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Spatial light modulation is important for many scientific and industrial applications. The spatial light mod-
ulator and optical data projector both rely on precisely configurable optical elements to shape a light beam.
Here we explore an image-projection approach which does not require a configurable beam-shaping element.
We term this approach ghost projection on account of its conceptual relation to computational ghost imaging.
Instead of a configurable beam shaping element, the method transversely displaces a single illuminated mask,
such as a spatially random screen, to create specified distributions of radiant exposure. The method has potential
applicability to image projection employing a variety of radiation and matter wave fields, such as hard x rays,
neutrons, muons, atomic beams, and molecular beams. Building on our previous theoretical and computational
studies, we here seek to understand the effects, sensitivity, and tolerance of some key experimental limitations of
the method. Focusing on the case of hard x rays, we employ experimentally acquired masks to numerically study
the deleterious effects of photon shot noise, inaccuracies in random-mask exposure time, and inaccuracies in
mask positioning, as well as adapting to spatially nonuniform illumination. Understanding the influence of these
factors will assist in optimizing experimental design and work towards achieving ghost projection in practice.
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I. INTRODUCTION

Speaking of “building signals out of noise” is not neces-
sarily a contradiction in terms. This notion underpins both
classical ghost imaging [1–3] and random-basis decomposi-
tion [4], which leads to the related idea of ghost projection [5].
The key concept is that an ensemble of spatially random
masks may be illuminated, with uniform or nonuniform expo-
sure times, to generate an arbitrary desired spatial distribution
of radiant exposure [5,6]. The arbitrariness of the resulting
spatial distribution is limited by the highest spatial frequencies
in the illuminated masks and a constant additive offset or
pedestal.

The ensemble of illuminated random masks may be gen-
erated by transversely scanning a single random mask [6].
A single nonrandom mask may also be employed, e.g., us-
ing a mask fabricated to be orthogonal under transverse

translation [7]. Interestingly, as we shall argue, there are cir-
cumstances in which random masks may be more efficient
than orthogonal masks for ghost projection.

Ghost projection may be viewed as a reversed form of
classical computational ghost imaging (CCGI). In particular,
CCGI [1] reconstructs an unknown sample transmission func-
tion by sequentially interrogating that sample using a set of
illuminated masks, and then collecting the total transmission
(bucket signal) for each mask. A reflection geometry is also
possible, but for clarity we henceforth refer only to the trans-
mission case. The bucket signals can be correlated with the
known masks to reconstruct the transmission function of the
sample. Conversely, ghost projection creates a desired time-
integrated transmission pattern by sequentially illuminating
a set of suitable masks [5,6]. Here the mask exposure times
are analogous to bucket signals. Thus, rather than bucket sig-
nals being measured to determine an unknown transmission
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function in CCGI, a desired known time-integrated transmis-
sion function is shaped by specifying mask exposure times in
ghost projection.

The ghost-projection concept sidesteps the need to have a
precisely configurable dynamic beam-shaping element. Con-
figurable elements are the key concept underlying spatial
light modulators (SLMs) and optical data projectors in the
visible-light regime, but also the key limitation to extending
SLMs and data projectors to other regimes [8–10]. Along
similar lines, ghost projection has no need for a precisely con-
figured static beam-shaping element (or elements), which is
the main idea behind mask-based projection lithography. The
above examples suggest that considerable flexibility might
arise, from not needing a precisely configurable—or precisely
configured—beam-shaping element. In particular, ghost pro-
jection opens the possibility of data projectors using matter
and radiation wave fields for which such projectors do not
exist, or pushing mask-based lithography into such regimes.
Fields for which ghost projection might in future be employed
include hard x rays [11], gamma rays, muon beams [12,13],
molecular beams [14], atom beams [15], atomic lasers [16],
and neutron beams [17].

It is worth briefly comparing some of the ideas in the
preceding paragraph, with what has already been achieved
in pushing lithography and configurable spatial modulators
beyond the visible-light and extreme-ultraviolet realms. X-
ray lithography requires one to account for the proximity
effect [18,19], whereby the effects of coherent free-space
diffraction—between the exit surface of the mask and the
entrance surface of the projection substrate—cannot be ne-
glected in mask design. The problem becomes one of inverse
inline holography [20], with the lithographic mask needing to
be the inline hologram that leads to a specified distribution
of radiant exposure over the substrate. A number of schemes,
in which masks are designed to contain in-built compensa-
tion for the proximity effect, have shown significant promise
in short-wavelength photon lithography [18,19]. Interference
lithography has also been pursued with some success in
short-wavelength regimes [21]. High-resolution mask-based
lithography and configurable modulators in the neutron, ion,
molecular-beam and atomic-beam regimes, by way of com-
parison, appear to be less well developed. Similarly, while
impressive advances continue to be made in configurable-
spatial-modulator technology [9,10], it remains challenging to
adapt the existing technology beyond the visible-light regime,
for example, to the extreme ultraviolet and shorter-wavelength
domains. Atom-beam lithography has been pursued using op-
tical and magnetic beam shaping [22,23]. In the context of
the single-configured-mask lithographic or configurable-mask
spatial-modulator strategies indicated here, ghost projection
may be viewed as an alternative whose potential utility is
worth exploring, in our view, in the regimes listed at the end
of the previous paragraph.

The longer-term objective of this work is to practically
demonstrate ghost projection with radiation for which no
current straightforward projection mechanism exists. In ini-
tial steps towards this goal, we consider hard x rays as an
indicative example. In recent papers we explored a range
of techniques (combinations of randomly patterned illumina-
tions and exposure times) to achieve ghost projection, and

determined the most effective to be via numerical optimiza-
tion [5,6]. The present paper represents a next step towards the
longer-term goal. Having determined the method to combine
patterned illuminations to achieve ghost projection in theory,
here we explore some of the main experimental considera-
tions that will affect performance. Understanding the effects,
sensitivity, and tolerance of each experimental limitation will
enable the optimization of experimental design in the future.

We close this introduction with a brief overview of the
remainder of the paper. Section II outlines the main concepts
of ghost projection, by summarizing some key findings from
our two preceding papers on this topic. Section III considers
two types of realistic spatially random mask for hard x rays,
metallic foam and sandpaper. These masks are considered to
be realistic because they are experimentally acquired, rather
than being computationally modeled (as was the case in our
previous papers). The former mask (metallic foam) has the
contrast of its spatially random bubble network enhanced by
propagation-based phase contrast, i.e., the sharpening effects
of Fresnel diffraction in the slab of free space between the
mask and the exposure plane [24–26]. The latter mask, the
sandpaper, primarily employs attenuation contrast to gener-
ate its spatially random pattern. Having characterized the
relevant statistical properties of the experimentally obtained
images of our two masks in Sec. III, Sec. IV studies from
a computational perspective how these masks may be em-
ployed for x-ray ghost projection. We focus here on several
practical issues. These issues include the relative efficacy of
different schemes for ghost projection, the deleterious effects
of shot-noise statistics, errors in the mask exposure time,
and the deleterious effects of errors in transverse positioning.
We also explore the ability of ghost projection to adapt to
spatially nonuniform illumination, e.g., a Gaussian source
intensity profile. In all of these studies, both the ghost projec-
tion pedestal and signal-to-noise ratio are seen to give useful
metrics for the performance of the ghost projections. The key
outcome of this section is the development of several rules
of thumb that we believe to be important for future experi-
mental realizations of ghost projection. We discuss some of
the broader implications of our work, together with possible
avenues for future research, in Sec. V. Concluding remarks
are made in Sec. VI.

II. GHOST PROJECTION

A generic scheme for ghost projection is sketched in
Fig. 1(a). Here a radiation source illuminates a mask, which
may be transversely displaced to a number of specified po-
sitions, in order to create a desired distribution of radiant
exposure over the projection plane [5,6]. The mask may be
spatially random, or manufactured to yield patterns that are
orthogonal under mask translation. The illumination time for
each mask can be taken to be fixed, although a more general
case is to allow the exposure times to be chosen differently for
each transverse position of the ghost-projection mask. The key
problem of ghost projection, for the single-mask scheme in
Fig. 1(a), is to select the transverse mask locations (and, where
applicable, the mask exposure times) to be such that a desired
distribution I of radiant exposure is created over the projection
plane. The spatial distribution of radiant exposure is arbitrary,
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FIG. 1. Generic setup for ghost projection. (a) A radiation source
illuminates a single mask, which may be transversely displaced to a
number of specified positions in order to create a desired distribution
of radiant exposure over the projection plane. The mask may be
spatially random or manufactured to, e.g., yield patterns that are
orthogonal under mask translation. (b) Illustration of two or more
independently translatable masks which may also be employed for
ghost projection. This exponentially increases the number of avail-
able configurations, compared to the case of a single mask.

up to (i) a limiting spatial resolution that is dictated by the
highest spatial frequencies present in the intensity distribution
created by each mask over the projection plane and (ii) an
additive constant. In Fig. 1(b) we illustrate the possibility
of having two or more independently translatable spatially
random masks.1 This has the advantage of being linear in
experimental requirements to image each master mask, but
exponential in the number of configurations they can create.
Regarding this last point, it is a general feature of ghost
projection that, the larger the ensemble of linearly indepen-
dent masks from which a suitable subset can be chosen for
illumination, the more efficient the ghost projection can be.

We now give a brief overview of the relevant formalism for
ghost projection, as developed in Ref. [5]. Consider a discrete
representation of the desired image that we wish to project.
We denote this discrete representation by Ii j , where i ∈ [1, m]
and j ∈ [1, n] are integers that index the spatial extent of the
image. For this investigation, we enforce the image to be zero-
averaged (i.e., E[I] = 0, where E denotes expectation value)
and enforce a contrast of unity. We define the ghost projection
of this image as the following linear combination of random
masks:

Pi j ≡ R k
i j wk → Ii j + P̄Ji j . (1)

Here R k
i j is the discrete representation of the ensemble of

random masks, the integer k indexes the members of this
ensemble within the range [1, N], and wk are the nonzero
weights such that the above sum approaches the image Ii j ,

1As pointed out in footnote 2 of Ref. [5], the idea of stacking
multiple masks in the context of ghost projection is due to Kaye S.
Morgan (Monash University, Australia).

plus an offset that is equal to the average,

P̄ = Ji jPi j/(nm) = N ′E[w]E[R]. (2)

Above, the matrix Ji j is defined to have every element equal
to unity and N ′ is the number of random masks that are
prescribed nonzero weights. Furthermore, the units of the
pedestal P̄ is in terms of the contrast, which we remind the
reader is enforced to be unity. In the above and the follow-
ing equations, we employ the Einstein summation convention
in which repeated upper and lower indices are implicitly
summed over. Thus, for example, in Eq. (1) the index k is
summed over all members of the mask ensemble. Last, we
note that the weights wk will be proportional to the exposure
time for the kth random mask.

We can render Eq. (1) in matrix form by vectorizing our
random masks and setting each member equal to the columns
of a certain matrix M. Further, we can absorb the pedestal
P̄ into the left-hand side2 by subtracting the average of each
column,

M = [Ri j1 − Ri j1; Ri j2 − Ri j2; . . . ; Ri jN − Ri jN ]. (3)

With this, we can now express our ghost projection as

M �w → �I, (4)

where �I is the vectorized version of our desired image. With
this representation of ghost projection, we can now numeri-
cally seek the weights that will achieve

arg min‖M �w − �I‖, (5)

subject to the constraint of nonnegative weights

wk � 0, (6)

which correspond to physical exposures. A variety of
numerical-optimization approaches can be employed to deter-
mine the weights wk . In this investigation, we use nonnegative
least squares (NNLS) to seek the ghost projection that satisfies
Eqs. (5) and (6).

Simulations of ghost-projection superpositions, consisting
of numerically generated masks in different transverse po-
sitions, were provided in our previous two papers on ghost
projection [5,6]. We refer the reader to these previously pub-
lished simulations for an illustration of the application of the
theory that has just been outlined, albeit in an artificially
simple context that does not directly utilize experimental data.

III. EXPERIMENTAL RANDOM MASKS

A fundamental parameter that can be tuned in ghost pro-
jection is the set of patterned illuminations available for linear
combination to produce the desired ghost-projection image
via Eq. (1). Since the objective in this paper is to under-
stand the experimental aspects of ghost projection, although

2Note that we need not necessarily absorb the pedestal P̄ into the
left-hand side (which, in effect, zero-averages the random masks
too). We could instead absorb the pedestal into the image by arbi-
trarily selecting an acceptable pedestal and numerically optimizing
to within this constraint.
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parameter exploration here is by simulation, we employ sets
of masks generated from experimental x-ray images. We have
opted to utilize commonly available materials that could serve
as good candidates for random pattern generation under hard-
x-ray illumination, namely, (i) a metallic Ni foam slab and (ii)
a 120 grit sandpaper sheet.

We have taken large overview (or master mask) images of
these random-mask materials and assumed that the ghost pro-
jection field of view (FOV) is a small subset of this overview.
The FOV can be scanned in both horizontal and vertical di-
rections to produce sets consisting of thousands of possible
patterned illuminations. In both of the two cases reported
below, images were recorded in the near field, namely, for suf-
ficiently short mask-to-detector distances that the morphology
of the registered mask image bears a direct resemblance to the
projected structure of the mask.

The master-mask image of the metallic (Ni) foam is pre-
sented in Fig. 2(a). This was recorded at beamline ID19 of
the European Synchrotron Radiation Facility (ESRF), using a
26 keV monochromatic x-ray beam. For further details regard-
ing the setup of the beamline at the time of the experiment, see
Weitkamp et al. [27]. The detector employed was a FReLoN
(Fast Readout Low Noise) detector developed at ESRF. This
is a 14-bit dynamic range CCD camera, with a 2048 × 2048
pixel chip and 14 μm pixel pitch. A 0.01 s exposure time was
used with a 750 μm LuAG:Ce single-crystal scintillator to
convert x rays to visible light and optics yielded an effective
pixel pitch of 30 μm. An example 40 × 40 pixel subset of this
master mask used for ghost projection simulation is presented
in Fig. 2(d). Figures 2(g) and 2(j) present a histogram of
the normalized transmission values and the Fourier power
spectrum of the Ni foam master mask, respectively. The power
spectrum was calculated by taking the two-dimensional fast
Fourier transform (FFT) [28] of the Ni foam master mask,
and then azimuthally averaging the squared modulus of the
resulting Fourier-space distribution.

The master-mask image of the 120 grit sandpaper is pre-
sented in Fig. 2(b). This was recorded on a custom-built
x-ray system at the Australian National University (ANU)
CTLab, using a Hamamatsu microfocus x-ray source with
a W transmission target. The x rays generated by a 60 kV
accelerating voltage originate from a 2–3 μm diameter focal
point and were filtered by 0.5 mm Al. The sandpaper was
placed approximately 9 mm from the source. A 4343CB Var-
ian a-Si Flat Panel was used to detect the x rays. This has
a 3040 × 3040 pixel array with a 0.139 mm pixel pitch and
uses a CsI scintillator. The detector was placed 315 mm from
the source and a 32 s exposure time was used. The image
recorded therefore had an effective pixel pitch of 4 μm. The
image presented in Fig. 2(b) has been binned 3 × 3. An ex-
ample 40 × 40 pixel subset of this master mask used for ghost
projection simulation is presented in Fig. 2(e). Figures 2(h)
and 2(k) present a histogram of the normalized transmission
values and the Fourier power spectrum of the sandpaper mas-
ter mask, where the power spectrum was calculated in the
same fashion as for the Ni foam mask.

In order to reasonably simulate employing both the Ni
foam and sandpaper masks in the same experimental setup,
an imaging-energy correction was applied to the sandpaper
transmission values in postprocessing to make them consistent

with the imaging energy used to obtain the Ni foam transmis-
sion values. Specifically, this involved raising the transmission
values of the sandpaper master mask to the power of 2.04.

To investigate the effect of employing more than one mas-
ter mask, the metallic foam and sandpaper master masks were
placed sequentially to create a consecutive-master mask. This
gives insight into the effect of having multiple length scales
present in the resulting random masks. Moreover, the rela-
tively fine and coarse speckles are independently translatable,
leading to exponentially more possible unique FOVs. Finally,
the attenuation of combined masks should enable sharper,
higher-contrast speckles which we hope should reduce the
pedestal. For the consecutive-masks case, in order to make
the metallic foam speckles and the 120 grit speckles on the
same physical scale (originally 30 μm/pixel and 4 μm/pixel,
respectively) the sandpaper master mask was binned from an
original size of 3040 × 3040 down by a factor of 7 (i.e., a
square of 7 × 7, or 49 pixels was averaged into one 28 μm
pixel). This is as close to the 30 μm pixel pitch of the foam
image achievable, without resorting to interpolation. This
yielded a 434 × 434 sandpaper master mask, which was sub-
sequently cropped to 400 × 400. The 400 × 400 sandpaper
mask was then tiled on an 800 × 800 FOV in Fig. 2(c). A
subset of this can be seen in Fig. 2(f). A histogram of the
normalized transmission values and power spectrum of the
consecutive master mask is presented in Fig. 2(i) and 2(l),
respectively.

A summary of mask properties including average trans-
mission, variance, peak frequency and weighted average
frequency plus or minus one standard deviation is presented
in Table I. This table also includes entries for delroughness, a
quantity that will be introduced in Eq. (13) below.

Free-space propagation effects [24–26,29,30] are inher-
ently accounted for when the projection plane is placed in
the same plane as the mask-imaging plane. Such effects may
be termed “propagation-based phase contrast,” since the local
concentration or rarefaction of energy density upon free-space
travel converts phase variations into corresponding intensity
variations [11]. This same effect has also been denoted as
“out-of-focus contrast” [31] and can be thought of as the
local focusing or defocusing of radiation or matter waves
as they propagate. Propagation-based phase contrast is par-
ticularly apt for boosting the fine spatial detail in a speckle
mask, since, in the near-field regime where the Fresnel num-
ber3 [32] is appreciably greater than unity and the degree of
spatial coherence is sufficiently high, the measured contrast
is proportional to the Laplacian of the prepropagation phase
map [11,26,29]. Bearing this phase-contrast effect in mind,
it becomes clear that, when the projection plane is longitudi-
nally displaced along the optical axis relative to the imaging
plane, this distance should be accounted for when consider-
ing the distribution of radiant exposure that the masks will

3The Fresnel number NF may be defined as NF = �2/(λ�), where
(i) � is the smallest transverse length scale that is present to a nonneg-
ligible degree in the complex wavefield amplitude at the exit surface
of the mask, (ii) λ is the wavelength or de Broglie wavelength of the
radiation or matter waves, respectively, and (iii) � is the propagation
distance from the exit surface of the mask to the projection plane.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 2. (a–c) Ni foam, 120 grit sandpaper and consecutive Ni foam and sandpaper master masks. The scale bars are 3 mm (30 μm/pixel),
1.248 mm (12 μm/pixel), and 2.4 mm (30 μm/pixel), respectively. (d–f) 40 × 40 field of view (FOV) used to perform ghost projection sampled
from the master masks (a–c). Scale bars are 150 μm, 60 μm, and 150 μm, respectively. (g–i) Histogram of transmission coefficient of (a)–(c).
(j–l) Angularly integrated two-dimensional Fourier power spectrum corresponding to panels (a)–(c), expressed as a function of dimensionless
radial spatial frequency κr .

create. For the purposes of this preliminary investigation, the
effect of propagation-based phase contrast [24–26,29,31] for
the consecutive masks is ignored. Similar remarks apply to
penumbral blurring effects [33] associated with a finite source
size.

We close this section by expanding on the previously
mentioned point that, for both the synchrotron-source and
laboratory-source x-ray experiments, the mask measurements
were taken in the near-field regime. This corresponds to the
Fresnel number NF being significantly greater than unity.
Moreover, for our masks the projection approximation [11]
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TABLE I. Properties of Ni foam, 120 grit sandpaper, and consecutive master masks. Note that the definition of delroughness is given in
Eq. (13) whereby the values quoted here are taken for the entire masks expressed in Fig. 2(a)–2(c). Moreover, these values are typical only of
what we might expect from a filtered set of sub-FOVs of these masks when employed for any particular ghost projection.

Mask Ni foam 120 grit sandpaper Consecutive

E[R] 0.5091 0.5280 0.2724
Var[R] 0.0489 0.0072 0.0155
Delroughness D 0.0139 0.0022 0.0054
Mode[κr] [cyc./pix.] 0.0762 0.0570 0.0375

E[κr] ± √
Var[κr] [cyc./pix.] 0.0907 ± 0.0679 0.0853 ± 0.0610 0.0956 ± 0.0758

is clearly valid. Such criteria ensure that the morphology of
the measured spatially random mask images bears direct (i.e.,
spatially local) resemblance to the projected complex poten-
tial of the mask, with the said projection being taken in the
direction of the optical axis. This condition is not necessary,
and in principle our method could also be employed using
intermediate-field or far-field speckle, namely, speckle fields
for which the Fresnel number is on the order of unity or much
less than unity, respectively.

IV. SIMULATIONS

Using the experimentally acquired random masks, we
numerically optimize ghost projection in a noise-free envi-
ronment, and then simulate the influence of several noise
contributions. These noise contributions are (i) Poisson
noise associated with the finite number of radiation quanta
streaming through the ghost-projection system, (ii) exposure-
duration noise in the experimental realization of a shutter, and
(iii) translational perturbations in the transverse positioning of
the random masks.

A. Experimental noise

1. Poisson noise

Poisson noise was included in the following manner:

Pi j = JkP̂(λwkRi jk ), (7)

where P̂ denotes a quantity that is Poisson distributed, wk

are our numerically derived nonnegative weights which corre-
spond to random-mask exposure times, Ri jk is a random mask
and λ is the number of photons per pixel. For this investiga-
tion, we employ a value of λ = 10 000 photons to contribute to
the image contrast. Assuming a perfect or near-perfect random
mask reconstruction, the dominant contribution to Poisson
noise is typically the pedestal which deposits photons without
contributing to the contrast of the ghost projection. With this
approximation, we can say that the effect of Poisson noise is

JkP̂(λwkRi jk ) → (λIi j + λP̄) ±
√

λP̄, (8)

where we have stated this to plus or minus one standard
deviation.

2. Exposure noise

Exposure noise, namely, the fluctuations in exposure time
that will be present in any experimental realization of ghost

projection, can be accounted for via

Pi j = P̃(wk )R k
i j , (9)

where P̃ denotes a quantity that is normally distributed such
that P̃(wk ) has an expectation value of the exposure wk

and a corresponding variance σ 2
w, i.e., E[P̃(wk )] = wk , and

Var[P̃(wk )] = σ 2
w, and R k

i j are our random masks. Assuming a
perfect or near-perfect random-mask reconstruction, exposure
noise is well described by

P̃(wk )R k
i j → (Ii j + P̄) ±

√
σ 2

wN ′Var[R], (10)

to one standard deviation, where N ′ is the number of nonzero
weights and Var[R] is the variance of the random mask values.
For the purposes of this investigation, we employ an exposure
standard deviation of σw = 1/100, which is well shy of typ-
ical visible-light shutter speeds but reflects the difficulties of
controlling high-energy radiation.

3. Translational noise

Translational noise is the error that arises in physically
realigning the random masks to the positions in which they
were imaged. This can be accounted for via

Pi j = wkR̃ k
ĩ j̃ , (11)

where wk are the numerically derived exposure times and
R̃ k

ĩ j̃
are the interpolated random masks at the perturbed query

points which are Gaussian distributed, i.e., ĩ j̃ = P̃(i)P̃( j) has
an expectation value of the position i j and a corresponding
variance σ 2

i j in each of the i and j directions. Assuming a
perfect or near perfect starting representation of the desired
image, the effect of translational noise is well approximated
by the first-order expression

wkR̃ k
ĩ j̃ → (Ii j + P̄) ± σi jwkD

k, (12)

stated to plus or minus one standard deviation, where

D k ≡
√

Var
[
∂iR k

i j + ∂ jR k
i j

]
(13)

is a quantity we call delroughness, so named as roughness may
be defined as the standard deviation of a surface profile [34]
and delentropy is the entropy of the gradient field [35], ∂i is
the partial derivative in the x-direction index i and similarly
for ∂ j in the y-direction index j. Note that the variance stated
here is taken over the spatial domain i j and the mask index k
is summed over. The derivation of this result is carried through
in greater detail in the Appendix.
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When numerically perturbing the random masks, a cubic
spline was fitted for the purposes of interpolation. To estimate
a realistic range for perturbation values, we consulted the
quoted specifications for commercially available precision x-y
stages. Kohzu Precision Co. advertises x-y stages that have
repeatability values of �0.5–0.2 μm for stages that have a
motion range of ±30 mm. Taking an upper bound value of
0.5 μm, this amounts to a repeatability of 1/60 of a pixel for
the Ni foam and 1/24 of a pixel for the 120 grit sandpaper.
Being conservative, we will employ a value of σi j = 1/10 of
a pixel for repeatability of aligning the stage.

4. All contributions of noise

For ghost projection with Poisson noise in the photon
counts, Gaussian noise in the exposure realizations, and Gaus-
sian noise in the position realignments, we have

Pi j = JkP̂(λP̃(wk )R̃ĩ j̃k ). (14)

5. Signal-to-noise ratio

We define the signal-to-noise ratio (SNR) of a ghost projec-
tion as the root-mean-square (RMS) of the desired image Ii j

divided by the standard deviation of the projection
√

Var[Pi j]:

SNR =
√

1

nm
Ji j

I2
i j

Var[Pi j]
=

√
E[I2]

Var[Pi j]
. (15)

Here nm is the number of pixels of the desired image. We have
used the RMS value since the desired image is zero-centered,
i.e., E[I] = 0, by construction. Moreover, we have excluded
the pedestal as a noise contribution, as for many applications
it is not inherently an obstacle. For example, in a lithographic
context one can tune the activation energy of the projection
medium or employ additional lithographic substrate.

Note that SNR defined in this fashion will be a function of
the resolution of the ghost projection. For example, a ghost
projection performed at a resolution of 40 × 40 may have a
higher SNR compared to the same ghost projection performed
at a resolution of 120 × 120 for the same FOV. That is, the
40 × 40 ghost projection may contain noise at the subpixel
level that integrates to zero for that pixel. If this is a concern,
so long as the masks are sufficiently resolved that they are
smoothly and gradually varying between pixels, then the sub-
pixel noise should not be problematic.

B. Mask parameters

1. Mask composition

Consider the [m × n] = [40 × 40] binary resolution chart
expressed in Fig. 3(a). It is termed a “binary resolution chart”
as it contains increasingly finely resolved features that are
switched “on,” situated on a background that is switched “off.”
The contrast of the image is enforced to be unity. Owing to the
zero centering of the image, namely, the constraint that E[I] =
0, the “on” values are approximately 0.7 and the “off” values
are approximately −0.3. Moreover, the binary resolution chart
expressed in Fig. 3(a) is also the NNLS ghost projection
made with the Ni foam mask in the absence of experimental
noise. Stated differently, we have not included an image of the
binary resolution chart and the NNLS reconstruction image

separately as, given the SNR of the NNLS reconstruction is
3.34 × 108, the two images would be indistinguishable by
eye. The set of Ni foam sub-FOVs provided to the NNLS
optimizer was five times the resolution of the desired image,
i.e., N = 5nm = 8 000. These sub-FOVs were sampled by
striding the 40 × 40 FOV 12 pixels along the x axis, and 8
pixels along the y axis until 5nm FOVs were obtained. The
NNLS optimizer selected N ′ = 1 581 mask positions and had
a pedestal of 121.7 times the contrast. The corresponding
power spectrum of the binary resolution chart is shown in
Fig. 3(b). Owing to the sharp edges, we see the presence of
high-frequency power-spectrum signal. Owing to the flat areas
of the background and larger features, we also see a significant
amount of power-spectrum signal at low-to-moderate spatial
frequencies.

Including the influence of Poisson noise into the near-
perfect NNLS ghost projection, we obtain Fig. 3(c), which has
an SNR of 4.15 ± 0.07. The error bounds in the stated SNR
were obtained by running the ghost projection simulation with
Poisson noise 100 times over, and calculating the correspond-
ing standard deviation in the SNR. Similarly, with suitable
adjustments for the type of noise, whenever error bounds are
quoted for an SNR, they are obtained in the same fashion as
described in the preceding sentence. Examining Fig. 3(c), we
can observe that the spatial character of the noise introduced
is of the order of the pixel resolution that we are considering.
That is, if we attempt to allocate λ = 10 000 photons to each
pixel to create the desired image contrast, the noise incurred
in each pixel is independent of its neighbor and is instead
dominated by the size of the ghost projection pedestal.

Compare the spatial character of the noise incurred by
Poisson statistics, as shown in Fig. 3(c), to that incurred by
exposure noise and translational noise, as shown in Fig. 3(d)
and 3(e). In the latter two cases, the noise instead appears
to take on the spatial character of the speckles used to pro-
duce the ghost projection. The SNR values in the latter two
cases are 5.62 ± 0.48 and 4.52 ± 0.21, respectively. Including
all three types of noise degrades the initial NNLS SNR of
3.34 × 108 to 2.67 ± 0.11. Note that this is not an indication
of the best ghost projection of the binary resolution chart
possible. Rather, we acknowledge it as an arbitrarily chosen
configuration which we regard as a reasonable baseline con-
figuration to gauge our parameter investigation.

To investigate the relative performance of the three types
of mask—namely, the Ni foam, the sandpaper sheet, and
composite mask made by stacking the foam and sandpaper
sheets—we simulated a ghost projection of the binary reso-
lution chart made with N = 5nm FOVs each. The sandpaper
was stepped in 10 × 10 pixel increments between FOVs and
for the consecutive mask case, the Ni foam was stepped in
12 × 8 pixel increments as before while the sandpaper, hav-
ing been binned down relative to the previous case to match
the resolution of the Ni foam, was stepped in 4 × 4 pixel
increments. The results of the ghost projections performed
with the three types of mask are shown in Table II. Looking
at the column corresponding to the 120 grit sandpaper, the
experimental-noise-free NNLS reconstruction SNR is similar
to that of the Ni foam and in each case, a similar number of
FOVs were filtered from the N = 5nm set. Where they differ
is in the size of the pedestal, which we might have expected in
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(a) (b)
(c)

(d) (e) (f)

FIG. 3. (a) Nonnegative least squares (NNLS) Ni foam ghost projection of a binary image with a contrast of 1, E[I2] = 0.2097, SNR =
3.34 × 108, and pedestal P̄ = 121.7. This was constructed using N = 5nm Ni foam masks (recall that n = 40, m = 40 is the resolution of
our desired image), sampled in increments of 12 × 8 pixels along the x and y axis of the master mask, from which we filtered out N ′ = 1581
masks. The physical scale of the projection is 30 μm/pixel. (b) Angularly integrated two-dimensional Fourier power spectrum of the ghost
projection, expressed as a function of dimensionless radial spatial frequency κr . (c) Ghost projection in the presence of Poisson noise, with
λ = 10 000. (d) Ghost projection in the presence of Gaussian exposure noise, with σw = 1/100. (e) Ghost projection in the presence of
Gaussian translational perturbations, with σi j = 1/10. (f) Ghost projection in the presence of all noise contributions. The SNR for (c)–(f) is
4.15 ± 0.07, 5.62 ± 0.48, 4.52 ± 0.21, and 2.67 ± 0.11, respectively. Note that the translational-perturbations field of view is cropped by a
border of 1 pixel.

a qualitative sense based on the increased average transmis-
sion and lower proportion of high-frequency power present
in the sandpaper mask as compared to the Ni foam mask;
see Table I. Owing to this increased pedestal in the NNLS
sandpaper ghost projection, we observe a greater erosion of
the noise-free SNR due to Poisson noise than in the Ni foam

TABLE II. Ghost projections with different master masks, N =
5nm, strided 12 × 8 for the Ni foam, 10 × 10 for the 120 grit sand-
paper, and 12 × 8 and 4 × 4 for the Ni foam and sandpaper when
used simultaneously. Poisson noise, exposure noise, and translational
noise were for the conditions λ = 10 000, σw = 1/100, and σi j =
1/10, respectively.

Mask Ni foam 120 grit sandpaper Consecutive

NNLS SNR 3.34 × 108 3.14 × 108 4.02 × 108

P̄ 121.7 417.1 85.0
N ′ 1581 1587 1582
SNR w/Poisson 4.15 ± 0.07 2.24 ± 0.04 4.98 ± 0.08
SNR w/exposure 5.62 ± 0.48 13.69 ± 0.97 9.58 ± 0.08
SNR w/translational 4.52 ± 0.21 3.26 ± 0.18 5.38 ± 0.24
SNR w/all 2.67 ± 0.11 1.83 ± 0.04 3.39 ± 0.11

case. Similarly, we also see a greater erosion of the noise-
free SNR due to translational noise in the sandpaper case
as compared to the Ni foam case due to the relatively large
weights wk employed. That is, despite the sandpaper having a
smaller typical delroughness than the Ni foam (see Table I),
the larger reconstruction weights dominate the amount of
noise we expect from translational noise [see Eq. (12)]. When
comparing the robustness of the two ghost projections in the
presence of exposure noise, however, we can see that the
sandpaper outperforms the Ni foam. We might have expected
this based upon the analytical prediction expressed in Eq. (10),
which states that exposure noise is proportional to

√
Var[R],

and based on Table I, we can see that the variance of the
sandpaper mask transmission values is approximately an order
of magnitude lower than that of the Ni foam.

The previous paragraph illuminates a series of trade-offs
that a prospective ghost projection realization should con-
sider. On one hand, we want to minimize the following four
quantities: (i) the average transmission value E[R], (ii) the
transmission variance Var[R], (iii) the delroughness D , and
(iv) the number of weights N ′ (where the number of weights
is typically of the order of the resolution we are considering).
On the other hand, we also want sufficiently sharp features
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. (a–f) Desired ghost projection test images. We refer to these as (a) Gaussian dot, (b) square, (c) dots, (d) large square, (e) small
square, and (f) linear gradient. (g–l) Corresponding angularly integrated two-dimensional Fourier power spectra, expressed as a function of
dimensionless radial spatial frequency κr .

present in the mask to match the sharpness of features present
in the desired projection and we want these to be sufficiently
well resolved at the resolution we are considering. The relative
importance of which aspects of the mask properties to focus
on will depend on the experimental tolerance parameters σw

and σi j as well as the desired resolution. For example, expo-

sure noise may be the dominant contribution to the overall
noise and hence, the variance of the mask transmission values
should be the focus of effort invested into improving the
realized ghost projection.

For the case of consecutive masks, we can once again
see that the experimental-noise-free NNLS SNR is similar
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TABLE III. Investigation into (i) the total number of masks sampled from the master mask using the Ni foam master mask and (ii) the
overlap between mask FOVs when performing a ghost projection of the [m, n] = 40 × 40 binary resolution chart. Poisson, exposure, and
translational noise inclusions were for the conditions λ = 10 000, σw = 1/100, and σi j = 1/10, respectively.

N 2nm 5nm 10nm 20nm 50nm 100nm

Striding 1 × 1 6 × 8 1 × 1 6 × 8 12 × 8 1 × 1 1 × 1 1 × 1 1 × 1

NNLS SNR 3.24 30.34 4.43 × 108 4.27 × 108 3.34 × 108 1.49 × 108 9.07 × 107 2.97 × 107 1.67 × 107

P̄ 31.9 721.8 131.5 125.4 121.7 94.5 86.3 78.5 77.5
N ′ 625 1581 1582 1580 1581 1565 1547 1515 1491
SNR w/ 3.00 ± 0.03 1.70 ± 0.03 4.01 ± 0.07 4.09 ± 0.07 4.15 ± 0.07 4.73 ± 0.08 4.93 ± 0.09 5.16 ± 0.10 5.20 ± 0.09
Poisson
SNR w/ 3.03 ± 0.04 5.26 ± 0.43 5.67 ± 0.56 5.49 ± 0.43 5.62 ± 0.48 5.71 ± 0.53 5.87 ± 0.47 5.89 ± 0.49 5.91 ± 0.52
exposure
SNR w/ 3.05 ± 0.02 0.84 ± 0.04 4.22 ± 0.27 4.34 ± 0.24 4.52 ± 0.21 5.54 ± 0.29 5.96 ± 0.32 6.39 ± 0.32 6.29 ± 0.32
translational
SNR w/ 2.71 ± 0.04 0.75 ± 0.03 2.60 ± 0.12 2.62 ± 0.10 2.67 ± 0.11 3.05 ± 0.13 3.18 ± 0.15 3.29 ± 0.14 3.30 ± 0.14
all

in order of magnitude to the previous cases of Ni foam and
sandpaper employed individually. We can also see that the
consecutive-masks case filters out a similar number of FOVs
N ′ to the Ni foam and sandpaper cases. In terms of the
ghost-projection pedestal, this case has the smallest pedestal
which leads us to expect it will be the most robust to noise
inclusions. Once the effects of experimental noise were in-
cluded, this case was seen to outperform the previous two in
all respects bar one exception. The consecutive masks create
FOVs that meet our desire to lower the average transmission
value and increase the relative proportion of high-frequency
power, and they reduce the variance of the transmission values
with respect to the Ni foam mask. Note that the variance
of transmission values for the consecutive masks is actu-
ally increased with respect to the sandpaper mask and hence
performs worse under exposure noise—this is the exception
previously mentioned, regarding the consecutive-masks case
outperforming the single-mask case in all respects, for the
particular experimental masks studied here.

2. Number of masks and mask striding

Here we investigate the following experimental parame-
ters: (i) the number of sub-FOVs or masks sampled from the
master mask and (ii) the striding employed between these
masks. The upper limit of these parameters is to stride at
one-pixel increments and to include as many sub-FOVs as
possible. This would give the numerical optimizer all the
information needed to find the optimal reconstruction achiev-
able with a given master mask. Depending on the size of the
master mask and the number of sub-FOVs, however, this may
create such a large set of masks that optimizing the recon-
struction becomes exceedingly computationally demanding
and may even prove infeasible. This prompted an examina-
tion of the effect of the number of masks, together with a
consideration of the influence of different striding protocols,
for the same master mask (Ni foam) and the same desired
projected-image (the binary resolution chart).

Table III gives the results of our numerical investigation.
The main trend is that the greater the number of masks
made available to the numerical optimizer, the more robust

the reconstruction is to the presence of noise. That is, us-
ing N = 2nm we obtained a noise-free SNR of 30.34 and a
final SNR of 0.75 ± 0.03 once Poisson, exposure, and trans-
lational noise was included. This increased to a noise-free
SNR of 1.67 × 107 with N = 100nm and had a final SNR
of 3.30 ± 0.14. One exception is the N = 2nm case, strode
in a one-by-one fashion. Here we observe a reconstruction
which employs very few of the masks available (625 of
the 3200) and uses relatively low weights to achieve a very
modest experimental-noise-free reconstruction with an SNR
of 3.24. However, this modest starting SNR proves to be
rather robust to experimental noise and outperforms many
of the cases which have a much high starting SNR. Evi-
dently, a higher noise-free SNR does not necessarily result
in a higher noise-included SNR. Our results suggest that the
numerical optimizer employed to create the reconstruction
is suboptimal at finding reconstructions that are robust to
noise inclusions. Improvements in this could be the focus of
future work. In particular, NNLS simply optimizes the starting
SNR whereas an optimizer that accounts for the inclusion of
noise holds the potential for significant gains in final SNR
values.

In the case of classical ghost imaging, the natural spatial
resolution is that of the size of the speckles present in the
random masks [36,37]. Similarly, it was assumed in our pre-
liminary work on ghost projection [5] that the speckle size
would form a natural resolution. This is accurate for ghost pro-
jection formed by weighting or filtering the random mask set
according to a metric proportional to the correlation between
the random masks and the desired image. In this investigation,
we have found that the resolution of numerically optimized
ghost projection is limited by the highest spatial frequencies
present to a nonnegligible degree in the mask power spectrum,
such as is the case with computational ghost imaging [37]. In
this context, we note that the power spectrum of typical exper-
imental speckle masks will extend to radial spatial frequencies
beyond that which corresponds to the peak power-spectrum
value. This last comment may be particularly relevant for
long-tailed power spectra, for example, those with Lorentzian
rather than Gaussian form. We speculate that numerical op-
timization is able to achieve subspeckle resolution by using
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constructive and destructive “interference”4 of the speckles,
at the cost of an increased pedestal. One approach to test this
speculation would be to compare two ghost projections made
from the same master mask, assuming both sets of sub-FOVs
span the matrix space defined by the image resolution. The
first set comprises entirely unique, nonoverlapping FOVs and
the second set has FOVs that are strode systematically such
that there is significant overlap between FOVs. The conclu-
sion of this test thus hinges on whether the systematically
strode masks generate a smaller ghost projection pedestal
and better SNR than the nonoverlapping FOV case, implying
masks with scanned speckles enable desirable interference.
Unfortunately, given the size of the experimentally obtained
masks employed here, we cannot sample a sufficiently large
number of unique, nonoverlapping FOVs to span the matrix
space defined by the image resolution and test this. The closest
we can do is to explore a reduced range of striding protocols
with the same master mask, all of which still have overlap
with other FOVs. In Table III, for the N = 5nm case, we can
observe a small improvement in final SNR with increased
striding from 1 × 1 pixels to 12 × 8 pixels, although this does
not appear to be indicative of a general trend. Seemingly, so
long as the set of sub-FOVs adequately spans the matrix space
defined by the image resolution, the fashion in which they are
sampled is mostly immaterial.

An alternative test for constructive and destructive in-
terference leading to subspeckle resolution in numerically
optimized ghost projection is to examine the distribution of
sub-FOVs selected as a function of striding, or transverse
position in the case that adjacent FOVs are available. If
several masks are sampled systematically within a relatively
small neighborhood, this implies that the subspeckle resolu-
tion could indeed be created by the interference of “scanned”
speckles. If the mask distribution does not display any ev-
idence of being systematically sampled, however, then this
would serve as evidence against our hypothesis of interfer-
ence. The spatial distribution of sub-FOVs naturally arises
in Sec. IV F where a traveling salesperson perspective is
adopted, and these weights are compared to selecting sub-
FOVs uniformly at random there (see Figs. 5 and 6).

3. Combining consecutive masks

As previously stated at the opening of Sec. IV B 2, the
maximal protocol for sampling sub-FOVs from the master
mask (or masks) is to use all possible configurations, scanned
at 1 × 1 pixel increments. In the single-mask case, we noted
that this maximal protocol has the potential to create a set of
masks so large in number that the computational requirements
to perform the numerical optimization may become infeasible.
Moreover, as already noted, the number of available masks

4Here the term “interference” refers to both additive and subtractive
effects associated with superposing real-valued functions (at the level
of net ghost-projection radiant exposure), rather than the more usual
meaning of additive and subtractive effects in resultant intensity due
to the superposition of complex-valued functions. Our usage of the
term is consistent, for example, with the concept of intensity inter-
ferometry in the context of the Hanbury Brown-Twiss effect [38,39].

TABLE IV. Comparison of different ways of combining the con-
secutive masks, with N = 5nm for the binary resolution chart. The
second column corresponds to striding the Ni foam mask along 12 ×
8 and 120 grit sandpaper in 4 × 4 increments. The third column cor-
responds to striding the Ni foam the same as before, however, each
of these FOVs is paired with 1 of 100 unique FOVs sampled from
the 120 grit sandpaper. The final column corresponds to randomly
picking a FOV from each of the Ni foam and 120 grit sandpaper and
combining them until 5nm combinations of masks is obtained. Noise
contributions from Poisson, exposure, and translational are for the
conditions λ = 10 000, σw = 1/100, and σi j = 1/10, respectively.

Combining
consecutive masks Systematically Uniquely Randomly

NNLS SNR 4.02 × 108 3.22 6.03 × 108

P̄ 85.0 19.1 82.4
N ′ 1582 636 1582
SNR w/Poisson 4.98 ± 0.08 3.07 ± 0.02 5.06 ± 0.09
SNR w/exposure 9.58 ± 0.08 3.14 ± 0.01 9.80 ± 0.71
SNR w/translational 5.38 ± 0.24 3.08 ± 0.01 5.46 ± 0.21
SNR w/all 3.39 ± 0.11 2.90 ± 0.03 3.46 ± 0.12

grows exponentially, in passing from the case of a single mask
to two consecutive master masks. Evidently, some sensible
protocol to sample a subset of all possible configurations
should be employed. The three protocols explored here are
(i) systematically stepping the Ni foam and sandpaper master
masks, (ii) systematically stepping the Ni foam master mask
while cycling through unique FOVs of the sandpaper master
mask, and (iii) randomly selecting FOVs from both the Ni
foam and sandpaper master masks. Using these three proto-
cols, we sampled N = 5nm masks in order to ghost project
the binary resolution chart in Fig. 3(a), the results of which
can be seen in Table IV.

When constructing the systematically sampled consecutive
mask, since the Ni foam and sandpaper master masks are
of different transverse spatial extents, we stepped each along
according to their own scheme. That is, we stepped the Ni
foam along in the same 12 × 8 pixel fashion that has been
our benchmark, and for the 120 grit sandpaper, we stepped
this along in a 4 × 4 pixel fashion until N = 5nm masks had
been sampled. Recalling the result from Table II, we saw that
the addition of having the sandpaper in conjunction with the
Ni foam improved the NNLS reconstruction SNR, decreased
the pedestal and almost across the board proved to be more
robust to noise inclusions in comparison to just the Ni foam,
or sandpaper alone.

When constructing the uniquely sampled consecutive
mask, we sampled the Ni foam in the 12 × 8 increments as
before but we cut the 400 × 400 sandpaper mask into 100
40 × 40 unique FOVs and cycled through these in conjunction
with the Ni foam mask FOVs. This approach proved to be a
relatively poor performer with the lowest NNLS reconstruc-
tion compared to the systematically and randomly constructed
consecutive masks. Where this particularly struggled was the
sharp edges of the binary resolution chart. While this ap-
proach did have similar high-frequency-power compared to
the other sampling protocols, we hypothesize that this diffi-
culty with the sharp edges is because of the fashion in which
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TABLE V. Investigation into the effect of image parameters on the ghost projection NNLS SNR, pedestal P̄, and SNR with all contributions
of noise. This was performed with N = 5nm Ni foam masks, sampled at 12 × 8 intervals along the x and y axis, respectively. Poisson noise,
exposure noise, and translational noise were for the conditions λ = 10 000, σw = 1/100, and σi j = 1/10, respectively. The Gaussian smoothing
applied to the binary resolution chart was with a standard deviation of 1.2 pixels.

Gaussian
smoothed

Large Small Linear Binary binary
Image Gaussian Square Dots square square gradient res. chart res. chart

E[I2] 0.0586 0.0586 0.0586 0.1875 0.0006 0.0876 0.2097 0.1209
Peak frequency 0.025 0.025 0.500 0.025 0.475 0.025 0.075 0.075
[cyc./pix.]
E[κr ] ± √

Var[κr ] 0.026 ± 0.005 0.079 ± 0.090 0.359 ± 0.198 0.056 ± 0.077 0.337 ± 0.120 0.063 ± 0.080 0.119 ± 0.105 0.067 ± 0.036
[cyc./pix.]
NNLS SNR 1.40 × 108 1.65 × 108 1.83 × 108 2.67 × 108 1.38 × 107 2.13 × 108 3.34 × 108 2.73 × 108

P̄ 4.80 45.6 331.4 60.1 24.8 8.15 121.7 13.7
N ′ 1563 1575 1581 1576 1574 1564 1581 1566
SNR w/Poisson 11.08 ± 0.20 3.59 ± 0.07 1.33 ± 0.03 5.57 ± 0.09 0.50 ± 0.01 10.42 ± 0.16 4.15 ± 0.07 9.40 ± 0.16
SNR w/exposure 3.61 ± 0.29 3.03 ± 0.29 2.90 ± 0.25 5.30 ± 0.41 0.32 ± 0.02 4.13 ± 0.35 5.62 ± 0.48 4.60 ± 0.41
SNR 60.16 ± 2.88 6.35 ± 0.33 0.87 ± 0.05 8.69 ± 0.49 1.19 ± 0.06 43.17 ± 2.12 4.52 ± 0.21 30.28 ± 1.70
w/translational
SNR w/all 3.31 ± 0.22 2.16 ± 0.10 0.71 ± 0.03 3.53 ± 0.18 0.26 ± 0.01 3.75 ± 0.22 2.67 ± 0.11 4.10 ± 0.28

the “uniquely” sampled masks were constructed. Since the
same 100 FOVs from the sandpaper mask were recycled 80
times over, we conjecture that this inhibited the ability of
the set to adequately span the image resolution space; i.e.,
contrary to our intention of constructing the most “unique”
set, they were less unique than the randomly sampled or even
systematically sampled set.

The randomly sampled consecutive mask was constructed
by randomly picking a 40 × 40 FOV from the Ni foam and
combining it with a randomly selected 40 × 40 FOV from
the 120 grit sandpaper. Of the three protocols for constructing
consecutive masks, this performed the best in terms of NNLS
SNR, minimal pedestal and noise robustness. Seemingly, sim-
ilar to our previous investigation into striding, so long as the
constructed set of masks spans the desired image resolution
space, it does not matter if the masks are sampled in a sys-
tematic or random way, so long as they are not inadvertently
pathological and violate the condition of spanning the image
resolution space.

C. Image parameters

In this section, we explore parameters associated with the
desired image that we wish to ghost project. In loose terms, we
perform this exploration by varying the “amount” and “dis-
tribution” of the image. We quantify the “amount” of image
via the image norm

√
E[I2]. Note that what we call image

norm is actually an area normalized image norm |Ii j |/|Ji j |,
but for the sake of brevity and clarity, we simply refer to this
as image norm. We quantify the “distribution” of an image
via its angularly integrated two-dimensional Fourier power
spectrum, henceforth referred to as an image power spectrum.

To probe the image norm and power spectrum, we explored
the performance of eight test images, beginning with (i) a
Gaussian dot, (ii) a square dot, and (iii) a series of smaller
square dots. All of the first three cases have the same contrast

and image norm. Relative to the previously mentioned square
dot (ii), we further explored (iv) a larger square dot and (v)
a smaller square dot. We also explored (vi) a linear gradi-
ent, (vii) the previously mentioned binary resolution chart
in Fig. 3(a) and (viii) a Gaussian smoothed version of the
binary resolution chart performed with a standard deviation
of 1.2 pixels. The first six of these images can be seen in
Figs. 4(a)–4(f). The corresponding power spectra are shown
in Fig. 4(g)–4(l).

In order to isolate the image parameters from the mask
parameters, these images were all ghost projected using the
Ni foam master mask with the same set of sub-FOVs being
N = 5nm in size and sampled in 12 × 8 pixel increments
between FOVs in the x-by-y axis. Table V displays (i) the
square of the image norm E[I2], (ii) the dominant power spec-
trum frequency, (iii) the weighted average, plus or minus the
standard deviation, of the power spectrum frequencies, (iv) the
NNLS ghost projection SNR and pedestal of each of the eight
images, in addition to (v) their performance with the inclusion
of Poisson, exposure, and translational noise contributions.

1. Image norm

The image norm
√

E[I2] quantifies the “amount of signal”
contained in a ghost projection, consistent with our definition
of SNR in Eq. (15). The simple notion “more signal5 equals
higher final SNR” is not entirely accurate, as the amount of
high frequency power contained in the desired image also
impacts a ghost projection’s representation characteristics (the

5By “signal” we are referring to
√

E[I2] for the same number of
photons being allocated per pixel and are excluding the possibility
of increasing the number of photons used to construct the projection
as a means of increasing the signal. However, so long as having an
increased number of photons is not an issue for the given application
at hand, this should also improve the final SNR.
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TABLE VI. Ghost projections with Gaussian transmission profiles applied to the mask FOVs where the value quoted is the transmission
percentage in the corners of the FOV. The ghost projections were performed with the Ni foam master mask, where N = 5nm, strided 12 × 8
in the x and y axis respectively. Poisson, exposure, and translational noise were for the conditions λ = 10 000, σw = 1/100, and σi j = 1/10,
respectively.

Gaussian profile 100% 90% 80% 70%

NNLS SNR 3.34 × 108 2.80 × 108 2.48 × 109 3.65
P̄ 121.7 132.1 413.8 33.79
N ′ 1581 1580 1596 660
SNR w/Poisson 4.15 ± 0.07 3.97 ± 0.07 2.25 ± 0.04 3.31 ± 0.03
SNR w/exposure 5.62 ± 0.48 5.66 ± 0.44 5.81 ± 0.48 3.41 ± 0.04
SNR w/translational 4.52 ± 0.21 4.10 ± 0.21 1.36 ± 0.07 3.42 ± 0.02
SNR w/all 2.67 ± 0.11 2.56 ± 0.10 1.14 ± 0.05 2.98 ± 0.05

weights wk , the delroughness D , etc.) and final SNR. If we
compare the test images “small square,” “square” and “large
square” (see Fig. 4, which are 1 × 1, 10 × 10, and 20 × 20
pixel squares, respectively), we can observe that the final
SNR progresses as 0.26 ± 0.01, 2.16 ± 0.1, and 3.53 ± 0.18,
which is approximately linear between

√
E[I2] and final SNR.

Moreover, we can also compare the “small square” image
to the “dots” image (being 100 spaced small squares). Both
have similar power spectrum properties and we can observe
an SNR increase from 0.26 ± 0.01 to 0.71 ± 0.03.

So, while in general “more signal” might not linearly lead
to “more final SNR,” it appears approximately true for ghost
projections of self-similar images. While not linearly true for
images in general, there is still a loose, positive correlation
between the amount of signal and final SNR. This suggests
that we would want to “zoom in” and fill the ghost projection
FOV, as much as is reasonably possible, with the features we
wish to write. This may be achieved by combining raster scan-
ning with ghost projection, i.e., creating the ghost projection
by isolating the smallest window feasible given the radiant en-
ergy and forming a ghost projection within this window before
tiling together the entire desired projection.6 On this note, by
zooming in, we may also be able to minimize the resolution
necessary to resolve the masks and desired image which may
impact the number of sub-FOVs the ghost projection picks out
since this is typically of the order of the resolution, N ′ ≈ nm.
A smaller number of masks N ′ typically leads to a smaller
pedestal which should further improve the ghost projection’s
robustness to noise inclusions. For example, if it were reason-
able to do so, a ghost projection on a 20 × 20 grid will outper-
form a ghost projection on a 40 × 40 grid—the difficulty be-
ing if it is indeed “reasonable to do so.” If there are unresolved
features in the mask at the coarser resolution, then these will
contaminate the final ghost projection on a subpixel scale.

2. Image power spectrum

The image power spectrum gives us an indication of the
distribution of the signal for a given resolution and FOV.

6This scheme for parallelized ghost projection is analogous to
the scheme for parallelized ghost imaging reported by Kingston
et al. [40] in the context of neutron ghost imaging, and Zhang
et al. [41] in the context of x-ray ghost imaging.

Consider the Gaussian dot, square dot, and dots images which
all have the same image norm,

√
E[I2] = 0.242, but have

different mode, mean, and standard deviations in terms of
power spectrum frequencies (image distribution), as seen in
Table V. We observe the trend that images characterized by
low-frequency power tend to, on average, achieve a higher
final SNR. Seemingly, if the desired image contains a signif-
icant proportion of high-frequency power relative to what is
present in the masks, the reconstruction has to “work harder”
to represent the desired image, which can be observed in an
increase in the ghost projection pedestal; cf. a pedestal of 4.8,
45.6, and 331.4 for the Gaussian dot, square dot, and dots,
respectively.

Similarly, we might compare the binary resolution chart
and the Gaussian smoothed binary resolution chart. By
smoothing off the sharp edges, the NNLS ghost projection
pedestal shrinks from 121.7 to 13.7 and the final SNR with
Poisson, exposure, and translational noise increases from
2.67 ± 0.11 to 4.10 ± 0.28. In contemplating this final value,
we should keep in mind that the Gaussian smoothing could
also be considered a source of noise, whereby we have as-
sumed that the smoothed version is the desired outcome.
Moreover, we might also note that due to the changed recon-
struction of the smoothed version, the SNR with Poisson noise
only and SNR with translational noise only markedly increase
from the unsmoothed version, that is, a factor of 2.3 and 6.7,
respectively. We might understand this improvement as com-
ing from a decrease in the weights used and decrease in the
delroughness of the set of masks selected. In fact, the limiting
noise contribution preventing the smoothed binary resolution
chart from reaching an even higher final SNR is the exposure
noise, where this actually decreases from the unsmoothed to
the smoothed case, 5.62 ± 0.48 to 4.60 ± 0.41. With refer-
ence to Eq. (10), since σw is unchanged and N ′ decreases
from 1581 to 1566, we must assume that the limiting factor
is the variance of the mask transmission values Var[R]. This
suggests that, should we want to improve the final SNR of
the Gaussian-smoothed binary resolution chart, focusing on
reducing Var[R] would be the best course of action.

One final point of interest with respect to image power
spectra is that for all of the images that do not contain
sharp edges—such as the Gaussian dot, linear gradient, and
Gaussian-smoothed binary resolution chart—we saw remark-
able robustness to translational noise. These images obtained
an SNR, with translational noise only, of 60.16 ± 2.88,
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43.17 ± 2.12, and 30.28 ± 1.70, respectively. Although it is
often counterproductive to set out to produce a smoothed
projection, this preliminary investigation suggests that it could
prove fruitful for improving the overall SNR to dial back
the sharpness to a value which is just above the tolerable
sharpness given a particular application.

D. Source parameters

Here we explore the ability of numerically optimized ghost
projection to adapt to nonuniform illumination. To model
this, we apply a Gaussian profile over the 40 × 40 mask
FOVs to represent the lower flux generated further from the
beam center and seek a representation that compensates for
these relatively dimmed boundaries. The Gaussian profile em-
ployed, expressed as a transmission coefficient, is

si j = exp{−α[(xi − xc)2 + (y j − yc)2]}, (16)

where α is the profile decay parameter that controls the trans-
mission experienced in the boundaries of the FOV, xi and y j

index the spatial domain, and (xc, yc) are the coordinates of
the center of the FOV. For brevity, we quote the effect of the
Gaussian profile as the transmission experienced in the corner
of the FOV, e.g., a 95% Gaussian profile correlates to 95% of
the uniform beam being transmitted in the corner of the FOV.
Here we explored increasing nonuniformity, with Gaussian
profiles 90%, 80%, and 70% for the Ni foam mask, with N =
5nm sampled in strides of 12 × 8 pixels, used to reconstruct
the binary resolution chart. The results of this investigation
are shown in Table VI. In this, we can observe that the re-
construction appears to have to “work harder” to compensate
for the relatively dimmed boundaries in the 90% and 80%
transmission cases, as can be seen in the increased pedestal.
This cannot continue ad infinitum however, and in the 70%
transmission case, we see that the NNLS reconstruction is able
to reach only an initial SNR of 3.65. Admittedly, this is quite
a robust 3.65 which outperforms the other cases considered
here, including that of no source attenuation, in terms of final
SNR. This result should not be overly extrapolated, though.
If the number of photons used in the ghost projection were
to be increased, or the exposure noise and translational noise
parameters σw and σi j were to be reduced, then the 70%
transmission case can only ever hope to achieve a final SNR
in the neighborhood of its initial SNR of 3.65, whereas the
others are not limited in the same fashion. Moreover, this is yet
another example of how NNLS optimization of the noise-free
ghost projection does not necessarily yield a reconstruction
that is most robust to noise inclusions. Future effort focused
on the optimization algorithm might therefore be a source of
significant additional improvements in the final SNR.

E. Prescribed pedestal

Rather than moving the pedestal to the left-hand side in our
derivation of the NNLS approach [see Eq. (3)], we can leave
it on the right-hand side and simply enforce an arbitrarily se-
lected value. The motivation for doing this is that our previous
construction often found an excellent starting SNR, but had
no incentive to minimize the pedestal, weights or number of
filtered masks, which are significant factors in determining

how robust the ghost projection is to Poisson, exposure, and
translational noise. Whilst arbitrarily selecting a pedestal is
not the optimal approach, we can gain a preliminary indication
for what kinds of SNR improvements are possible from our
previously obtained baseline values.

In Table VII we can observe the result of enforcing a
pedestal that is 1, 2, 5, 10, 20, 50, and 100 times the contrast
of the desired image. For all of the prescribed pedestals, the
NNLS ghost projection was performed with 5nm Ni foam
masks that were sampled systematically in strides of 12 ×
8 pixels. For the prescribed pedestal of 1 and 5, these cases
were also ghost projected with 50nm Ni foam sub-FOVs that
were sampled systematically in steps of 1 × 1 pixels. The
desired image employed here was the binary resolution chart,
Fig. 3(a). Given that the binary resolution chart has sharp
edges and fine-scale features, the ghost projection generally
has to work quite hard to create these characteristics. In our
baseline investigation of ghost projecting the binary resolution
chart with 5nm Ni foam masks, the pedestal was 121.7. With
this in mind, we can foresee that enforcing a pedestal of
1, 2, 5, 10, and 20 are all quite severe restrictions. This is
reflected in the corresponding NNLS SNRs obtained: 1.34,
1.67, 2.48, 3.32, and 4.89. Neither did it seem to help much
by increasing the number of masks available to the NNLS
optimizer by a factor of 10, as was done for the enforced
pedestal of 1 and 5. These cases had NNLS SNRs of 1.37
and 2.80, respectively. It was not until an enforced pedestal
of 50 times the projection contrast that we saw the benefits of
a reduced pedestal profitably being traded in for some of the
baseline NNLS SNR. In this case, we saw an initial NNLS
SNR of 15.85 which was eroded down to 3.93 ± 0.08 once all
noise inclusions were accounted for (which we might compare
to 2.67 ± 0.11 for the nonprescribed pedestal case). By the
time we prescribe a pedestal of 100, we see that we have
overshot the optimal trade-off, where the initial NNLS SNR
is on the order of 108 and the final SNR is lower than the
previously enforced pedestal.

F. Estimate of experiment duration via traveling salesperson
problem

For a ghost-projection scenario that involves a single mask,
suppose that a suitable numerical optimization process has
specified a given set of N ′ transverse mask translations

S ≡ {(δx j, δy j )}, for j = 1, 2, . . . , N ′ (17)

that are to be employed. This set of transverse mask positions
can be illuminated in any temporal sequence. To minimize
the total experiment duration, it will typically be reasonable
to choose a particular temporal sequence of mask positions
which minimizes the total distance that is traveled, by the
transverse-translation stage upon which the mask is fixed.
This minimization problem is equivalent to the famous “trav-
eling salesperson problem” [42] of finding the shortest path
which connects all of the points in S .

To estimate the duration of a ghost projection experiment,
we separately consider the scan time ts and exposure time te.
We estimate the scan time via

ts = L

v̄
, (18)
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TABLE VII. SNR and number of nonzero weights for enforced pedestal for NNLS ghost projection with the Ni foam mask. The Poisson,
exposure, and translational noise are for the conditions λ = 10 000, σw = 1/100, and σi j = 1/10, respectively.

Enforced P̄ 1 2 5 10 20 50 100

N 5nm 50nm 5nm 5nm 50nm 5nm 5nm 5nm 5nm

Striding 12 × 8 1 × 1 12 × 8 12 × 8 1 × 1 12 × 8 12 × 8 12 × 8 12 × 8

NNLS SNR 1.34 1.37 1.67 2.48 2.80 3.32 4.89 15.85 1.48 × 108

N ′ 30 41 65 212 291 440 748 1319 1582
SNR w/Poisson 1.34 ± 0.00 1.37 ± 0.00 1.67 ± 0.00 2.46 ± 0.01 2.78 ± 0.01 3.24 ± 0.02 4.42 ± 0.04 6.00 ± 0.11 4.58 ± 0.08
SNR w/exposure 1.34 ± 0.01 1.38 ± 0.01 1.67 ± 0.01 2.46 ± 0.01 2.76 ± 0.02 3.18 ± 0.03 4.21 ± 0.10 5.56 ± 0.41 5.48 ± 0.48
SNR w/translational 1.30 ± 0.00 1.33 ± 0.00 1.60 ± 0.00 2.36 ± 0.00 2.65 ± 0.00 3.13 ± 0.01 4.46 ± 0.02 8.37 ± 0.31 5.59 ± 0.29
SNR w/all 1.30 ± 0.01 1.33 ± 0.01 1.60 ± 0.01 2.33 ± 0.02 2.60 ± 0.02 2.95 ± 0.03 3.66 ± 0.08 3.93 ± 0.15 2.97 ± 0.13

where L is the length of the scan path and v̄ is the average
speed of the mask-translation stage. We estimate the exposure
time via

te = λJkwk



, (19)

where λ is our desired number of photons per pixel used
to create the projection contrast and 
 is the source flux in
units [photons/pixel/time]. Note that the reasonableness of
our exposure noise parameter σw is directly related to source
intensity. In some circumstances it may be sensible to dim the
source and thus reduce the requirement for a rapidly respond-
ing shutter.

For the purposes of estimating the duration of an exper-
iment, we consider ghost projecting the Gaussian smoothed
binary resolution chart (σ = 0.5 pixels) with an enforced
pedestal of 10 made with N = 25nm Ni foam sub-FOVs, sam-
pled in 1 × 1 pixel increments. The NNLS weights, expressed
as a function of transverse offset, can be observed in Fig. 5(a)
as well as a binary version in Fig. 5(b). This ghost projection
had an initial NNLS SNR of 6.80 and the number of sub-
FOVs selected was 672. Once noise was included, the SNR

dropped to 4.70 ± 0.14 for the noise parameters λ = 10 000,
σw = 1/100, and σi j = 1/10.

As an interesting note, compare the NNLS weights distri-
bution in Fig. 5(b), to the distribution of 672 points sampled
uniformly at random from the same 200 × 200 integer grid,
in Fig. 5(c). By eye, there are some similarities between the
two in terms of uniform sampling but it would be a mis-
characterization of the distribution of NNLS weights to say
they are the same. In Fig. 5(b) we can also observe some
evidence of the NNLS optimizer utilizing constructive and
destructive interference by the presence of relatively small
horizontal and vertical features in the wk locations. That
is, in order to create a relatively sharp horizontal edge in
projection, we might scan a section of the mask vertically
to create this, or vice versa for a relatively sharp vertical
edge.

With our binarized, transverse distribution of NNLS
weights, we can now treat this as a traveling salesperson
problem (TSP) [42] to determine the length of the scan path.
As mentioned earlier, the TSP seeks the shortest possible path
joining a specified set of points in the plane. In its usual form,
the TSP path is closed, i.e., the salesperson starts and ends at

(a) (b) (c)

FIG. 5. (a) Plot of the NNLS weighting coefficients as a function of transverse offset for the Ni foam mask used to ghost project the
Gaussian smoothed (σ = 0.5 pixels) binary resolution chart with an enforced pedestal of 10 and N = 25nm sub-FOVs stepped in 1 × 1 pixel
increments. This had an initial NNLS SNR of 6.80 and the number of sub-FOVs selected was 672. Once noise was included, the SNR dropped
to 4.70 ± 0.14 for the noise parameters λ = 10 000, σw = 1/100, and σi j = 1/10. (b) A binary version of the NNLS weights displayed in (a).
(c) 672 points chosen uniformly at random on a 200 × 200 integer grid. In comparison to (b) we can observe some similarities in the uniform
sampling of mask displacements, although within (b) there appear to be locations of horizontal and vertical sampling of the Ni foam mask,
which we speculate is the utilization of constructive and destructive interference of the mask speckles to make vertical and horizontal features,
respectively.
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(a) (b)

FIG. 6. (a) Heuristically optimized traveling salesperson prob-
lem for routing of the Ni foam scan path to ghost project the Gaussian
smoothed (σ = 0.5 pixels) binary resolution chart with an enforced
pedestal of 10 and N = 25nm sub-FOVs stepped in 1 × 1 pixel incre-
ments. The path distance is 3678.3 in units of pixels. (b) Convergence
of the heuristic optimizer as a function of iteration number.

the same location. For application of the TSP in the context
of ghost projection, the path may be open rather than closed.
However, when the number of mask positions is very large
compared to unity, there will typically be a negligible differ-
ence between open and closed TSP paths, for the purposes
of approximating the total scan time for a ghost-projection
experiment. Using the MATLAB function tsp_ga_basic de-
veloped by Robert Rich [43], an estimate for the optimum
scan path distance was obtained as 3678.3 pixels; see Fig. 6.
Given the Ni foam image is 30 μm/pixel, this gives the scan
path length to be 110.35 mm. Consulting values for precision
x-y-stage speeds, Kohzu Precision Co. advertises x-y stages
that have maximum speeds of 5–50 mm/s for stages that
have a motion in the range of ±30 mm. Taking an average
traversal speed of 1 mm/s, we estimate the scan time to
be 110.35 s.

Moving onto the exposure time, suppose we want to allo-
cate λ = 10 000 photons into the contrast and 10 times that
into the pedestal. To achieve this, we would want to allocate
a total of λJkwk = 189 300 photons per pixel. Keeping in
mind that an exposure time is tk = λwk/
 ± λσw/
, it might
be best to enforce a source intensity based on shutter speed
tolerance σw. For the relatively high-energy regime of hard x
rays and beyond, perhaps the shutter can reliably open and
close only to within 1/100 of 1 s. With this value, we have
λσw/
 = 1/100, or 
 = 10 000 photons/pixel/s. This yields
an exposure time of 18.93 s. For the sake of demonstration,
supposing our shutter had a tolerance of 1/2 a second, we
might enforce a source flux of 
 = 200 photons/pixel/s and
expect an exposure time of 946.5 s (or nearly 16 min).

Altogether then, the ghost projection experiment duration,
being the scan time ts plus the exposure time te, would be on
the order of 110 + 20 = 130 s. This assumes that we want a
contrast of 10 000 photons and can achieve a shutter speed
tolerance of 1/100 s. Further, assuming a repeatability in
transverse positioning of 1/10 pixel, we can expect an SNR of
4.70 ± 0.14 and a pedestal of 100 000 photons. Supposing we
wanted to speed up this process, the dominant time consumer
was traversal time. We could, for example, eliminate this
time by way of multiple consecutive masks and constraining
the numerical optimizer to selecting a continuous exposure
trajectory. We may also seek to increase the source intensity

to reduce the exposure time contribution. Alternatively, we
could go in the opposite direction and trade in time taken to
complete the ghost projection experiment in order to achieve a
higher SNR. This could be achieved by (i) dimming the source
such that, for the same shutter speed, the exposure noise is
reduced, (ii) using a reconstruction that has a higher initial
SNR (but this will likely also have more filtered members N ′
and thus a longer scan path and higher pedestal associated
with it), and/or (iii) we could simply allocate more photons
to create the contrast (but at the cost of also adding to the
pedestal). It is also worth noting that these time estimates
exclude the time taken to measure the masks, numerically
optimize the reconstruction, and numerically optimize the
routing routine. The first of these is a once-off investment
per ghost projection master mask. The latter two are once-off
investments per desired projection image.

G. General guidelines

We conclude this section with some rules of thumb, or
guidelines, that have become evident during the above in-
vestigations on practical schemes for ghost projection by
simulation. We also subsequently adopt our own guidelines
in one final simulation example, to demonstrate the kinds
of improvements possible. Our guidelines for practical ghost
projection are as follows:

(1) The mask should preferably have low overall transmis-
sion, i.e., low E[R], as this reduces one contributing factor
to the size of the pedestal P̄ = E[w]E[R]N ′ and the corre-
sponding contribution to Poisson noise from the pedestal [see
Eq. (8)].

(2) If Poisson noise is the dominant contribution to the
overall ghost projection noise, as might be observable in the
ghost projection as spatially localized noise that is subspeckle
sized, consider (i) enforcing a small pedestal in the NNLS
optimizer or (ii) using a specialized optimizer that balances
a reduced pedestal against random-mask representation error.
If the application allows it, increasing the number of photons
should also reduce Poisson noise contributions.

(3) If exposure noise is the dominant contribution to the
noise, as may be observable in the ghost projection as noise
similar in appearance to the speckles, then the speckle con-
trast in the ghost-projection masks should be minimized, i.e.,
Var[R] should be reduced, as the exposure noise grows accord-
ing to

√
σ 2

wN ′Var[R]. One could also reduce exposure noise
by a further two methods: (i) investing in an improved shutter
that reduces the variance in an exposure window, σ 2

w or (ii)
dimming the source such that for the same exposure variance,
it is relatively reduced.

(4) If translational noise is the dominant contribution to
the noise, as may also be observable in the ghost projection
as noise similar in appearance to the speckles, then reducing
the reconstruction exposure times wk and the mask delrough-
ness, Eq. (13), should be the focus, as translational noise
is proportional to σi jwkD k . Furthermore, one could also re-
duce translational noise by investing in an improved-precision
translational stage that has highly repeatable positioning, thus
reducing σi j .

(5) The resolution of the ghost projection is limited by
the highest spatial frequencies, which are present in the mask
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power spectra to a nonnegligible degree. So, should one want
a sharp ghost projection, the mask speckles should have a
sufficiently high degree of sharpness, which is similar to the
degree of sharpness of the required ghost projection.

(6) Subspeckle size resolution features can be created us-
ing ghost projection, at the expense of an increased pedestal,
provided the mask has a nonnegligible degree of power-
spectrum signal at the associated length scales.

(7) The larger the number of available random masks,
the better the results of the ghost projection, with respect to
quality metrics such as signal-to-noise ratio. However, the
larger the set of available masks, the greater the computational
expense of selecting which masks to employ.

(8) The ghost-projection signal, as described here, is equal
to the image norm

√
E[I2]. For self-similar images, enlarging

the object approximately linearly increases the final SNR.
For general objects, there appears to exist a looser, positive
correlation between increasing

√
E[I2] and final SNR. This

implies that zooming in as much as is reasonably possible on
the features that one wishes to ghost project should improve
final SNR.

(9) A trade-off needs to be struck, balancing (i) an ac-
curate spatial resolution of the desired image and random
speckle masks against (ii) the benefits of a coarse spatial
resolution such as reduced computational expense and fewer
filtered masks N ′. If such a compromise is difficult, one may
be able to resort to combined raster scanning and ghost pro-
jection, where we isolate a small window in which to ghost
project the desired features (i.e., projecting the desired image
as a collection of tiled projections).

(10) Using two or more independently translatable con-
secutive masks exponentially increases the number of
random-mask configurations available, and can improve their
characteristics in terms of making them higher in contrast and
increasing the average overall absorbency.

Taking on board these recommendations, we can perform
a simulation for the more optimal conditions of (i) employing
consecutive masks, with (ii) 50nm randomly sampled FOVs,
for (iii) the slightly Gaussian smoothed binary resolution chart
(σ = 0.5 pixels). This yielded a NNLS SNR of 3.92 × 107

with a pedestal of 33.5, N ′ = 1514. Adding in Poisson, ex-
posure, and translational noise independently, this dropped to
an SNR of 7.36 ± 0.14 for λ = 10 000, 9.50 ± 0.72 for σw =
1/100 and 11.36 ± 0.49 for perturbations with σi j = 1/10.
Finally, once all types of noise were included, the NNLS SNR
reduced to 5.11 ± 0.19.

Next, we can attempt to trade some of the original NNLS
SNR for a reduced pedestal which will hopefully improve
the noise robustness of the ghost projection and improve the
final ghost projection SNR. Increasing the number of sampled
random masks to 100nm and enforcing a pedestal of 10,
we obtain a NNLS SNR of 15.60 with N ′ = 1093. Includ-
ing Poisson, exposure and translational noise independently
produced the SNR results of 10.21 ± 0.17, 9.22 ± 0.44, and
12.77 ± 0.12, respectively. Including all forms of noise pro-
duced a final SNR of 7.17 ± 0.26. This final SNR is a 2.7
times increase on our baseline SNR value of 2.67 ± 0.11,
achieved with 5nm Ni foam masks of the binary resolution
chart in Fig. 3(f).

V. DISCUSSION

This discussion is broken into two parts. Section V A ex-
plores a number of practical questions and potential avenues
for future work. Section V B discusses several theoretical and
conceptual questions.

A. Practical considerations

We have mentioned, on several occasions, the tradeoff
between (i) the experimental benefits of having a larger set
of candidate masks from which to select, for the purposes of
ghost projection, using, e.g., the idea of two or more consec-
utive independently translatable masks and (ii) the increased
computational effort needed to choose which particular mask
subset to employ. Having more masks to choose from is ad-
vantageous since it may, and in general will, enable the ghost
projection to be more efficient, provided the appropriate filtra-
tion scheme is found. Two practical issues can be mentioned,
in this context. First, the previously mentioned tradeoff is
essentially one between experimental cost and computational
cost. As computing power increases, and optimization algo-
rithms improve, the additional computational cost mentioned
above will become progressively less of a constraint, and
progressively better at finding weights wk that lead to a ghost
projection of improved quality at fixed or reduced experi-
mental cost. Second, the increased computational effort (as
mentioned above) may in principle be decoupled entirely from
associated experimental costs that relate, e.g., to experiment
duration and experiment complexity. For example, whether it
takes a microsecond or a month of computing time to find
an efficient set of mask-illumination weights wk , the resulting
experimental ghost-projection exposure time will be the same.
Moreover, if one wishes to make multiple ghost projections
of the same pattern, for example in a manufacturing context
whereby the ghost projection illuminates a lithographic sub-
strate, then the mask-illumination weights need be calculated
only once.

Another interesting practical question concerns the use
of a shutter in experimental ghost-projection protocols. In
principle, the need for a shutter can be eliminated by trans-
versely scanning the mask or masks in a continuous manner,
while continuously exposing them to the illuminating matter
or radiation wave field. While the resulting ghost-projection
quality metrics are likely to be inferior to those which can be
obtained by additionally incorporating a shutter (as described
in preceding sections), shutter-free schemes might be more
realistically achievable in experiment, compared to ghost-
projection schemes that incorporate a shutter. Shutter-free
schemes might be of particular utility when using matter or
radiation wavefields for which the shuttering process may be
impracticably or unacceptably slow for the purposes of ghost
projection. When a single mask is employed, the required
shutter-free ghost projection will be encoded in a continuous
transverse mask-displacement trajectory

P (t ) = (δx(t ), δy(t )), ti � t � t f , (20)

in the (x, y) plane perpendicular to the illumination direction.
Here the time t parameterizes the mask-displacement path,
which is traversed between the initial time t = ti and the
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final time t = t f . This mask-displacement trajectory forms a
continuous generalization of the “traveling salesperson path”
illustrated in Fig. 6(a). The ghost-projection encoding in
Eq. (20) includes both the mask-displacement path itself, and
the speed

s(t ) =
√[

d

dt
δx(t )

]2

+
[

d

dt
δy(t )

]2

, ti � t � t f (21)

at which each point on the path is traversed. Additional
simplicity of implementation can arise from traversing this
mask-displacement path at constant speed. These and similar
shutter-free ghost-projection scenarios could be incorporated
into suitably modified optimization schemes, compared to
those given earlier in the present paper. Shutter-free schemes
could also be readily adapted to the case of two or more
consecutive masks.

Next, we further consider the computational optimization
inherent in all ghost-projection schemes considered here. We
have used one of the simplest approaches to computational
optimization, namely NNLS, but more sophisticated opti-
mization schemes could also be employed to choose the mask
weights wk . This choice of optimization method is likely
to be of particular practical significance when using two or
more consecutive masks, on account of the increased com-
putational cost associated with an extremely large number of
possible mask configurations. For example, if one employs
two consecutive masks that can each be translated by 2000
steps in two transverse directions, there will be (2000)4 ≈
2 × 1013 candidate masks, from which only a very small
fraction need be selected for the purposes of efficient ghost
projection. Three such masks would give (2000)6 ≈ 6 × 1019

candidate configurations. Computational optimization in such
high-dimensional parameter spaces would likely benefit from
more sophisticated approaches than we have considered. In
this case the NNLS-derived weights in our paper could be
viewed as providing an already-feasible baseline that has
significant room for improvement. Returning to the above
two-mask example, one could specify that 10 000 masks be
selected, which amounts to using only 1 out of every 2 × 109

available two-mask configurations. Evidently, the vector of
weights wk will be sparse [44,45] in the sense that only
one out of every 2 × 109 coefficients is nonzero. The high-
dimensional nature, of the parameter space associated with
the available masks, is likely to give considerable scope for
improving the efficacy and practicality of ghost projection,
beyond what has been achieved in the present paper.

We close this subsection with some miscellaneous re-
marks:

(1) The transverse positioning reproducibility, of the
ghost-projection mask or masks employed in our method,
needs to be sufficiently high. Roughly speaking, this position-
ing reproducibility should be the smaller of the following two
quantities: (i) the desired resolution of the ghost projection
and (ii) the characteristic transverse length scale of the speck-
les that are produced by the random mask.

(2) Optimization may be prone to overfitting noise or dis-
cretization artifacts present in the measured masks that may
not be present in a more accurate and precise measurement
of the mask. That is, it may be hard to distinguish fluctuating

noise occurring in one measurement from the permanent ran-
dom “noise” of the mask and one should be careful to remove
the former contribution of noise from the latter when forming
the random masks.

(3) Ghost projection formed via NNLS may be the optimal
random mask representation, but is not the representation that
is most robust to noise inclusions. An avenue for future work
could be to write an efficient optimization algorithm that has
input parameters for noise inclusions and finds the random
mask representation that achieves the best final SNR, as op-
posed to best initial SNR.

(4) The exposure noise and translational noise can be
reduced from the contributions considered here, whereas
Poisson noise and, to some degree, the random mask recon-
struction noise, are inherent to ghost projection.

(5) A simple and practical way to achieve region of in-
terest (ROI) ghost projection might be to have an additional
mask or masks which serve the purpose of a transversely
movable aperture or diaphragm. For example, having one
square aperture of spatial dimensions A × A (in addition to
the speckle-generating mask or masks) could allow a field of
view with this spatial extent to be written anywhere within
a significantly larger field of view. Alternatively, having two
such independently translatable square apertures could allow
rectangular fields of view with tunable spatial extent B × C to
be written, with 0 < B � A and 0 < C � A.

(6) Section IV F points out a connection between the trav-
eling salesperson optimization problem, and the choice of
a scanning protocol for single-mask ghost projection. If we
instead employ two consecutive masks for ghost projection,
we have a two-salesperson analog of this classic optimiza-
tion problem, whose solution addresses the practical question
of minimizing the experimental exposure time in two-mask
ghost projection.

(7) We implicitly assumed the total illumination time of
the ghost-projection mask to be sufficiently short that the
mask is not damaged to any appreciable degree. If the damage
threshold for the mask is exceeded, the mask will need to be
recharacterized or replaced with another previously character-
ized mask, for the ghost projection to proceed.

(8) Care should be taken to ensure that the ghost-
projection illumination plane is exposed only when the mask
is in any one specified position, with no exposure being reg-
istered when the mask is being transversely moved between
respective positions. A simple way to achieve this is by using
a suitable shutter, via the following protocol:

(i) With the shutter closed, the mask is transversely
displaced to a specified position

(ii) The shutter is then opened, and the specified mask
is illuminated for a specified time

(iii) The shutter is then closed
(iv) If more exposures are required, return to the first

step in the protocol, otherwise the ghost projection is com-
plete.
Note, also, that allowing for exposure while moving the

mask would be practical and is a subject for future research.
(9) At the end of Sec. III, we briefly mentioned the concept

of propagation-based phase contrast [11,24–26,29,30], asso-
ciated with free-space diffraction from the exit surface of the
random mask to the ghost-projection plane Q. Let us briefly
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expand on this point. For small propagation distances where
the Fresnel number [32] is appreciably greater than unity, and
for fields with sufficiently high spatial coherence (e.g., via a
sufficiently small source), propagation-based phase contrast
enhances fine spatial detail in a registered intensity distribu-
tion [46]. This boosting of fine spatial detail is related to the
fact that the measured contrast is proportional to the transverse
Laplacian of the prepropagation phase map (wave front) of the
propagating field [26,29,31]. The fact that propagation-based
phase contrast preferentially amplifies high-spatial-frequency
content, in the transverse intensity distribution created by a
ghost-projection mask, may be compared to the complemen-
tary case of an absorption-contrast mask (which preferentially
creates low-spatial-frequency contrast). This suggests a sec-
ond point of utility for a two-mask ghost-projection system,
beyond that which has already been explored in the main text.
Let R1 be one random mask in a two-mask ghost-projection
system [Fig. 1(b)]; R1 is assumed to be an absorption-only
mask, e.g., by having a sufficiently small distance between
the exit surface of R1 and Q. Low-spatial-frequency content in
the corresponding ghost projection P can be provided by R1.
Conversely, high-spatial-frequency content in P can be pro-
vided by a refractive phase-contrast mask R2 placed at some
distance upstream of Q. This second mask will generate high-
spatial-frequency speckles due to propagation-based phase
contrast, if the degree of spatial coherence is high enough.
Taken together, R1 and R2 may enable a fuller coverage of
the required spatial-frequency range to be accessed, for the
purposes of ghost projection. Moreover, the spatial-frequency
content associated with R2 may be tuned by altering the dis-
tance between the exit surface of R2 and Q. This may lead to
some degree of tuning that can be achieved, for the intensity
power spectrum of P that is produced by a two-mask ghost
projection system. Interestingly, in employing propagation-
based phase contrast to sharpen the speckle associated with
a spatially random refractive mask, the proximity-correction
effect alters from being a difficulty [18,19] to an enabler, i.e.,
the proximity effect improves rather than degrades the quality
of a ghost-projection system, at least in principle.

B. Theoretical and conceptual considerations

Orthogonality of a mask basis does not imply the opti-
mality of that basis for the purposes of ghost projection. Of
course, if one has access to a complete set B1 of N orthogo-
nal masks,7 any desired distribution of radiant exposure may
be projected as a linear combination of members from B1.
Turning to an overcomplete set B2 of nonorthogonal masks,
such as the ensemble of “speckle masks” that has featured
prominently in the present paper, it would be incorrect to
consider B2 to be suboptimal for the purposes of ghost pro-
jection, relative to B1, for the putative reason that B2 has
more members than B1. This is related to the possibility of

7Here “complete” means “complete up to a specified spatial resolu-
tion.” While an infinite number of masks would be needed for the set
to be truly complete, when working to a specified spatial resolution
we speak of a finite-member mask set as complete if any image can
be projected using that basis, to the specified resolution.

sparse ghost-projection representations, in the sense of the
term “sparse” employed in compressive sensing [44,45]. An
extreme limit-case example illustrates our main point. Basis
B1 might consist, e.g., of a set of N identical-shape pinholes
of diameter D, with each pinhole center being located at one
distinct point on the lattice

(x, y) = (mD, nD) ∈ �, (22)

where (m, n) are integers and � is a finite rectangular region
|x| � a, |y| � b of width 2a and height 2b. Alternatively, B1

might consist of the set of N two-dimensional Fourier har-
monics

Wm,n(x, y) = exp(2π imx/a) exp(2π iny/b) (23)

over �, each of which have radial spatial frequencies

kr =
√

(m/a)2 + (n/b)2 (24)

that do not exceed the Nyquist limit [28]

κ = 1
2 D−1 (25)

corresponding to a specified spatial resolution D. Conversely,
let basis B2 consist of an arbitrarily large number Ñ 
 N
of realizations of a certain stochastic process, that yields
spatially statistically stationary speckle fields over �, whose
Fourier power spectra have radial spatial frequencies kr that
are nonzero only over the disk kr � κ . In principle, every
possible ghost projection at resolution D = 1

2κ−1 is a member
of B2, therefore the ghost projection can be performed using
a single mask drawn from the countably infinite set B2. In-
terpolating away from this unrealistic extreme-case example,
towards a practical ghost-projection strategy, we are led to
“compressive ghost projection”: rather than exposing just one
mask from B2, one can instead consider a small subset of
masks drawn from B2, with this subset being a function of
the desired ghost projection. Here “small” means “having
less than N members.” This subset is chosen to enable a
sparse representation of the desired ghost projection, which
corresponds to being able to perform the ghost projection with
fewer than the N masks that would be required of a complete
orthogonal basis. The larger the cardinality Ñ of the basis set
B2 from which we can select, the sparser the representation
can likely be. It is for this reason that we have emphasized,
earlier in the paper, the use of two or more consecutive masks
to significantly increase the number of candidate masks for
the purposes of ghost projection.

The preceding paragraph leads us to compare (i) the ques-
tion of illuminated-sample dose reduction in ghost imaging to
(ii) the related question of minimizing the number of exposed
masks for the purposes of ghost projection. Recall that, in
the absence of a priori knowledge regarding the sample, a
classical computational ghost-imaging (CCGI) strategy em-
ploying nonorthogonal masks will in general give a dose to
the illuminated sample that is no lower, and is often typically
higher, than CCGI employing orthogonal masks [47–50]. All
of the just-cited studies conclude that a necessary condi-
tion, for CCGI using nonorthogonal masks to reduce dose
in comparison to CCGI using orthogonal masks, is for one
to have suitable a priori knowledge regarding the sample.
This condition is necessary but certainly not sufficient, with
work currently ongoing to seek regimes in which a priori
knowledge may be meaningfully leveraged to achieve dose
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reduction in CCGI. Turning to ghost projection, there is the
crucial point of difference that we have total prior knowledge
of the image that we wish to ghost project. It is this knowledge
that enables us to progressively reduce the number of masks
that need to be employed for the ghost projection of a specified
distribution of radiant exposure, as the number of masks is
progressively increased, in the overcomplete set of masks
from which we can select a suitable subset.

Another possible extension of the method is that we can
replace the projection plane in Fig. 1, with a curved surface
Q. This curved surface should be such that every straight line,
radiating from the center of the illuminating source, intersects
Q no more than once. The ensemble of illuminated masks
generates an ensemble of intensity distributions over Q, which
can still be used as a basis from which to create a desired
ghost projection over Q. Both the spatial resolution and SNR,
of the ghost projection, will be a function of position over the
surface Q.

It is also worth discussing the idea that the setup conditions
for speckle generation can significantly alter the statistical
properties of the speckle fields that are generated for the
purposes of ghost projection. For example, if an optically thin
spatially random mask is coherently illuminated, the nature of
the speckle measured at the exit surface of the mask (contact
plane) will be significantly different from the nature of the
speckle measured in the contact plane for an optically thick
mask. In the former case, the projection approximation may be
employed, whereas in the latter case a fully dynamical scatter-
ing theory such as dynamical x-ray diffraction or x-ray multi-
slice would be required [11]. More importantly, in the former
case the speckle would not be “fully developed,” in the sense
of the term that is commonly employed in coherent optics,
whereas in the latter case the speckle would be fully developed
if the screen were to be sufficiently thick. Even though, as
shown by this example, the setup conditions would signif-
icantly change the properties of the speckle field generated
by a particular spatially random mask in the context of ghost
projection, our method is largely independent of the specific
statistical properties of the detected speckle. Broadly speak-
ing, (i) the higher the contrast of the speckle, the higher the
contrast of the ghost projection will be and (ii) the higher the
spatial resolution of the speckles, the higher will be the max-
imum achievable spatial resolution of the ghost projection.

Finally, we discuss conceptual connections of the ghost-
projection method with two other approaches in physical
optics. (i) As mentioned in the introduction, ghost projection
may be viewed as a reversed form of classical computational
ghost imaging [5,6]. (ii) There are also some evident connec-
tions with the intensity interferometer of Hanbury Brown and
Twiss (HBT) [38,51,52], which is widely used in astronomical
imaging. In the intensity interferometer, one measures inten-
sity correlations in order to image an unknown object, often
in the presence of a model for that object, as is the case in
using intensity interferometry to measure the angular diameter
of stars [39,51,52]. Under this view, classical computational
ghost imaging [1] may be viewed as a parallelized form of
HBT-type intensity interferometer [40,53]. The analogy with
ghost projection then becomes clear: ghost imaging measures
HBT-type intensity correlations in order to image an unknown
transmission function, whereas ghost projection establishes

such intensity correlations to create a known transmission
function upon temporal integration.

VI. CONCLUSION

Ghost projection is the process of shaping a pattern of
radiant exposure via a series of random masks. Using experi-
mentally imaged random masks in the x-ray regime, namely,
a metallic slab of Ni foam and a sheet of 120 grit sandpaper,
we explored realistic ghost projection by means of simulation.
The realistic noise inclusions considered here were (i) Poisson
noise applied to the physical process of photon counting; (ii)
exposure noise, in the form of a Gaussian perturbation, ap-
plied to the desired exposure time; (iii) translation noise, also
in the form of a Gaussian perturbation, applied to the trans-
verse positioning of the random masks; and (iv) nonuniform
illumination in the form of a Gaussian transmission profile.
In a noise-free environment, we found that the experimentally
acquired random masks were capable of shaping any desired
distribution of radiant exposure to a near perfect degree. With
noise inclusions, and using experimental parameters taken
from commercially available equipment, we found that it is
reasonable to ghost project a desired image in the x-ray regime
with a resolution on the order of micrometers, to a SNR on the
order of 10 with a photon contrast of 10 000 and a pedestal of
uniform exposure measuring 100 000 photons. Depending on
the source flux and shutter speed tolerance, we estimated that
performing such a procedure may take on the order of minutes
to an hour.

The values obtained here regarding the performance of
ghost projection bode well for practical implementation but
by no means represent the best that ghost projection may
produce. We have outlined how ghost projection can be im-
proved by the tuning of mask parameters, such as the average
transmission value, the variance of transmission values and
the mask Fourier power spectrum. Furthermore, we also sug-
gested that the numerical optimization algorithm employed
could be a source of significant improvement. That is, for
the simulations of ghost projection presented here, we nu-
merically optimized the random mask representation of the
desired image without consideration of noise robustness. Ide-
ally, the numerical optimization algorithm would find that
representation which is most robust to noise inclusions too.
Not only might we want to numerically optimize for noise
robustness, but for other constraints such as (i) minimizing
the number of masks employed, (ii) minimizing or placing
an upper limit on the experiment duration, or (iii) seeking a
continuous transverse scan path of the random mask(s) that
removes the need for a shutter and may also be a source of
experimental speed up.

The process of ghost projection is universal in its ability to
create any desired distribution of radiant exposure and frees
us from requiring a precisely configurable optical element.
It does come at the cost, however, of depositing a uniform
pedestal of radiant exposure. Nonetheless, we still foresee fu-
ture applications of ghost projection in areas where problems
associated with proximity correction or mask manufacturing
render existing techniques as infeasible. Ghost projection may
find future utility in areas such as (i) beam shaping hard x
rays, gamma rays, or matter wave fields; (ii) in performing
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universal-mask-based lithography for electromagnetic waves
of energy beyond extreme-ultraviolet radiation; or (iii) in the
complementary field of three-dimensional printing via reverse
tomography (volumetric additive manufacturing [54,55]).
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APPENDIX: ANALYTICAL CALCULATION OF
TRANSLATIONAL NOISE

Suppose we have a ghost projection that, in the ab-
sence of experimental noise, achieves an effectively perfect
reconstruction

Pi j = wkR k
i j = Ii j + P̄. (A1)

Adding translational noise to the random masks, we can ap-
proximate the perturbed random masks by their first-order
Taylor series expansion

R̃i jk ≈ Ri jk + �xk∂iRi jk + �yk∂ jRi jk, (A2)

where �xk and �yk are the kth realization of the x and y
translational perturbations and ∂i and ∂ j are the partial deriva-
tives with respect to the x and y indices (as opposed to the
physical partial derivatives). Substituting the expression for
the perturbed mask [Eq. (A2)] into the expression for the ghost
projection [Eq. (A1)], and taking the variance, we obtain

Var[Pi j] = Var
[
wkR̃ k

i j

]
≈ Var

[
�xkwk∂iR

k
i j + �ykwk∂ jR

k
i j

]
≈ σ 2

i jw
2
k Var

[
∂iR

k
i j + ∂ jR

k
i j

]
. (A3)

FIG. 7. Simulated translational noise [see Fig. 3(e) for simulated
ghost projection] overlaid with the analytically predicted effect of
translational noise on a ghost projection with σi j = 1/10 and starting
NNLS SNR of 3.34 × 108.

Above, σi j is the standard deviation in the translational per-
turbations. Substituting this into the expression for SNR
[Eq. (15)], we find the expected SNR of a ghost projection
under translational perturbations to be

SNR ≈
√

E[I2]

σ 2
i jw

2
k Var

[
∂iR k

i j + ∂ jR k
i j

] ≈
√

E[I2]

σi jwkD k
, (A4)

where D k is delroughness [Eq. (13)]. For the purposes of
validation, we can simulate a ghost projection of the bi-
nary resolution chart made with N = 5nm sampled in strides
of 12 × 8 from the Ni foam mask. The comparison of the
simulated translational noise and analytically predicted trans-
lational noise can be observed in Fig. 7. In terms of SNR,
the simulated SNR was 4.52 ± 0.21, and the analytically pre-
dicted SNR was 4.69.
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