl

Ue
≈ − cos

[
λ(m − n)

2

]{
Y1

λ
sin

[
λ
(

l − n + m

2

)]

+ Y2

λ
sin

[
λ

(
l − n + m + 2

2

)]}
, (30)

where T = gE/(t1t2) and Y1 = g/t2.
The above results show that the photon distributes along

the waveguide with a sinusoidal shape, as shown in Fig. 8(a)
for the top energy level in the upper band. As a comparison,
we also plot the photon distribution for the open SSH waveg-
uide with odd sites in Fig. 8(b). The similarity between these
two figures also shows the effective boundary effect of the
giant atom.

It is obvious that at the site l = (m + n)/2, the excitation
amplitude is zero for the A-A coupling. However, this is not
the case for the A-B coupling. For the latter one, we plot the
photon distribution in Fig. 8(c), whose approximate result is
obtained as

Al

Ue
≈ − T

2λ
sin[λ(l − n)] −

{
Y1

2λ
sin[λ(l − m)]

+ Y2

2λ
sin[λ(l − m − 1)]

}
, (31)

FIG. 8. The photon distribution for the second top band energy
level under the A-A and A-B coupling, respectively, in (a) and (c).
The photon distribution for the second top band energy level under
the A-A and A-B open boundary setup, respectively, in (b) and (d).
The parameters are set as L = 101 for (b) and L = 100 for (a), (c),
or (d), n = 50, m = 80, θ = 0.8π , δ = 0.5, and g = q.

Bl

Ue
≈ − T

2λ
sin[λ(l − m)]

−
{

Y1

2λ
sin[λ(l − n)] + Y2

2λ
sin[λ(l − n + 1)]

}
.

(32)

The result for a bare open SSH waveguide with even sites is
given in Fig. 8(d). Again, the boundary effect of the giant atom
is demonstrated clearly. At last, we emphasize that Eq. (28)
becomes unreasonable when the band level E is between two
adjacent energy levels ωks, and also Eqs. (29), (30), (31), and
therefore (32) are no longer applicable.

VI. NON-MARKOVIAN RETARDATION EFFECT

Besides the chirality of the zero mode, the topology of
the system can also be detected by the dynamical evolution
of the giant atom. If we consider the SSH waveguide as a
structured environment, then the giant atom is not affected by
the waveguide when its frequency is in the energy gap of the
waveguide. However, when the frequency of the giant atom is
inside the energy band, the dynamics of the giant atom obeys
the master equation (for the detailed derivations, please refer
to Appendix F).

dρ

dt
= (α + α∗)σ−ρσ+ − αρσ+σ− − α∗σ+σ−ρ, (33)

with the Markovian approximation. For the A-A coupling,
α = g2[1 + cos K (n − m)]/|vg(K )| with � − (ω ± ωK ) = 0
for upper (+) and lower (−) band, respectively. How-
ever, for the A-B coupling, we obtain α = g2(ωK ±
Q(K ))/(|vg(K )|ωK ) with � − (ω ± ωK ) = 0 for upper (+)
and lower (−) band, respectively. Here, Q(k) is defined in
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FIG. 9. (a) The decay rate |α| as a function of K . (b), (c), and
(d) The evolution of atomic population Pe for the A-B coupling setup.
The parameters are set as δ = 0.5q, L = 100, n = 50, m = 54, and
θ = 0.8π . (� − ω)/q = 1.99 (K ≈ 0.06π ) for (b). (� − ω)/q =
1.66 (K ≈ 0.4π ) for (c). (� − ω)/q = 1.3 (K ≈ 0.62π ) for (d).

Eq. (6) and vg(k) = ∂ωk/∂k represents the group velocity of
the traveling photon in the waveguide with wave number k.
We here only consider the zero-temperature situation, and
the discussion of the temperature effect can be found in Ap-
pendix F 1. For the A-B coupling setup, we plot |α|, which
demonstrates the decay rate of the giant atom, as a function of
K in Fig. 9(a). It shows that the decay rate will acquire a large
value on the edge of the band (K ≈ 0) and otherwise very
small or even achieves zero for certain K . Governed by the
Markovian master equation in Eq. (33), the atomic population
Pe = 〈|e〉〈e|〉 undergoes an exponential decay. To investigate
the non-Markovian effct, we here plot the exact atomic dy-
namics based on the Schrödinger equation in Figs. 9(b)–9(d),
in which the atom is excited while all of the resonators in the
waveguide are in the vacuum state initially, and the divergence
from the exponential decay reveals the non-Markovian effects.

The non-Markovian effect here comes from the follow-
ing two aspects. On the one hand, as the frequency of the
atom is nearby the edge of energy band, the giant atom
effectively couples to a single collective mode in the waveg-
uide (Appendix F 2), and the dynamics is characterized by
the Rabi oscillation, whose frequency is proportional to the
atom-waveguide coupling strength g as shown in Fig. 9(b).
In this situation, the non-Markovian effect comes from the
frozen of the emitted photon, whose group velocity is nearly
zero. This kind of non-Markovian effect is common for a
waveguide system with band structure [57,58]. On the other
hand, when the giant atom is resonant with the level inside
the energy band, the finite group velocity of the emitted
photon will induce the retardation effect. In Fig. 9(c), we
consider (� − ω)/q = 1.66 (K ≈ 0.4π ), which corresponds
a relatively large |α|. It shows that the emitted photon by the

giant atom can excite the atom after they travels along the
whole waveguide and comes back to the atomic site, this kind
of the retardation effect is common when a giant or small atom
interact with a waveguide with periodical boundary condition.
Here, a stronger atom-waveguide coupling induces minor os-
cillations. It implies that the atom effectively interacts with a
few photonic modes with different group velocities due to the
relatively strong atom-waveguide coupling. Furthermore, for
the situation of α ≈ 0 with (� − ω)/q = 1.3 (K ≈ 0.62π ),
the emitted photons from one atom-waveguide coupling point
will arrive the other point and induce the atomic oscillation
as shown in Fig. 9(d), in which the oscillation frequency is
nearly independent of g. This kind of retardation effect is
only for the giant atom setup and we can observe it clearly
when |n − m|/vg(K ) � 1/|α|. In Appendix F 2, we further
demonstrate the average photon numbers in each resonator
and the photonic dynamics coincides with the above physical
processes for different �.

VII. DISCUSSION AND CONCLUSIONS

We have studied the interaction between a giant atom and
a topological waveguide, which is described by the SSH chain
formed by the resonators with periodical boundary condition.
The giant atom can act as an effective boundary to induce a
chiral zero mode when it is coupled to two same-type res-
onators in the SSH chain, and lifts twofold degeneracy of all
bulk states in all parameter regimes of the SSH waveguide.
However, if the giant atom is coupled to two different types of
the resonators in the SSH chain, we find that the zero mode ap-
pears in topologically nontrivial regime and there is a nonzero
mode inside the energy gap in the nontopological regime.
These features suggest that the giant atom acts as the effec-
tive boundary and this atom-type boundary exhibits unique
performance in the SSH chain. In addition, as a structured
environment, the waveguide induces the giant atom to have
the non-Markovian dynamical evolution and the retardation
effect.

Our study can be applied to any system consisting a giant
atom or an impurity coupled to the topological waveguide via
two coupling points. We now discuss one possible experi-
mental realizations using superconducting quantum circuits,
in which the superconducting qubit and the LC resonator
chain act as giant atom and SSH chain, respectively. In such
system, the coupling strength between resonators or between
resonator and giant atom can be 50 ∼ 200 MHz for the current
technology [28,59,60]. Moreover, the coupling between dif-
ferent superconducting elements can be experimentally tuned
using various methods, e.g., periodical modulations [61]. That
is, the change from trivial to nontrivial topological interac-
tion can be experimentally observed by tuning the coupling
between resonators. The chiral and symmetry nature of the
zero mode can be detected by introducing an auxiliary probing
atom. For the coupling strength 100 MHz between resonators
or between the resonators and giant atom, the Rabi oscillation
can be observed for the zero mode when the coupling strength
between the probe atom and the zero mode is 10 MHz within
the decay time T1 = 10 μs of the giant atom [62] for even
larger decay rate of the probing atom.
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In summary, we study the light-matter interaction in the
context of the topological waveguide QED. Our study is
also possible to be experimentally realized in photonic and
other solid-state systems. The analytical treatment for one-
dimensional system lays a solid basis to understand the
quantum effects in high-dimension topological waveguide
systems and is helpful to further study the interaction between
matter and topological environment.
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APPENDIX A: SU-SCHRIEFFER-HEEGER MODEL

We begin with a one-dimensional (1D) waveguide, which
is described by Su-Schrieffer-Heeger (SSH) model, the
Hamiltonian is written as [32]

HSSH =
∑

l

[t1Ĉ
†
A,lĈB,l + t2Ĉ

†
A,l+1ĈB,l ] + H.c., (A1)

where ĈA(B),l is annihilation operator of the site A (B) in the
lth unit cell. The coupling strengths are t1 = q(1 + δ cos θ )
and t2 = q(1 − δ cos θ ) with δ being the dimerization strength
and θ can vary from 0 to 2π continuously. By applying the
Fourier transform under the periodic boundary condition

Ĉα,l = 1√
L

∑
k

eiklĈα,k, (A2)

to Eq. (A1) with α = A, B, we have

HSSH(k) =
∑

k

ψ (k)†h(k)ψ (k), (A3)

where

ψ (k) =
(

ĈA,k

ĈB,k

)
, (A4)

h(k) =
(

0 t1 + t2 exp(−ik)
t1 + t2 exp(ik) 0

)
. (A5)

Then, the energy spectrum can be given as

Ek± = ±
√

t2
1 + t2

2 + 2t1t2 cos(k) = ±ωk, (A6)

and the corresponding eigenstates are

|Ek±〉 =
(

t1 + t2e−ik

√
2ωk

Ĉ†
A,k ± 1√

2
Ĉ†

B,k

)
|G〉, (A7)

where |G〉 is the ground state of the waveguide.
The energy spectrum of SSH waveguide with periodical

boundary condition is illustrated in Fig. 10(a), it shows that
the gap is closed and reopened when θ varies across π/2
and 3π/2, where the topological phase transition occurs. The
topological property of the system can also be characterized

FIG. 10. (a) The energy spectrum of the bare SSH model versus
θ for the periodic boundary condition. (b) The winding number
versus θ . (c) and (d) The energy spectrum of the SSH model versus
θ for the A-A (L = 101 for A-B-· · · -B-A setup) and A-B (L = 100
for A-B-· · · -A-B setup) open boundary condition, respectively. The
parameters are set as δ = 0.5. The insets in (c) and (d) show the wave
function for zero mode when θ = 0.8π .

by the winding number γ±, with

γ± = 1

π

∫ π

−π

dk

〈
Ek±

∣∣∣∣i ∂

∂k

∣∣∣∣Ek±

〉

=
{

1 θ ∈ (0, π/2) ∪ (3π/2, 2π )
0 θ ∈ (π/2, 3π/2) , (A8)

which is plotted in Fig. 10(b). It implies that the topologically
nontrivial phase (γ± = 1) in the regime of θ ∈ (π/2, 3π/2) is
separated from the topologically trivial phase (γ± = 0).

Alternatively, in the open boundary condition, the topolog-
ical character of the waveguide is manifested by the boundary
states with zero energy. As shown in Fig. 10(c), when the two
ends of the chain are the same sublattices, there is only one
boundary state for 0 < θ < 2π . On the contrary, when the
two ends of the chain are different sublattices, as shown in
Fig. 10(d), there are two degenerated boundary states, which
locate at the two ends, respectively.

In Sec. II of the main text, we have shown the energy spec-
trum when the giant atom is coupled to the SSH waveguide
under the periodical boundary condition. The energy spectrum
is similar to that of the SSH model with open boundary con-
dition as plotted in Figs. 10(c) and 10(d) in this Appendix.
Together with the similarity of the eigenstate between our
model and that in open SSH chain (as shown in the main text
and other parts in the Appendix), we find that the giant atom
therefore plays a role of an effective boundary.
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APPENDIX B: ENERGY EQUATION

In Sec. II of the main text, we have given the transcendental
equations for the eigenenergy in Eq. (4) and Eq. (5) when a
giant atom interacts with the waveguide via the A-A or A-B
coupling, respectively. Here, we provide the detailed calcula-
tions. When the giant atom interacts with the waveguide via
the A-A coupling, the Hamiltonian is given by

H = HSSH + HI,AA. (B1)

The atom-waveguide coupling Hamiltonian can be also ex-
pressed in the momentum space via Fourier transform as

HI,AA = g√
L

∑
k

[|e〉〈g|ĈA,k (eikn + eikm) + H.c.]. (B2)

In the single-excitation subspace, a general expression of the
eigenstate can be given by Eq. (3). The Schrödinger equation
H |ψ〉 = E |ψ〉 then leads to

EUe = g√
L

∑
k

Ak (eikn + eikm),

EAk = (t1 + t2e−ik )Bk + g√
L

(e−ikn + e−ikm )Ue,

EBk = (t1 + t2eik )Ak . (B3)

Eliminating Ak, Bk , and Ue from the above equations, we
obtain the transcendental equation for E as

E = 2g2

L

∑
k

(
E (1 + cos[k(m − n)])

E2 − ω2
k

)
, (B4)

then we will obtain Eq. (4). Obviously, E = 0 is always the
solution. That is, the zero mode for the A-A coupling situa-
tion always exists regardless of the value of θ . For the A-B
coupling, the Hamiltonian can be written as

HI,AB = g√
L

∑
k

[|e〉〈g|(ĈA,keikn + ĈB,keikm) + H.c.],

(B5)

and the coefficients in Eq. (3) satisfy the equations

EUe = g√
L

∑
k

(Akeikn + Bkeikm),

EAk = (t1 + t2e−ik )Bk + g√
L

e−iknUe,

EBk = (t1 + t2eik )Ak + g√
L

e−ikmUe. (B6)

As a result, the energy satisfies the equation

E = 2g2

L

∑
k

E + t1 cos(kd ) + t2 cos[k(d + 1)]

E2 − ω2
k

, (B7)

with d = m − n, then we will obtain Eq. (5).

APPENDIX C: NONTRIVIAL DEGENERACY BROKEN

As shown in Fig. 1(d), for the A-B coupling setup, the
degeneracy is broken. This is due to the effective coupling,
which is induced by the giant atom, between the levels of
the original SSH waveguide. To understand this clearly, we

adiabatically eliminate the degree of freedom of the atom.
To this end, we first write down the Hamiltonian (B5) in the
eigenspace

Hω =
∑

k

[Ek+|Ek+〉〈Ek+| + Ek−|Ek−〉〈Ek−|], (C1)

HI,AB = g√
L

∑
k

[(ĈA,keikn + ĈB,keikm)|e〉〈g| + H.c]

=
∑

[(gk+|G〉〈Ek+| + gk−|G〉〈Ek−|)|e〉〈g| + H.c],

(C2)

where

gk± = g√
2L

(
ωkeikn

t1 + t2eik
± eikm

)
, (C3)

and here we use the relations,

〈Ek±|Ĉ†
A,k|G〉 = ωk√

2(t1 + t2e−ik )

〈Ek±|Ĉ†
B,k|G〉 = ± 1√

2
, (C4)

which are obtained by multiplying 〈Ek±| to Eq. (A7).
Thus, in the single excitation space, we have

Ĉ†
A,k = ωk√

2(t1 + t2e−ik )
|G〉(〈Ek+ + 〈Ek−|),

Ĉ†
B,k = 1√

2
|G〉(〈Ek+ − 〈Ek−|). (C5)

Then we apply the Schrieffer-Wolff transformation. In the
regime of large detuning ωk 	 |gk±|, the effective coupling
between two modes can be obtained by introducing a unitary
transformation H = exp(−λS)H exp(λS), where S is an anti-
Hermitian operator. Using the Baker-Hausdorff formula, H
can be written as: (to the second order of gk±/Ek)

H = exp(−λS)(Hω + HI,AB) exp(λS)

= Hω + λ(HI,AB + [Hω, S])

+ λ2
(
[HI,AB, S] + 1

2 [S, [S, Hω]]
)
, (C6)

where λ is a perturbation parameter of the Hamiltonian. We
choose

S =
∑

k

{σ+(ξk|G〉〈Ek+| + χk|G〉〈Ek−|) − H.c.}, (C7)

where ξk and χk are chosen so that the first order of λ to be
zero, that is, HI + [Hω, S] = 0, then we have

ξk = gk+
Ek+

, χk = gk−
Ek−

. (C8)

Since our system is in the large detuning, the giant atom,
which is initialized as the state |g〉 will be effectively frozen
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and the effective Hamiltonian is obtained as

Heff =
∑

k,σ=±
Ekσ |Ekσ 〉〈Ekσ |

+
∑

k,k′,(σ,σ ′ )=±
Gkσ,k′σ ′ |Ekσ 〉〈Ek′σ ′ |, (C9)

where the effective coupling strength is Gkσ,k′σ ′ =
1
2 gkσ g∗

k′σ ′ ( 1
Ekσ

+ 1
Ek′σ ′ ).

APPENDIX D: ZERO MODE AND BOUND STATES

For the giant atom-waveguide coupling system, there exist
not only the energy bands but also the states outside the bands.
That is, the zero-mode and bound states, which are both the
atom-waveguide dressed states. In Sec. IV, we have shown
the results in the topologically nontrivial phase. Here, we will
give the detailed derivations in both topologically trivial and
nontrivial phases and show the corresponding photon distri-
butions in topologically trivial phase.

1. A-A coupling

For the A-A coupling, Eq. (B3) gives

Ak

Ue
= gE√

Lt1t2
(e−ikn + e−ikm ) f (k),

Bk

Ue
= g(t1 + t2eik )√

Lt1t2
(e−ikn + e−ikm) f (k), (D1)

with f (k) = 1/(x − eik − e−ik ) and x = (E2 − t2
1 − t2

2 )/t1t2.
Performing the Fourier series expansion

f (k) = a0

2
+

∑
p

[(
ap − ibp

2

)
eikp +

(
ap + ibp

2

)
e−ikp

]

(D2)

with

a0 = 1

π

∫ π

−π

f (k)dk,

ap + ibp

2
= 1

2π

∫ π

−π

f (k)eikpdk,

ap − ibp

2
= 1

2π

∫ π

−π

f (k)e−ikpdk, (D3)

we have

f (k) = (−1)y+1

√
x2 − 4

[
1 +

L∑
p=1

(eikpap + e−ikpap)

]
, (D4)

where y = θ (x) is the step function, and a = (x − √
x2 − 4)/2

for x > 2 or a = (x + √
x2 − 4)/2 for x < −2. One should

note that the above calculations are only valid in the regime
of |x| > 2, that is, the states outside the energy bands. For
the states located inside the bands, the discussions are shown

FIG. 11. The photon distribution of the A-A coupling setup for
(a) zero-mode and (b) upper bound states. The parameters are set as
L = 100, n = 50, m = 55, θ = 0.2π , δ = 0.5q, and g = q.

below. Substituting the above results into Eq. (D1), we have

Al

Ue
= 1√

L

∑
k

eikl Ak/Ue

= (−1)y+1T√
x2 − 4

(a|l−n| + a|l−m|), (D5)

Bl

Ue
= 1√

L

∑
k

eikl Bk/Ue

= (−1)y+1

√
x2 − 4

[Y1(a|l−n| + a|l−m|)

+ Y2(a|l−n+1| + a|l−m+1|)], (D6)

with T = gE/(t1t2) and Yr = g/(t3−r ), (r = 1, 2). For the zero
modes with E = 0, we will have x < −2, thus a = (x +√

x2 − 4)/2 is reduced to (−t1/t2) for t2 � t1 or (−t2/t1) for
t1 > t2. Then Eq. (D5) and (D6) can be simplified to Al = 0
and

Bl

Ue
=

−Y2 ×
⎧⎨
⎩

0 (l < n)
(−t2/t1)l−n (n � l < m)
(−t2/t1)l−n + (−t2/t1)l−m (m � l )

(D7)

for t1 � t2 in the topologically trivial phase, Al = 0 and

Bl

Ue
=

Y2 ×
⎧⎨
⎩

(−t1/t2)−(l−n) + (−t1/t2)−(l−m) (l < n)
(−t1/t2)−(l−m) (n � l < m)
0 (m � l )

(D8)

for t2 > t1 in the topologically nontrivial phase.
In Sec. IV, we have shown the photonic distribution for

the zero mode in the topologically nontrivial phase. Here, we
give the results in the topologically trivial phase in Fig. 11(a),
in which we can also observe the chirality.

In addition, the photonic distributions in the bound state
for the A-A coupling are shown in Fig. 11(b). Similar to the
photon distributions in the topologically nontrivial phase as
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FIG. 12. The photon distribution of the A-B coupling setup for
(a) the nonzero energy level in the gap and (b) upper atom-waveguide
dressed states. The parameters are set as L = 100, n = 50, m = 55,
θ = 0.2π , δ = 0.5q, and g = q.

shown in the main text, it also shows an exponential decay
around the atom-waveguide coupling points.

2. A-B coupling

Similarly, for the A-B coupling, the amplitudes satisfy

Ak

Ue
= g√

Lt1t2
(Ee−ikn + (t1 + t2e−ik )e−ikm) f (k),

= (−1)y+1

√
x2 − 4

(Ta|l−n| + Y1a|l−m| + Y2a|l−m−1|), (D9)

Bk

Ue
= g√

Lt1t2
(Ee−ikm + (t1 + t2eik )e−ikn) f (k),

= (−1)y+1

√
x2 − 4

(Ta|l−m| + Y1a|l−n| + Y2a|l−n+1|).

(D10)

In this case, the zero mode only exists in the topologically
nontrivial phase, that is, t2 > t1(π/2 < θ < 3π/2), and the
photonic wave function is simplified to

Al

Ue
= Y2

{
(−t1/t2)(l−m) (l > m)
0 (l � m)

, (D11)

Bl

Ue
= Y2

{
(−t1/t2)−(l−n) (l < n)
0 (l � n)

. (D12)

On the other hand, in the topologically trivial phase (t1 >

t2), the zero mode disappears, but there exists a single energy
level in the gap, and the position of the energy level can be
tuned by the size of the giant atom, as discussed in the main
text. For this state, the wave function becomes

Al

Ue
= −1√

x2 − 4
(Ta|l−n| + Y1a|l−m| + Y2a|l−m−1|),

(D13)

Bl

Ue
= −1√

x2 − 4
(Ta|l−m| + Y1a|l−n| + Y2a|l−n+1|),

(D14)

where a = (x + √
x2 − 4)/2, the parameters T , Y1 and Y2 are

defined in Appendix D 1.
As shown in Fig. 12(a), where we plot the photonic dis-

tributions in the topologically trivial phase, the photon is

occupied in the A (B) sublattice, which is on the right (left)
side inside the regime covered by the giant atom for the energy
level in the gap. Alternatively, in the topologically nontrivial
phase, as shown in Fig. 5(b), there is photonic excitation in the
B (A) sublattice on the left (right) side of the giant atom, but
there is no occupation inside the atom. Therefore, the chirality
of the photonic distributions witness the topological phase
transition when a giant atom interacts with the SSH waveguide
via the A-B coupling. Besides, the upper bound states in the
topologically trivial phase are also shown in Fig. 12(b), which
has a similar symmetry as that in the topologically nontrivial
phase (see the main text).

In addition, we would like to compare the zero modes in
the bare SSH waveguide with open boundary condition and
the giant atom-waveguide coupling system with periodical
boundary condition. In the open boundary condition, the wave
functions of zero modes are given in Figs. 10(c) and 10(d),
they show that the photon occupies the sites nearby the edge,
which is therefore usually named as edge state. For the atom-
waveguide coupling system, as shown in the main text, the
photon is excited near the giant atom. In this sense, the giant
atom plays a role of effective boundary.

APPENDIX E: ROBUSTNESS OF ZERO MODES

In this section, we numerically study the robustness of the
zero modes to the disorder, atomic dissipation, asymmetric
atom-waveguide coupling and the next-nearest-neighbor hop-
ping in the SSH waveguide.

1. Disorder

We first consider the effect of disorder. The disorder comes
from two aspects, one is the on-site frequency disorder, while
the other one is the hopping disorder [63]. We consider a
random disorder with standard Gaussian distribution, with
central value μ and full width at half-maximum σ . The energy
spectrum is given in Fig. 13, where Figs. 13(a) and 13(b)
represent the on-site frequency disorder, while 13(c) and 13(d)
represent the hopping disorder. The corresponding wave func-
tion is given in Fig. 14.

As shown in Fig. 13, the zero modes always exist in both
kinds of disorders. For the on-site frequency disorder, the
wave function of zero mode is only slightly perturbed as
shown in Figs. 14(a) and 14(b), but the symmetry character
is broken for the hopping disorder as shown in Figs. 14(c)
and 14(d). Here, we use the phrase ”symmetry” to denote the
character of the photonic distributions in the waveguide, but
not the physical nature of the system, i.e., the Hamiltonian.
Meanwhile, both of the spectrum and the wave function of the
bound states outside the bands are not robust to both of two
kinds of disorder.

2. Dissipation

We now consider the spontaneous emission of the giant
atom by phenomenologically introducing a non-Hermitian
Hamiltonian,

H = HSSH + HI,AA(AB) − iγe|e〉〈e|. (E1)

033522-12



TOPOLOGY AND RETARDATION EFFECT OF A GIANT … PHYSICAL REVIEW A 106, 033522 (2022)

FIG. 13. The energy spectrum versus θ in via the A-A coupling
in (a) and (c) or the A-B coupling in (b) and (d), under the periodical
boundary condition. The disorders are set up by on site ω in (a) and
(b), the hopping t1, t2 in (c) and (d). The parameters are set as
� = ω = 0, δ = 0.5, L = 100, n = 50, m = 51, g = q, μ = 0,
and σ = 0.1938.

where γe is the decay rate of the atom. As shown in Fig. 15, we
plot the real and imaginary parts of the energy spectrum of the
system with the A-A and A-B couplings, respectively. Com-
pared with Figs. 1(b) and 1(c) in the main text and Figs. 15(a)
and 15(c), we find that the real part of the energy spectrum is
nearly unchanged, we can still observe the topological nature,
that is, the zero modes. Therefore, the topology of the giant
atom-waveguide system is robust to the atomic dissipation.
Meanwhile, we can also observe some exotic effects in the
imaginary part of the energy spectrum as shown below.

For the A-A coupling, as shown in Fig. 15(b), the imagi-
nary part of the energy spectrum is zero except two isolated

FIG. 14. The photon distribution in zero mode with the A-A
coupling in (a) and (c) or the A-B coupling in (b) and (d). The
disorders are set up by onsite ω for (a) and (b), hopping t1, t2 for
(c) and (d). The parameters are set as � − ω = 0, δ = 0.5, L =
100, n = 50, m = 55, g = q, μ = 0, and σ = 0.1938.

FIG. 15. The real (imaginary) energy spectrum of SSH chain
coupling a giant atom via the A-A in (a) and (b) or the A-B cou-
pling in (c) and (d). The parameters are set as δ = 0.5, L = 100, g =
q, γe = 0.1q, n = 50, and m = 51.

energy levels. One exists around Im(E/q) = 0.02q while the
other one oscillates in the region of Im(E/q) = −(0.05 −
0.06)q. Furthermore, the oscillating curve reaches the max-
imum value at θ = π/2 and θ = 3π/2, which implies a
topological phase transition.

For the A-B coupling, the imaginary part of the energy
spectrum has different structures in the topologically nontriv-
ial and topologically trivial phases as shown in Fig. 15(d).
There are three separated energy levels, two of them locate
around Im(E/q) = −0.02q in both of the topologically trivial
and nontrivial phases, and intersect with each other at θ =
π/2 and θ/2 = 3π/2, where the phase transition occurs. The
third one, however, nearly locates around Im(E/q) = −0.05q
in the topologically trivial phase but behaves quadratically
in the topologically nontrivial phase. Except for these three
isolated levels, the imaginary part of the energy spectrum is
always zero in the topologically trivial phase and acquires
continual but small values in the topologically nontrivial
phase.

3. Asymmetric coupling and next-nearest-neighbor hopping

We now consider the asymmetric coupling between the two
atom-waveguide coupling points. In this case, the interaction
Hamiltonian of the system can be written as

HI,AA(AB) = g1σ+ĈA,n + g2σ+ĈA(B),m + H.c., (E2)

where g1 �= g2. In Figs. 16(a) and 16(b) [16(c) and 16(d)], we
plot the energy spectra (zero-mode eigenstates) with different
coupling strengths g1 and g2 for the A-B coupling. With the
parameters g1 = 1.2q and g2 = 0.8q, the energy spectrum in
Fig. 16(a) keeps the original nature. However, compared with
the symmetry coupling, the zero-mode eigenstate in Fig. 16(c)
shows an asymmetric character, which means that the photon
occupation amplitude in each site depends on g1 and g2.

For other parameters g1 = q and g2 = −q, we obtain the
energy spectrum in Fig. 16(b), which exhibits a negative
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FIG. 16. (a) and (b) The energy spectrums for the SSH model
coupling with the giant atom via the asymmetric A-B coupling.
(c) and (d) The zero-mode eigenstates for the SSH model coupling
with the giant atom via the asymmetric A-B coupling. The parame-
ters are set as δ=0.5, L = 100. θ = 0.8π for (c) and (d). g1 = 1.2q
and g2 = 0.8q for (a) and (c). g1 = q and g2 = −q for (b) and (d).

energy in the gap. It thus supplies another approach to adjust
the nonzero energy in the gap besides tuning d = |m − n|
(as shown in Fig. 2). For the wave function, as shown in
Fig. 16(d), it maintains the chiral and symmetry character,
that is, the photonic population in B (A) sublattice on the left
(right) side of the giant atom possess the same amplitudes.

For the A-A coupling, the zero mode always exist for
θ ∈ (0, 2π ), with the asymmetric atom-waveguide coupling.
Also, similarly to the A-B coupling, the symmetry photonic
distributions are broken as long as |g1| �= |g2|.

In addition, we consider the effect of next-nearest-neighbor
(NNN) hopping. The Hamiltonian with the NNN hopping is
H ′ = H + HNNN, where

HNNN =
∑

l

[tAĈ†
A,lĈA,l+1 + tBĈB,lĈB,l+1 + H.c.]. (E3)

To show how the NNN hopping terms affect the proper-
ties of the SSH model, we first plot the energy spectrum in
Figs. 17(a)–17(c) on the open boundary condition without
the giant atom [50]. The zero modes of the SSH model are
protected by both the inversion symmetry and particle-hole
symmetry. These symmetries can be broken by the NNN
hopping terms. For example, when tA = tB, the particle-hole
symmetry is broken but the inversion symmetry is retained.
As a result, the zero mode is shifted lower but the gap is
not opened. With the same NNN hopping, we plot the en-
ergy spectra for the A-B coupling on the cycle condition in
Figs. 17(d) for m − n = 0 and 17(g) for m − n = 1.

For another set of parameters (tA = −tB = 0.2q), we obtain
the energy spectra in Fig. 17(b), which shows a symmetric
character for the upper and lower energy bands and the gap
is opened. The zero modes are split and are laterally zygo-
morphic. Introducing the giant atom for the A-B coupling, we
can still obtain the same symmetry in the two bands as shown

FIG. 17. (a), (b), and (c) The energy spectrum for SSH model
for the open boundary with NNN coupling. (d), (e), (f), (g), (h), and
(i) The energy spectrum for extended cyclical SSH model coupling
with the giant atom via A-B coupling. The parameters are set as
δ = 0.5q, L = 100, g = q. (d), (e), and (f): n = 50, m = 50. (g), (h),
and (i): n = 50, m = 51. The next-nearest coupling strength: tA =
0.3q, tB = 0.3q for (a), (d), and (g). tA = 0.2q, tB = −0.2q for (b),
(e), and (h). tA = 0.5q, tB = 0.1q for (c), (f), and (i).

in Figs. 17(e) and 17(h). However, the zero-mode and bound
state show an asymmetrical structure.

At last, we set tA = 0.5q and tB = 0.1q, in which both
the particle-hole symmetry and the inversion symmetry are
broken and the energy spectrum is plotted in Fig. 17(c). As a
comparison, we also give the spectrum with the A-B coupling
in Figs. 17(f) and 17(i), which are, respectively, similar to
those in Figs. 17(d) and 17(g), except the open of the energy
gap.

APPENDIX F: EMISSION OF GIANT ATOM

1. Temperature effect

In the viewpoint of quantum open system, the SSH waveg-
uide serves as a topological environment of the giant atom,
and the atom will undergo the emission process. To demon-
strate the emission dynamics of the giant atom, we resort to
the master equation approach. Generally speaking, the master
equation for a quantum open system can be written as [64]

dρS (t )

dt
= −TrR

∫ ∞

0
[V I (t ), [V I (t ′), ρS (t ) ⊗ ρR]]dt ′, (F1)

where V I (t ) is the system-environment interaction
Hamiltonian in the interaction picture, ρS is the reduced
density matrix of the considered open system and ρR is the
density matrix of the environment, which is considered as
time independent, i.e., ρR ≡ ρR(0). In the interaction picture,
the interaction Hamiltonian between the giant atom and the
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SSH waveguide can be written as

V I
AA(t ) = g√

L

∑
k

[(eikn + eikm)
ωk√

2(t1 + t2eik )

× e−i(ω+ωk−�)tσ+|G〉〈Ek+|
+ (eikn + eikm)

ωk√
2(t1 + t2eik )

× e−i(ω−ωk−�)tσ+|G〉〈Ek−| + H.c.], (F2)

V I
AB(t ) = g√

L

∑
k

[(
eiknωk√

2(t1 + t2eik )
+ eikm

√
2

)

× e−i(ω+ωk−�)tσ+|G〉〈Ek+|

+
(

eiknωk√
2(t1 + t2eik )

− eikm

√
2

)

× e−i(ω−ωk−�)tσ+|G〉〈Ek−| + H.c.

]
(F3)

for the A-A coupling and the A-B coupling, respectively. We
consider that the waveguide, which acts as an effective bath,
is furthermore surrounded by an thermal bosonic bath with
temperature T satisfying h̄�/(kBT ) 	 1, then the photon
number inside the waveguide is no more than 1, that is, we
only consider the zero and single photon state. As a result,
due to the bosonic distribution, the probability for zero photon
excitation is

PG = TrR[ρR|G〉〈G|]
=

∏
k′

(1 − e−h̄(ω+ωk′ )/(kBT ) )

× (1 − e−h̄(ω−ωk′ )/(kBT ) ) (F4)

and the probabilities to find a thermal photon in the state Ek±
are

PEk± = PGe−h̄(ω±ωk )/(kBT ). (F5)

Substituting the above results into Eq. (F1), we have

d

dt
ρS (t ) = −PG

∑
k

{[(αk + βk )σ+σ−ρS (t ) + (α∗
k + β∗

k )ρS (t )σ+σ− − (αk + βk + α∗
k + β∗

k )σ−ρS (t )σ+]

+ nk+[α∗
k σ

−σ+ρS (t ) + αkρS (t )σ−σ+ − (αk + α∗
k )σ+ρS (t )σ−]

+ nk−[β∗
k σ−σ+ρS (t ) + βkρS (t )σ−σ+ − (βk + β∗

k )σ+ρS (t )σ−]}, (F6)

with nk± = e−h̄(ω±ωk )/(kBT ) and

αk = g2π

L
{1 + cos(kd )}δ(ω + ωk − �), (F7)

βk = g2π

L
{1 + cos(kd )}δ(ω − ωk − �), (F8)

for the A-A coupling and

αk = g2π

L

{
1 + t1 cos(kd ) + t2 cos[k(d − 1)]

ωk

}

× δ(ω + ωk − �), (F9)

βk = g2π

L

{
1 − t1 cos(kd ) + t2 cos[k(d − 1)]

ωk

}

× δ(ω − ωk − �), (F10)

for the A-B coupling. In the above equations, we have defined
d = n − m.

In Sec. VI of the main text, we have shown the atomic
dynamics at zero temperature. Now, let us study the effect of
temperature. In Figs. 18 and 19, we plot the population of the
giant atom in the excited state in different temperatures for
|n − m| = 0, 1 and 2 based on the master equation, that is, we
neglect the non-Markovian effect here. For the A-A coupling,
we find that the dynamics is similar in the topologically trivial
and nontrivial phases. Therefore, we only give the results in
the topologically nontrivial phase in Fig. 18. The results for
the A-B coupling are given in Fig. 19 in topologically trivial
and nontrivial phases, respectively. As shown in Figs. 18
and 19, in the low temperature (that is, kBT/(h̄ω) < 1), the

dynamics is nearly independent of the temperature. In fact, in
such a low temperature, the SSH waveguide is nearly in the
vacuum state. However, with the increase of the temperature,
the waveguide acquires the thermal photonic excitation, and
the emission of the giant atom is suppressed a lot.

2. Non-Markovian retardation effect

In the above section, we have investigated the emission
of the giant atom under the Markovian approximation and
the non-Markovian effect at zero temperature is furthermore
demonstrated in Sec. VI (see Fig. 9) of the main text. From the
view of atomic population dynamics, the non-Markovian ef-
fect is exhibited by the Rabi oscillation and retardation effect
when the frequency of the giant atom is located nearby the

FIG. 18. Evolution of the giant atom for the A-A coupling
with different temperatures. The parameters are set as (� − ω)/q =
1.5, δ = 0.5, L = 100, g = 0.2q, ω = 109Hz, q = 0.1ω, and θ =
0.8π .
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FIG. 19. Evolution of the giant atom for the A-B coupling with
different temperatures. The parameters are (� − ω)/q=1.5, δ =
0.5, L = 100, g = 0.2q, ω = 109Hz, q = 0.1ω and θ = 0.8π for (a),
(b), (c), and θ = 0.2π for (d), (e), (f).

edge of the band and well inside the band of the waveguide,
respectively.

For the A-B coupling, when the frequency of the giant atom
is nearby the upper edge of the band of the waveguide, it
is near resonant to a few photon modes with k ≈ 0, and the
atom-waveguide interaction Hamiltonian Eq. (F3) is approxi-
mated as

V I
AB(t ) ≈ g[σ+|G〉〈ε| + H.c.]. (F11)

where

|ε〉 =
∑

k∈[−ε,+ε]

1√
L/2

|Ek+〉 (F12)

and ε → 0. It immediately leads to a Rabi oscillation given by
Fig. 9(b) in Sec. VI of the main text. In Figs. 20(a) and 20(b),
we plot the dynamics of the average photon number ni,l =
〈C†

i,lCi,l〉 (i = A, B) for each site in this case. It shows that, a
large portion of the photon is trapped in the range between two
coupling points. Together with Fig. 9(b) in Sec. VI, we can
find that the photon and the atom exchange their excitations
via a Rabi oscillation whose frequency is proportional to the
atom-waveguide coupling strength g.

Furthermore, corresponding to the parameters in Fig. 9(c)
of Sec. VI, the average photon number is given in Figs. 20(c)
and 20(d), it clearly shows that the emitted photon will travel
along the whole waveguide, therefore, the retardation effect is
induced by the finite size of the waveguide under periodical
boundary condition.

On contrary, for the giant atom induced retardation effect
in Fig. 9(d) of Sec. VI, we demonstrate the corresponding

FIG. 20. The evolution of the average photon number nil in
the SSH chain for the A-B coupling. The parameters are set as
δ = 0.5, L = 100, θ = 0.8π, n = 50, m = 54. (a) (� − ω)/q =
1.99, g/q = 0.1. (b) (� − ω)/q = 1.99, g/q = 0.2. (c)
(� − ω)/q = 1.66, g/q = 0.1. (d) (� − ω)/q = 1.66, g/q = 0.2.
(e) (� − ω)/q = 1.3, g/q = 0.1. (f) (� − ω)/q = 1.3, g/q = 0.2.

average photon number in Figs. 20(e) and 20(f). It shows
that the emitted photon in the left (right) atom-waveguide
coupling site will cross the regime covered by the atom and
travel to the right (left) coupling site, and exchange excitation
with the atom in these two coupling sites. The exchange
frequency is independent of the atom-waveguide coupling
strength g, which is very different from that shown in
Figs. 20(a) and 20(b).

Physically speaking, the retardation effect induced by the
giant atom can be observed under the following condition (i)
the giant atom has a small decay rate so that the lifetime of the
atom is much larger than the propagating time of the emitted
photon between the atom-waveguide coupling points. (ii) The
frequency of the atom is far away from the edge of the energy
band of the waveguide.
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