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Higher-order exceptional point in a blue-detuned non-Hermitian cavity optomechanical system
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Higher-order exceptional points (EPs) in non-Hermitian systems have attracted great interest due to their
advantages in sensitive enhancement and distinct topological features. However, realization of such EPs is still
a challenge because more fine-tuning parameters are generically required in quantum systems, compared to
the second-order EP (EP2). Here, we propose a non-Hermitian three-mode optomechanical system in the blue-
sideband regime for predicting the third-order EP (EP3). By deriving the pseudo-Hermitian condition for the
proposed system, one cavity with loss and the other with gain must be required. Then we show that EP3 or
EP2 can be observed when the mechanical resonator (MR) is neutral, loss, or gain. For the neutral MR, we find
that two degenerate or two nondegenerate EP3s can be predicted by tuning system parameters in the parameter
space, while four nondegenerate EP2s can be observed when the system parameters deviate from EP3s, which
is distinguished from the previous study in the red-detuned optomechanical system. For the gain (loss) MR, we
find that only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength. Our proposal
provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing
around EPs using blue-detuned non-Hermitian optomechanical systems.

DOI: 10.1103/PhysRevA.106.033518

I. INTRODUCTION

Cavity optomechanical (COM) systems, which emerged
as a promising platform in quantum information science,
have been given considerable attention both theoretically and
experimentally [1]. The simplest COM system is made up
of a mechanical resonator (MR) nonlinearly coupled to a
cavity via radiation pressure, which can be well controlled
by strong driving fields. In such mystical systems, abun-
dant effects including sensing [2–5], ground-state cooling
[6,7], squeezed light generation [8–10], nonreciprocal trans-
port [11,12], optomechanically induced transparency [13–15],
coupling enhancement [16–18], and nonlinear behaviors (e.g.,
bi- and tristability and chaos) [19,20] have been investigated.

In addition, COM systems have shown huge potential in
studying exceptional points (EPs) of non-Hermitian systems
[21–27], at which both eigenvalues and eigenvectors coa-
lesce. This is due to the fact that practical COM systems
can be characterized by effective non-Hermitian Hamiltonians
when decoherence arising from the surrounding environment

*xiongweiphys@wzu.edu.cn
†hcl2007@foxmail.com
‡xqluophys@gmail.com
§jjchenphys@hotmail.com

is considered. Moreover, the driven COM systems can pro-
vide fine-tuning parameters for the requirement of realizing
EPs, assisted by strong driving fields. Due to these, EPs
have been intensively studied in COM systems, especially
for the second-order EPs (EP2s) [22–27] where two eigen-
values and the corresponding eigenvectors coalesce [28–39].
In addition, EP2s are also studied in other systems [40–46].
Around EP2s, many fascinating phenomena such as uni-
directional invisibility [47–49], single-mode lasing [50,51],
sensitivity enhancement [52,53], energy harvesting [54], pro-
tecting the classification of exceptional nodal topologies [55],
electromagnetically induced transparency [56–59], and quan-
tum squeezing [60–62] can be studied.

Instead of EP2s, non-Hermitian systems can also host
higher-order EPs, where more than two eigenmodes coa-
lesce into one [63–71]. It has been shown that higher-order
EPs can exhibit greater advantages than EP2s in spontaneous
emission enhancement [68], sensitive detection [72–75], and
topological characteristics [76–78]. With these superiorities,
higher-order EPs are being intensively studied in various sys-
tems [79–88] but attract less attention in non-Hermitian COM
systems. For this purpose, there is a need to construct higher-
order EPs in non-Hermitian COM systems.

We also note that EPs in non-Hermitian COM systems,
including EP2s and EP3s, are mainly focused in the red-
sideband regime [21,22]. In this regime, fast oscillating
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terms related to mode squeezing are neglected. This limits
nonclassical quantum effects such as quantum squeezing
investigation around EPs. For this, we here theoretically
proposed a paradigmatic COM system consisting of a MR
coupled to two cavities via radiation pressure for predicting
EP3s, where two cavities are, respectively, passive (loss) and
active (gain), and driven by two blue-detuned classical fields.
First, we derive an effective non-Hermitian Hamiltonian for
the proposed COM system and analytically give the pseudo-
Hermitian condition of the proposed COM system in the
general case. Then, three scenarios are specifically considered
in the pseudo-Hermitian condition: (i) the neutral MR, (ii)
the passive MR, and (iii) the active MR. In case (i), the pro-
posed non-Hermitian COM system with symmetric coupling
strength can host two degenerate EP3s and two nondegenerate
EP3s in the parameter space. When we tune the system pa-
rameters, deviating from the critical parameters at EP3s, four
nondegenerate EP2s can be predicted, which is different from
the situation in the red-sideband non-Hermitian COM sys-
tem. For the cases (ii) and (iii), the proposed non-Hermitian
COM system is required to have asymmetric coupling strength
for satisfying the pseudo-Hermitian condition. We find that
only two degenerate EP3s or two degenerate EP2s can be
predicted. By investigating the effects of system parameters
on EP3s or EP2s, we find large coupling strength or large
frequency detuning is beneficial to observe EPs more clearly.
Our proposal provides a promising path to study nonclassi-
cal quantum effects around EP2s and EP3s in non-Hermitian
COM systems, and it is the first scheme to study higher-order
EPs in the blue-detuned COM system, although two-mode
quantum squeezing has been investigated in a system with
pseudo-antiparity-time symmetry [62].

This paper is organized as follows. In Sec. II, the model is
described and the system effective Hamiltonian is given. Then
we derive the pseudo-Hermitian condition for the considered
non-Hermitian COM system in Sec. III. In Sec. IV, critical pa-
rameters of the proposed COM system at EP3 are analytically
derived. In Sec. V, phase diagram of the discriminant for the
characteristic equation is studied to predict EP3 and EP2. In
Sec. VI, EP3 and EP2 in three cases are specifically studied.
Finally, a conclusion is given in Sec. VII.

II. MODEL AND HAMILTONIAN

We consider an experimental three-mode optomechanical
system [89–91] consisting of two driven cavities (labeled as
cavity a and cavity c) coupled to a MR with frequency ωb via
radiation pressure (see Fig. 1). At the rotating frame respect
to two laser fields, the Hamiltonian of the total system can be
written as (setting h̄ = 1) [92]

Htotal =δaa†a + ωbb†b + δcc†c + gaa†a(b† + b)

+ gcc†c(b† + b) + HD, (1)

where δa(c) = ωa(c) − νa(c), with ωa(c) being the frequency of
the cavity a (c), and νa(c), is the frequency of the laser field
acting on the cavity a (c), is the frequency detuning of the
cavity a (c) from the laser field acting on the cavity a (c).
ga and gc are the single-photon optomechanical coupling
strengths of the MR coupled to cavity a and cavity c, respec-

(a)

(b)

(c)

(d)

FIG. 1. (a) Schematic diagram of the proposed blue-detuned
three-mode optomechanical system. It consists of two cavities la-
beled as cavity a and cavity c, with respective frequencies ωa and ωc,
coupled to a common MR with frequency ωb. The two cavities are
driven by two blue-detuned laser fields with frequencies νa and νb.
The corresponding amplitudes are �a and �c. (b) The neutral MR,
γb = 0, is considered. (c) The loss MR, i.e., γb > 0, is considered.
(d) The gain MR, γb < 0, is considered. In (a), (b), and (c), κa(< 0)
is the gain rate of the cavity a, κc(> 0) is the loss rate of the cavity,
and ga(c) is the single-photon optomechanical coupling strength of
the MR coupled to the cavity a (c).

tively. The operators a (c) and a† (c†) are the annihilation
and creation operators of cavity a (c). The last term HD =
i(�aa† + �cc†) + H.c. in Eq. (1) represents the coupling be-
tween two cavities and two laser fields with Rabi frequencies
�a and �c. As we are interested in the blue-sideband regime
of the proposed COM system, δa, δc < 0 is assumed below.

In the strong-field limit, the nonlinear COM system
can be linearized by writing each operator as the expec-
tation value (as, bs, cs) plus the corresponding fluctuation
(δa, δb, δc). Neglecting the higher-order fluctuations, the lin-
earized Hamiltonian including dissipations can be given by
(see details in the Appendix A)

Heff =(δ′
a − iκa)δa†δa + (ωb − iγb)δb†δb + (δ′

c − iκc)δc†δc

+ Ga(δa†δb† + δaδb) + Gc(δb†δc† + δbδc). (2)

Here, fast oscillating terms have been discarded with the con-
dition |δ′

a(c) + ωb| � |δ′
a(c) − ωb| and |Ga(c)| � |δ′

a(c)|, where
δ′

a(c) is the effective frequency detuning of the cavity a (c)
shifted by the displacement of the mechanical resonator, and
Ga(c) is the effective optomechanical coupling strength en-
hanced by the photon number in the cavity a (c). This effective
Hamiltonian is the typical three-mode squeezing Hamiltonian
without dissipations. For convenience, we assume Ga and Gc

to be real, which can be realized by tuning the phase of two
laser fields.
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III. PSEUDO-HERMITIAN CONDITION

The effective Hamiltonian in Eq. (2) can also be equiva-
lently expressed as

Heff =
⎛
⎝δ′

a − iκa Ga 0
−G∗

a −ωb − iγb −G∗
c

0 Gc δ′
c − iκc

⎞
⎠, (3)

which is just the matrix form of Heff . For the non-Hermitian
Hamiltonian in Eq. (3), three eigenvalues can be predicted.
When these three eigenvalues are all real, or one is real
and the other two are a complex-conjugate pair, the con-
sidered three-mode optomechanical system characterized by
the Hamiltonian in Eq. (2) or Eq. (3) is pseudo-Hermitian
[31,32]. For the pseudo-Hermitian systems, the characteristic
polynomial equation

|Heff − �I| = 0 (4)

is the same as

|H∗
eff − �I| = 0, (5)

where H∗
eff is the complex-conjugate transpose of Heff , I is

a 3 × 3 identity matrix, and � denotes the eigenvalue of the
effective Hamiltonian Heff . By expanding Eqs. (4) and (5), and
comparing the corresponding coefficients, we can obtain

κa + γb + κc = 0,

γb(δ′
a + δ′

c) = κa(ωb − δ′
c) + κc(ωb − δ′

a), (6)

(δ′
aωb + κaγb)κc = G2

aκc + G2
cκa + (δ′

aγb − κaωb)δ′
c.

By setting

η =κa/κc, λ = Gc/Ga, 
a(c) = δ′
a(c) + ωb, (7)

Eq. (6) can be further simplified as

γb + (1 + η)κc = 0,


c + 
aη = 0, (8)

(1 + λ2η)G2
a + η(1 + η)

(

2

a + κ2
c

) = 0.

Obviously, only when the conditions in Eq. (8) are simultane-
ously satisfied is the considered three-mode optomechanical
system pseudo-Hermitian. From the first condition in Eq. (8),
we can see that the decay rates from the cavity a, the mechan-
ical resonator, and the cavity c are required to be balanced.
This means a gain effect must be introduced to the considered
system. From the third condition, η < 0 is obtained, which
shows that one loss cavity and the other gain cavity are al-
ways needed to satisfy the pseudo-Hermitian condition for the
proposed COM system in the blue-sideband regime. This sit-
uation is completely different from the previous study of EPs
using a COM system in the red-sideband regime. Without loss
of generality, the cavity a with gain and the cavity c with loss
are taken, i.e., κa < 0 and κc > 0. From the third equation in
Eqs. (8), it is not difficult to find the fact that λ = 1 when
η = −1, which indicates that the coupling strengths between
the MR and two cavities must be uniform, i.e., Ga = Gc.
When η �= −1,

(1 + η)(1 + λ2η) > 0 for η �= −1 (9)

is directly given by the third equality in Eqs. (8), which in turn
gives rise to a boundary for the parameter λ or equivalently
Ga and Gc. Such a boundary can be achieved here due to the
tunable parameters 
a, 
c, Ga, and Gc.

IV. CRITICAL PARAMETERS AT EP3

When the pseudo-Hermitian conditions in Eq. (8) are satis-
fied and x = � + ωb is defined, the characteristic equation in
Eqs. (4) reduces to

x3 + c2x2 + c1x + c0 = 0, (10)

where

c2 =(η − 1)
a,

c1 =(1 + λ2)G2
a − η
2

a + (1 + η + η2)κ2
c , (11)

c0 =(η − λ2)G2
a
a − (1 + η)2(1 − η)κ2

c 
a.

According to Cardano’s formula [93], the solutions of this
characteristic equation are determined by the discriminant

D = B2 − 4AC, (12)

where

A =c2
2 − 3c1, B = c1c2 − 9c0, C = c2

1 − 3c0c2. (13)

For D < 0, Eq. (10) has three real roots. But for D > 0,
Eq. (10) only has one real root and the other two are complex
roots. Interestingly, three roots coalesce to the same value
�EP3 at D = 0 with A = B = 0, which is so-called EP3. For
the case of D = 0 but A �= 0 and B �= 0, only two roots coa-
lesce to the value �EP2, corresponding to EP2.

Below we analytically derive the critical parameters at
EP3. When EP3 appears at � = �EP3, we have

(� − �EP3)3 = 0. (14)

Comparing coefficients of this equation with Eq. (10),

−3xEP3 = c2, 3x2
EP3 = c1, x3

EP3 = −c0 (15)

are obtained. The first equation directly leads to

xEP3 = 1
3 (1 − η)
a. (16)

Substituting this solution back into the second equation in
Eqs. (15), the critical coupling strength at EP3 is given by

Ga,EP3 =2κc

[
− 3(1 + λ2)

1 + η + η2
− 1 + λ2η

η(1 + η)

]−1/2

, (17)

where


a,EP3 = ±
[
− 1 + λ2η

η(1 + η)
G2

a,EP3 − κ2
c

]1/2

(18)

is derived from the third equation in Eqs. (8). As 
2
a,EP3 � 0,

so the minimal value of Ga for predicting EP3 is

Gmin
a,EP3 =

[
−η(1 + η)

1 + λ2η
κc

]1/2

. (19)

At EP3, the parameter λ is required to meet

λEP3 =
[

2η + 1

η(η + 2)

]3/2

, (20)
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FIG. 2. The parameter λ at EP3 as a function of η. The
red, blue, and green dots, respectively, denote (η, λEP3) =
(−1, 1), (−1.1, 1.33), (−0.8, 0.49).

which is obtained by substituting the solution in Eq. (16) back
into the third equality in Eqs. (15). To see the dependent
relationship between λ and η at EP3 more clearly, we plot
λ as a function of η in Fig. 2. Obviously, λ monotonously
decreases with the absolute value of η. Equation (20) also
requires η to satisfy

(η + 2)(2η + 1) < 0. (21)

Combining Eqs. (9) and (21), the parameter η for predicting
EP3 can take ⎧⎪⎪⎨

⎪⎪⎩

− 2 <η < −1,

η = −1,

−1 <η < − 1
2 ,

(22)

leading to

γb > 0, loss mechanical resonator,

γb = 0, neural mechanical resonator,

γb < 0, gain mechanical resonator.

(23)

The corresponding value of λEP3 is given by Eq. (20).

V. PHASE DIAGRAM FOR PREDICTION OF EP3 AND EP2

Next, we numerically predict EP3 and EP2 via the phase
diagram of the discriminant [see Eq. (12)] in the three cases
given by Eq. (22).

A. η = −1

When η = −1, i.e., κa = −κc, two optomechanical cavities
are gain-loss balanced, and Eq. (8) reduces to

γb = 0, 
c = 
a, λEP3 = 1. (24)

For the condition γb = 0, it is difficult to be perfectly satisfied.
But for COM systems, the decay rate of the MR is in general
much smaller than the decay rate of the optomechanical cav-
ity, i.e., γb � κc. Therefore, we can safely ignore the effect of
the decay rate of the MR on EP3, and thus we assume γb ≈ 0.

In addition, the coefficients in Eq. (11) are simplified as

c2 = − 2
a, c1 = 2G2
a + 
2

a + κ2
c , c0 = −2G2

a
a.

(25)

Correspondingly, the discriminant in Eq. (12) becomes

D = κ2
c 
4

a − (G4
a + 10κ2

c G2
a − 2κ4

c )
2
a + (2G2

a + κ2
c )3,

(26)

and A, B,C in Eq. (13) are

A =
2
a − 6G2

a − 3κ2
c ,

B = 2
a
(
7G2

a − 
2
a − κ2

c

)
, (27)

C = (
2G2

a + 
2
a + κ2

c

)2 − 12G2
a


2
a.

In Fig. 3(a), we plot the phase diagram determined by the
sign of the discriminant [see Eq. (26)] versus the normal-
ized parameters 
a/κc and Ga/κc, where the purple (yellow)
region indicates D > 0 (D < 0). The boundary curve in red
means D = 0. The curves in black and green, respectively,
denote A = 0 and B = 0. Obviously, three curves have four
cross points, that is, four EP3s in the parameter space can be
found according to Cardano’s formula [93]. Also, EP2 can be
predicted by the red curve only (i.e., D = 0, but A �= 0 and
B �= 0).

B. η �= −1

For the more realistic case, η �= −1 is further considered.
This indicates that two optomechanical cavities are gain-loss
unbalanced. According to Eq. (22), we can discuss the case of
η �= −1 in two scenarios, i.e., (i) −2 < η < −1 (or γb > 0);
(ii) −1 < η < − 1

2 (or γb < 0). The first scenario indicates that
the loss MR and λ > 1 (i.e., |Gc| > |Ga|) are needed to predict
EP3 in our proposed COM system. On the contrary, the gain
MR and λ < 1 (i.e., |Gc| < |Ga|) is required in the second
scenario. As examples, we take η = −1.1 and η = −0.8 (see
the blue and green dots in Fig. 2). Then we plot the phase
diagram of the discriminant with η = −1.1 [see Fig. 3(b)] and
−0.8 [see Fig. 3(c)] versus the normalized parameters Ga/κc

and Gc/κc, where D = 0, A = 0, and B = 0 are shown by the
red, black and green curves, respectively. The purple (yellow)
region means D < 0 (D > 0). Obviously, four EP3s (see the
red dots) produced by three curves, at which D = A = B = 0,
can be predicted in both Figs. 3(b) and 3(c) by tuning Ga and
Gc. This can be realized because both Ga and Gc are tunable
coupling strengths via tuning the Rabi frequencies of the two
laser fields. When we deviate Ga (Gb) from Ga,EP3 (Gb,EP3) at
EP3, EP2 emerges [see the red curve only in Figs. 3(b) and
3(c)]. When one parameter is fixed in Figs. 3(a)–3(c), we can
easily find that only two EP3s or four EP2s can be observed by
varying the other parameter, which is different from the case
considered in the red-detuned COM system.

VI. EP3 AND EP2 IN THE BLUE-SIDEBAND THREE-MODE
OPTOMECHANICAL SYSTEM

A. η = −1

In Fig. 3(a), we have predicted that EP3 and EP2 can be
observed in our considered system for the case of η = −1. For
clarity, below we study the behavior of three eigenvalues of
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FIG. 3. The phase diagram of the discriminant given by Eq. (12) vs the normalized parameters (a) Ga/κc and 
a/κc; (b) and (c) Ga/κc and
Gc/κc. In (a), (b), and (c), η is taken as η = −1, −1.1, and −0.8, respectively.

the Hamiltonian Heff given by Eq. (2) with different frequency
detunings 
a and coupling strengths Ga.

In Fig. 4, we plot the real and imaginary parts of the
eigenvalue (x = � + ωb) as a function of the normalized pa-
rameter Ga/κc with 
a = 3

√
3κc, 10κc, 15κc. For simplicity,

we assume that the red, blue, and black curves, respectively,
denote three eigenvalues x1, x2, and x3 for the Hamiltonian
Heff hereafter. For 
a = 3

√
3κc [see Figs. 4(a) and 4(b)],

x1 is real and the other two eigenvalues (x2 and x3) are a
complex-conjugate pair in the region of Ga > G(+)

a,EP3 = 2κc

or Ga < G(−)
a,EP3 = −2κc. But when G(−)

a,EP3 < Ga < G(+)
a,EP3, x2

becomes real, and x1, x3 become a complex-conjugate pair. At
the points Ga = G(±)

a,EP3 [see the red and black dots in Figs. 4(a)
and 4(b)], three eigenvalues coalesce to one value, i.e., �EP3 =
3.39κc − ωb, corresponding to two degenerate EP3s. It is not
difficult to verify that D = 0, A = 0, and B = 0 at two EP3s.
Then we increase 
a to 
a = 10κc [see Figs. 4(c) and 4(d)]

for deviation from EP3s, that is, D = 0 but A �= 0 and B �= 0.
For Ga < G(1,−)

a,EP3 = −3.6κc or Ga > G(1,+)
a,EP3 = 3.6κc, x1 is real,

and x2 and x3 are a complex-conjugate pair. At Ga = G(1,±)
a,EP3

[see the red and black dots in Figs. 4(c) and 4(d)], x2 and
x3 coalesce to �

(1)
EP2 = 5.22κc − ωb, corresponding to two de-

generate EP2s. By increasing Ga to G(1,−)
a,EP3 < Ga < G(2,−)

a,EP3 =
−2.99κc or 2.99κc = G(2,+)

a,EP3 < Ga < G(1,+)
a,EP3 = 3.6κc, the real

parts of x2 and x3 bifurcate into two values. At Ga = G(2,±)
a,EP3

[see the blue and green dots in Figs. 4(c) and 4(d)], x1 and x3

coalesce to the value �
(2)
EP2 = 2.28κc − ωb, corresponding to

two degenerate EP2s. When G(2,−)
a,EP3 < Ga < G(2,+)

a,EP3, x2 is real
and the other two eigenvalues x1 and x3 are complex conju-
gates. We also find that the separation between two arbitrary
EP2s can be increased using larger 
a such as 
a = 15κc [see
Figs. 4(c)–4(f)], which indicates that larger 
a is beneficial to
the distinguishably observe in multiple EP2s.

FIG. 4. The real and imaginary parts of the eigenvalue (x = � + ωb) as a function of the normalized parameter Ga/κc with (a) 
a = 3
√

3κc,
(b) 
a = 10κc, and (c) 
a = 15κc. Here η = −1 and λ = 1.
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FIG. 5. The real and imaginary parts of the eigenvalue (x = � + ωb) as a function of the normalized parameter 
a/κc with (a) Ga = 2κc,
(b) Ga = 3κc, and (c) Ga = 4κc. The other parameters are the same as in Fig. 4.

In Fig. 5, we also plot the real and imaginary parts of
the eigenvalue (x = � + ωb) versus the normalized parameter

a/κc with different Ga. For Ga = 2κc [see Figs. 5(a) and
5(b)], x1 is real, and x2, x3 are a complex-conjugate pair when

a < 


(−)
a,EP3 = −5.2κc. At 


(−)
a,EP3 = −5.2κc [see the black

dot in Figs. 5(a) and 5(b)], three eigenvalues coalesce to
�

(1)
EP3 = 3.55κc − ωb, corresponding to EP3. When 


(−)
a,EP3 <


a < 

(+)
a,EP3 = 5.2κc, x2 and x3 become a complex-conjugate

pair again, and x1 is real. But when 
a > 

(+)
a,EP3, x2 be-

comes real, and x1 and x3 are a complex-conjugate pair. At

a = 


(+)
a,EP3, three eigenvalues reemerge into the same value

�
(2)
EP3 ≈ 3.55�

(1)
EP3. By increasing Ga to Ga = 3κc [see the red

dots in Figs. 5(c) and 5(d)], two EP3s in Figs. 5(a) and 5(b)
split into four EP2s. Specifically, x1 is real, and x2 and x3

are a complex-conjugate pair when Ga < G(1,−)
a,EP2 = −10.1κc.

At Ga = G(1,−)
a,EP2 = −10.1κc [see the black dots in Figs. 5(c)

and 5(d)], x2 and x3 coalesce to �
(1)
EP2 = −2.27κc − ωb, cor-

responding to the first EP2. When G(1,−)
a,EP2 < Ga < G(2,−)

a,EP2 =
−8.23κc, three eigenvalues are all real but have different
values. At Ga = G(2,−)

a,EP2 [see the green dots in Figs. 5(c) and

5(d)], x1 and x3 coalesce to �
(2)
EP2 = −4.4κc − ωb, correspond-

ing to the second EP2. For G(2,−)
a,EP2 < Ga < G(2,+)

a,EP2 = 8.23κc,
x1 is real, and x2 and x3 are a complex-conjugate pair. At
Ga = G(2,+)

a,EP2 [see the blue dots in Figs. 5(c) and 5(d)], x2

and x3 reemerge into one value �
(3)
EP2 ≈ �

(2)
EP2, correspond-

ing to the third EP2. By tuning Ga to Ga = G(1,+)
a,EP2 = 10.1κc

[see the red dots in Figs. 5(c) and 5(d)], two different real
eigenvalues (i.e., x1 and x3) in G(2,+)

a,EP2 < Ga < G(1,+)
a,EP2 degener-

ate as �
(4)
EP2 = 8.93κc − ωb, corresponding to the fourth EP2.

When Ga exceeds G(1,+)
a,EP2, x2 becomes real, and x2 and x3

are a complex-conjugate pair. By considering a larger Ga

such as Ga = 15κc [see Figs. 5(e) and 5(f)], we find that
EP2s can be distinguished more easily. This indicates that
larger coupling strength can also be used to observe EP2s

clearly, similar to the role of the above-discussed frequency
detuning 
a.

B. η �= −1

For the case of η �= −1, we also have numerically proved
that EP3 and EP2 can be predicted in our proposed blue-
sideband optomechanical system by, respectively, taking η =
−1.1 and −0.8 as examples in Figs. 3(b) and 3(c). Here we
further specifically study EP3 and EP2 by investigating the
eigenvalues of Heff with η = −1.1 and −0.8.

For η = −1.1 (or equivalently γb > 0), which leads to
λ = λEP3 ≈ 1.33 and Gmin

a,EP3 = 0.04κc. we plot the real and
imaginary parts of the eigenvalue (x = � + ωb) versus the
normalized parameter Ga/κc with different λ in Fig. 6. From
Figs. 6(a) and 6(b), in which λ = λEP3, we can see that the
eigenvalue x3 denoted by the black curve is always real for ar-
bitrary Ga /∈ (−Gmin

a,EP3, Gmin
a,EP3), and the other two eigenvalues

(x1 and x2) are a complex-conjugate pair except for at points
G(±)

a,EP3 = ±1.82κc. At these two points, three eigenvalues coa-
lesce into one value �±

EP3 = 3.7κc − ωb, corresponding to two
EP3s. When we take λ = 1.2λEP3, slightly deriving from λEP3

at EP3s, the condition for predicting EP3s is broken, thus EP3
disappears. According to Fig. 3(b), EP2 can be observed. In
Figs. 6(c) and 6(d), we plot the real and imaginary parts of
the eigenvalue (x = � + ωb) versus the normalized param-
eter Ga/κc with λ = 1.2λEP3. It is not difficult to find that
three eigenvalues are all real when Ga > G(+)

a,EP2 = 2.44κc or

Ga < G(−)
a,EP2 = −2.44κc. At Ga = G(±)

a,EP2, x1 and x3 coalesce
to �±

EP2 = 9.05κc − ωb, corresponding to two EP2s. When
G(−)

a,EP2 < Ga < G(+)
a,EP2, the real parts of x1 and x3 are still

degenerate, but their imaginary parts bifurcate into two values.
For the case of η = −0.8 (or equivalently γb < 0), the

behaviors of three eigenvalues are similar to the case of η =
−1.1 for predicting EP3s [see Figs. 7(a) and 7(b)] and EP2s
[see Figs. 7(c) and 7(d)].
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FIG. 6. The real and imaginary parts of the eigenvalue (x = � + ωb) with η = −1.1 as a function of the normalized parameter Ga/κc with
different λ. In (a) and (b), λ = λEP3. In (c) and (d), λ = 1.2λEP3.

VII. DISCUSSION AND CONCLUSION

Note that our studies are constrained in the pseudo-
Hermitian condition, which can ensure the emergence of EPs
in our proposed non-Hermitian COM system. But actually, the
strict pseudo-Hermitian condition in general cannot be fully

satisfied, which means that the pseudo-Hermitian condition is
broken [see Eq. (6) or Eq. (8)]. For example, the gain and
loss in Eq. (6) are not balanced, i.e., κa + κb + κc �= 0. In
this situation, we find that both EP3 and EP2 can also be
predicted in our setup, as shown in Fig. 8, where η = −1
and κa + κb + κc = 0.1κc is taken. This shows that EPs in our

FIG. 7. The real and imaginary parts of the eigenvalue (x = � + ωb) with η = −0.8 as a function of the normalized parameter Ga/κc with
different λ. In (a) and (b), λ = λEP3. In (c) and (d), λ = 0.25λEP3.
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FIG. 8. The real and imaginary parts of the eigenvalue (x = � + ωb) as a function of the normalized parameter Ga/κc with (a) and (b) 
a =
3
√

3κc, (c) and (d) 
a = 10κc. Here η = −1, λ = 1, and κa + κb + κc = 0.1κc.

proposal are robust against the slightly unbalanced gain and
loss, which also reveals that the pseudo-Hermitian condition
is neither sufficient nor necessary for predicting EPs. For the
case of η �= −1, we also numerically check it, and the same
result is obtained.

In summary, we have proposed a blue-detuned non-
Hermitian cavity optomechanical system consisting of a MR
coupled to both a passive (loss) and an active (gain) cavity
via radiation pressure for predicting EP3s. Under the pseudo-
Hermitian condition, the cases of the neural, loss, and gain
MRs are considered. By investigating the phase diagram of
the discriminant, we find that two degenerate or two nonde-
generate EP3s can be predicted by tuning system parameters
in the parameter space for the neutral MR. Also, four non-
degenerate EP2s can be observed when system parameters
deviate from EP3s, which is distinguished from the previous
study in the red-detuned optomechanical system. For the gain
(loss) MR, we find that only two degenerate EP3s or EP2s
can be predicted by tuning the enhanced coupling strength.
By studying the effect of parameters on EP3s or EP2s, we
show that large parameters, such as frequency detuning and
enhanced optomechanical coupling strength, can be employed
to observe EPs more clearly. Our proposal is the first scheme
to study higher-order EPs in the blue-detuned COM system,
and it provides a potential way to investigate multimode quan-
tum squeezing effects around higher-order EPs
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APPENDIX A: THE DERIVATION OF THE EFFECTIVE
HAMILTONIAN Heff

In this Appendix, we derive the effective Hamiltonian
given by Eq. (2) in the main text. Following the quantum
Langevin equation method [94], the dynamics of the proposed
system including dissipations can be given by

ȧ = − (κa + iδa)a − igaa(b† + b) + �a +
√

2κaain,

ḃ = − (γb + iωb)b − igaa†a − igcc†c +
√

2γbbin, (A1)

ċ = − (κc + iδc)c − igcc(b† + b) + �c +
√

2κccin,

where κa(c) is the decay rate of the cavity a (c), and γb is the
decay rate of the MR. Note that when one of the cavities such
as the cavity a is subject to the dissipative gain, its corre-
sponding dynamics in Eq. (A1) should be corrected as [95]
ȧ = −(iδa − κa)a − igaa(b† + b) + �a + √

2κaain, which is
different from the first equation in Eqs. (A1). ain, bin,
and cin are vacuum input noises with zero expectation
value, i.e., 〈ain〉 = 〈bin〉 = 〈cin〉 = 0. To linearize the non-
linear equations in Eq. (A1), we write the operators a, b,
and c as a = as + δa, b = bs + δb, c = cs + δc, where as =
εa/(κa + i
a), bs = −i(ga|as|2 + gc|cs|2)/(κb + iωb), cs =
εc/(κc + i
c) are steady-state values, and δa, δb, δc are fluc-
tuation operators. Then we substitute these transformations
into Eq. (A1). In the strong-field limit, i.e., |as|, |cs| � 1,
higher-order fluctuation terms can be safely neglected. Thus,
the dynamics of the fluctuation operators in Eq. (A1) can be
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linearized as

δ̇a = − (κa + iδ′
a)δa − iGa(δb† + δb) +

√
2κaain,

δ̇b = − (γb + iωb)δb − i(G∗
aδa + Gaδa†)

− i(G∗
cδc + Gcδc†) +

√
2γbbin, (A2)

δ̇c = − (κc + iδ′
c)δc − iGc(δb† + δb) +

√
2κccin,

where δ′
a = δa + gaas(b∗

s + bs) and δ′
c = δc + gccs(b∗

s + bs)
are the effective frequency detunings of the cavity a and the
cavity c, respectively, shifted by the displacement of the MR.
In general, such frequency shifts are tiny due to weak single-
photon optomechanical coupling strengths. Experimentally,
δ′

a(c) ≈ δa(c) are used. Ga = gaas and Gc = gccs are the ef-
fective enhanced optomechanical coupling strengths, which
can be tuned by the amplitudes of the two laser fields. Under
the condition |δ′

a(c) + ωb| � |δ′
a(c) − ωb| and |Ga(c)| � |δ′

a(c)|,
the fast oscillating terms in Eq. (A2) can be neglected. Then
Eq. (A2) reduces to

δ̇a = − (κa + iδ′
a)δa − iGaδb† +

√
2κaain,

δ̇b = − (γb + iωb)δb − iGaδa† − iGcδc† +
√

2γbbin,

δ̇c = − (κc + iδ′
c)δc − iGcδb† +

√
2κccin. (A3)

By rewriting the equations of motion in Eq. (A3) as
δ̇a = −i[δa, Heff ] + √

2κaain, δ̇b = −i[δb, Heff ] + √
2γbbin,

and δ̇c = −i[δc, Heff ] + √
2κccin, the effective non-Hermitian

Hamiltonian in the blue-sideband regime can be obtained,

Heff =(δ′
a − iκa)δa†δa + (ωb − iγb)δb†δb + (δ′

c − iκc)δc†δc

+ Ga(δa†δb† + δaδb) + Gc(δb†δc† + δbδc), (A4)

which is just the effective Hamiltonian in Eq. (2).

APPENDIX B: STABILITY

From Eq. (A3), we can obtain the following equations:

δ̇a = − (κa + iδ′
a)δa − iGaδb† +

√
2κaain,

δ̇b = − (γb + iωb)δb − iGaδa† − iGcδc† +
√

2γbbin,

δ̇c = − (κc + iδ′
c)δc − iGcδb† +

√
2κccin, (B1)

˙δa† = − (κa − iδ′
a)δa† + iGaδb +

√
2κaa†

in,

˙δb† = − (γb − iωb)δb† + iGaδa + iGcδc +
√

2γbb†
in,

˙δc† = − (κc − iδ′
c)δc† + iGcδb +

√
2κcc†

in.

By setting

δXa =a + a†

√
2

, δYa = a − a†

i
√

2
,

δXb =b + b†

√
2

, δYb = b − b†

i
√

2
,

δXc =c + c†

√
2

, δYc = c − c†

i
√

2
,

δXain =ain + a†
in√

2
, δYain = ain − a†

in

i
√

2
,

δXbin =bin + b†
in√

2
, δYbin = bin − b†

in

i
√

2
,

δXcin =cin + c†
in√

2
, δYcin = cin − c†

in

i
√

2
, (B2)

Eq. (B1) can be rewritten as

u̇ = Mu + fin, (B3)

where u = [δXa, δYa, δXb, δYb, δXc, δYc]T , fin =
[δXain , δYain , δXbin , δYbin , δXcin , δYcin ]T , and M is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κa δ′
a 0 −Ga 0 0

−δ′
a −κa −Ga 0 0 0

0 −Ga −κb ωb 0 −Gc

−Ga 0 −ωb −κb −Gc 0

0 0 0 −Gc −κc δ′
c

0 0 −Gc 0 −δ′
c −κc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

The considered COM system is stable only when the real
parts of the eigenvalues λ of the matrix M are all negative,
which can be judged by the Routh-Hurwitz criterion [96]. To
use this criterion, we expand the characteristic equation |M −
Iλ| = 0 as λ6 + c5λ

5 + c4λ
4 + c3λ

3 + c2λ
2 + c1λ + c0 = 0,

where the coefficients c j with j = 0, 1, . . . , 5 can be derived
using straightforward but tedious algebra. Interestingly, we
find c5 = 0 when κa + γb + κc = 0, which breaks the Routh-
Hurwitz criterion for prediction of the stability. This indicates
that when the pseudo-Hermitian condition is strictly satisfied,
the considered system is possibly unstable. To ensure that
the system is stable, κa + γb + κc > 0 is required in experi-
ment. This requirement can be achieved when two cavities are
gain-loss balanced and the loss mechanical resonator is em-
ployed. Although the pseudo-Hermitian condition is broken,
EP3s or EP2s can also be predicted (see Fig. 8). Other stable
conditions obtained from the Routh-Hurwitz criterion can be
well satisfied. This is due to the tunable frequency detunings
and linearized optomechanical coupling strengths via tuning
driving fields.
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