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Experimental implementation of the fractional-vortex Hilbert hotel
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The Hilbert hotel is an old mathematical paradox about sets of infinite numbers. This paradox deals with the
accommodation of a new guest in a hotel with an infinite number of occupied rooms. Over the past decade,
there have been many attempts to implement these ideas in photonic systems. In addition to the fundamental
interest that this paradox has attracted, this research is motivated by the implications that the Hilbert hotel has
for quantum communication and sensing. In this paper, we experimentally demonstrate the fractional-vortex
Hilbert hotel scheme proposed by Gbur [Optica 3, 222 (2016)]. More specifically, we performed an interference
experiment using the fractional orbital angular momentum of light to verify the Hilbert infinite hotel paradox. In
our implementation, the reallocation of a guest in new rooms is mapped to interference fringes that are controlled
through the topological charge of an optical beam.

DOI: 10.1103/PhysRevA.106.033521

I. INTRODUCTION

The origin of the Hilbert hotel can be traced back to the
winter of 1924, when Hilbert gave a series of lectures on
the infinity of mathematics and physics at the University of
Göttingen [1]. In these lectures, he used a hotel as an ex-
ample to illustrate the difference between finite and infinite
countable sets. He considered a situation in which a full hotel
with a limited number of rooms cannot host new residents.
Following this reasoning, he pointed out that a full hotel with
an unlimited number of rooms can still host new visitors if
every current guest in the hotel is asked to move up one room.
This process would lead to a new vacant room, which can be
mathematically described with the formula ∞ + 1 ↔ ∞. As
such, this scheme can also be generalized to accommodate
any number of guests. Nowadays, this thought experiment is
known as the Hilbert infinite hotel paradox [1]. Remarkably,
this paradoxical tale has triggered debate and research in
other fields of science including cosmology, philosophy, and
theology [2,3].

The Hilbert hotel paradox has been used to explore the
weirdness of infinity, a subject of utmost importance in
mathematics. Interestingly, quantum mechanical systems have
served as a relevant platform to explore and model the
counterintuitive aspects of this paradox. For example, cavity
quantum electrodynamics (QED) platforms have been used
to conduct experimental investigations of this paradox [4].
Specifically, Oi and co-workers experimentally proved that
the Hilbert hotel paradox can be emulated using a cavity
QED system with an infinite number of modes. In this case,
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all the quantum amplitudes were moved up by one level,
leaving an unoccupied vacuum state that corresponds to the
model of ∞ + 1 ↔ ∞ [4]. In addition, the orbital angular
momentum (OAM) of light has been used to perform exper-
imental implementations of the Hilbert hotel paradox [5]. In
this regard, Berry predicted the possibility of generating an
infinite number of vortex pairs by passing a beam through a
half-integer spiral phase plate [6]. This prediction was exper-
imentally verified by Leach and colleagues who generated an
alternating vortex streamline that confirmed the presence of an
infinite number of OAM modes [7]. Although the transitions
in between the half-integer topological charge were reported
in Ref. [7], the authors did not relate this experiment to the
Hilbert hotel paradox. Motivated by these ideas, Potoček and
colleagues experimentally investigated the Hilbert hotel para-
dox by mapping an OAM state to three times the original
quantum number [5]. More recently, Gbur identified the pos-
sibility of exploiting the propagation of optical beams through
fractional-vortex plates to perform a direct implementation
of the Hilbert paradox [8]. The difference between Potoček’s
scheme and Gbur’s proposal resides on the mechanisms used
to accommodate a new guest. It is worth mentioning that the
work by Potoček utilizes a quantum state mapping function to
represent the room and guest. In contrast, in Gbur’s scheme,
the room and guest are represented by optical vortices with
opposite topological numbers. Nevertheless, Gbur’s scheme
has not yet been experimentally verified due to the challenges
of performing direct measurements of the phase distribution
at different spatial locations [9–14].

Here, we designed an interference experiment using
fractional-vortex light to verify the Hilbert hotel paradox. Our
apparatus enables us to demonstrate an experimental imple-
mentation of the fractional-vortex Hilbert hotel proposed by
Gbur [8]. By changing the topological charge L from 1.5
to 1.7 in our experiment, we produce different interference
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FIG. 1. The simulated phase distribution of a Gaussian beam after adding a phase. The simulation is performed according to Eq. (2). The
corresponding topological charges L in (a)–(e) are 1, 1.44, 1.5, 1.53, and 1.7, respectively. The “+” sign (blue to red, counterclockwise, positive
vortex) indicates a room, whereas the “−” sign (blue to red, clockwise, reverse vortex) represents a guest (blue = 0, red = 2π ). In (f)–(h), we
illustrate the vortex dynamics simulated in (c)–(e).

structures that enable us to move a guest one room up in the
hotel.

II. THEORY

Following Gbur’s proposal [8], we estimate the propagated
optical field reflected by a spatial light modulator. For this
purpose, we consider a fractional spiral phase t (φ) encoded
on the spatial light modulator (SLM),

t (φ) = eiμφ, (1)

where μ can be any rational number (fractional or integer).
When μ is an integer, it represents the topological charge,
however when μ is fractional, it corresponds to the number
of 2π -phase changes. The azimuthal angle is described by φ.
Following the calculation reported in Appendix A [15–19], it
can be shown that the light field at the propagation distance z
and radial coordinate ρ is given by

Uμ(ρ, φ, z) = exp [iπμ] sin(πμ)

π

∞∑
n=−∞

Un(ρ, φ, z)

(μ − n)
, (2)

where

Un(ρ, φ, z) =
√

π

8
exp (ikz) exp (inφ) exp

(
ikρ2

4z

)

× (−i)
n
2

√
kρ2

z

[
J n−1

2

(
kρ2

4z

)
− iJ n+1

2

(
kρ2

4z

)]
.

(3)

In this case, Un(ρ, φ, z) is the propagation field of an integer-
order vortex beam, n is an arbitrary integer associated to
topological charge, Jn(x) is the Bessel function of the first
kind, ρ is the polar position, and k is the wave number.
These parameters enable one to define the distribution field
of Uμ(ρ, φ, z). This can be characterized by interfering the
field with a plane wave E (ρ, φ, z) [20–22]. The intensity
distribution associated with the interference structure can be
expressed as

I = |Uμ(ρ, φ, z) + E (ρ, φ, z)|2, (4)

where

E (ρ, φ, z) = A0 exp[−ikρ cos φ] exp

[
−ρ2 − βρ cos φ

w2(z)

]
.

(5)

The parameter A0 describes the amplitude of the plane wave.
Furthermore, exp[− ρ2−βρ cos φ

w2(z) ] defines the range of the plane
wave, w(z) corresponds to the radius of the beam at position
z, and β represents a constant related to a horizontal shift.

III. SIMULATION

Using Eq. (2), we can simulate the propagation of a plane
wave reflected by an SLM. Figure 1 reports the predic-
tions from our simulation for λ = 623.8 nm and z = 0.1 m.
Figure 1(a) corresponds to a situation in which L = 1. In this
case, L and μ have the same meaning. We produce a field
distribution containing an integer vortex with a phase from
0 to 2π rotating clockwise. Figure 1(b) shows our results
for L = 1.44. This situation produces a fractional-vortex field
distribution with a gap located to the right. Interestingly, there
is a new pair of vortices formed on the far left of the gap. One
rotates clockwise, marked as “+,” whereas the other shows a
counterclockwise rotation, marked as “−.”

As the value of L increases, the vortex pairs in the gap
increase. When L = 1.5, as shown in Fig. 1(c), the gap area
extends to infinity, and an infinite number of vortex pairs are
generated. This particular situation enables the direct imple-
mentation of the Hilbert infinite hotel model. Namely, a hotel
with an unlimited number of rooms, where the rooms are
fully occupied by guests. As illustrated in Fig. 1(f), each “+”
corresponds to a room, whereas each “−” represents a guest.
Thus, room No. 1 and guest No. 1 are generated together. In
general, room No. N and guest No. N are generated together.
Consequently, there are infinite pairs of guests and rooms.
This is equivalent to a one-to-one correspondence between
two infinite number sets, namely ∞ ↔ ∞.

As the value of L continues to increase, for example, from
L = 1.5 to 1.55, it is possible to observe that the vortex
vanishes from the infinity. Specifically, the “−” vortex in
the previous pair will continuously move to the position of
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FIG. 2. Experimental setup. A laser beam at a wavelength of 632.8 nm is expanded by two lenses (the focal lengths of lens 1 and lens
2 are 30 and 200 mm, respectively) to achieve a diameter of 6 mm. This beam passes through a polarizing beam splitter (PBS) to purify
the polarization. The beam is then injected into a Michelson interferometer, which is composed of a beam splitter (BS), a plane mirror, and a
spatial light modulator (SLM). The fork-shaped fringe is displayed onto the SLM to prepare the desired vortex beam. The resulting interference
fringes are recorded by a charge coupled device (CCD) camera.

the “+” vortex in the back pair. As a result, the N th neg-
ative vortex and the (N + 1)th positive vortex are gradually
connected, overlapped, and finally annihilated. Figure 1(d)
shows the situation when L = 1.53, in this case, the negative
vortex is moving close to the positive vortex. For the first
pair of vortices, there is still some distance between the
negative and positive vortices, i.e., there is no annihilation.
However, other infinite vortex pairs have been overlapped
and annihilated. This process corresponds to the model in
the Hilbert hotel paradox shown in Fig. 1(g). Interestingly,
each guest (positive vortex) moves one step to the next room
(negative vortex). Here, guest No. 1 moves into room No.
2, guest No. 2 moves into room No. 3, and guest No. N
moves into room No. (N + 1), while room No. 1 on the
far left is vacant. In this case, the vortex dynamics repre-
sents a one-to-one correspondence between an infinite number
set plus one number and an infinite number set, namely
∞ + 1 ↔ ∞.

As L increases, the “−” vortex in the first pair continues
to move to the position of the “+” vortex in the second
pair. Figure 1(e) shows the case in which L = 1.7. Under
this condition, the positive and negative vortices on the right-
hand side have completely overlapped and annihilated. Only
an empty room (the positive vortex) remains. The corre-
sponding relationship of ∞ + 1 ↔ ∞ is also illustrated in
Fig. 1(h).

IV. EXPERIMENT AND RESULTS

We have simulated the phase distribution in Fig. 1 accord-
ing to Gbur’s theory. However, it is challenging to perform
a direct observation of the phase patterns in the experiment
[23,24]. For this reason, we characterize the phase distribu-
tion by performing an interference experiment as indicated in
Fig. 2 [24–28]. We expanded a laser beam at a wavelength
of 632.8 nm by using two lenses (focal length L1 = 30 mm;
L2 = 200 mm) to achieve a diameter of 6 mm. Then, the beam
passes through a polarizing beam splitter (PBS) that we use to
control the initial polarization state. This beam is then injected

into a Michelson interferometer, which is composed of a beam
splitter (BS), a plane mirror, and a spatial light modulator
(SLM, Holoeye, Pluto-2-NIR-011). The fork-shaped fringe is
displayed on the SLM to prepare the desired vortex beam.
Finally, the beam reflected by the SLM interferes with a beam
reflected by a plane mirror. In our experiment, we deliberately
displaced our interfering beams to observe denser interference
patterns. The resulting interference fringes are recorded by a
CCD camera (Newport, laser beam profiler, LBP2-HR-VIS2).
In Fig. 3, we report the experimental interference fringes.

The experimental fork-shaped interference fringes in Fig. 3
correspond to the simulated phase vortex shown in Fig. 1. In
particular, Fig. 3(a) reports experimental interference fringes
measured for L = 1. The original positive vortex in Fig. 1(a)
changed to an upward-opening-fork shaped pattern. Remark-
ably, more pairs of downward and upward forks are formed as
one increases L. Figure 3(b) shows the interference fringes for
L = 1.44. Similarly, the case for L = 1.5 is shown in Fig. 3(c)
and illustrated in Fig. 3(f). These panels show countless up-
ward (red) and downward (green) forked patterns, which are
alternately distributed. In this case, we can use the bright
upward-opening-fork shaped pattern to represent the room,
and the bright downward-fork shaped pattern to represent the
guest. This is equivalent to the situation of the Hilbert infinite
hotel model. Indeed, there is a one-to-one correspondence
between an infinite number of rooms and an infinite number
of guests, namely, ∞ ↔ ∞.

Figures 3(d) and 3(g) show the case for L = 1.53. This
condition forces the downward forks (guest) to move close
to the upward forks (room). The downward- and the upward-
fork patterns slowly overlap to form a long tilted stripe (in
blue). Figures 3(e) and 3(h) show the case in which L = 1.7.
Here, guest (downward-fork pattern) No. 1 moves into the
room (upward-fork pattern) No. 2, guest No. 2 moves into
the room No. 3, and, consequently, guest No. N moves into
the room No. (N + 1), leaving room No. 1 vacant. This re-
lationship can be described as ∞ + 1 ↔ ∞. For the sake
of completeness, we also performed a theoretical simulation
of the interference fringes (see Appendix D). It can be seen
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FIG. 3. Experimental interference fringes obtained by using different values of L. The upward-opening-fork shaped pattern (red) represents
the room, which is obtained by the interference with the positive vortex. The downward-opening-fork shaped structure (green) represents the
guest, which is obtained by interference with the negative vortex. The tilted blue lines represent tilted interference fringes formed after the
overlap and annihilation of positive and negative vortices.

that the experimental interferogram is in agreement with the
simulated interferogram.

V. DISCUSSIONS

Our work reveals that the counterintuitive concepts as-
sociated with infinity can be explored in optical platforms.
Furthermore, in the theoretical scheme proposed by Gbur
in Ref. [8], the Hilbert infinite hotel paradox was studied
using L = 4.5. However, our experiment was carried out us-
ing L = 1.5. As such, it should be emphasized that both
values enable demonstrating the correspondence ∞ + 1 ↔
∞. The difference resides in the fact that the interference
patterns produced for L = 1.5 are simpler for experimental
observations.

In our experiment, we explored the case in which ∞ +
1 ↔ ∞. However, this platform can be used to implement the
Hilbert infinite hotel paradox for different correspondences
such as ∞ + N ↔ ∞, or 2∞ ↔ ∞. Recently, new theoret-
ical schemes for the Hilbert hotel paradox were proposed

[11,12], and notably, these schemes may also be experimen-
tally demonstrated using our approach.

VI. CONCLUSION

In conclusion, we demonstrated an experimental imple-
mentation of the fractional-vortex Hilbert hotel. In contrast to
previous platforms, our scheme enables a direct implementa-
tion of the Hilbert infinite hotel paradox. We believe that our
experiment can be used to investigate other counterintuitive
effects associated with infinity.
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APPENDIX A: CALCULATION OF EQ. (3)

In this Appendix, we show the derivation of Eq. (3) in the main text.

1. Calculation of An(κx, κy) at the position of z = 0

In the space domain, at the position of z = 0, assume there is a light wave with the distribution of U (x, y) on the xoy plane,

U (x, y) =
∫ ∞

−∞

∫ ∞

−∞
A(κx, κy)ei(κxx+κyy)dκxdκy, (A1)

where A(κx, κy) is spatial frequency distribution and κ is the spatial frequency. The inverse Fourier transformation of U (x, y) is

A(κx, κy) = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
U (x, y)e−i(κxx+κyy)dxdy. (A2)
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We can change the above formula from a Cartesian coordinate system to a polar coordinate system using x = ρ cos ϕ, y =
ρ sin ϕ, κx = κ cos φκ , κy = κ sin φκ , and obtain

A(κ, φκ ) = 1

(2π )2

∫ ∞

0

∫ 2π

0
ρU (ρ, ϕ)e−iκρ cos(φ−φκ )dρdφ. (A3)

Note in the space domain, ρ =
√

x2 + y2 and φ is the polar angle. In the frequency domain, κ =
√

κ2
x + κ2

y and φκ is the polar
angle. For simplicity in the calculation, we assume U (ρ, ϕ) = 1, i.e., this is a plane wave with each frequency having an equal
amplitude of 1:

A(κ, φκ ) = 1

(2π )2

∫ ∞

0

∫ 2π

0
ρe−iκρ cos(φ−φκ )dρdφ. (A4)

In the space domain, Let’s assume that there is a spatial light modulator (SLM) (or other phase component, such as a spiral
phase plate) with a transfer function of

t (φ) = eiαφ, (A5)

where φ is the azimuth angle; α is the phase delay produced by the SLM, and μ can be an integer or a fraction. When n is an
integer, we get

t (φ) = einφ, (A6)

If the phase einφ is added to the plane wave, we obtain

An(κ, φκ ) = 1

(2π )2

∫ ∞

0

∫ 2π

0
ρe−iκρ cos(φ−φκ )einφdρdφ. (A7)

Let φ − φκ = φ′, and

An(κ, φκ ) = 1

2π
einφκ

∫ ∞

0
ρ

1

2π

∫ 2π

0
e−iκρ cos φ′

einφ′
dρdφ′. (A8)

Considering the standard form of the m-order Bessel function,

Jm(x) = 1

2π im

∫ 2π

0
e−imφeix cos (φ)dφ, (A9)

Eq. (A8) can be rewritten as

An(κ, φκ ) = i|n|

2π
einφκ

∫ ∞

0
J|n|(κρ)ρdρ. (A10)

Using the following equation from the standard integral tables (Eq. (14) of Sec. 6.561 in Ref. [16]; see also Ref. [15]),∫ ∞

0
xμJν (αx)dx = 2μα−μ−1 �

(
1
2 + 1

2ν + 1
2μ

)
�

(
1
2 + 1

2ν − 1
2μ

) , (A11)

we obtain

An(κ, φκ ) = i|n|

2π
einφκ 2 · κ−2 �

(
1
2 + 1

2 n + 1
2

)
�

(
1
2 + 1

2 n − 1
2

) . (A12)

This equation can be further simplified as

An(κ, φκ ) = i|n|

2π
einφκ 2 · κ−2 �

(
1 + 1

2 n
)

�
(

1
2 n

) = i|n|

2π
einφκ 2 · κ−2 n

2
. (A13)

The integration result is

An(κx, κy) = |n|i|n|

2πκ2
einφκ . (A14)

Note, in the definition of the gamma function �(x), x > 0, therefore, we can change n to be |n| in the above equation.
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2. Calculation of Un(ρ, φ, z) at the position of z

Next, we consider the distribution of the light field at the position of z,

Uz(x, y) ≡ U (x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
Az(κx, κy)ei(κxx+κyy)dκxdκy, (A15)

where Az is the distribution of A at the position of z. According to the solution of the Helmholtz equation,

Az(κx, κy)=A0(κx, κy) exp(iκzz), (A16)

where A0(κx, κy) ≡ A(κx, κy) is the distribution of A at the position of 0. Therefore, the general distribution of U (x, y, z) is [note
U (x, y, 0) = U (x, y)]

U (x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
A(κx, κy)ei(κxx+κyy+κzz)dκxdκy. (A17)

The above equation can also be intuitively understood as the diffraction from U (x, y, 0) to U (x, y, z). In the polar coordinate, the
equation for the case of An can be written as

Un(ρ, φ, z) =
∫ ∞

0

∫ 2π

0
An(κx, κy)eiκρ cos (φκ−φ)eiκzzκdκdφκ. (A18)

In order to simplify the calculation, we ignore the evanescent wave and only consider the field propagating near the z axis. So,

k2 = κ2
x + κ2

y + κ2
z ,

κ2 = κ2
x + κ2

y . (A19)

Therefore,

κz =
√

k2 − κ2 ≈ k − κ2

2k
. (A20)

After substituting Eq. (A20) into Eq. (A18), we obtain

Un(ρ, φ, z) ≈ eikz
∫

An(κx, κy)eiκρ cos (φκ−φ)e−iκ2z/2kκdκdφκ. (A21)

After substituting Eqs. (A14) and (A9) into Eq. (A21), we obtain

Un(ρ, φ, z) = eikzeinφ |n|
∫ ∞

0

J|n|(κρ)

κ
e−iκ2z/2kdκ. (A22)

In order to simplify the calculation, we set b = z/2k and substitute it into the above formula to get

Un(ρ, φ, z) = ρeikzeinφ |n|
2

∫ ∞

0

2J|n|(κρ)

κρ
e−ibκ2

dκ. (A23)

Utilizing the standard Bessel equation

2nJn(x)

x
= Jn−1(x) + Jn+1(x), (A24)

we obtain

Un(ρ, φ, z)= ρeikzeinφ

2

∫ ∞

0
[J|n|−1(ρκ )+J|n|+1(ρκ )]e−ibκ2

dκ. (A25)

Using the equation from the standard integral tables∫ ∞

0
e−αx2

Jν (βx)dx = 1

2

√
π

α
e−β2/8αIν/2

(
β2/8α

)
, (A26)

where

Im(−ix) = (−i)mJm(x), (A27)
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FIG. 4. Comparison of the numerical simulations and experimental results for different L values of 1, 1.44, 1.5, 1.53, and 1.7: (a1)–(e1)
The simulations of phase distribution by using Eq. (2). (a2)–(e2) The simulations of interference patterns by using Eq. (4). (a3)–(e3) The
experimental interference patterns.

we achieve

Un(ρ, φ, z) = 1

2
ρeikzeinφ

{∫ ∞

0
[J|n|−1(ρκ )]e−ibκ2

dκ+
∫ ∞

0
[J|n|+1(ρκ )]e−ibκ2

dκ

}

= 1

2
ρeikzeinφ

√
πk

i2z
eikρ2/4z

[
(−i)

|n|−1
2 J |n|−1

2

(
kρ2

4z

)
+ (−i)

|n|+1
2 J |n|+1

2

(
kρ2

4z

)]
. (A28)

After simplification, finally we obtain

Un(ρ, φ, z) =
√

π

8
exp (ikz) exp (inφ) exp

(
ikρ2

4z

)
(−i)

|n|
2

√
kρ2

z

[
J |n|−1

2

(
kρ2

4z

)
− iJ |n|+1

2

(
kρ2

4z

)]
. (A29)
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If we only consider the case of positive integers, i.e., |n| can be changed to n, then the above equation is just Eq. (3) in the
main text.

APPENDIX B: CALCULATION OF EQ. (2)

In this Appendix, we show how to derive Eq. (2) in the main text. Consider the plane light passing through a fractional-order
spiral phase plate. The transfer function of the fractional-order spiral phase plate can be expanded by an integer order, i.e.,

exp(iαφ) = exp(iπα) sin (πα)

π

∞∑
n=−∞

exp(inφ)

φ − n
. (B1)

We use Fourier expansion to expand the above formula,

exp(iαφ) =
∞∑

n=−∞
ckeinφ, (B2)

where

ck = 1

2π

∫ 2π

0
eiαφe−inφdφ = 1

2π

1

i(α − n)
eiφ(α−n)

∣∣∣∣
2π

0

= 1

2π

1

i(α − n)
[ei2π (α−n) − 1]

= 1

2π

1

i(α − n)
eiπ (α−n)[eiπ (α−n) − e−iπ (α−n)]

= 1

2π

1

i(α − n)
eiπαe−iπneiπn2i sin(πα) = sin(πα)

π

eiπα

(α − n)
. (B3)

Note, in the above calculation, e−iπn = cos(−πn) + i sin(−πn) = cos(πn), and eiπn = cos(πn) + i sin(πn) = cos(πn), so
e−iπn = eiπn.

Therefore,

eiαφ = eiπα sin(πα)

π

∞∑
n=−∞

einφ

(α − n)
. (B4)

Following a similar procedure as before, we obtain

Aα (κ, φκ ) = 1

(2π )2

∫ ∞

0

∫ 2π

0
ρe−iκρ cos(φ−φκ )eiαφdρdφ

= 1

(2π )2

∫ ∞

0

∫ 2π

0
ρe−iκρ cos(φ−φκ ) exp [iπα] sin (πα)

π

∞∑
n=−∞

exp [inφ]

α − n
dρdφ

= exp [iπα] sin (πα)

π

∞∑
n=−∞

1

α − n

1

(2π )2

∫ ∞

0

∫ 2π

0
ρe−iκρ cos(φ−φκ ) exp [inφ]dρdφ

= exp [iπα] sin (πα)

π

∞∑
n=−∞

1

α − n
An(κx, κy), (B5)

where

An(κx, κy) = |n|i|n|

2πκ2
einφκ . (B6)

Changing from the frequency domain to the space domain,

Uα (ρ, φ, z) = exp [iπα] sin (πα)

π

∞∑
n=−∞

1

α − n
eikz

∫
An(κx, κy)eiκρ cos (φκ−φ)e−iκ2z/2kκdκdφκ

= exp [iπα] sin (πα)

π

∞∑
n=−∞

1

α − n
Un(ρ, φ, z). (B7)

Finally, we obtain

Uα (ρ, φ, z) = exp [iπα] sin(πα)

π

∞∑
n=−∞

Un(ρ, φ, z)

(α − n)
. (B8)

This is just Eq. (2) in the main text.
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APPENDIX C: CALCULATION OF EQ. (A20)

Here, we derive Eq (A20): √
k2 − κ2 ≈ k − κ2

2k
. (C1)

According to the Newton’s generalized binomial theorem,

(x + y)r =
∞∑

k=0

(
r
k

)
xr−kyk

= xr + rxr−1y + r(r − 1)

2!
xr−2y2 + r(r − 1)(r − 2)

3!
xr−3y3 + · · ·, (C2)

we obtain √
k2 − κ2 = (k2 − κ2)1/2 = (k2)1/2 + 1

2
(−k2)−1/2 · κ2 + O ≈ k − κ2

2k
. (C3)

APPENDIX D: COMPARISON OF THE SIMULATION AND EXPERIMENTAL RESULTS

In Fig. 4, we compare the phase simulation graphs by using Eq. (2), the interference graph simulated by using Eq. (4), and
the interference experiment results. It can be seen that the theoretical simulation of interference in Fig. 4(b) is in agreement with
the experimental interference patterns in Fig. 4(b).
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