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This paper investigates theoretically the effect of nonreciprocity on surface electromagnetic waves (SEWs)
propagating in magneto-optical structures in mutually opposite directions, i.e., on waves with tangential wave
numbers k of opposite sign. Namely, of our interest is a correlation between the numbers of forward (k > 0)
and backward (k < 0) propagating SEWs, which manifests itself as a limit on the total number of SEWs. The
peculiarity of this limit is that the maximum total number of forward- and backward-propagating SEWs is less
than the sum of the maximum numbers of SEWs for each of the opposite directions taken individually. We
derive a relation between the electromagnetic surface impedances relevant to forward- and backward-propagating
waves. Afterward, by using general properties of these impedances valid regardless of the crystallographic
symmetry, we analyze the roots of dispersion equations without solving them explicitly. Various types of
magneto-optical structures are considered. In particular, it is shown that, in the bicrystal formed of two half-
infinite magneto-optical media, the maximum total number of forward- and backward-propagating SEWs is two
at a given value of |k|, whereas in each of the mutually opposite directions two SEWs can exist. For example,
if two forward-propagating SEWs are known to exist, then no backward-propagating SEW exists. In the case
where a metal film is inserted between two different half-infinite magneto-optical media, the maximum number
of SEWs in one direction is four but the maximum of the total number of forward- and backward-propagating
SEWs is six rather than eight.
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I. INTRODUCTION

Basic phenomena characterizing the propagation of elec-
tromagnetic waves in magneto-optically active materials,
such as the Faraday rotation of polarization and the Kerr
effect, have been known since long ago but they still at-
tract researchers’ attention because of the wide application
of these materials to modern photonics and optoelectronics
[1–3]. Phenomenologically, magneto-optical activity is ex-
plained by specific properties of the dielectric permittivity
and magnetic permeability, namely, in nonabsorbing media
they are complex Hermitian tensors. As a result, magneto-
optical materials turn out to be nonreciprocal since, according
to the Onsager reciprocity relations, the reciprocity occurs
when the dielectric permittivity and magnetic permeability
are symmetric tensors [4–6]. Correspondingly, the received
electromagnetic signals will be different if the position of the
radiation and observation points are interchanged [4–6]. In
practice, the nonreciprocity underlies the operation principle
of magneto-optical isolators, circulators, and switches govern-
ing the propagation of bulk and waveguide electromagnetic
modes [7–14].

Apart from bulk and waveguide electromagnetic waves
there also exist surface electromagnetic waves (SEWs). They
emerge in dielectric-metal structures [15–25], in dielec-
tric superlattices [26–31], and at the interface between two
half-infinite dielectrics [32–39]. SEWs in magneto-optical
media have been studied theoretically and experimentally in

Refs. [40–48]. It has been shown that the dispersion curves
of forward- and backward-propagating SEWs can be different
and in addition SEWs can propagate unidirectionally, namely,
a SEW propagates along a given direction but there is no wave
in the opposite direction. These results have been obtained by
solving the dispersion equations either explicitly analytically,
when possible, or numerically, so they are relevant only to
SEWs in those specific cases which were under consideration.
General symmetry conditions securing the nonreciprocal elec-
tromagnetic wave propagation in magnetic crystals have been
discussed in Ref. [49].

Note that nonreciprocity also shows up in the spin-wave
propagation in magnetic crystals [50–54]. Nonreciprocity of
spin waves can be utilized for the creation of energy-efficient
magnonic logic devices [54–57].

In the present paper we analyze correlations between the
existence of forward- and backward-propagating SEWs in
magneto-optically active structures without any reference to
particular crystallographic symmetry and without solving the
boundary-value problem explicitly either analytically or nu-
merically. To be more specific, keeping in mind the fact that
the number of SEWs along a fixed direction can differ from
the number of SEWs in the reverse direction, we establish the
permissible maximum of the total number of SEWs propagat-
ing forward and backward.

Our theory will be based on the general properties of
surface electromagnetic impedances. We have already used
this method to study the SEW propagation in anisotropic
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FIG. 1. Geometry of propagation. The medium occupies the half
space z > 0. Waves with k > 0 and k < 0 propagates to the right
and to the left, respectively. The red and blue arrows indicate the
directions of propagation.

and bianisotropic periodic superlattices as well as at the
interface between two homogeneous half-infinite media in
Refs. [58–60]. These papers analyze the maximum permis-
sible number of SEWs only along one direction in some of
the structures considered in the present paper and do not
address the SEW propagation in mutually opposite directions.
It is worth noting that the idea of exploiting properties of the
impedance matrices, which follow from fundamental physical
principles, in the analysis of the existence of surface waves
has been put forward in Refs. [61,62] as applied to sur-
face acoustic waves in half-infinite homogeneous anisotropic
solids. Subsequently, this idea has been used in Ref. [63]
for the analysis of the existence of SEWs in a half-infinite
homogeneous magneto-optically inactive material in contact
with an isotropic dielectric or a superconductor.

We assume no absorption since otherwise the impedances
are non-Hermitian matrices, so that our method turns out
to be inapplicable. Semiquantitative arguments given in
Refs. [58–60] allowed us to conclude that sufficiently weak
absorption cannot increase the permissible number of SEWs
established under the assumption of no absorption. In addi-
tion, we consider only nonradiative SEWs, i.e., SEWs with
frequencies smaller than a limiting frequency above which
bulk modes appear, since the impedances are also non-
Hermitian matrices in the presence of bulk waves.

Our paper is organized as follows. In Sec. II we estab-
lish relations between the characteristics of forward- and
backward-propagating SEWs as well as between the surface
impedances associated with these waves. In Sec. III, with
the aid of these relations, we derive the permissible maxi-
mum number of forward- and backward-propagating SEWs
in total in different magneto-optical structures. Section IV
summarizes our results. In Appendix A a number of general
relations is derived. Some general aspects of our approach
is briefly described in Appendix B. Appendix C discusses
the SEW propagation in materials possessing natural optical
activity. Appendixes D, E, and F contain details of the proof
of statements given in Secs. III A and III E as well as results
of numerical computations. The influence of absorption of
electromagnetic waves is discussed in Appendix G.

II. SURFACE IMPEDANCES OF MAGNETO-OPTICAL
MEDIA

We consider SEWs in materials bounded by z = const.
planes (Fig. 1) and under boundary conditions requiring the
continuity of the tangential components Ex,y and Hx,y of the
electric E and magnetic H fields. With this in mind, we seek

partial solutions of the Maxwell equations propagating in the
positive direction of the axis X with frequency ω and wave
number k in the form

ξ̃ξξα (r, t ) = ξξξαei[kx+pαz−ωt], k > 0, α = 1, . . . , 4, (1)

where the four-component vector ξξξα is composed of Ex,y and
Hx,y,

ξξξα =
(

Uα

Vα

)
, Uα =

(−Eαy

Hαy

)
, Vα =

(
Hαx

Eαx

)
, (2)

r = (x z)t is the radius vector, and the superscript t denotes
the transposition.

Assume for a moment that the medium is not only
magneto-optically active but also bianisotropic, so that the
constitutive connections read as follows:

D = ε̂εεE + κ̂κκH, B = κ̂κκ†E + μ̂μμH, (3)

where D is the electric displacement, B is the magnetic induc-
tion, ε̂εε = ε̂εε† and μ̂μμ = μ̂μμ† are the complex Hermitian tensors
of dielectric permittivity and magnetic permeability, respec-
tively, and κ̂κκ is a complex pseudotensor characterizing the
bianisotropic coupling [5,6,64,65].

By excluding the z components of E and H as well as the
electric displacement D and the magnetic induction B with
the help of (3) from the Maxwell equations, we arrive at the
eigenvalue problem for a 4 × 4 matrix N̂,

N̂ξξξα = pαξξξα, α = 1, . . . , 4, (4)

of which the eigenvectors and eigenvalues are, respectively,
the vectors ξξξα and the normal wave numbers pα of modes (1)
(see Appendix A).

The explicit expression of N̂ actually depends on the order
of Ex,y and Hx,y in ξξξα and material properties of media. In
practice, different definitions of ξξξα are used, yielding different
expressions of the matrix, see, e.g., Refs. [66–68]. In our case
N̂ can be written in the form

N̂ = ωÂT − kB̂T − k2

ω
ĈT , (5)

where

ÂT = T̂Â, B̂T = T̂B̂, ĈT = T̂Ĉ, (6)

Â, B̂, and Ĉ are 4 × 4 matrices constructed of combinations
of the material constants [59],

T̂ =
(

0̂ Î
Î 0̂

)
, (7)

and 0̂ and Î are 2 × 2 zero and identity matrices.
The matrices Â, B̂, and Ĉ do not involve k and depend on

frequency only through material constants. In addition, Â =
Â†, B̂ = B̂†, and Ĉ = Ĉ†, so

(T̂N̂)† = (T̂N̂). (8)

Since N̂ is a 4 × 4 matrix, one has four modes (1) with
normal wave numbers pα , α = 1, . . . , 4, for fixed values of
k and ω. In view of (8), if pα is an eigenvalue of N̂, then
the complex conjugate p∗

α is also an eigenvalue. Hence, amid
four eigenvalues there is either a pair of complex-conjugate
eigenvalues or a pair of purely real eigenvalues.
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We are interested in the frequency interval 0 < ω < ωL

where all four modes (1) are inhomogeneous for a given k,
that is, where all four pα are complex. Thus there are two pairs
of complex conjugate pα in this interval. Assign the index α

in such a way that

pα+2 = p∗
α, Im(pα ) > 0, α = 1, 2 (9)

(but ξξξα+2 �= ξξξ ∗
α since N̂ �= N̂∗). Note that ωL can be called the

limiting frequency of bulk modes because for ω > ωL such
modes emerge, i.e., there is at least one pair of purely real
eigenvalues. At ω = ωL two eigenvalues, which constitute a
complex-conjugate pair in the interval ω < ωL, coalesce into
one real eigenvalue and N̂ does not diagonalize. Keeping
to the terminology used when studying physical phenomena
governed by non-Hermitian matrices (see, e.g., Ref. [69]), one
can also call ωL an exceptional point of N̂.

In accordance with (9) the wave fields

ξ̃ξξ+ =
2∑

α=1

bαξ̃ξξα (r, t ), ξ̃ξξ− =
4∑

α=3

bαξ̃ξξα (r, t ), (10)

where bα are constants, decay to zero when z → +∞ and
z → −∞, respectively. With this in mind, we introduce 2 × 2
impedance matrices Ẑ and Ẑ′ relating the vectors Uα and Vα

(2),

Vα = iẐUα, Vα+2 = −iẐ′Uα+2. α = 1, 2, (11)

so that

Ẑ = −iV̂Û−1, Ẑ′ = iV̂′Û′−1, (12)

where

Û = (U1, U2), V̂ = (V1, V2),

Û′ = (U3, U4), V̂′ = (V3, V4), (13)

are 2 × 2 matrices composed of the vectors Uα and Vα .
The properties of the impedances defined by (11) are

the same as those of their counterparts introduced in
Refs. [58–60], where we analyze the propagation of SEWs
only in one direction in bianisotropic bicrystals and superlat-
tices, and in Refs. [70–74], which study the propagation of
surface acoustic waves in superlattices. For convenience, we
list the necessary properties of Ẑ and Ẑ′:

Ẑ = Ẑ†, Ẑ′ = Ẑ′† for ω < ωL, (14)

Ẑ and Ẑ′ are positive definite matrices

at ω → 0, (15)

Ẑ + Ẑ′ is a positive definite matrix for ω < ωL, (16)

the eigenvalues of Ẑ and Ẑ′ are finite
in the interval 0 < ω < ωL,

(17)

∂Ẑ
∂ω

and
∂Ẑ′

∂ω
are negative definite matrices

for ω < ωL. (18)

Hermiticity of Ẑ and Ẑ′, i.e., property (14), follows from
the absence of the energy flux of localized wave fields along
the normal to the boundary (Appendix A). In view of (14) all

eigenvalues of Ẑ and Ẑ′ are purely real for ω < ωL. Property
(15) is due to the positiveness of the energy of static electric
and magnetic fields. Owing to (15), all eigenvalues of Ẑ and
Ẑ′ are positive in the vicinity of ω = 0. Property (16) is a
consequence of (15) and the fact that det(Ẑ + Ẑ′) �= 0. The
vanishing of this determinant would mean the existence of a
localized wave just inside an infinite homogeneous medium
[see Eq. (31) after replacement of Ẑ′

2 by Ẑ′
1] but such a

wave cannot emerge since there is no boundary to localize
an electromagnetic field. Properties (16) and (18) yield (17).

Property (18) holds true regardless of the frequency disper-
sion of material constants. It follows from a relation between
the frequency derivative of the impedances and the integral W
of the time-averaged energy over the depth of the half-infinite
medium [59]. For example, in the half space z > 0, where
a localized wave ξ̃ξξ+ is a linear combination (10) of modes
α = 1 and α = 2,

4W = i

(
V† ∂U

∂ω
+ U† ∂V

∂ω

)∣∣∣∣
z=0

= −U† ∂Ẑ
∂ω

U > 0, (19)

where U and V = iẐU are the vectors forming the vector
ξ̃ξξ+ = (U V)t at z = 0, the vector U is assumed arbitrary and,
by virtue of (14), V† = −iU†Ẑ. Through (18) and the spectral
decomposition of Ẑ and Ẑ′ one can prove that the frequency
derivatives of the eigenvalues of Ẑ and Ẑ′ are negative.

A more comprehensive discussion of the properties of
impedances and details of their formal derivation can be found
in Refs. [58,59,70–74].

Let us call waves (1) forward propagating and waves

ξ̃ξξ
(−)
α (r, t ) = ξξξ (−)

α ei[kx+p(−)
α z−ωt], k < 0, (20)

which propagate in the negative direction of the axis X , back-
ward propagating. The vectors ξξξ (−)

α and wave numbers p(−)
α

are found by solving the eigenvalue problem

N̂(−)ξξξ (−)
α = p(−)

α ξξξ (−)
α , α = 1, . . . , 4, (21)

where N̂(−) = ωÂT + |k|B̂T − k2

ω
ĈT .

Adopting the same rule of labeling backward-propagating
modes as of forward-propagating ones, viz.

p(−)
α+2 = p(−)∗

α , Im(p(−)
α ) > 0, α = 1, 2, (22)

[cf. Eq. (9)] we introduce the impedances Ẑ(−) and Ẑ′(−) via
the relations

V(−)
α = iẐ(−)U(−)

α , V(−)
α+2 = −iẐ(−)′U(−)

α+2, (23)

α = 1, 2, where U(−)
α and V(−)

α are counterparts of Uα and
Vα (2), respectively [cf. Eq. (11)]. The impedances Ẑ(−) and
Ẑ′(−) possess properties (14)–(18) because the sign of k has
no effect on these properties.

Relations and properties (4)–(23) hold true regardless of
the bianisotropic coupling. Let us now turn to nonbian-
isotropic nonabsorbing magneto-optical materials. In this case
the bianisotropic coupling vanishes, i.e., κ̂κκ = 0 in (3), but ε̂εε

and μ̂μμ are still Hermitian tensors. We put κ̂κκ = 0 in ÂT , B̂T ,
and ĈT and explicitly compute these matrices. Comparing N̂
with N̂(−) reveals that, in magneto-optical media

N̂(−) = −ŜN̂Ŝ, (24)
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where Ŝ is a 4 × 4 matrix,

Ŝ =
(

P̂ 0̂
0̂ −P̂

)
, P̂ =

(
1 0
0 −1

)
. (25)

Owing to (9) and (22), from (24) it follows that

p(−)
α = −pα+2, p(−)

α+2 = −pα, α = 1, 2, (26)

ξξξ (−)
α = Ŝξξξα+2, ξξξ

(−)
α+2 = Ŝξξξα, α = 1, 2. (27)

From (26) it is seen that the frequency ω
(−)
L below which all

eigenvalues p(−)
α are complex equals ωL.

Combining (11), (23), and (27) leads to

Ẑ(−) = P̂Ẑ′P̂, Ẑ(−)′ = P̂ẐP̂. (28)

These equalities allow us to analyze the permissible number
of forward- and backward-propagating SEWs.

III. SURFACE WAVES

By using (28) we will establish the maximum total number
Mtot of forward- and backward-propagating SEWs in different
magneto-optical structures. It will be shown that, in most
structures, Mtot is less than twice the maximum number M
of SEWs propagating in one direction. The number M is the
same for opposite directions. Note that Mtot = 2M would look
to be more natural.

The general idea of our approach is briefly discussed
in Appendix B. In addition, Fig. 2 in Appendix B shows
schematically the frequency dependence of the eigenvalues of
matrices involved in our considerations.

Structures considered below will be indicated as “Case I,”
“Case II,” etc. Such an indicator is at the end of the statement
concerning the maximum number of SEWs in the correspond-
ing structure.

It is worth noting that κ̂κκ �= 0 modifies the explicit expres-
sions of ÂT , B̂T , and ĈT in such a way that direct links of
type (24)–(28) do not exist in the general case. Therefore one
can anticipate that, in bianisotropic materials, Mtot = 2M. The
case where the bianisotropy is due to natural optical activity
is discussed in Appendix C.

A. Bicrystal

Let a bicrystal be composed of magneto-optical media 1
and 2 occupying the half spaces z > 0 and z < 0, respectively.
By using vectors (2) and taking into account (9) and (22) one
can write the boundary conditions on the interface z = 0 in
the form

2∑
α=1

bαξξξ 1,α =
2∑

α=1

bα+2ξξξ 2,α+2, (29)

2∑
α=1

cαξξξ
(−)
1,α =

2∑
α=1

cα+2ξξξ
(−)
2,α+2, (30)

for forward- and backward-propagating SEWs, respectively.
The subscript J in ξξξ J,α and ξξξ

(−)
J,α labels the eigenvectors of the

matrices N̂ and N̂(−) in the upper (J = 1) and lower (J = 2)
parts of the bicrystal, bα and cα , α = 1, . . . , 4, are unknown
constants.

Assign the same subscripts J = 1 and J = 2 to the
impedances of media 1 and 2, respectively. Due to (11), the
dispersion equation for forward-propagating SEWs can be
cast into the form

det(Ẑ1 + Ẑ′
2) ≡ det Ẑb = 0, (31)

whereas, by virtue of (23) and (28), the dispersion equation for
backward-propagating SEWs reduces to

det(Ẑ(−)
1 + Ẑ(−)′

2 ) = det(Ẑ′
1 + Ẑ2) ≡ det Ẑ′

b = 0. (32)

The subscript b means “bicrystal.”
It occurs that each of equations (31) and (32) can have

at most two roots at a given value of |k| in the interval
ω < �L = min(ωL,1, ωL,2), where ωL,J , J = 1, 2, are the lim-
iting frequencies in media 1 and 2. However, in total these
equations can have at most two, rather than four, roots (see
Appendix D). As a result,

given |k|, up to two SEWs can exist in each of the mutually
opposite directions on the interface between two half-infinite
magneto-optical media in the interval ω < �L but the total
number of forward- and backward-propagating SEWs cannot
be greater than two (Case I).

In particular, if a SEW emerges in the forward direction
then only one backward-propagating SEW can exist. If two
forward SEWs emerge, then no backward SEW exists. An ex-
ample of the bicrystal supporting two SEWs in one direction
is given in Ref. [59] in the context of the study of SEWs in a
pair of the so-called complementary bicrystals. Computations
reveal that no SEWs exist in the opposite direction in this
bicrystal.

The above statement is valid when one of the magneto-
optical media is replaced by an optically inactive nonbian-
isotropic medium. However, the maximum total number turns
out to be four if the new medium is reciprocal but bian-
isotropic, i.e., when the medium features natural optical
activity (see Appendix C).

B. Magneto-optical medium–half-infinite metal

We assume the relative dielectric permittivity of a metal
εm isotropic, purely real and negative in a frequency interval
ωa < ω < ωp, where ωp > ωL is a bulk plasma frequency. It
is also assumed that the relative magnetic permeability μm is
real, isotropic, and positive. The frequency dependence of εm

and μm is restricted only by the inequalities

∂ (ωεm)

∂ω
> 0,

∂ (ωμm)

∂ω
> 0, (33)

securing the positiveness of the averaged energy [75,76].
All the four partial modes in the film are inhomogeneous

with

pα = −pα+2 = ip, p =
√

k2 + ω2|εm|μm

c2
, (34)

where α = 1, 2 and c is the light velocity in the vacuum. The
impedances Ẑm and Ẑ′

m defined in accordance with (11) or
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(23) are diagonal real matrices,

Ẑm = Ẑ′
m =

⎛
⎜⎝

p

ωμ0μ
0

0 − p

ωε0|εm|

⎞
⎟⎠, (35)

where μ0 and ε0 are the magnetic and dielectric
constants.

Let a magneto-optical medium occupy the half space z >

0. In this instance, due to Eqs. (11), (23), (28), and (35), the
dispersion equations for forward- and backward-propagating
SEWs read as follows:

det(Ẑ + Ẑm) ≡ det Ẑdm = 0, (36)

det(Ẑ′ + Ẑm) ≡ det Ẑ′
dm = 0, (37)

respectively, where the matrices Ẑ and Ẑ′ are the impedances
of the magneto-optical medium and the subscript “dm” means
“dielectric metal.”

In view of (33), the frequency derivatives of the elements
of Ẑm prove to be negative and hence ∂Ẑm/∂ω is a neg-
ative definite matrix. Due to this fact as well as (17) and
(18) the eigenvalues of Ẑdm and Ẑ′

dm monotonically decrease
with increasing frequency, so each eigenvalue can vanish at
most once in the interval ωa < ω < �LM = min(ωL, ωp). The
eigenvalues do not need to be positive at ωa, but if all the
four eigenvalues are positive at that frequency, then each of
equations (36) and (37) can have two roots.

Contracting the vector t = (1 0)t with the matrix

Ĝdm = Ẑdm + Ẑ′
dm =

2∑
α=1

(λαqα ⊗ q∗
α + λ′

αq′
α ⊗ q′∗

α ), (38)

where λα and λ′
α are the eigenvalues of Ẑdm and Ẑ′

dm, re-
spectively, and qα and qα , α = 1, 2, are their orthonormalized
eigenvectors, we obtain that

2∑
α=1

(λα|t†qα|2 + λ′
α|t†q′

α|2)

= Zdm,11 + Z ′
dm,11 + p

ωμ0μ
> 0, (39)

since, due to (16), the sum of the diagonal elements Zdm,11 and
Z ′

dm,11 of the matrices Ẑdm and Ẑ′
dm is positive. Inequality (40)

holds true provided that at least one of the four eigenvalues λα

and λ′
α , α = 1, 2, is positive in the interval ωa < ω < �LM .

Therefore at most three eigenvalues can vanish; that is, equa-
tions (36) and (37) have at most three roots in total. Thus,

given |k|, up to two SEWs can exist in each of the two mu-
tually opposite directions at the boundary of magneto-optical
and metal half-infinite media for ω < �LM , but the total num-
ber of forward- and backward-propagating SEWs cannot be
greater than three (Case II).

An example of the bicrystal consisting of a magneto-
optical medium and a metal where two SEWs exist for one
direction of propagation is given in Ref. [60]. Additional
computations reveal that only one SEW exists in the opposite
direction which matches the above statement.

C. Metal film

We suppose that a metal film of thickness h occupies
the layer 0 < z < h and magneto-optical media 1 and 2 oc-
cupy the regions z > h and z < 0, respectively. The material
properties of the metal are given above and we consider the
frequency interval ωa < ω < �LM = min(ωL,1, ωL,2, ωp).

The tangential components of a forward-propagating field
at z = 0 and z = h can be related through a 4 × 4 matrix

Ẑmf =

⎛
⎜⎜⎝

Z (TE)
11 0 Z (TE)

12 0
0 Z (TM)

11 0 Z (TM)
12

Z (TE)
12 0 Z (TE)

11 0
0 Z (TM)

12 0 Z (TM)
11

⎞
⎟⎟⎠, (40)

where Z (TE)
i j and Z (TM)

i j are i j elements of the 2 × 2 matrices

Ẑ(TE) = p

ωμ0μm
ẐZZ, Ẑ(TM) = − p

ωε0|εm|ẐZZ, (41)

ẐZZ =
(

coth(ph) −csch(ph)
−csch(ph) coth(ph)

)
, (42)

which separately relate TE fields and TM fields in the film at
z = h and z = 0, see Ref. [60] for more details. Namely,(

V(h)

−V(0)

)
= −iẐmf

(
U(h)

U(0)

)
, (43)

where the indices h and 0 label fields at z = h and z = 0, and
the vectors U(h),(0) and V(h),(0) incorporate E (h),(0)

x,y and H (h),(0)
x,y

in accordance with (2). The subscript “mf” means “metal
film.”

Due to Eq. (11),

V(h) = iẐ1U(h), V(0) = −iẐ′
2U(0), (44)

where ẐJ and Ẑ′
J , J = 1, 2, are, respectively, the impedances

of media 1 and 2, so that the boundary conditions at z = 0 and
z = h will be obeyed provided that

(Ẑd + Ẑmf)

(
U(h)

U(0)

)
= 0, (45)

where Ẑd is a 4 × 4 block matrix,

Ẑd =
(

Ẑ1 0̂
0̂ Ẑ′

2

)
, (46)

the index d comes from “dielectric.”
By analogy, as applied to backward-propagating waves, we

obtain the relation

(Ẑ(−)
d + Ẑ(−)

mf )

(
U(−)(h)

U(−)(0)

)
= 0, (47)

where

Ẑ(−)
d =

(
Ẑ(−)

1 0̂
0̂ Ẑ(−)′

2

)
, (48)

and the matrix Ẑ(−)
mf is the counterpart of Ẑmf (40).

Owing to (27), (28), and (40), we have

Ẑ(−)
d = Q̂Ẑ′

dQ̂, Ẑ(−)
mf = Ẑmf = Q̂ẐmfQ̂, (49)

where

Ẑ′
d =

(
Ẑ′

1 0̂
0̂ Ẑ2

)
, Q̂ =

(
P̂ 0̂
0̂ P̂

)
. (50)

033513-5



A. N. DARINSKII PHYSICAL REVIEW A 106, 033513 (2022)

Hence the dispersion equations for forward- and backward-
propagating SEWs can be written in the form

det(Ẑd + Ẑmf) ≡ det Ẑst = 0, (51)

det(Ẑ′
d + Ẑmf) ≡ det Ẑ′

st = 0, (52)

respectively, where the index “st” means “structure.” (Note
that the idea of representing the dispersion equation of waves
guided by a film or plate in terms of a Hermitian matrix
relating the fields at the opposite faces has been put forward
in Ref. [77] as applied to acoustic waves.)

The number of roots of equation (51) has been established
[60] where we investigated the one direction propagation of
SEWs in a bianisotropic bicrystal containing a metal inser-
tion. According to Ref. [60], equation (51) can have at most
four roots. By analogy, equation (52) has the same maximum
number of roots. These conclusions follow from the fact that
the eigenvalues λα and λ′

α , α = 1, . . . , 4, of the matrices Ẑst

and Ẑ′
st, respectively, decrease monotonically with increasing

frequency. Such a frequency dependence is a consequence of
property (18) of the impedances of half-infinite media and the
fact that

∂Ẑmf

∂ω
is a negative definite matrix. (53)

The latter can be verified by proceeding similarly to the
derivation of (18) but integrating inequality (13) of Ref. [59]
over the film thickness. Statement (53) can also be proved by
explicitly computing the derivatives of Ẑ(TE) and Ẑ(TM) (41)
and taking into account inequalities (33).

In this paper we are interest in the permissible total number
of roots of equations (51) and (52). To find this number, we
add up Ẑst and Ẑ′

st and replace Ẑst and Ẑ′
st by their spectral

decompositions,

Ĝst = Ẑst + Ẑ′
st =

4∑
α=1

(λαeα ⊗ e∗
α + λ′

αe′
α ⊗ e′∗

α ), (54)

where eα and e′
α , α = 1, . . . , 4, are the orthonormalized eigen-

vectors of Ẑst and Ẑ′
st. In view of (16) Gst,11 = Z1,11 + Z ′

1,11 >

0 and Gst,33 = Z2,11 + Z ′
2,11 > 0, where ZJ,11 and Z ′

J,11 are the
elements 11 of ẐJ and Ẑ′

J , J = 1, 2, respectively, and Gst, j j ,
j = 1, 3, is the diagonal elements j j of Ĝst.

It can also be verified that Ẑ(TE) (41) is a positive-definite
matrix. Therefore, by contracting Ĝst with the vector t =
(t1 0 t3 0)t orthogonal to e1, i.e., e†

1t = e∗
1,1t1 + e∗

1,3t3 = 0, we
obtain that

Gst,11|t1|2 + Gst,33|t3|2 + t′†Ẑ(TE)t′

=
4∑

α=2

λα|e†
αt|2 +

4∑
α=1

λ′
α|e†

αt|2 > 0, (55)

where t′ = (t1 t3)t . From (55) it follows that, of the seven
eigenvalues remaining in (55), at least one must be positive
in the whole range ω < �LM . Hence assuming λ1 > 0 we see
that at most six of eight λα and λ′

α , α = 1, . . . , 4, can turn
negative, so, in view of the monotonic decrease of λα and λ′

α ,
equations (51) and (52) can have at most six roots in total at
|k| given. Thus,

given |k|, in the structure formed of two different magneto-
optical media separated by a metal film, there can be at most
six forward- and backward-propagating SEWs in total in the
interval ωa < ω < �LM , although in each of the mutually
opposite directions up to four SEWs are allowed (Case III).

Consider the case where one of the two media (e.g.,
medium 1) is nonbianisotropic and magneto-optically inac-
tive. One should distinguish between two options: (1) Medium
1 is optically anisotropic and oriented arbitrarily; (2) medium
1 is isotropic or anisotropic but oriented in such a way that
the plane XZ is either the plane of symmetry or perpendicular
to a symmetry axis. We call a medium of the first type an
anisotropic “ordinary” dielectric. In a medium of the second
type the electromagnetic modes propagating in the plane XZ
are split into TE polarized modes and TM polarized modes.
We conventionally call such a medium an isotropic “ordinary”
dielectric since it appears that the anisotropy is unimportant
in this case. It is only important that in the plane XZ partial
modes are either TE or TM polarized.

The impedances of an anisotropic “ordinary” dielectric are
nondiagonal matrices. The difference from the impedances
of magneto-optical media is that the nondashed and dashed
impedances prove to be directly related, viz. Ẑ′

1 = Ẑt
1 (see Ap-

pendix C). In consequence, as it has been shown in Ref. [60],
equation (51), and hence equation (52) as well, can have not
more than three roots because, owing to (14)–(18) and (C4), at
least one of the eigenvalues λα , α = 1, . . . , 4, and one of the
eigenvalues λ′

α , α = 1, . . . , 4 must stay positive. The analysis
of the behavior of the other eigenvalues reveals that all of them
can vanish. Therefore,

given |k|, in the magneto-optical medium–metal film–
anisotropic “ordinary” dielectric structure, up to three SEWs
can emerge in each of the mutually opposite directions in the
interval ωa < ω < �LM and the total number of forward- and
backward-propagating SEWs cannot be greater than six (Case
IV).

The impedances of an isotropic “ordinary” dielectric are
diagonal matrices,

Ẑ1 = Ẑ′
1 =

(
ZTE 0
0 ZTM

)
(56)

in the interval ω < ωL1 = min(ωE , ωM ), where ωE = vE k and
ωM = vMk are the limiting frequencies of TE and TM bulk
waves, respectively,

ZTE = pE

ωμ0μ
, ZTM = pM

ωε0
√

ε11ε33
, (57)

pE =
√

k2 − ω2/v2
E , pM =

√
k2 − ω2/v2

M , (58)

vE = c√
ε22μ

, vM = c√
(ε11 sin2 θ + ε33 cos2 θ )μ

, (59)

the magnetic permeability μ > 0 is supposed isotropic, εii >

0, i = 1, 2, 3, are the components of the tensor ε̂ in the crys-
tal physics coordinate system XoYoZo. The current coordinate
system XY Z is rotated relative to XoYoZo by an angle θ around
the axis Yo||Y (i.e., the planes XZ and XoZo coincide). Note
that pE and pM (58) are not normal wave numbers of TE and
TM modes unless θ = 0, or π/2, or ε11 = ε33.
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Equations (51) and (52) can still individually have up to
three roots when medium 1 is an isotropic “ordinary” dielec-
tric. However, these equations cannot have more than five
roots in total. To prove it we will use the fact that Ẑ1 is a
diagonal matrix and inequalities

ZTE > 0, ZTM > 0,
∂ZTE

∂ω
< 0,

∂ZTM

∂ω
< 0. (60)

We suppose that each of the equations has three roots, so
that there are six roots in total. Accordingly, in the vicinity
of �LM three eigenvalues of Ẑst and three eigenvalues of Ẑ′

st
are negative, e.g., λα < 0 and λ′

α < 0, α = 1, 2, 3, whereas λ4

and λ′
4 stay positive up to �LM . By contracting the matrices

Ẑst and Ẑ′
st, respectively, with the vectors t = (t1 0 t3 0)t and

s = (s1 0 s3 0)t such that e†
4t = 0 and e′†

4 s = 0, we obtain the
inequalities

t†Ẑstt = ZTE|t1|2 + Z ′
2,11|t2|2 + t′†Ẑ(TE)t′

=
3∑

α=1

λα|e†
αt|2 < 0,

s†Ẑ′
sts = ZTE|s1|2 + Z2,11|s2|2 + s′†Ẑ(TE)s′

=
3∑

α=1

λ′
α|e′†

α s|2 < 0, (61)

where t′ = (t1 t3)t , s′ = (s1 s3)t , ZJ,11 and Z ′
J,11, J = 1, 2, are

the 11 elements of the matrices ẐJ and Ẑ′
J , respectively.

Since Ẑ(TE) (41) is a positive-definite matrix, t′†Ẑ(TE)t′ > 0
and s′†Ẑ(TE)s′ > 0. In addition ZTE > 0. In summary, from
inequalities (61) it follows that Z2,11 < 0 and Z ′

2,11 < 0.
However, Z2,11 and Z ′

2,11 cannot be both negative because,
according to (16), the matrix Ẑ2 + Ẑ′

2 is positive definite
and hence its diagonal element Z2,11 + Z ′

2,11 is positive. Thus
inequalities (61) cannot hold true simultaneously, so our as-
sumption about the existence of six roots of equations (51)
and (52) is incorrect because it yields incompatible relations.
Therefore,

given |k|, in the magneto-optical medium–metal film–
isotropic “ordinary” dielectric structure, up to three SEWs
can emerge in each of the mutually opposite directions in the
interval ωa < ω < �LM , but the total number of forward- and
backward-propagating SEWs cannot be greater than five (Case
V).

Let a metal film be inserted into a homogeneous magneto-
optical medium. In this case Ẑ1 = Ẑ2 and Ẑ′

1 = Ẑ′
2 since

materials 1 and 2 are identical. It can be observed that then

Ẑ′
st = T̂ẐstT̂, (62)

where T̂ is matrix (7). Hence det Ẑ′
st = det Ẑst, wherefrom it

follows that forward- and backward-propagating SEWs occur
pairwise at the same frequency. Owing to (14)–(18) and (53),
the determinant of Ẑst can vanish at most thrice [60]. As a
result,

given |k|, forward- and backward-propagating SEWs guided
by a metal film embedded in a homogeneous magneto-optical
medium emerge pairwise, the frequencies of both SEWs are

equal, and the maximum total number of SEWs is six in the
interval ωa < ω < �LM (Case VI).

Reference [60] gives examples of the existence of the
maximum number of SEWs in one direction (e.g., forward)
in the structures where a metal film is between two different
magneto-optical media (structure 1), between isotropic “or-
dinary” dielectric and magneto-optical medium (structure 2),
and embedded in a homogeneous magneto-optical medium
(structure 3). Namely, four SEWs have been found in structure
1 and three SEWs in structure 2 and structure 3. Compu-
tations reveal that two backward-propagating SEWs exist
in each of structures 1 and 2, so that the total number of
SEWs in these structures reaches its maximum six and five,
respectively. An example of six branches of forward- and
backward-propagating SEWs in structure 1 is given in Fig. 3
(see Appendix E).

In structure 3 we find three backward-propagating SEWs
and frequencies coincide with those of their forward-
propagating counterparts (the corresponding figure just coin-
cides with Fig. 2 of Ref. [60]).

D. Dielectric film

Let an isotropic dielectric film of width h with dielectric
permittivity εdf > 0 and magnetic permeability μdf > 0 be
between magneto-optical media 1 and 2. SEWs guided by
dielectric films can be considered through the same relations
which were applied to the case of metal films but it is neces-
sary to replace μm and −|εm| by μdf and εdf in p [see second
of Eqs. (34)] and in the factors at the matrices Ẑ(TE) and Ẑ(TM)

(41).
We confine ourselves to the interval ω < �LD =

min(ωL,1, ωL,1, ωdf), where the limiting frequency ωdf of
bulk waves in the film is determined through the condition
ωdf = vdfk and vdf = c/

√
μdfεdf. The point is that the interval

ω < �LD can be viewed as a counterpart of the interval
ω < �LM where SEWs guided by the metal film are analyzed
since at ω < �LD, like in the metal film at ω < �LM , there
are no bulk waves and hence the appearance of waveguide
solutions is excluded. Therefore one can find out how the sign
of the dielectric permittivity affects the existence of SEWs.

The dispersion equations for forward- and backward-
propagating SEWs are similar to equations (51) and (52),

det(Ẑd + Ẑdf) ≡ det Ẑsd = 0, (63)

det(Ẑ′
d + Ẑdf) ≡ det Ẑ′

sd = 0, (64)

respectively, where the impedances Ẑd and Ẑ′
d are the same

as in (51) and (52), the matrix Ẑdf is arranged exactly like
Ẑmf (40), the subscript “sd” means “structure dielectric.” The
difference is that both ẐT E and ẐT M forming Ẑdf prove to
be positive-definite matrices because εdf > 0 and μdf > 0. In
consequence,

Ẑdf is a positive definite matrix at ω < �LD, (65)

unlike Ẑmf which is sign indefinite. At the same time the
matrix ∂Ẑdf/∂ω is negative definite, as is ∂Ẑmf/∂ω.

By virtue of the properties of Ẑd, Ẑ′
d, and Ẑdf each of

the eigenvalues λα and λ′
α , α = 1, . . . , 4, of the matrices Ẑsd

and Ẑ′
sd can vanish once, so each of equations (63) and (64)
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considered individually, like equations (51) and (52), can in-
dividually have up to four roots for |k| given.

Let us find the permissible total number of roots of (63) and
(64). In view of (16) and (65) the matrix Ĝsd = Ẑsd + Ẑ′

sd is
positive definite unlike its counterpart Ĝst (54), so the contrac-
tion of Ĝsd with an arbitrary vector is positive. Assume λα >

0, α = 1, 2, 3, and contract Ĝsd with the vector t of which
the components are ti = δi jkl e∗

1, je
∗
2,ke∗

3,l , i, j, k, l = 1, . . . , 4,
δi jkl is the antisymmetric unit tensor, eα, j , α = 1, 2, 3, are
components of the orthonormalized eigenvectors eα of Ẑsd,
i.e., t is such that e†

αt = 0, α = 1, 2, 3, and |e†
4t| = 1. We

obtain

t†Ĝsdt = λ4 +
4∑

α=1

λ′
α|e′†

α t|2 > 0 (66)

[cf. Eq. (55)], so the option where more than four eigenvalues
of Ẑsd and Ẑ′

sd would be negative is impossible because any
three eigenvalues can be excluded from t†Ĝsdt by the relevant
choice of t. Hence, (63) and (64) cannot have more than four
roots in total, and we conclude that

given |k|, in the structure formed of two different magneto-
optical media separated by a dielectric film, there can be at
most four forward- and backward-propagating SEWs in total
in the interval ω < �LD, although in each of the two mutually
opposite directions up to four SEWs can exist (Case VII).

Appendix E gives an example of the existence of four
SEWs for one direction (Fig. 4). Correspondingly SEWs do
not exist in the opposite direction.

When one of the half-infinite media is an anisotropic “or-
dinary” dielectric, the maximum total number of roots of
equations (63) and (64) is still four but each of these equa-
tions can have only three roots, like in the case of the metal
film, i.e.,

given |k|, in the magneto-optical medium–dielectric film–
anisotropic “ordinary” dielectric structure, up to three SEWs
can emerge in each of the mutually opposite directions in
the interval ω < �LD, but the total number of forward- and
backward-propagating SEWs cannot be greater than four
(Case VIII).

The maximum total number of SEWs changes when medium
1 is isotropic “ordinary” dielectric. It can be proved that in this
instance equations (63) and (64) can have at most two roots in
total, although each of them, if taken individually, can have
two roots (see Appendix F). In summary,

given |k|, in the magneto-optical medium–dielectric film–
isotropic “ordinary” dielectric structure, up to two SEWs
can emerge in each of the mutually opposite directions in
the interval ω < �LD, but the total number of forward- and
backward-propagating SEWs cannot be greater than two
(Case IX).

An example of the existence of two SEWs in one direction
is given in Appendix E (Fig. 5). Accordingly, none SEW
emerges in the opposite direction.

Let us bisect a homogeneous magneto-optical medium and
insert a dielectric film between the halves. In this case the ma-
trices Ẑsd and Ẑ′

sd satisfy relation (62), so equations (63) and

TABLE I. Maximum number of SEWs in different magneto-
optical structures (columns I–X correspond to Cases I–X considered
in Sec. III). The maximum number of SEWs propagating in each of
two mutually opposite directions (forward and backward) is given in
the row “f/b SEWs.” The maximum total number of forward- and
backward-propagating SEWs is given in the row “f+b SEWs.”

Maximum number of SEWs

I II III IV V VI VII VIII IX X

f/b SEWs 2 2 4 3 3 3 4 3 2 2
f+b SEWs 2 3 6 6 5 6 4 4 2 4

(64) have the same roots. Since the maximum total number of
their roots remains four, we conclude that

given |k|, forward- and backward-propagating SEWs guided
by a dielectric film embedded in a homogeneous magneto-
optical medium emerge pairwise, the frequencies of both
SEWs are equal, and the maximum total number of SEWs is
four in the interval ω < �LD (Case X).

There can exist up to two forward-propagating SEWs and
two backward-propagating SEWs and they emerge as if the
medium were reciprocal. An example of the structure support-
ing two pairs of SEWs is given in Appendix E (Example 4).

The above statements about the number of SEWs also
hold true when the film is an optically anisotropic dielectric
oriented in such a way that the plane XZ supports TE and
TM modes. The explicit expressions of the matrices Ẑ(TE)

and Ẑ(TM) forming Ẑdf change compared with the isotropic
version, but these changes do not affect those their properties,
which are used in the analysis of the roots of dispersion
equations.

IV. CONCLUDING REMARKS

We have established the maximum total number Mtot of
forward- and backward-propagating SEWs in structures con-
taining magneto-optical materials. In other words, given the
value |k| of the tangential wave number, the number of SEWs
propagating in one direction plus the number of SEWs prop-
agating in the opposite direction cannot exceed Mtot. The
number Mtot can be viewed as a characteristics of the structure
because it is dependent on the type of the structure but not
on specific values of material constants. For the same reason
the permissible maximum number M of SEWs propagating in
each of mutually opposite directions is also a characteristics
of the structure (M is the same for the forward and backward
directions).

It would be natural if Mtot = 2M was always fulfilled.
However, the nonreciprocity of magneto-optical materials re-
sults in a specific correlation between the permissible total
number of SEWs propagating in the mutually opposite direc-
tions. Namely, it has been found that, at a given a value |k| of
the tangential wave number, in most cases Mtot is less than the
sum of the permissible maxima of SEWs which can propagate
in each of the two directions, i.e., the typical option is that
Mtot < 2M.

Table I visually demonstrates the above peculiarity of Mtot.
In most cases the number in the row “f+b SEWs” is less than
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twice the number above it in the row “f/b SEWs.” As follows
from our analysis, this manifestation of the nonreciprocity is
of a general nature in the sense that it arises in magneto-optical
media of arbitrary crystallographic symmetry, regardless of
the specific values and frequency dependence of material con-
stants.

The maximum total number depends on where SEWs prop-
agate. For example, it has been shown that the maximum
number of SEWs propagating in each of the two opposite
directions in a magneto-optical medium–metal film–magneto-
optical medium structure is four if the magneto-optical media
are different but the maximum total number of forward- and
backward-propagating SEWs is six rather than eight (Case
III). The replacement of the metal film by dielectric one does
not change the maximum number of SEWs propagating in
one direction at frequencies less than the limiting frequency of
bulk modes in the film. There can still exist up to four SEWs
in each of the opposite directions but now the maximum
total number of SEWs propagating forward and backward
decreases to four (Case VII). This difference is a consequence
of different signs of the dielectric permittivity of films which
yields a difference in the properties of their impedances.

It has been proved that SEWs supported by a film embed-
ded in a homogeneous magneto-optical medium emerge in
forward- and backward-propagating pairs and the frequencies
of the waves in a pair are equal (Cases VI and X). Thus the
nonreciprocity does not show up and SEWs occur in the same
way as in reciprocal materials.

The total number of forward- and backward-propagating
SEWs and the number of SEWs in one direction in a particular
structure can be less than their maximal numbers. The per-
missible maximum number of SEWs emerges provided that
the magneto-optical effect is strong enough for the number
of SEWs to overcome the limit imposed by the real dielectric
permittivity and magnetic permeability of a magneto-optically
inactive dielectric. For instance, at most two SEWs, one in
each of the opposite direction, can exist on the interface be-
tween such a dielectric and metal whereas the magneto-optical
dielectric–metal interface supports up to three SEWs (Case
II), so that the magneto-optical effect has to give rise to an
additional wave. Computations for materials with specially
selected constants which were used in our previous papers
[59,60] as well as examples given in Appendix E confirm that
the total number of SEWs can reach the permissible maxima.
In particular, if Mtot = M, then Mtot SEWs can exist in one
direction and there is no SEW propagating in the opposite
direction (see Examples 2 and 3 in Appendix E).

We assumed that materials do not absorb electromagnetic
waves. Taking into account absorption makes the impedances
non-Hermitian, so a rigorous general analysis of the existence
problem for SEWs requires a different approach.

At the same time some conclusions about the influence of
absorption on the existence of SEWs can be drawn assuming
that absorption is weak. First of all we note that disregarding
absorption is a typical approximation in dielectrics where
absorption is really extremely small at frequencies below
certain critical threshold. The effect of absorption is more
significant in metals where losses are not extremely small.
However, if absorption is fairly weak, then it cannot increase
the maximum number of SEWs (see Appendix G). Apart from

this fact, through perturbation theory one can show that the
imaginary correction to the SEW frequency is of the first order
of smallness whereas the real correction is of second order, so
the shift of the SEW dispersion curve will be smaller than its
width.
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APPENDIX A

Let us insert an electromagnetic field {E(z), H(z)}ei(kx−ωt )

in the Maxwell equations. The result can be represented in the
form

1

i

dξξξ

dz
= T̂(ωψψψ + kĴφφφ), (A1)

−kĴtξξξ = ωννν, (A2)

where the vector ξξξ and the matrix T̂ are defined by Eqs. (2)
and (7), respectively, ψψψ = (−Dy By Bx Dx )t ,

φφφ =
(
Hz

Ez

)
, ννν =

(
Bz

Dz

)
, Ĵ =

(
Î
0̂

)
. (A3)

By expressing ψψψ , φφφ, and ννν in terms of ξξξ with the help of
(A2) and (3) we reduce (A1) to dξξξ/dz = iN̂ξξξ , where N̂ is
matrix (7), see the Appendix of Ref. [59] for more details.
Substituting (1) in these equations yields (4).

Expressions of the matrices Â, B̂, and Ĉ entering (6) are
given in the Appendix of Ref. [59]. These matrices and hence
the matrix T̂N̂ are Hermitian for any real frequencies. In
contrast, the impedances Ẑ and Ẑ′ defined by relations (11)
are Hermitian only in the interval ω < ωL [property (14)].
Indeed, for ω < ωL all four pα are complex, so, due to the
law of energy conservation, the time-averaged normal compo-
nent Pz = 0.5Re([E∗ × H]z) of the energy flux of modes (1)
vanishes necessarily for purely real k and ω. In particular, by
virtue of (2) and (10), Pz = 0.5(U†V + V†U) = 0 for a wave
field ξ̃ξξ+ = (U V)t at z = 0. By expressing V in terms of U we
find that U†(Ẑ − Ẑ†)U = 0, so Ẑ = Ẑ†.

APPENDIX B

According to Sec. III, dispersion equations for SEWs can
be cast into the form of the equalities to zero of the deter-
minants of n × n matrices. Let us denote here these matrices
by the symbols ẐF and ẐB regardless of structures. The ma-
trices ẐF and ẐB enter the dispersion equations for forward-
and backward-propagating SEWs, respectively, and are con-
structed from the impedances of the elements of the structure.
The value of n depends on the number of the boundary condi-
tions which, in turn, is directly proportional to the number of
interfaces in the structure under consideration (see Sec. III).

The analysis of roots of the equations det ẐF = 0 and
det ẐB = 0 is equivalent to the analysis of the vanishing of
the eigenvalues λi and λi+n, i = 1, . . . , n of ẐF and ẐB,

033513-9



A. N. DARINSKII PHYSICAL REVIEW A 106, 033513 (2022)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Schematic frequency dependence of the eigenvalues λi(ω), i = 1, . . . , 2n of the impedances corresponding to forward (i =
1, . . . , n) and backward (i = n + 1, . . . , 2n) propagating SEWs, where n is the number of eigenvalues of the impedance corresponding to SEWs
propagating in one direction (forward or backward). The eigenvalues and frequencies are assumed normalized, so that they are dimensionless.
Structures are marked by Roman numerals I–X following Sec. III and Table I. A dashed line ellipse with index of the type “1 − m” embraces
m curves λi(ω), i = 1, . . . , m passing through zero. A dash-dotted line ellipse with index of the type “q − 2n” embraces 2n + 1 − q curves
λi(ω), i = q, . . . , 2n not passing through zero. A label of the type “m, m + n” means that the eigenvalues λm(ω) and λm+n(ω) associated with
forward- and backward-propagating SEWs, respectively, coincide.

respectively. The properties of λi, i = 1, . . . , 2n stem from
those of the impedances discussed in Secs. II and III. Namely,
the eigenvalues are real and decrease monotonically with in-
creasing frequency in the interval confined from above by the
limiting frequency either �L or �LM or �LD (see Sec. III). All
λi > 0 in dielectrics as ω → 0. Some of the eigenvalues can
be negative in metals at the lower limit ωa of the frequency
interval (see Sec. III B) but we assume all them positive
at ω = ωa since this condition favors the existence of the
maximum of roots.

Figures 2(a)–2(h) depict schematically the behavior of
λi(ω) in the case where the total number of forward- and

backward-propagating SEWs is maximal. In Cases I and II
[Figs. 1(a) and 1(b)] n = 2 and the total number of eigen-
values is four. In the other Cases n = 4, so the total number
of eigenvalues is eight. Since the sequence of vanishing λi,
i = 1, . . . , 2n is arbitrary, for definiteness we assume that
the eigenvalues of ẐF (i = 1, . . . , n) pass through zero first.
The eigenvalues of ẐB (i = n + 1, . . . , 2n) vanish when the
permissible total maximum number of SEWs Mtot � 2n is
greater than the permissible maximum of SEWs M � n in one
direction [Figs. 2(b)–2(e) and 1(h)].

The maximum number of vanishing eigenvalues is the
same in Cases III and IV (see Sec. III C), so the frequency
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dependence of eigenvalues for these two cases are shown in
the same figure [Fig. 2(c)]. For analogous reason, Fig. 2(f)
corresponds to Cases VII and VIII (see Sec. III D).

APPENDIX C

In bianisotropic materials the Onsager reciprocity rela-
tions reduce to ε̂εε = ε̂εεt , μ̂μμ = μ̂μμt , and κ̂κκ = −κ̂κκ∗, see Eq. (3)
and Refs. [5,6]. They are fulfilled provided that the
medium features natural optical activity but is not magneto-
optically active and do not possess the magnetoelectric effect
[5,6,64,65,78]. Having computed explicitly the matrix N̂ and
taken into account the fact that ε̂εε and μ̂μμ are purely real and κ̂κκ

is purely imaginary, we find that

N̂(−) = −ŜN̂∗Ŝ, (C1)

where the matrix Ŝ is given by the first of Eqs. (25). Hence,

p(−)
α = −p∗

α, ξξξ (−)
α = Ŝξξξ ∗

α, α = 1, . . . , 4, (C2)

so that, by virtue of (9) and (14),

Ẑ(−) = P̂Ẑt P̂, Ẑ(−)′ = P̂Ẑ′t P̂, (C3)

where P̂ is given by the second of Eqs. (25) [cf. Eqs. (24) and
(26)–(28)].

In view of (C2) and (C3) the reciprocity shows up in the
fact that forward- and backward-propagating SEWs have alike
frequencies at a given |k|. For instance, in bicrystals formed of
two materials possessing natural optical activity, the disper-
sion equations (31) and (32) turn out to be identical because,
due to (C3), Ẑ′

b = Ẑt
b.

If the bicrystal consists of a naturally optically active
medium 1 and magneto-optically active medium 2, then, due
to (28) and (C3), Ẑ′

b = Ẑt
1 + Ẑ2 [cf. Ẑ′

b in Eq. (32)] and our
analysis of equations (31) and (32) reveal that they can have
in total up to four roots.

In optically anisotropic “ordinary” media (κ̂κκ = 0) the ma-
trix N̂ is purely real, so that (C1) reduces to N̂(−) = −ŜN̂Ŝ.
This equality looks precisely like (24) but N̂ in (24) is a
complex-valued matrix and this fact ultimately leads to the
difference in the SEW propagation in magneto-optical mate-
rials and “ordinary” materials. Indeed, since N̂ is purely real,
in view of (9) we have ξξξα+2 = ξξξ ∗

α , α = 1, 2, and therefore

Ẑ′ = Ẑt . (C4)

When a medium with natural optical activity is joined to an
“ordinary” dielectric a bicrystal is formed in which the On-
sager reciprocity relations hold true. Equalities (C3) and (C4)
allow one to verify that in this case SEWs indeed propagate
identically forward and backward.

APPENDIX D

Let us analyze the roots of Eqs. (31) and (32) at a given
value of |k| in the interval ω < �L = min(ωL,1, ωL,2). First of
all, we note that Ẑb and Ẑ′

b as well as

Ĝb = Ẑb + Ẑ′
b = Ĝ1 + Ĝ2, (D1)

where

ĜJ = ẐJ + Ẑ′
J , J = 1, 2, (D2)

possess properties (14)–(18). Correspondingly, the eigenval-
ues λα , α = 1, 2, of Ẑb and the eigenvalues λ′

α , α = 1, 2, of
Ẑ′

b behave in the range ω < �L as follows:

Im(λα ) = Im(λ′
α ) = 0, α = 1, 2, (D3)

λα > 0, λ′
α > 0, α = 1, 2 at ω → 0, (D4)

λα and λ′
α, α = 1, 2, monotonically decrease

with increasing ω.
(D5)

Hence, an eigenvalue can vanish only once, so each of equa-
tions (31) and (32) has at most two roots.

Represent Ĝb (D1) in the form

Ĝb =
2∑

α=1

(λαeα ⊗ e∗
α + λ′

αe′
α ⊗ e′∗

α ), (D6)

where eα and eα , α = 1, 2, are the orthonormalized eigenvec-
tors of Ẑb and Ẑ′

b, respectively, and the symbol ⊗ stands for
the dyadic product. In view of (16) the matrix Ĝb is positive
definite at ω < �L. Therefore at least two eigenvalues of four
λα and λ′

α must stay positive at ω < �L. Indeed, the positive
definiteness of Ĝb implies that the contraction of Ĝb with any
vector is positive. Assuming λ2 > 0 and multiplying Ĝb from
both sides by the eigenvector e1 of Ẑb we obtain that

e†
1Ĝbe1 = λ1 +

2∑
α=1

λ′
α|e†

1e′
α|2 > 0. (D7)

This inequality cannot hold true unless at least one eigenvalue
of λ1, λ′

1 and λ′
2 is positive.

The fact that at most two of four eigenvalues λα and λ′
α

can be negative means that equations (31) and (32) can have
at most two roots in total. For instance, if (31) has two roots,
then (32) has no roots. If (31) is known to have one root, then
(32) can have not more than one root.

APPENDIX E

In examples demonstrating the occurrence of the permissi-
ble maximum number of forward- and backward-propagating
SEWs we can use “model” materials provided that their mate-
rial constants secure the validity of properties of impedances.
These properties are satisfied provided that in dielectrics
∂ (ωε̂εε)/∂ω and ∂ (ωμ̂μμ)/∂ω are positive-definite matrices. The
tensors ε̂εε and μ̂μμ are Hermitian in magneto-optical materials
and purely real in magneto-optically inactive ones (“ordi-
nary” dielectrics). The dielectric permittivity and magnetic
permeability of metals must fulfill the conditions listed in the
beginning of Sec. III B.

Below we assume that the geometry of propagation relative
to the coordinate system XY Z is as described in Sec. II. The
quantities in Figs. 3–5 are normalized to the frequency ω0 =
1.2π × 1015 Hz, which corresponds to the wavelength λ0 =
0.5 μm in the vacuum, and to k0 = 2π/λ0.

Example 1. Let a magneto-optical material be characterized
in the coordinate system XY Z by the dielectric permittiv-
ity with nonzero components ε11 = ε22 = 5, ε33 = 4, ε12 =
−ε21 = 4.2i. The magnetic permeability is μ j j = 1, j =
1, 2, 3. Samples 1 and 2 of this material are rotated through the
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FIG. 3. Four branches of forward-propagating SEWs (lines 1–4)
and two branches of backward-propagating SEW (lines 5 and 6)
guided by a metal film inserted between two different magneto-
optical media. Frequencies of two fast forward SEW (lines 3 and
4) practically merge with each other and also with line �LM (|k|)/ω0.

angle 20◦ anticlockwise and clockwise, respectively, around
the axis X . As a result, their dielectric permittivities turn out
to be different in the XY Z frame. Afterwards we bisect them
along the plane perpendicular to the axis Z and put a metal-
lic film between the upper half of medium 1 and the lower
part of medium 2. The thickness of the film is 30 nm. The
dielectric permittivity of the film is described by the Drude
formula εm = 1 − ω2

p/ω
2, where ωp = 1.15ω0, and its relative

magnetic permeability equals 25.
In this structure we find four forward-propagating SEWs

and two backward ones (Case III, see Fig. 3. The frequencies
of two fast forward SEWs practically merge, so they are
shown as one dot-dashed line (line 3, 4).

Example 2. Let a magneto-optical material be characterized
in the coordinate system XY Z by the dielectric permittivity
and magnetic permeability with nonzero components ε11 =
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FIG. 4. Four branches of SEWs guided in one direction by an
isotropic dielectric film inserted between different magneto-optical
media (lines 1–4). Line 5 shows the limiting frequency �LD = ωL1,L2

as a function of k.
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FIG. 5. Two branches of SEWs (lines 1 and 2) guided in
one direction by an isotropic dielectric film inserted between in
a magneto-optical medium and an isotropic “ordinary” dielectric.
There are no SEWs in the opposite direction. Line 3 is �LD(|k|)/ω0.

ε22 = 5, ε33 = 4, ε12 = −ε21 = 4.2i and μ j j = 1, j = 1, 2, 3,
μ12 = −μ21 = 0.85i. Two samples 1 and 2 of this material are
rotated about the X axis through an angle of 20◦ anticlockwise
and clockwise, respectively, so that they have different ma-
terial constants with respect to the coordinate system XY Z .
Afterwards we bisect each of the samples along a plane
perpendicular to the Z axis, take the upper half of sample
1 and the lower half of sample 2 and insert between them
the 0.5-μm-thick dielectric film with dielectric permittivity
εdf = 4.053. The value of εdf is chosen such that the limiting
frequency ωdf = 0.79ck of bulk waves in the film is slightly
greater than the limiting frequency ωL1 = ωL2 = 0.7895ck of
bulk waves in the magneto-optical medium for the direction
along the axis X .

Our computations reveal that four SEWs exist in the pos-
itive direction of the X axis (Fig. 4) whereas, in accordance
with a statement proved in Sec. III D (Case VII), no SEWs
emerge in the negative direction.

Example 3. Let us replace the lower part of the structure
used in Example 2 by the “ordinary” dielectric with dielectric
permittivity ε11 = 5, ε22 = 4, ε33 = 4. The dielectric film of
thickness 1 μm is of the same material as in Example 2. In
this case the maximum total number of SEWs is two, since the
dielectric supports TE and TM modes in the plane XZ (Case
IX). We find that these two SEWs exist only for the forward
direction (Fig. 5).

Example 4. A sample of the magneto-optical material de-
scribed in Example 2 is rotated around the axis X and bisected
along a plane perpendicular to the axis Z . The dielectric film,
the same one as in Example 2, is inserted between the two
halves, so one has a structure where a dielectric is embedded
in a homogeneous magneto-optical material. Computations
reveal that in total four SEWs exist, i.e., two forward- and
two backward-propagating ones, as it should be in accor-
dance with Sec. III D (Case X). We omit the corresponding
figure because it would be very similar to Fig. 5. Each of
lines 1 and 2 in Fig. 5 reproduces fairly accurately the disper-
sion dependence of a pair of SEWs propagating in mutually
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opposite directions. Line 3 in Fig. 5 reproduces accurately
the dependence �LD(k)/ω0 since in both cases �LD(k) is the
limiting frequency in the magneto-optical medium.

APPENDIX F

If medium 1 is an isotropic “ordinary” dielectric, then each
of equations (63) and (64) can have at most two roots. Indeed,
assuming, e.g., λ1 > 0 and contracting Ẑsd with the vector t =
(t1 t2 0 0)t orthogonal to e1, we obtain the inequality

t†Ẑsdt =
4∑

α=2

λα|e†
αt|2 = t′†(Ẑ1 + Ẑ′

df)t
′ > 0, (F1)

where t′ = (t1 t2)t . The contraction t†Ẑsdt is positive because
Ẑ1 (56) is a positive-definite matrix and Ẑ′

df is diagonal 2 × 2
matrix with elements ZT E

11 > 0 and ZT M
11 > 0. From (35) it

follows that at most two eigenvalues of Ẑsd can be negative,
so (63) can have at most two roots, which completes the
proof.

It can be shown that one of the eigenvalues λ′
α , α = 1, 2,

of the block Ẑ′
2 of Ẑd (48) is necessary negative in the vicinity

of �LD if (63) has one root. If (63) has two roots, then both
eigenvalues of Ẑ′

2 are necessary negative in the vicinity of
�LD.

The first statement is proved as follows. If (63) has one root
ω1, then, e.g., λ4 < 0 at ω > ω1. Representing Ẑ′

2 in the form
Ẑ′

2 = ∑2
1 λ′

αq′
α ⊗ q′∗

α , where q′
α , α = 1, 2, are the eigenvec-

tors of Ẑ′
2, and contracting Ẑsd with a vector t orthogonal to

e1, e2, and e3 we arrive at the inequality

t†Ẑsdt = t′†Ẑ1t′ + t†Ẑdft +
2∑

α=1

λ′
α|q′†

α t′′|2

= λ4|e†
4t|2 < 0, (F2)

where t′ = (t1 t2)t and t′′ = (t3 t4)t . The contractions t′†Ẑ1t′
and t†Ẑdft are positive because Ẑ1 and Ẑdf are positive-definite
matrices for ω < �LD. Hence at least one of two λ′

α must be
negative when ω > ω1 since otherwise the sum in (F2) could
not be negative.

Let (63) have two roots ω1 and ω2 > ω1. In consequence,
two of four λα and one of two λ′

α are negative for ω >

ω2, e.g., λ3, λ4, λ
′
1 < 0. The contraction of Ẑsd with a vec-

tor t orthogonal to e1, e2, and q = (0 0 q′
1,1 q′

1,2)t , where
q′

1,i, i = 1, 2, are the components of the eigenvector q′
1,

yields

t†Ẑsdt = t′†Ẑ1t′ + t†Ẑdft + λ′
2|q′†

2 t′′|2

=
4∑

α=3

λα|e†
αt|2 < 0, (F3)

so we conclude that in fact both eigenvalues of Ẑ′
2 must be

negative at ω > ω2.
Analogous conditions on the eigenvalues of the impedance

Ẑ2 in Ẑ′
d (50) must be fulfilled in order for equation (64)

to have one or two roots, so equations (63) and (64) can
have in total three or four roots provided that more than two
eigenvalues of Ẑ2 and Ẑ′

2 are negative in the interval ω < �LD.
However, at most two of four eigenvalues of Ẑ2 and Ẑ′

2 can
be negative because Ẑ2 + Ẑ′

2 is a positive-definite matrix (the
proof is similar to that given in Sec. III A regarding the eigen-
values of the matrix Ẑb and Ẑ′

b). Therefore (63) and (64) can
have in total at most two roots, which completes the proof.

APPENDIX G

Weak absorption in metals cannot increase the maximum
number of SEWs. For definiteness, let us consider a magneto-
optical dielectric metal structure (Case II). The permissible
maximum could be increased by absorption provided that
three SEWs exist under the no-loss approximation, i.e., the
eigenvalues λ1, λ2, λ3 vanish [see lines 1–3 in Fig. 2(b)], and
the eigenvalue λ4 (line 4) is only slightly greater than zero in
the neighborhood of �LM .

By differentiating Ẑm (35) as well as Ẑdm and Ẑ′
dm in

Eqs. (36) and (37) with respect to the real dielectric permit-
tivity εm of the metal we find that

∂Ẑdm

∂εm
and

∂Ẑ′
dm

∂εm
are negative definite matrices, (G1)

so, using spectral decompositions of Ẑdm and Ẑ′
dm, one can

prove that ∂λi/∂εm �= 0, i = 1, . . . , 4 (to be more precise,
∂λi/∂εm < 0).

Hence we could make λ4 vanish at ω < �LM by changing
just the real εm, obtaining thereby four SEWs in a nonabsorb-
ing structure rather than three. Therefore, a new SEW can
emerge thanks to weak absorption only if the number of SEWs
under no-loss conditions is less than the maximum.

Note that the derivative of Ẑ f (40) with respect to εm and
hence the derivatives of Ẑst (51) and Ẑ′

st (52) (see Sec. III C)
are negative definite matrix. Therefore the above arguments
also apply to structures containing metal films.
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