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Effects of frequency-dependent Kerr nonlinearity on higher-order soliton evolution in a photonic
crystal fiber with one zero-dispersion wavelength
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We show that the higher-order soliton evolution can be considerably affected by the relative positions of
the zero-nonlinearity wavelength (ZNW) and zero-dispersion wavelength (ZDW) with respect to the input
wavelength in photonic crystal fibers (PCFs) with frequency-dependent Kerr nonlinearity. By regulating the
magnitude of nonlinear dispersion, the position of the ZNW and the strength of the doping Kerr nonlinearity
can vary to a large extent, which significantly changes the general process of higher-order soliton evolution in
the PCFs. Particularly, some interesting phenomena observed numerically in the PCFs with one ZDW and one
ZNW are as follows: the formation of a blueshifted fundamental soliton that satisfies the phase-matching and
group-velocity-matching conditions with a redshifted fundamental soliton, the tunneling effect of a fundamental
soliton that transfers from one solitonic region to another one through a spectrally limited nonsolitonic region,
and the generation of the high-intensity blueshifted dispersive wave and redshifted dispersive wave.
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I. INTRODUCTION

Considerable effort has been devoted to the investiga-
tion of the evolution of higher-order solitons due to their
fundamental impact on nonlinear wave propagation as well
as some exciting applications such as supercontinuum light
sources and soliton lasers [1–3]. Since photonic crystal fibers
(PCFs) have some unique optical properties such as high
nonlinearity, low confinement loss, and tunable chromatic dis-
persion, they are widely used as powerful research platforms
for higher-order soliton evolution [4,5]. In the conventional
PCFs with positive nonlinearity covering all wavelengths, the
zero-dispersion wavelength (ZDW) separates a solitonic re-
gion with anomalous dispersion from a nonsolitonic one with
normal dispersion. In the PCFs with one ZDW, the longer
wavelength edge of the generated spectrum is controlled by
redshifted fundamental solitons ejected via soliton fission
while the shorter wavelength edge is dominated by blueshifted
dispersion waves (BDWs) radiated via satisfying the phase-
matching condition [2]. In the PCFs with two ZDWs, the
generated spectrum is bounded by two branches of dispersive
waves (DWs), namely, BDWs and redshifted dispersive waves
(RDWs) [6,7]. However, the Raman-induced frequency shift
of the fundamental soliton is suppressed in the vicinity of the
second ZDW due to the process of spectral recoiling associ-
ated with RDWs. In the PCFs with three ZDWs, an attractive
phenomenon known as the soliton spectral tunneling (SST)
effect is given rise by a Raman-induced soliton self-frequency
shift. In this case, the energy of the fundamental soliton is
continuously shed off from one anomalous dispersion region
to another after passing through a narrow normal-dispersion
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region sandwiched in between [8–11]. Such rich phenomena
of soliton dynamics exhibited in the PCFs with one or multi-
ple ZDWs mainly result from the flexibly tunable dispersion
characteristics together with the positive nonlinear properties.

Recently, increasing attention has gradually been paid to
higher-order soliton evolution in the PCFs with frequency-
dependent Kerr nonlinearity, which is achieved by doping
the core glass with metal nanoparticles [12–16]. Unlike the
traditional PCFs with positive nonlinearity at all wavelengths,
the doped PCFs offer additional control over the Kerr nonlin-
earity that can vary considerably with wavelength and even
changes its numeric sign from positive to negative across a
zero-nonlinearity wavelength (ZNW) [17–20]. Here the ZNW
is a specific wavelength at which the optical Kerr nonlinearity
vanishes. In particular, the coexistence of ZNW and ZDW
makes it possible to achieve multiple spectral regions with dif-
ferent signs of the dispersion and nonlinear coefficients, which
plays a significant role in manipulating the formation and
distribution of the fundamental solitons and DWs [17–19].
For example, the existence of negative nonlinearity allows the
fundamental solitons formed even in the normal-dispersion
region, which is not common in conventional fibers. Since the
change in frequency dependence of doping Kerr nonlinearity
can dramatically regulate the position of ZNW and the non-
linear strength acting on the spectral components, it is very
meaningful to explore the combination action of ZDW and
ZNW on the effect of higher-order soliton evolution. By al-
tering the frequency dependence of doping nonlinearity, some
phenomena of soliton dynamics common in the PCFs with
multiple ZDWs can also be exhibited in the PCFs with one
ZDW and one ZNW.

In this paper, we numerically study the higher-order soliton
evolution in the PCFs exhibiting one ZNW in addition to one
ZDW. Numerical results show that the soliton dynamics can
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be considerably affected by the relative positions of the ZNW
and ZDW with respect to the input wavelength. Note that
all soliton dynamics discussed here occur in a single spatial
core mode. This paper is organized as follows. In Sec. II,
we introduce the propagation model for studying higher-order
soliton evolution in the PCFs with frequency-dependent Kerr
nonlinearity. Moreover, a stable dispersion property as well as
the varying doping nonlinearity including different nonlinear
dispersion coefficients are presented in this section. In Sec. III,
we show that regulating the magnitude of the doping Kerr
nonlinearity and the interval between ZNW and ZDW can
stimulate different phenomena of soliton dynamics during
the higher-order soliton evolution. The main conclusions are
summarized in Sec. IV.

II. NUMERICAL MODEL AND FIBER PROPERTIES

The evolution of the higher-order soliton pulse in the PCFs
with frequency-dependent Kerr nonlinearity can be modeled
by a well-modified generalized nonlinear Schrödinger equa-
tion (GNLSE) [1,18]. Note that the metal nanoparticles for
adjusting the Kerr nonlinearity have no effect on Raman
contribution. Hence, the Raman-induced spectral blueshift
that appears to be nonphysical can be avoided during the
pulse evolution [18–20]. Based on the above assumption, the
adopted GNLSE is formulated in terms of the electric-field
envelope A = A(z, t ), which is at a propagation distance z
in a retarded reference time frame t = τ − z/υg = τ − β1z
traveling at the envelope group velocity υg = 1/β1, taking the
following form:

∂A

∂z
−

∞∑
n�2

in+1βn

n!

∂nA

∂t n
= i(1 − fR)γeff |A(z, t )|2A(z, t )

+ i fRγ A(z, t )
∫ ∞

0
hR(t ′)|A(z, t − t ′)|2dt ′. (1)

The left-hand side of Eq. (1) models linear propagation
effects with βn as the nth-order dispersion coefficients. The
right-hand side models nonlinear effects with γ and γeff as
frequency-dependent nonlinear coefficients of the undoped
and doped regions, respectively. γ (ω) ≈ γ0 + γ1(ω − ω0) and
γeff (ω) are defined as [19]

γ0 = 2πn2

λ0Aeff
, γ1 ≈ γ0

ω0
, γeff = 2πRe(n2eff )

λ0Aeff
,

n2 = 3χ
(3)
h
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, n2eff = 3χ

(3)
eff

4ε0cεeff
,

εeff = εh(1 + 2 f σ )

1 − f σ
, σ = εi − εh

εi + 2εh
.

The core glass of PCFs used in this paper is made of
silver nanoparticle-doped silica glass. Thus εi and εh are the
dielectric functions of silver and silica, respectively. The fill-
ing factor f is the volume fraction of the silver nanometric
inclusions. χ

(3)
eff is the effective third-order susceptibility in

the presence of silver nanoparticles, and χ
(3)
h is the third-order

FIG. 1. (a) At the pump wavelength of 835 nm, the group-
velocity dispersion (β2) curve and relative group-delay (β1) curve of
the PCF as a function of wavelength. (b) The effective doping nonlin-
ear coefficient γeff as a function of wavelength for γ1eff = 0 (red curve
with square, without ZNW), γ1eff = −3.3456 × 10−3 W−1 m−1 ps
(orange curve with circle, ZNW = 760 nm), γ1eff = −4.6822 ×
10−3 W−1 m−1 ps (green curve with rhombus, ZNW = 780
nm), γ1eff = 1.1357 × 10−2 W−1 m−1 ps (blue curve with triangle,
ZNW = 860 nm). The vertical dot-dashed black lines in (a), (b) mark
the ZDW located at 780 nm.

susceptibility of the host glass. χ
(3)
eff can be calculated using a

theory of composite nonlinear materials as follows [19]:

χ
(3)
eff = f

χi

|B|2B2
+ χh

D

|1 − f σ |2(1 − f σ )2 , (2)

B = (1 − f σ )(εi + 2εh)

3εh
, (3)

D = 1 − f {1 − 0.4(4σ 2|σ |2 + 4σ |σ |2 + σ 3+ 9|σ |2+ 9σ 2)}.
(4)

The susceptibilities of host silica glass and silver
are χh = 2.233 × 10−22 m2/V2 and χi = (−6.3 + i1.9) ×
10−16 m2/V2, respectively. Since the volume fraction of sil-
ver nanoparticles in the doped region is small, the Raman
response function of the doped PCF is considered to be the
same as the general silica PCFs [17–19]. Thus in Eq. (1), the
Raman fraction is fR = 0.18 and the Raman response func-
tion is hR(τ ) = exp(−τ/τ2) sin(−τ/τ1)(τ 2

1 + τ 2
2 )/τ1τ

2
2 with

the Raman period τ1 = 12.2 fs and lifetime τ2 = 32 fs.
In this paper, a hyperbolic secant pulse at a center

wavelength of 835 nm with 50 fs pulse width is used as
the pump source. A 1.2-m-long PCF with single ZDW
located at 780 nm serves as the propagation medium [1,2].
At the pump wavelength of 835 nm, the group-velocity
dispersion (β2) curve and relative group delay (β1) curve
of the PCF as a function of the wavelength are shown in
Fig. 1(a), whose dispersion coefficients are up to tenth
order, as follows: β2 = −11.830 ps2/km, β3 = 8.1032 ×
10−2 ps3/km, β4 = −9.5205 × 10−5 ps4/km, β5 = 2.0737 ×
10−7 ps5/km, β6 = −5.3943 × 10−10 ps6/km, β7 =
1.3486 × 10−12 ps7/km, β8 = −2.5495 × 10−15 ps8/km,
β9 = 3.0524 × 10−18 ps9/km, and β10 = −1.7140 ×
10−21 ps10/km. The nonlinear coefficients of the undoped
region at 835 nm are γ0 = 0.11 W−1 m−1 and γ1 ≈ γ0/ω0 ≈
4.8728 × 10−5 W−1 m−1 ps. The silica core of the PCF doped
with silver nanoparticles exhibits a Kerr nonlinearity γeff

varying significantly with wavelength and even changing the
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FIG. 2. (a) Temporal and (b) spectral evolutions of higher-order soliton in a 1.2-m-long PCF with only one ZDW but no ZNW for γ1eff = 0.
(c) The corresponding spectrogram as well as the temporal and spectral profiles at the PCF output. The vertical white dashed line in (b) marks
the ZDW at 780 nm.

sign at the ZNW [19–21]. Namely, γeff > 0 indicates positive
nonlinearity and γeff < 0 indicates negative nonlinearity. The
Taylor series expansion of γeff around the operating frequency
provides the higher-order terms of the Kerr nonlinear
coefficient. Thus the frequency dependence of γeff can be
taken into account using γeff (ω) = γ0eff (ω0) + γ1eff (ω − ω0),
where γ0eff = 0.7453 W−1 m−1 and γ1eff = dγeff/dω is
evaluated at the pump frequency ω0 for the volume fraction
of silver nanoparticle inclusions. In order to study how
the frequency-dependent Kerr nonlinearity affects the
higher-order soliton evolution in the PCF with one ZDW, the
input pulse with peak power P0 = 159 W is chosen to excite
the soliton order N = T0

√|γ0eff |P0/|β2| ≈ 5 at the input end
of the PCF [18,19]. Figure 1(b) shows the effective doping
nonlinear profiles γeff as a function of the wavelength at the
different nonlinear dispersion coefficients γ1eff for the PCF.
It can be clearly observed that the value and numeric sign of
γ1eff control the position of the ZNW and the slope of the
effective doping nonlinearity.

III. NUMERICAL SIMULATIONS FOR HIGHER-ORDER
SOLITON EVOLUTION IN PCFs

Figure 2 shows the evolution of a higher-order soliton in a
PCF with only one ZDW but no ZNW, which is achieved by
setting γ1eff = 0. In this case, the positive Kerr nonlinearity
covers the PCF at all wavelengths. Since the solitonic region
corresponds to a wavelength range in which β2 and γeff have
opposite signs, the ZDW at 780 nm separates a solitonic
region from a nonsolitonic one. In the initial stage of spectral
evolution, self-phase modulation (SPM) broadens the spec-
trum by generating new frequency components. Accordingly,
strong temporal compression occurs over this range. When the
spectrum is broadened to the greatest degree by SPM, a series
of fundamental solitons is ejected into the solitonic region by
balancing the interaction between anomalous group-velocity
dispersion and the SPM induced by positive Kerr nonlinearity.
Then the associated BDWs are radiated into the nonsolitonic
region from these ejected fundamental solitons via satisfying
the phase-matching condition under the effect of higher-order
dispersion. Even though the redshifted Raman solitons and
BDWs have separated optical spectra, they can overlap in the
time domain, as shown in Fig. 2(c). The BDWs in the nonsoli-

tonic region can be trapped by the potential barrier presented
by the decelerating soliton in the solitonic region, leading to
the formation of a trapping DW. Here the trapping effect of the
DW by the soliton is triggered by the group-velocity matching
between the soliton and the DW, which critically depends on
the walk-off dynamics between the two components [7,22].

When γ1eff = −4.6822 × 10−3 W−1 m−1 ps, solitons can
be supported in all parts of the spectrum except at 780 nm
because of the coincidence between ZNW and ZDW. In this
case, the interplay between negative nonlinearity and nor-
mal dispersion can lead to an interesting dynamic where
blueshifted Raman solitons can be generated along with the
phase-matched radiation. As shown in Fig. 3, the input higher-
order soliton pulse breaks up into a series of redshifted
fundamental solitons and the associated blueshifted funda-
mental soliton through soliton fission under the combined
action of Kerr nonlinearity and dispersion effect. Since the
group-velocity-matching condition is satisfied between the
first-generated redshifted soliton (labeled by 1©) and the first-
generated blueshifted one (labeled by 4©), the two solitons
overlap in the time domain while they separate in the spectral
domain, as shown in Fig. 3(d). The outcome of such solitonic
interactions also depends on the relative phases of the solitons.
Additionally, another two fundamental solitons labeled by 2©
and 3© in Fig. 3(d) are ejected in the anomalous dispersion
region. Since the two fundamental solitons ( 2© and 3©) initially
have a little negative time delay shown in Fig. 3(a), they are
ejected between the ZDW and pump wavelength. It is well
known that the soliton ejected earlier has higher amplitude,
shorter pulse width and faster group velocity [1,2]. Thus, in
order to keep the form of the standard fundamental soliton,
the first-ejected one ( 2©) of the two soliton ( 2© and 3©) needs
to be formed at a shorter wavelength. Subsequently, the fun-
damental soliton ( 2©) first accelerates a little, then slows down
quickly, and finally collides with another soliton ( 3©) under
the combined action of group-velocity dispersion and Raman
effect, as shown in Fig. 3(a). During the soliton collision,
energy transfer and velocity change happen to the two solitons
( 2© and 3©) following the conservation of momentum and
energy, which results in the fundamental soliton with higher
power gaining some energy from the other soliton and having
a larger redshifted velocity [23]. The phenomena of soliton
collision and energy transfer can also be clearly observed in
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FIG. 3. (a) Temporal and (c) spectral evolutions of higher-order
soliton in a 1.2-m-long PCF with one ZNW located at 780 nm for
γ1eff = −4.6822 × 10−3 W−1 m−1 ps. (b) The corresponding pulse
shapes at different propagation distances. (d) The corresponding
spectrogram as well as the temporal and spectral profiles at the PCF
output. The vertical white (black) dashed line in (c) marks the ZDW
(ZNW) at 780 nm. The serial number in (d) marks the generated
fundamental solitons.

Fig. 3(b). Then the fundamental soliton ( 2©) continues to red-
shift toward the longer wavelength at a gradually increasing
velocity because of the Raman effect. Meanwhile, the soliton
( 2©) transfers some energy to a narrow-band resonance in the
normal-dispersion region in the presence of higher-order dis-
persion, as shown in Fig. 3(d). Note that the phase-matching
and group-velocity-matching conditions are satisfied between
the narrow-band resonance and the redshifted fundamental
soliton. When the blueshifted narrow-band resonance gains
enough energy from the corresponding redshifted fundamen-
tal soliton, it can also be converted into a fundamental soliton
in the normal-dispersion solitonic region.

When γ1eff increases to −3.3456 × 10−3 W−1 m−1 ps, the
ZNW is located at 760 nm and has a 20-nm gap with the
ZDW. In this PCF, these wavelengths between 760 and 780
nm belong to the nonsolitonic region while those shorter than
760 nm or longer than 780 nm become the solitonic regions.
The existence of multiple solitonic regions with a minor inter-
val provides a basic prerequisite for the occurrence of the SST
phenomenon. Previous studies on SST mainly focused on the
fibers with multiple ZDWs, which enables a soliton to tunnel
from one anomalous dispersion region to another one through
a spectrally limited regime of normal dispersion [8–11]. Here
we show how one soliton can tunnel from one solitonic region
to another one through a narrow nonsolitonic region in the
PCF with one ZDW and one ZNW.

In the initial stage of propagation, the SPM causes the
input higher-order soliton pulse to be compressed in the time
domain and broadened in the spectral domain. Subsequently,
higher-order dispersion and Raman scattering become the two

FIG. 4. (a) Temporal and (c) spectral evolutions of higher-order
soliton in a 1.2-m-long PCF with one ZNW located at 760 nm for
γ1eff = −3.3456 × 10−3 W−1 m−1 ps. (b) The corresponding pulse
shapes at different propagation distances. (d) The corresponding
spectrogram as well as the temporal and spectral profiles at the PCF
output. The vertical white (black) dashed line in (b) marks the ZDW
(ZNW) at 780 nm (760 nm). The serial number in (d) marks the
generated fundamental solitons.

most significant effects, which break up the pulse into a se-
ries of fundamental solitons through soliton fission and the
emission of nonsolitonic radiation via satisfying the phase-
matching condition. It is well known that the earlier the
fundamental soliton is ejected, the higher its peak power and
the narrower the temporal width. As shown in Figs. 4(a)
and 4(c), the first-ejected fundamental soliton (labeled by
1©) is formed at the longest wavelength in contrast with

the subsequently ejected ones (labeled by 2© and 3©) and
then continues to redshift under the Raman effect. As the
first-ejected fundamental soliton gradually redshifts toward
the longer wavelength and undergoes an increasing nonlin-
ear strength, it constantly radiates some energy into another
solitonic region to form the phase-matched DW. Thus the first-
ejected fundamental soliton has a decreasing peak intensity
and an increasing temporal width along with the propagation
distance, as shown in Fig. 4(b). Under the combined action
of dispersion effect and Kerr nonlinearity, the second-ejected
fundamental soliton (labeled by 2©) generated between the
ZDW and the pump wavelength begins to blueshift. As the
soliton ( 2©) blueshifts toward the shorter wavelength, it needs
to constantly compress its pulse width and increase its peak
power to ensure that N = 1 since the γeff it undergoes gradu-
ally decreases. Moreover, the soliton ( 2©) also transfers some
energy to the DWs that, as soliton-induced optical Cherenkov
radiation, are resonant waves meeting the phase-matching
condition with the soliton. Although the DW has a fairly high
energy, it is spread out over a very wide temporal window,
as shown in Figs. 4(a) and 4(d). Here, the blueshift of the
fundamental soliton is no longer blocked by the ZDW, and the
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FIG. 5. (a) Temporal and (b) spectral evolutions of higher-order soliton in a 1.2-m-long PCF with one ZNW located at 860 nm for γ1eff =
1.1357 × 10−2 W−1 m−1 ps. (c) The corresponding spectrogram as well as the temporal and spectral profiles at the PCF output. The vertical
white (black) dashed line in (b) marks the ZDW (ZNW) at 780 nm (860 nm).

fundamental soliton occupies the nonsolitonic region where
solitons are not supposed to form. Since the nonsolitonic
region is made very narrow by bringing the ZNW close to
the ZDW, the soliton ( 2©) can tunnel part of its energy through
the spectrally limited nonsolitonic region to another solitonic
region. Because of the SST effect, the second-ejected funda-
mental soliton ( 2©) finally evolves into one soliton with a very
narrow temporal width and a very broad spectrum, as shown
in Fig. 4(d). The above phenomenon shows that the occur-
rence of the SST effect in the fibers with frequency-dependent
Kerr nonlinearity requires a narrow nonsolitonic region as a
potential barrier sandwiched between two solitonic ones. For
the third fundamental soliton (labeled by 3©) ejected in the
vicinity of the pump wavelength, it first redshifts toward the
longer wavelength under the Raman effect and then collides
with the residual pump soliton pulse. The peak intensity of
the soliton ( 3©) is increased by gaining some energy from the
residual pumped soliton pulse during the collision, as shown
in Figs. 4(a) and 4(b). Subsequently, the soliton ( 3©) with
higher peak intensity accelerates to redshift and radiates some
energy to the phase-matched DW in another solitonic region,
as shown in Fig. 4(d).

As the slope of the doping Kerr nonlinearity increases
further from negative to positive, the ZNW will fall at a wave-
length longer than the pump wavelength. In the case of γ1eff =
1.1357 × 10−2 W−1 m−1 ps, the ZNW is located at 860 nm.
Thus, the region between the ZDW and ZNW is solitonic
while outside the region it is nonsolitonic, which provides an
essential prerequisite for the generation of BDW and RDW.
Under the combined action of higher-order dispersion and
Raman effect, the higher-order soliton pulse breaks into a se-
ries of fundamental solitons in the solitonic region via soliton
fission as well as the BDW and RDW in the nonsolitonic
region via satisfying the phase-matching condition. When the
generated fundamental soliton gradually redshifts toward the
longer wavelength via Raman-induced frequency shift, the
spectrum of RDW blueshifts toward the ZNW with further
propagation. Since the ZNW is near the pump frequency, it
brings the Raman-induced frequency shift of the generated
fundamental solitons to a halt quickly, as shown in Fig. 5(b).
The suppression of the Raman-induced frequency shift makes
the generated fundamental soliton confined in a specific

narrow spectral band close to the ZNW. In this case, more
energy is transferred to the nonsolitonic region, and as a
result the intensities of the BDW and RDW are significantly
enhanced. In the fiber with two ZDWs, the presence of the sec-
ond ZDW plays a pivotal role in arresting the Raman redshift
of the fundamental soliton and inducing the generation of the
RDW. Most previous studies have shown that the cancellation
of the Raman-induced frequency shift is due to the process of
spectral recoiling associated with the emission of the RDW,
which is made possible by the negative dispersion slope in the
fibers with two ZDWs [7,24]. However, the same phenomenon
is observed in the present work by a totally different effect
where not the dispersion but the nonlinear slope restricts
the Raman redshift of fundamental solitons in the PCF with
frequency-dependent Kerr nonlinearity [17].

IV. CONCLUSIONS

In this work, we have studied the evolution of a higher-
order soliton pulse in PCFs with one ZNW in addition to
one ZDW. By regulating the magnitude of nonlinear disper-
sion, the strength of the effective doping nonlinearity and
the position of the ZNW change dramatically, which plays
a major role in manipulating the generation and distribution
of the fundamental solitons and DWs during the higher-order
soliton evolution. When the ZNW coincides with the ZDW
at 780 nm, the blueshifted fundamental soliton that satisfies
the phase-matching and group-velocity-matching conditions
with the redshifted fundamental soliton is ejected during the
fission of a higher-order soliton. When there is a minor in-
terval between the ZNW at 760 nm and the ZDW, the SST
phenomenon occurs in the PCF with frequency-dependent
Kerr nonlinearity, namely, one soliton tunneling from one
solitonic region to another one through a spectrally limited
nonsolitonic region. When the ZNW at 860 nm is longer than
the ZDW and close to the pump wavelength, the slope of
the doping nonlinearity brings the Raman shift of the ejected
fundamental solitons to a halt quickly and helps the generation
of high-intensity BDW and RDW. Such rich phenomena of
higher-order soliton evolution in the PCFs with one ZDW and
one ZNW mainly results from a high flexibility in the effective
doping nonlinearity.
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