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Apart from a lot of fundamental interest, vector Bessel beams are widely used in optical manipulation, material
processing, and imaging. However, the existing description of such beams remains fragmentary, especially
when their scattering by small particles is considered. We propose a general classification of all existing vortex
Bessel beam types in an isotropic medium based on the superposition of transverse Hertz vector potentials. This
theoretical framework contains duality and coordinate rotations as elementary matrix operations and naturally
describes all relations between various beam types. This leads to various bases for Bessel beams and uncovers
a different beam type with circularly symmetric energy density. We also discuss quadratic functionals of the
fields (such as the energy density and Poynting vector) and derive orthogonality relations between various beam
types. Altogether, it provides a comprehensive reference of all properties of Bessel beams that may be relevant
for applications. Next, we generalize the formalism of the Mueller scattering matrices to arbitrary Bessel beams
accounting for their vorticity. Finally, we implement these beams in the ADDA code—an open-source parallel
implementation of the discrete dipole approximation. This enables easy and efficient simulation of Bessel beam
scattering by particles with arbitrary shape and internal structure.
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I. INTRODUCTION

Electromagnetic Bessel beams take prominent positions
among other shaped beams and find applications in a vast
range of advanced photonics technologies. One of the most
remarkable features of the Bessel beam is its lack of diffrac-
tion, i.e., the ability to propagate maintaining the profile near
the beam axis [1]. Also, they are vortex beams, possessing
orbital angular momentum. That means that their phase has a
helical structure defined by a beam order [2,3]. Like the plane
wave, such ideal Bessel beams are not square integrable (have
infinite power flux) and, thus, cannot be produced experimen-
tally. However, using finite apertures allows one to obtain a
truncated Bessel beam possessing an extended focus [1]. Such
quasi-Bessel beams can propagate over long distances without
significant divergence. A lot of efforts have been devoted to
the generation of higher-order and/or vortex Bessel beams
using axicons [4], holograms [5], or metasurfaces [6]. Other
approaches include radial slot arrays [7,8], near-field plates
[9], leaky radial waveguides [10,11], and dielectric planar
lenses [12]. The resulting Bessel beams are actively used in
such fields as optical manipulation [13,14], material process-
ing [15,16], and imaging [17].

Bessel beams have the simplest form in the paraxial ap-
proximation when the size of the focal spot is much larger than
the wavelength [18]. The electric (or magnetic) field direction
is then almost independent of position, which explains the
term scalar used for them [4,13,19]. Such beams are always
circularly symmetric (CS) and have unambiguously defined
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polarization. By contrast, tightly focused Bessel beams are
called vector ones since they support nontrivial variation of
the field vectors with coordinates, all being rigorous solutions
of Maxwell’s equations [18]. This dependence, especially that
on the azimuthal angle (around the beam axis), can be de-
scribed as a spin-orbit interaction [3,20,21].

The theoretical description of vector Bessel beams has
received much attention over the previous two decades. Sev-
eral proposed classifications [18,22,23] were successful in
describing some types in a common framework, such as
Davis beams derived using the Hertz vector potentials and
aplanatic Bessel beams obtained with the angular spectrum
decomposition or representation [24]. Despite the conflicting
naming of Bessel beam types in the literature, the follow-
ing groups exist: beams with CS energy density (CS type),
with transverse electric and magnetic fields (TE and TM
types), and with linear polarizations of electric and magnetic
fields (LE and LM beams). There also exist Bessel beams
of fractional order [25,26], but we do not consider it in this
paper. Importantly, the previous theoretical descriptions are
mostly fragmentary and focus on specific applications. More
general classifications [23,26,27] are cumbersome, hiding the
relations between various Bessel beam types behind long for-
mulas. Moreover, the discussion of orthogonality of various
beam types or quadratic functionals of the fields, in general,
is grossly incomplete. Finally, all existing descriptions lack
discussion of rotation transformations of Bessel beams, which
is required for the generalization of the scattering-matrix for-
malism (Mueller calculus [28]) that is commonly used in the
case of plane-wave scattering.

Such generalization is desirable since most Bessel beam
applications are related to the scattering by (or other
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linear interaction with) small particles [29]. Another existing
limitation is that such scattering has been theoretically con-
sidered mostly by particles with spherical symmetry using the
generalized Lorenz-Mie theory (GLMT) [30]. The scattering
of a zero-order Bessel beam has also been studied for cases
of arbitrary spheroids [31–33], coated spheres [34], cylin-
ders [35], large nonspherical homogenous particles [36], and
clusters of spheres [37–39]. By contrast, high-order Bessel
beam scattering has been examined only for spheres and
spheroids, potentially multilayered and chiral [33,37,38,40].
Importantly, we are not aware of any simulations of Bessel
beams for inhomogeneous particles of irregular shape. More-
over, there is a gap between the existing general classification
of Bessel beams and scattering simulations for nontrivial par-
ticle shapes, i.e., there are no combinations of the latter with
complicated beams.

One of the versatile light-scattering simulation methods,
applicable to particles with arbitrary shape and internal struc-
ture, is the discrete dipole approximation (DDA) [41]. Its
popularity is based on the conceptual simplicity and avail-
ability of well-tested open-source codes, such as DDSCAT [42]
and ADDA [43]. In principle, the DDA and corresponding
computer codes are applicable to arbitrary incident fields, if it
is known at all dipoles (volume discretization elements) [44].
However, practical simulations for any beam type are much
more accessible to practitioners if these beams are built into
the code. Unfortunately, that is currently not the case for any
DDA code.

The goal of this paper is twofold. First, we aim to close
the existing knowledge gap by improving the Bessel beam
classification using Hertz vector potentials, keeping the focus
on the interrelations between different beam types and their
polarizations. Section II introduces the reader to Hertz vector
potentials and the description of Bessel beam types known in
the literature but rewritten in an alternative form. In Sec. III,
we propose a general classification of Bessel beams in any
homogeneous isotropic medium based on a 2 × 2 matrix of
coefficients and thoroughly discuss its various properties. The
latter range from rotation and duality transformations (Sec.
III B and III C) to the description of quadratic functionals of
the fields, such as the energy density and Poynting vector
(Sec. III D), and discussion of various bases of Bessel beam
including their orthogonality (Sec. III E).

The second goal is to implement all types of Bessel beams
in the open-source ADDA code, keeping it compatible with
the Mueller calculus (Sec. IV A). The details of this imple-
mentation are given in Sec. IV B, while in Sec. V, we verify
our code and provide several simulation examples. Section
VI concludes the paper. Preliminary results of this paper have
been reported at conferences [45,46].

II. EXISTING BESSEL BEAM TYPES

A. Hertz vector potentials

We consider monochromatic electromagnetic waves
(beams) with the time dependence exp(−iωt ) in a homo-
geneous isotropic medium (with absolute permittivity ε,

permeability μ, and wave impedance η
def= √

μ/ε) without ex-
plicit consideration of the sources that produce them. In other

words, we assume the sources to be located at infinity. We use
SI units in this paper, although this makes some expressions a
bit more complicated than that for commonly used Gaussian
units. Maxwell’s equations are then given by [47]

∇ × E(r) = iωμH(r),

∇ × H(r) = −iωεE(r),
(1)

which implies that both electric and magnetic fields (E and H)
satisfy a homogeneous vector Helmholtz equation:

∇2E(r) + k2E(r) = 0, (2)

∇ × ∇ × E(r) − k2E(r) = 0, (3)

where k
def= ω

√
εμ is the wave number, and the two equations

are equivalent due to ∇ · E(r) = 0. However, Eq. (3) [but not
Eq. (2)] implies ∇ · E(r) = 0 and is, thus, alone equivalent to
Eq. (1). Here and further, we present expressions mostly for
E(r) since it uniquely determines H(r) through Eq. (1). We
also further omit the common dependence of fields, potentials,
etc., on r for brevity. We consider arbitrary k, including com-
plex ones. The strongly absorbing host medium implies that
the fields decay over a small distance, which is incompatible
with the field sources located far from the scatterer. However,
a weakly absorbing medium (relatively small imaginary part
of k) is compatible with such a scattering problem, but practi-
cal aspects of generating Bessel beams in such a host medium
is outside the scope of this paper.

To describe various Bessel beams, it is convenient to use
Hertz vector potentials [22]. They are related to the scalar and
vector potentials (φ, A) that define E and H through:

E = −∇φ + iωA, (4)

H = 1

μ
∇ × A. (5)

Electric and magnetic Hertz vector potentials �e and �m are
introduced as [48]

A = −ik2ω−1�e + μ∇ × �m, (6)

φ = −∇ · �e, (7)

which implies the Lorenz gauge condition for φ and A and
that these potentials satisfy scalar and vector Helmholtz equa-
tions, respectively [Eq. (2)]. Note, however, that this gauge
condition uniquely determines potentials only if they are ad-
ditionally required to decay sufficiently fast at infinity [49].
In a source-free case as considered here, this would imply
vanishing of both potentials and fields in the whole space.
Equations (4)–(7) imply the following expressions for the
fields:

E = ∇∇ · �e + k2�e + ikη∇ × �m, (8)

H = ∇ × (∇ × �m − ikη−1�e ), (9)

which leaves a lot of freedom in choosing �e and �m

for given fields. The first restriction, which we postulate is
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FIG. 1. Geometry of Bessel beam production using an axicon
(conical lens). In the limit α0 → 0, the beam is a plane wave.
Adapted with permission [18].

that both �e and �m satisfy the vector Helmholtz equation
[Eq. (2)] [49]. This allows us to rewrite Eq. (8) in a form
symmetric to Eq. (9):

E = ∇ × (∇ × �e + ikη�m ). (10)

Conversely, any �e and �m, solutions to Eq. (2), being substi-
tuted into Eqs. (8) and (9), lead to E and H satisfying Eq. (1).

Let us briefly mention the remaining degrees of freedom,
which we do not fix. First, for any function g, satisfying the
scalar Helmholtz equation:

∇2g + k2g = 0, (11)

�e (or �m) can be incremented by ∇g without changing
the fields but decrementing ∇ · �e (or ∇ · �m) by k2g. This
variation of �e (but not of �m) also modifies φ and A without
violating the Lorenz gauge. In other words, only the curls of
those vector potentials determine the fields. Second, the fields
are not affected if �e and �m are simultaneously incremented
by any auxiliary fields E′ and H′, respectively, if these fields
satisfy Eq. (1). Combining the above options, either �e or
�m can be set to zero, then the other one will equal the
corresponding (electric or magnetic) field divided by k2.

For Bessel beams propagating along the z axis, both �e

and �m have the following simple functional form in the
cylindrical coordinate system [18]:

fn(r) = Jn(ktρ )exp(inϕ)exp(ikzz), (12)

i.e., they are constant vectors multiplied by this scalar func-
tion. Here, Jn is the Bessel function of the first kind (n is the

order of the Bessel beam), kt
def= k sin α0 and kz

def= k cos α0 are
the transverse and longitudinal components of the wave vector
k, respectively, and α0 is the half cone angle (Fig. 1). More
generally, kt and kz can be arbitrary complex values with the
only constraint k2

t + k2
z = k2, but most applications consider

real angles α0, i.e., the ratio of any two of these wave num-
bers is real. Note that some researchers [36,38,50] introduce
additional factor in into the definition of fn [Eq. (12)], which
affects constant factors in all further relations where several
orders of fn (or corresponding potentials or fields) are present.
We consider only integer values of n in this paper since,
otherwise, fn is discontinuous with respect to ϕ. Importantly,
fn is the solution to Eq. (11); thus, any linear superposition of
fn with constant vectors (and potentially different n and α0)
satisfies Eq. (2) and qualifies as either �e or �m.

Before continuing, let us introduce a convenient notation

e±
def= ex ± iey (where ex and ey are unit vectors along the

corresponding axes), having the following properties:

e± × ez = ±ie±, e∓ × e± = ±2iez,

e± × e± = e± · e± = 0, e± · e∓ = 2.
(13)

Note that we define the (bilinear) dot product without con-
jugation of the second argument to be compatible with the
notation for divergence, i.e., this is not a proper inner product
of two complex vectors. The latter can be obtained with the
help of trivial relation e∗

± = e∓, where * denotes a complex
conjugate. Similar circular unit vectors are common, e.g.,
in description of vector spherical harmonics, e.g., Ref. [18],
but here, we keep them not normalized (by a factor

√
2) to

simplify further expressions. Next, elementary calculus with
recurrent relations for Bessel functions leads to the following
identities:

∇ fn = ikz fnez + kt

2
( fn−1e+ − fn+1e−), (14)

∇ × ( fnez ) = ikt

2
( fn−1e+ + fn+1e−),

∇ × ( fne±) = ±kz fne± − ikt fn±1ez, (15)

∇ · ( fnez ) = ikz fn, ∇ · ( fne±) = ∓kt fn±1, (16)

∇ × ∇ × ( fnez ) = ikz∇ fn + k2 fnez

= k2
t fnez + i

kzkt

2
( fn−1e+ − fn+1e−), (17)

∇ × ∇ × ( fne±) = ∓kt∇ fn±1 + k2 fne±

= k2 + k2
z

2
fne± ∓ ikzkt fn±1ez + k2

t

2
fn±2e∓.

(18)

Similar expressions were discussed in Ref. [2]; they make
most of the following expressions and derivations substan-
tially more concise. Note that curls and double curls in
Eqs. (15), (17), and (18) are divergence free and act as build-
ing blocks for the fields due to Eqs. (8) and (9), as illustrated
in the next section. However, they are not all linearly in-
dependent, if several orders n are considered together (see
Sec. III). Here, ∇ × ( fnez ) and ∇ × ∇ × ( fnez ) are the cylin-
drical vector wave functions (CVWFs), which are known to
be a complete basis set for expansion of electromagnetic field
in free space [51,52].

B. Davis description of Bessel beams

Varying the direction of the Hertz vector potentials, we
obtain different beam types [22], which are sometimes called
Davis formulation of Bessel beams in the literature [23].
The following field expressions can be easily derived using
Eqs. (13)–(18).

Here, TE and TM Bessel beams are obtained from �m =
η−1	0 fnez, �e = 0, and �e = 	0 fnez, �m = 0, respec-
tively. We denote the corresponding fields ETE and HTM,
respectively; they have zero z components. The accompanying
fields HTE and ETM generally have no zero components. The
amplitudes (scaling factors) for �e are related to that for the
electric field, as 	0 = E0/k2. Here and further, we omit the
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FIG. 2. Intensity profiles of components of ETE and ETM with n = 2, α0 = 45◦ in the xy plane. The amplitude E0 and wave number k are
equal to 1, the z component of ETE is identically zero [see Eq. (19)].

index n for fields and potentials to avoid clutter, unless several
orders appear in the same equation. The electric fields of the
TE and TM beams are the following:

ETE,x = −E0kt

2k
( fn−1 + fn+1),

ETE,y = i
E0kt

2k
( fn+1 − fn−1), ETE,z = 0,

(19)

ETM,x = i
E0ktkz

2k2
( fn−1 − fn+1),

ETM,y = −E0ktkz

2k2
( fn−1 + fn+1), ETM,z = E0k2

t

k2
fn.

(20)

Magnitude profiles for the electric field and time-averaged
Poynting vector (both separate components and total vec-
tor magnitude), as well as profiles of time-averaged energy
density of the TE and TM beams are presented in Figs. 2
and 3. Note that these beams have identical Poynting vectors
and energy densities due to the duality transformation (see
Sec. III C). Moreover, the rigorous definition and discussion
of these quadratic functionals of the fields are deferred to
Sec. III D.

Mathematically, these Bessel beams are the most fun-
damental ones since they are directly proportional to the
CVWFs. They are very convenient in reflection and transmis-
sion problems [53]. Moreover, such beams of zero order relate
to the azimuthal and radial beam polarizations [22].

Bessel beams with LE and LM fields are obtained
from �m = η−1	0 fnet, �e = 0 and �e = 	0 fnet, �m = 0,

respectively. Here, et is a transverse polarization vector per-
pendicular to ez. When it equals ez × ex,y (i.e., ey or −ex),
it leads to so-called x or y linear polarizations of the corre-
sponding fields, respectively, which are denoted as E(x)

m , E(y)
m

and H(x)
e , H(y)

e for LE and LM fields in the literature [18].
Here, subscripts m and e correspond to the type of nonzero
Hertz vector potential, and superscripts (x), (y) denoting po-
larization should not be confused with subscripts x, y, and
z denoting vector components. However, we prefer to use
subscripts LE and LM in the field expressions to keep uniform
notation across all Bessel beam types. Moreover, our defini-
tion of (y) polarization (et = −ex) corresponds to the linear y
polarization of a plane wave in the limit of α0 = 0◦ and n = 0
(see Sec. III B) but has inverse sign to that in Ref. [18]. The
resulting electric fields for the x-polarized LE and LM Bessel

FIG. 3. Magnitude profiles of the Poynting vector components and energy density for either ETE or ETM with the same parameters as in
Fig. 2.
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FIG. 4. Intensity profiles of components of E(x)
LE and E(x)

LM with the same parameters as in Fig. 2. Some components are scaled for better
visibility. The y component of E(x)

LE is identically zero [see Eq. (21)].

beams are the following:

E (x)
LE,x = E0kz

k
fn, E (x)

LE,y = 0,

E (x)
LE,z = i

E0kt

2k
( fn−1 − fn+1),

(21)

E (x)
LM,x = i

E0k2
t

4k2
( fn−2 − fn+2),

E (x)
LM,y = E0

k2

[
k2 + k2

z

2
fn − k2

t

4
( fn−2 + fn+2)

]
,

E (x)
LM,z = −E0ktkz

2k2
( fn−1 + fn+1).

(22)

Magnitude profiles for the electric field, Poynting vector, and
energy density of LE and LM types are presented in Figs. 4
and 5. Note that these fields always have nonzero longitudinal
components; however, the electric (for LE type) or magnetic
(for LM type) field has a zero component along et . The accom-
panying magnetic H(x)

LE, H(y)
LE and electric fields E(x)

LM, E(y)
LM have

no zero components at all. Choosing et = e± above leads to
circularly polarized Bessel beams (LE or LM) [18], which are
discussed in Sec. III B along with other polarization relations.

Next, CS Bessel beam types are defined by �m =
η−1	0 fney/2, �e = 	0 fnex/2 and �m = −η−1	0 fnex/2,

�e = 	0 fney/2, leading to two Bessel beam polarizations
E(1,0)

CS and E(0,1)
CS (the subscript CS is usually omitted in the lit-

erature) with CS magnitude of the Poynting vector and energy
density (see Fig. 6). This beam type should not be confused
with circularly polarized beams, described above [18]. CS
Bessel beams are much more common in experiments since
they can be easily generated with an axicon [54]. To make
the notation of different Bessel beams more uniform, we in-

troduce the equivalent definitions E(x)
CS

def= E(1,0)
CS , E(y)

CS
def= E(0,1)

CS ,
which are further justified in Sec. III B. This beam type can
also be produced using the angular-spectrum representation
[18]. The electric field of the CS beam is the following:

E (x)
CS,x = E0

4k2

[
(k + kz )2 fn + k2

t

2
( fn−2 + fn+2)

]
,

E (x)
CS,y = i

E0k2
t

8k2
( fn−2 − fn+2),

E (x)
CS,z = i

E0kt (kz + k)

4k2
( fn−1 − fn+1).

(23)

FIG. 5. Magnitude profiles of the Poynting vector components and energy density for either E(x)
LE or E(x)

LM with the same parameters as in
Fig. 2.
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FIG. 6. Magnitude profiles of the Poynting vector components and energy density for E(x)
CS with the same parameters as in Fig. 2. Some

components are scaled for better visibility.

Magnitude profiles for the electric field, Poynting vector, and
energy density of the CS beam are presented in Figs. 6 and 7.

One may note that the choice of minus in one of the
expressions for �m in the definition of the CS beam is some-
what arbitrary. Another set of CS beams can be obtained by
inverting this sign (for both polarizations)—we will further
denote them as CS′. We are not aware of their occurrence in
the literature, but we discuss them in detail in further sections.
Magnitude profiles for electric field, Poynting vector, and
energy density of the CS′ beam are presented in Sec. III D.
Here, we only provide the explicit expressions for E(x)

CS′ , which
corresponds to �m = −η−1	0 fney/2, �e = 	0 fnex/2:

E (x)
CS′,x = E0

4k2

[
(k − kz )2 fn + k2

t

2
( fn−2 + fn+2)

]
,

E (x)
CS′,y = i

E0k2
t

8k2
( fn−2 − fn+2),

E (x)
CS′,z = i

E0kt (kz − k)

4k2
( fn−1 − fn+1).

(24)

III. GENERALIZATION OF ALL BESSEL BEAM TYPES

A. Combination of transverse Hertz vector potentials

Let us first introduce a few convenient definitions.
Maxwell’s equations in Eq. (1) are invariant with respect to
the duality transformation or, more generally, to the duality
rotation expressed as [55,56]

(
E
H

)
→ Pχ

(
E
H

)
, Pχ

def=
(

cos χ −η sin χ

η−1 sin χ cos χ

)

=
(

1 0
0 η−1

)
Rχ

(
1 0
0 η

)
, (25)

where Rχ is the standard 2 × 2 rotation matrix over the angle
χ (may even be complex):

Rχ
def=
(

cos χ − sin χ

sin χ cos χ

)
, (26)

which is effectively applied to the pair (E,ηH). We also define

R def= Rπ/2 for brevity. The standard duality transformations
correspond to P±π/2. The duality invariance follows trivially
from representation of Eq. (1) as

(ikPπ/2 + ∇×)

(
E
H

)
=
(

0
0

)
, (27)

and noticing that transformations Pχ (or rotations Rχ ) for any
complex χ commute with each other.

The same process can be applied to the pair of Hertz vector
potentials. For that, we write Eqs. (8) and (9) in a matrix form:(

E
H

)
= L

(
�e

�m

)
, (28)

where L is a differential matrix operator:

L def= ∇ ×
( ∇× ikη

−ikη−1 ∇×
)

= ∇ × (−ikPπ/2 + ∇×), (29)

and the vector operations (like curl) evidently commute
with linear superposition operations (like duality rotation).
This decomposition of L implies that it commutes with Pχ ,
i.e., LPχ = PχL, which together with Eq. (28) implies that
Eq. (25) can be equivalently applied to the pair (�e,�m )
instead. Combining Eqs. (27)–(29), we obtain

∇ × (∇2 + k2)

(
�e

�m

)
=
(

0
0

)
, (30)

FIG. 7. Intensity profiles of components of E(x)
CS with the same parameters as in Fig. 2. Some components are scaled for better visibility.
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i.e., the satisfaction of the Helmholtz equation by �e and �m

is a sufficient but not a necessary condition (it is necessary
only for their curls), which explains why the former was
postulated in Sec. II A.

Both linear polarized (LE and LM) and CS Bessel beam
types correspond to transverse Hertz potentials, i.e., those
limited to the xy plane. A natural generalization of these cases
is a definition through an arbitrary complex matrix M:(

�e

�m

)
=
(

	e,x 	e,y

	m,x 	m,y

)(
ex

ey

)
= 	0

(
1 0
0 η−1

)
M
(

ex

ey

)
fn.

(31)

As discussed in Sec. II A, any such linear combination leads
to the Hertz potentials automatically satisfying the Helmholtz
equation, and hence, the resulting fields satisfy Maxwell’s
equations. Another convenient property of this matrix is that
duality transformation Pχ of Hertz potentials is equivalent to
M → RχM, while rotation in the xy plane by the angle ψ

(rotation of field polarization) is equivalent to M → MR−ψ

(explained in Sec. III B).
While the matrix M is very simple for most existing Bessel

beam types (see Sec. III C), the expressions for field com-
ponents derived using Eqs. (14)–(18) are simpler using the
matrix M′, corresponding to the basis vectors e±:

M
(

ex

ey

)
= M′

(
e+
e−

)
⇔ M = M′W ⇔ M′ = MW−1, (32)

where W is the basis-transformation matrix:

W =
(

1 i
1 −i

)
, W−1 = 1

2

(
1 1
−i i

)
. (33)

To avoid confusion, we will use different subscripts to denote
components of these matrices but omit primes for components
of matrix M′:

M =
(

Me,x Me,y

Mm,x Mm,y

)
, M′ =

(
Me,+ Me,−
Mm,+ Mm,−

)
. (34)

The general expressions for E in the basis ez, e± are ob-
tained from Eqs. (15), (18), and (28)–(32):

E± = 	0

[(
k2 + k2

z

2
Me,± ± ikkzMm,±

)
fn + k2

t

2
Me,∓ fn∓2

]
,

Ez =	0kt[(ikzMe,−+kMm,−) fn−1− (ikzMe,+− kMm,+) fn+1],

(35)

which can be recast into the Cartesian basis as well:

Ex = 	0

{(
k2 + k2

z

2
Me,x + kkzMm,y

)
fn

+ k2
t

4
[(Me,x + iMe,y) fn−2 + (Me,x − iMe,y) fn+2]

}
,

Ey = 	0

{(
k2 + k2

z

2
Me,y − kkzMm,x

)
fn

+ i
k2

t

4
[(Me,x + iMe,y) fn−2 − (Me,x − iMe,y) fn+2]

}
,

Ez = 	0kt

2
{[ikz(Me,x + iMe,y) + k(Mm,x + iMm,y)] fn−1

− [ikz(Me,x − iMe,y) − k(Mm,x − iMm,y)] fn+1}. (36)

The expressions for the LE, LM, and CS Bessel beams in
Sec. II B are specific cases of Eq. (36).

At this point, one may wonder why we have not included
z components of the potentials in Eq. (31), e.g., to describe
the TE and TM Bessel beams. To explain this, let us recall
that any gradient can be added to either �e or �m without
changing the fields. Applying this argument to ∇ fn [Eq. (14)],
we see that any potential of the form fnez is equivalent to the
superposition of transverse potentials of orders n ± 1.

Let us further discuss the ambiguity of potentials. The
basic functions fn for different orders n ∈ Z are linearly in-
dependent. Therefore, if all orders n are considered at once,
Eq. (31) has 4 (complex) degrees of freedom (matrix M) per
order (keeping kz and kt fixed). By contrast, E is also a linear
superposition of fn, but its divergence [again, superposition
of fn, see Eq. (16)] must be zero (one constraint for each
order). Therefore, the fields have only two degrees of freedom
per order since H is fully determined by E. To determine the
relations between matrices M for various orders, note that any
pair of potentials of the form:

(ikPπ/2 + ∇×)

(
U
V

)
− ∇

(
u
v

)
, (37)

where u, v, U, and V are arbitrary solutions to scalar and
vector Helmholtz equations, respectively, is also a pair of
solutions to this equation and belongs to the null space of
operator L (also mentioned in Sec. II A). In the following, we
express these functions as a superposition of several fn.

The action of curl can be simplified using Eqs. (14) and
(15):

∇ × ( fne±) ∼ ± 1

2kz

[(
k2 + k2

z

)
fne± − k2

t fn±2e∓
]
, (38)

where the equivalence is up to a gradient. We will not track
the explicit values of u and v, noting that their values are
determined by the requirement of transversality of U and V.
Using Eq. (38), we obtain

∇ × A
(

e+
e−

)
fn ∼ A

1

2kz

[
k2 + k2

z −k2
t N2

k2
t N−2 −(k2 + k2

z )

](
e+
e−

)
fn,

(39)

where the operator N changes the order of fn (Nl fn
def= fn+l ),

and A is an arbitrary matrix with the same structure as M′.
Combining Eq. (39) with Eqs. (31) and (37), we obtain the
following trivial increment for M′:

ikRA + k2 + k2
z

2kz
A
(

1 0
0 −1

)
+ k2

t

2kz
A
(

0 −N2

N−2 0

)
∼ 0,

(40)

i.e., it can be added to M′ without changing the fields. De-
noting the columns of A as A+ and A−, we rewrite Eq. (40)
as

(Rξ A+ −R−ξ A−) ∼ (−N−2A− N2A+), (41)
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where we introduced imaginary rotation angle ξ :

ξ
def= i arsinh

2kkz

k2
t

= 2i ln
k + kz

kt
= 2i ln cot

α0

2

⇔ Rξ = 1

k2
t

(
k2 + k2

z −2ikkz

2ikkz k2 + k2
z

)
. (42)

Recalling that A is an arbitrary matrix, we equate the left-
hand side of Eq. (41) to M′, which leads to a surprisingly
concise expression:

M′ ∼ (N−2Rξ M′
− N2R−ξ M′

+)

= N−2Rξ M′
(

0 0
1 0

)
+ N2R−ξ M′

(
0 1
0 0

)
. (43)

The equivalent expressions in the Cartesian basis are obtained
using Eq. (32):

M ∼ 1

2

[
N−2Rξ M

(
1 i
i −1

)
+ N2R−ξ M

(
1 −i
−i −1

)]
.

(44)

We proved that an arbitrary pair of transverse Hertz vector
potentials of order n is equivalent (in terms of resulting field)
to a superposition of the potentials of orders n ± 2. This im-
plies that every second odd and every second even order are,
strictly speaking, redundant. However, if only one order n is
considered, as is common in applications, then all elements of
M (or M′) lead to linearly independent fields.

Let us now come back to longitudinal potentials, specif-
ically to a general expression of order n, specified by
two-dimensional (2D) vector of coefficients q:(

�e

�m

)
= 	0

(
1 0
0 η−1

)(
qe

qm

)
fnez. (45)

Using Eqs. (15) and (43), the equivalent transverse potentials
can be expressed as

M′ = ikt

2kz
(N−1q −N1q)

∼ ikt

2kz
(1 − Rξ )(q 0)N−1

∼ − ikt

2kz
(1 − R−ξ )(0 q)N1. (46)

Importantly, it is sufficient to use transverse potentials of a
single order (either n − 1 or n + 1) and only a single direction
(e+ or e−, respectively) but at a cost of using both �e and
�m even for the simplest TE and TM beams (see specific ex-
pressions in Sec. III C). Conversely, Eq. (46) implies that any
transverse potential of order n is equivalent to a superposition
of longitudinal potentials of orders n ± 1. Therefore, the set
of longitudinal Hertz vector potentials of all orders is another
complete basis for Bessel beams, equivalent to the basis of
CVWFs.

To conclude this section, the above results show that spec-
ifying the matrix M or M′ for a specific order n allows one
not only to describe the Bessel beams for arbitrary transverse
Hertz vector potential of order n but also for arbitrary longi-
tudinal potentials of orders n ± 1, for transverse potentials of

orders n ± 2 proportional to e− and e+, respectively, and for
any linear combination of the above.

B. Polarization rotation

Most light-scattering codes are tailored for the calculation
of the Mueller (or amplitude) scattering matrices, which re-
quires simulations for two polarizations (commonly linear)
of the incident field [28]. These polarizations need to be
connected by π/2 rotation to enable rotation relations for the
scattering matrices (discussed below in Sec. IV A). In the case
of Bessel beams (of any specific type), our goal is to also
define two such basis polarizations:

E‖(r) ∝ Rπ/2E⊥(r) = R̃π/2E⊥(R̃−π/2r
)
, (47)

where Rψ is the rotation operator (acting on a field), and
R̃ψ is the 3 × 3 rotation matrix (acting on a vector) over
the angle ψ around the beam propagation axis (positive value
in a clockwise direction when viewing along this axis). For
the default propagation along the z axis (as considered in this
paper), R̃ψ is exactly 2D-rotation matrix Rψ accompanied by
1 at the position (3,3). Parallel and perpendicular polariza-
tions are considered with respect to the scattering plane, as
typically used for scattering matrices [28]. For a plane wave,
the rotation of r in Eq. (47) is redundant, and the propor-
tionality can be replaced by equality. By contrast, a Bessel
beam is generally a vortex beam (i.e., its phase depends on
the azimuthal angle ϕ) leading to the additional phase factor
discussed below.

Using the definitions of Sec. III A [Eqs. (28) and (31)], we
can apply rotation transformation to an arbitrary Bessel beam,
for both electric and magnetic fields:

Rψ

[
E(r)
H(r)

]
=
[

R̃ψE
(
R̃−ψr

)
R̃ψH

(
R̃−ψr

)
]

= 	0L
(

1 0
0 η−1

)
MR−ψ

(
ex

ey

)
fn
(
R̃−ψr

)
, (48)

where we used that the rotation and curl operators commute,
rotation of each element in a row is equivalent to multiplica-
tion by R̃T

ψ = R̃−ψ from the right, and
(

ex

ey

)
R̃−ψ = R−ψ

(
ex

ey

)
. (49)

Moreover, the rotation of the argument of fn is trivial:

fn
(
R̃−ψr

) = fn(ρ, ϕ − ψ, z) = exp(−inψ ) fn(r), (50)

leading to the following general relation:

RψEn(r, M) = En(r, exp(−inψ )MR−ψ ). (51)

In other words, the rotation of any Bessel beam is equivalent
to the transformation of its defining matrix M. The rotations
through the angles π and 2π are especially simple:

RπEn(r, M) = (−1)n+1En(r, M),

R2πEn(r, M) = En(r, M). (52)
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FIG. 8. Intensity profiles of components of E(x)
TEL and E(x)

TML with the same parameters as in Fig. 2. The x component of E(x)
TML is scaled for

better visibility, while the z component of E(x)
TEL is identically zero [see Eq. (57)].

Here and further in this section, we discuss only electric fields
since the corresponding rotation expressions for magnetic
fields are the same.

Based on the above, we postulate the two orthogonal po-
larizations of the Bessel beams to be related as [cf. Eq. (47)]

Rπ/2E⊥ = i−nE‖ ⇔ M⊥ = M‖R, (53)

i.e., their matrices are related by simple rotation without any
additional phase factors. We discuss the exact meaning of
orthogonality in Sec. III E. Here, we note that this definition
complies with existing linear and circular polarizations of the
Bessel beams, discussed in Sec. II B (corresponding to the
rotation of Hertz vector potentials). The pair {E(x)

... , E(y)
... } for

any of LE, LM, CS, and CS′ beams can be used as a pair
{E⊥, E‖}, although their relation to the scattering plane (yz
plane by default) cannot be described by simple perpendicular
or parallel notions.

The only missing component is the polarizations for
TE and TM types since they are almost axisymmetric and
have trivial rotation transformations (due to their expressions
through the z-polarized Hertz vector potentials):

RψETE,TM,n = exp(−inψ )ETE,TM,n, (54)

where we explicitly specify the order of the Bessel beam
as a subscript to avoid confusion. Let us introduce x and
y components for these beams [E(x)

TEL, E(y)
TEL, E(x)

TML, E(y)
TML],

where L stands for a linearly polarized component through
the following relations:

ETE,TM,n+1 = E(x)
TEL,TML,n + iE(y)

TEL,TML,n, (55)

Rπ/2E(x)
TEL,TML,n = i−nE(y)

TEL,TML,n. (56)

These are not sufficient for unique determination of the in-
troduced components. However, if we additionally require the
corresponding matrices M to be real (for real α0), which is

important for orthogonality relations, see Sec. III E, then the
only possibility is

E(x),(y)
TEL

def= k−1
t

[
kzE

(x),(y)
LE ± kE(y),(x)

LM

]
, (57)

E(x),(y)
TML

def= k−1
t

[
kzE

(x),(y)
LM ∓ kE(y),(x)

LE

]
, (58)

where ± corresponds to x and y polarizations on the left-hand
sides, respectively. The examples of the corresponding mag-
nitude profiles for electric field, Poynting vector, and energy
density are presented in Figs. 8 and 9.

While the resulting relations between the LE, LM, TE,
and TM Bessel beams are known in the literature [23],
Eqs. (54)–(58) can be trivially derived from the M-matrix
representations of these beams (see Table III below). The
fundamental reason for the change of order between the orig-
inal TE and TM beams and their components is explained in
Sec. III A [Eq. (46)]. Moreover, Eq. (56) implies that the x
and y components form a proper pair {E⊥, E‖}, as was our
intention.

To get a better understanding of the introduced beam
types, let us consider the plane-wave limit, i.e., α0 = 0◦ and
n = 0 (for fixed r). The limiting expressions for these and
other Bessel beam types are given in Table I; they follow
from the expressions in Sec. II B. The LE beam corresponds
to the same-polarized electric field, LM corresponds to the
same-polarized magnetic field and, hence, to the orthogonal
(rotated) electric-field polarization. The CS beam approaches
a linearly polarized plane wave, which illustrates that CS is
related not to circular polarization but rather to a CS intensity
(which is always the case for any polarization of a plane
wave). By contrast, the CS′ beam vanishes in this limit for
any order n as O(α4

0 ) due to the cancelation of the cor-
responding contributions from electric and magnetic vector
potentials. However, it is O(α3

0 ) for n = 1, while for n = 2,
we have lim

α0→0
E(x)

CS′ = α2
0E0e+/8; i.e., the CS′ beam is distantly

related to the circular polarization. Similar limiting behavior is
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FIG. 9. Magnitude profiles of the Poynting vector components and energy density for either E(x)
TEL or E(x)

TML with the same parameters as in
Fig. 2.

obtained for the TE and TM beams. They are O(α2
0 ) for n = 0,

while

n = 1 ⇒ lim
α0→0

ETE = −α0E0e+
2

, lim
α0→0

ETM = iα0E0e+
2

,

(59)

which follows from the limiting expressions for the TEL and
TML beams of order 0. The latter are like the LE and LM
beams but are proportional to α0. Thus, the TEL and TML
beams are analogous to linear polarizations of a plane wave
(justifying L in their names), while the TE and TM beams are
analogous to a circular one. We do not consider the paraxial
(or scalar-beam) limit in detail, which can be described as
α0 � 1 with ktρ fixed (meaningful for any n). However, it has
the same vectorial structure (polarization) as the plane-wave
limit, while the principal difference is the radial dependence
Jn(ktρ ) spanning over distances much larger than the wave-
length.

Another illustrative limit, considered in Table I, is that
of a tightly focused Bessel beam, i.e., α0 → π/2 (kz → 0,
kt → k). When combined with short pulses, this limit is also
known as the electromagnetic bullet [57]. The corresponding
expressions make use of the following shorthand definitions:

Fz
n

def= 1

2
fnez, Ft

n
def= 1

4
( fn−1e+ + fn+1e−), (60)

and fn(r) →
α0→π/2

Jn(kρ )exp(inϕ). Note that both Fz
n and Ft

n are

eigenfunctions of the rotation operator:

RψFz
n = exp(−inψ )Fz

n, RψFt
n = exp(−inψ )Ft

n, (61)

since R̃ψe± = exp(∓iψ )e± [cf. Eqs. (50) and (54)]. One can
see that the resulting expressions in the two considered limits
are qualitatively different; in some cases, the transverse field
is changed into a longitudinal one. That is not surprising
given the complicated general expressions of the fields for
intermediate α0.

In addition to the polarizations discussed in Sec. II B, there
are known composites, particularly circular polarizations, for
the LE, LM, and CS Bessel beams denoted by the (1,±i)
superscript [18]. Let us make an obvious generalization of this
definition for α, β ∈ C:

E(α,β )
...

def= αE(x)
... + βE(y)

... , (62)

which applies to any pair of {E⊥, E‖}, including the LE, LM,
CS, CS′, TEL, and TML beams. This definition constitutes a
rigorous relation between (x), (y) and (1,0), (0,1) superscripts,
respectively, used for various Bessel beams in the literature.
Here, E(1,±i)

LE,LM can be considered generalizations of circularly
polarized plane waves, while α, β ∈ R correspond to the
rotated linear polarizations of a plane wave (up to a constant
factor). The latter analogy also applies to x or y polarizations
of these beams. Moreover, Eq. (55) can be rewritten as

ETE,n±1 = E(1,±i)
TEL,n, ETM,n±1 = E(1,±i)

TML,n, (63)

where the equalities for n − 1 follow from Eqs. (44) or (46).
In terms of matrix M, Eq. (62) can be represented as

M(α,β ) = αM(1,0) + βM(0,1) = M(1,0)

(
α β

−β α

)
, (64)

TABLE I. The electric field in two limiting cases for different Bessel beam types. Definitions of the constituent functions are given in the
text. Expressions for other polarizations can be obtained by rotation [Eqs. (53) and (56)].

Type Description Field Plane-wave limit (units of E0exp(ikz)) Bullet limit (units of E0)

LE Linearly polarized electric field E(x)
LE ex i(Fz

n−1 − Fz
n+1)

LM Linearly polarized magnetic field E(x)
LM ey i(Ft

n−1 − Ft
n+1)

CS Circularly symmetric energy density E(x)
CS ex

1
2 (Ft

n−1 + Ft
n+1 + iFz

n−1−iFz
n+1)

CS′ Alternative CS E(x)
CS′ O(α4

0 ) 1
2 (Ft

n−1 + Ft
n+1 + iFz

n+1−iFz
n−1)

TE Transverse electric field ETE O(α2
0 ) −2Ft

n

TM Transverse magnetic field ETM O(α2
0 ) 2Fz

n

TEL Linear component of TE E(x)
TEL −α0ex/2 −Ft

n−1 − Ft
n+1

TML Linear component of TM E(x)
TML −α0ey/2 Fz

n−1 + Fz
n+1
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TABLE II. Matrices M for generalized polarizations of different
Bessel beam types.

Type M

E(α,β )
LE

( 0 0
−β α

)

E(α,β )
LM

(−β α

0 0

)

E(α,β )
CS

1

2

(
α β

−β α

)

E(α,β )
CS′

1

2

(
α β

β −α

)

E(α,β )
TEL

1

kt

(−kα −kβ

−kzβ kzα

)

E(α,β )
TML

1

kt

(−kzβ kzα

kα kβ

)

using Eq. (53), which leads to the expressions for various
beam types, summarized in Table II. Note that both CS and
CS′ beams are described by scaled (complex) orthogonal ma-
trices, i.e.,

M(α,β )
CS M(α,β )T

CS = M(α,β )
CS′ M(α,β )T

CS′ = α2 + β2

4
I, (65)

where I is the identity matrix. However, M(α,β )
CS is skew sym-

metric (scaled rotation matrix), while M(α,β )
CS′ is symmetric

(scaled reflection matrix).
While there is certain redundancy in this definition (multi-

plication of both α and β by the same factor leads to the trivial
scaling of the fields), we do not postulate any specific normal-
ization. An obvious choice for the latter when α, β ∈ R is

α2 + β2 = 1, (66)

then the transformation matrix in Eq. (64) is exactly the rota-
tion one. In the case of general complex coefficients, Eq. (66)
is also an option leading to a rotation matrix for a complex an-
gle. However, this normalization is inconvenient, e.g., for the
abovementioned case (1,±i) since the corresponding rotation
angle is then infinite:

lim
x→∞ 2exp(−x)R∓ix =

(
1 ±i
∓i 1

)
. (67)

An alternative normalization is

|α|2 + |β|2 = 1, (68)

which preserves the norm of the electric field (see Sec. III E).
Importantly, the generalized polarizations have a simple

rotation relation for arbitrary complex angle ψ :

RψE(α,β )
n = exp(−inψ )

[
cos ψE(α,β )

n + sin ψ E(−β,α)
n

]
,

(69)

valid for arbitrary (α,β ) and each Bessel beam type
(subscripts LE, LM, CS, CS′, TEL, and TML). This rela-
tion follows from the matrix representation and Eqs. (53)
and (64). The result is a straightforward generalization
of the rotation relation for plane waves [58]. More-
over, note that, by definition, E(−1,0)

n = −E(1,0)
n , and

Eq. (69) implies Eq. (52) for E(α,β )
n . Thus, any pair

E(α,β )
n and E(−β,α)

n can be used as a pair {E⊥, E‖}
[cf. Eq. (53)] but becomes degenerate whenever (−β,α) is
proportional to (α,β ), which is equivalent to α2 + β2 = 0.
The latter case corresponds to generalized circular polar-
izations (1,±i) (up to a constant factor), which break the
normalization given by Eq. (66) and are eigenfunctions of the
rotation operator:

RψE(1,±i)
n = exp[−i(n ± 1)ψ]E(1,±i)

n . (70)

This equation is a generalization of expressions for TE and
TM beams [cf. Eqs. (54) and (63)] and is simpler if written in
terms of matrix M, using Eq. (51):

M(1,±i)Rψ = exp(±iψ )M(1,±i). (71)

C. Duality rotation and relations between Bessel beam types

Duality transformations are naturally incorporated into the
general framework described in Sec. III A. Specifically, Ta-
ble III demonstrates that the LE and LM, TE and TM, and
TEL and TML Bessel beam types are paired by the duality
transformation. We do not show the corresponding expres-
sions for matrix M′ since they are trivially obtained from
Eq. (32) and are in most cases more complicated. The only
exception is the TE and TM beams, for which

M′
TE = 1

kt

( −k 0
−ikz 0

)
, M′

TM = 1

kt

(−ikz 0
k 0

)
, (72)

where the matrix M′ of order n corresponds to the TE and
TM beams of order n + 1. Equation (72) follows from the
definition of these beams in Sec. II B and Eq. (46). Note that
duality transformations directly relate the electric field of one
beam to the magnetic field of the other. If one is interested in
the |H|2 profiles of various beams, one may look at the |E|2
profile of the corresponding dual beam.

For the CS beams, the matrix M is a (scaled) rotation
matrix itself, even for (α,β ), see Table II; hence, it commutes
with other rotations:

RψM(α,β )
CS = M(α,β )

CS Rψ. (73)

That means that a duality rotation is equivalent to the polar-
ization rotation by the inverse angle. By contrast, for the CS′
beams, the matrix M is a (scaled) reflection matrix; thus, it
satisfies

RψM(α,β )
CS′ = M(α,β )

CS′ R−ψ. (74)

Moreover, the symmetry of the CS beams under polarization
and duality rotation leads to the symmetry of the time-
averaged energy density and magnitude of the Poynting vector
that will be discussed in Sec. III D.

Another important property, evident from Table III, is that a
beam defined by an arbitrary matrix M is a linear combination
of E(x)

LE, E(y)
LE, E(x)

LM, and E(y)
LM. Therefore, one can immediately

express other Bessel beam types through these 4 beams [see
also Eqs. (57) and (58)]:

E(x),(y)
CS = E(x),(y)

LE ∓ E(y),(x)
LM

2
, (75)

E(x),(y)
CS′ = −E(x),(y)

LE ∓ E(y),(x)
LM

2
, (76)
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TABLE III. The relations between different Bessel beams via polarization and duality rotations. Note that the order of the TE and TM
beams is larger by 1 than the order of the corresponding matrix M.

Type Field M Polarization rotation Duality rotation

E(x)
LE

(0 0
0 1

)
LE M(y)

LER = M(x)
LE

E(y)
LE

( 0 0
−1 0

)
RM(x,y)

LM = M(x,y)
LE

E(x)
LM

(0 1
0 0

)
LM M(y)

LMR = M(x)
LM

E(y)
LM

(−1 0
0 0

)

E(x)
CS

1

2

(1 0
0 1

)
CS M(y)

CSR = M(x)
CS RM(y)

CS = M(x)
CS

E(y)
CS

1

2

( 0 1
−1 0

)

E(x)
CS′

1

2

(1 0
0 −1

)
CS′ M(y)

CS′ R = M(x)
CS′ RM(x)

CS′ = M(y)
CS′

E(y)
CS′

1

2

(0 1
1 0

)

TE ETE,n+1
1

kt

( −k −ik
−ikz kz

)
MTERψ = exp(iψ )MTE

RMTM = MTE

TM ETM,n+1
1

kt

(−ikz kz

k ik

)
MTMRψ = exp(iψ )MTM

E(x)
TEL

1

kt

(−k 0
0 kz

)
TEL M(y)

TELR = M(x)
TEL

E(y)
TEL

1

kt

( 0 −k
−kz 0

)
RM(x,y)

TML = M(x,y)
TEL

E(x)
TML

1

kt

(0 kz

k 0

)
TML M(y)

TMLR = M(x)
TML

E(y)
TML

1

kt

(−kz 0
0 k

)

ETE,n+1 = k−1
t

{−ik
[
E(x)

LM,n + iE(y)
LM,n

]+ kz
[
E(x)

LE,n + iE(y)
LE,n

]}
,

(77)

ETM,n+1 = k−1
t

{
ik
[
E(x)

LE,n + iE(y)
LE,n

]+ kz
[
E(x)

LM,n + iE(y)
LM,n

]}
,

(78)

where the beam orders are specified only when they are dif-
ferent inside one equation.

Naturally, there are other ways to choose the basis for
Bessel beams. For instance, Wang et al. [23] proposed the
basis consisting solely of the TE and TM beams. We have
mentioned this possibility at the end of Sec. III A, but let us
discuss in more detail below. First, we express the TEL and
TML beams of order n, using Eq. (63):

E(x)
TEL,n = ETE,n−1 + ETE,n+1

2
,

E(y)
TEL,n = i(ETE,n−1 − ETE,n+1)

2
,

(79)

E(x)
TML,n = ETM,n−1 + ETM,n+1

2
,

E(y)
TML,n = i(ETM,n−1 − ETM,n+1)

2
,

(80)

which can then be combined into any basic type with trans-
verse potentials:

E(x),(y)
LE = k−1

t

[±kE(y),(x)
TML − kzE

(x),(y)
TEL

]
, (81)

E(x),(y)
LM = k−1

t

[∓kE(y),(x)
TEL − kzE

(x),(y)
TML

]
, (82)

E(x),(y)
CS = kt

2(k − kz )

[±E(y),(x)
TML − E(x),(y)

TEL

]
, (83)

E(x),(y)
CS′ = kt

2(k + kz )

[∓E(y),(x)
TML − E(x),(y)

TEL

]
, (84)

where the order of all beams is the same. These expressions
for the LE and CS beams are analogous to that in Ref. [23]
up to constant factors due to different definitions of fn. More-
over, they show that the TEL and TML beams also form a
convenient basis, as well as the CS and CS′ beams. Further
discussion of these bases with respect to orthogonality is
postponed until Sec. III E. Interestingly, Eqs. (79) and (80)
demonstrate that E(α,β )

TEL and H(α,β )
TML are fully transverse (have

zero z components), inheriting this property from the TE and
TM beams, respectively.
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Finally, many recurrent relations can be derived from
Eq. (44). For instance, starting with E(1,−i)

LE,n or E(1,−i)
LM,n , the last

term in Eq. (44) vanishes, and we obtain, respectively,

k2
t E(1,−i)

LE,n = 2ikkzE
(1,i)
LM,n−2 − (k2 + k2

z

)
E(1,i)

LE,n−2, (85)

k2
t E(1,−i)

LM,n = −2ikkzE
(1,i)
LE,n−2 − (k2 + k2

z

)
E(1,i)

LM,n−2. (86)

These relationships of Bessel beams of different orders [and
Eq. (44), in general] can be considered specific cases of spin-
orbit interactions for vector beams [3].

D. Quadratic functionals of fields

In this and the next section, we will consider complex
conjugation of fields. Thus, to simplify discussion, we require

the angle α0 to be real, which implies that both k̂t
def= kt/k and

k̂z
def= kz/k are also real. We have introduced k̂t and k̂z to shorten

further expressions, although they are equal to sin α0 and
cos α0, respectively. Let us first rewrite some of the previous
formulae in matrix form. Equations (15), (17), and (18) can be
rewritten as

∇ ×
⎛
⎝e+

e−
ez

⎞
⎠ fn = kT̃′

⎛
⎝e+

e−
ez

⎞
⎠ fn,

T̃′ def=
⎛
⎝ k̂z 0 −ik̂tN1

0 −k̂z −ik̂tN−1
ik̂t
2 N−1

ik̂t
2 N1 0

⎞
⎠,

(87)

where, as before, the tilde and prime denote that the matrix
describes the action on full three-dimensional vectors (not
only transverse ones), and the circular transverse basis is used,
respectively. If the standard Cartesian basis is used, Eq. (87)
is transformed into

∇ ×
⎛
⎝ex

ey

ez

⎞
⎠ fn = T̃

⎛
⎝ex

ey

ez

⎞
⎠ fn, T̃ def= W̃−1T̃′W̃, (88)

where W̃ is the matrix W, given by Eq. (33), extended to the
size 3 × 3 by additional value of 1 at the position (3,3). The
matrix T̃ has a bit longer expression, but it has a zero diagonal,
and its Hermitian adjoint T̃H coincides with T̃ if the signs of
order increments of operators N are reversed, i.e., N1 and N−1

are interchanged. The corresponding symmetry for the matrix
T̃′ involves additional factors of 2 due to unormalized basis
[see Eq. (94) below].

It is easy to check that

T̃3 = T̃, T̃′3 = T̃′, (89)

as an implication of the Helmholtz equation (here, super-
scripts denote matrix powers). However, T̃2 or T̃′2, required

for expressions of double curls, require an explicit evaluation.
For instance,

T̃′2 = 1

2

⎛
⎝ 1 + k̂2

z k̂2
t N2 −2ik̂zk̂tN1

k̂2
t N−2 1 + k̂2

z 2ik̂zk̂tN−1

ik̂zk̂tN−1 −ik̂zk̂tN1 2k̂2
t

⎞
⎠. (90)

These transformation matrices lead to concise expressions
for electric and magnetic fields generated by arbitrary Hertz
vector potentials (both transverse and longitudinal). However,
they are redundant, which is discussed in detail in Sec. III A,
but can also be described in terms of nontrivial null space of
matrices T̃ and T̃′. Thus, to leave only transverse potentials
(and to use matrices M and M′), we truncate the matrices T̃,
T̃′, T̃2, and T̃′2, leaving only the first two rows. The resulting
2 × 3 matrices are denoted T, T′, T2, and T′

2, respectively.
Note that the subscript 2 is used instead of a power index since
T2 �= T2. Moreover, the relations between these matrices are
like Eq. (88):

T = W−1T′W̃, T2 = W−1T′
2W̃. (91)

Finally, Eqs. (28), (29), and (31) can be rewritten as

(
E
ηH

)
= E0M(T2 − iRT)

⎛
⎝ex

ey

ez

⎞
⎠ fn

= E0M′(T′
2 − iRT′)

⎛
⎝e+

e−
ez

⎞
⎠ fn, (92)

which is equivalent to Eqs. (35) and (36) and not necessarily
simpler since it requires a lot of additional definitions. The
true power of this representation, however, manifests itself in
computing the quadratic or sesquilinear combinations of the
fields. For instance, a 2 × 2 matrix of vector norms and scalar
products E · H∗ is given as(

E
ηH

)
·
(

E
ηH

)H

= |E2
0 |(M′T′

2 − iRM′T′)

× fnC1(M′T′
2 − iRM′T′)H f ∗

n , (93)

where the matrices T′ and T′
2 are multiplied as usual with the

only caveat that operators Nl in the original and Hermitian
transposed matrices act on fn and f ∗

n , respectively. The diago-
nal matrix C1 is defined as

C1
def=
⎛
⎝e+

e−
ez

⎞
⎠ ·
⎛
⎝e+

e−
ez

⎞
⎠

H

= W̃W̃H =
⎛
⎝2 0 0

0 2 0
0 0 1

⎞
⎠. (94)

The first element of the resulting matrix in Eq. (93) is |E|2,
but the explicit expression is cumbersome and can also be
obtained from Eq. (35):

|E|2 = ∣∣E2
0

∣∣{[∣∣(1 + k̂2
z

)
Me,+ + 2ik̂zMm,+

∣∣2 + ∣∣(1 + k̂2
z

)
Me,− − 2ik̂zMm,−

∣∣2] | fn|2
2

+ k̂4
t

2

(|Me,− fn−2|2 + |Me,+ fn+2|2
)

+ k̂2
t

(∣∣k̂zMe,− − iMm,−
∣∣2| fn−1|2 + ∣∣k̂zMe,+ + iMm,+

∣∣2| fn+1|2
)

+ Re
(
k̂2

t

{
Me,+

[(
1 + k̂2

z

)
M∗

e,− + 2ik̂zM
∗
m,−
]

fn+2 f ∗
n

+ Me,−
[(

1 + k̂2
z

)
M∗

e,+ − 2ik̂zM
∗
m,+
]

fn−2 f ∗
n − 2

(
k̂zMe,+ + iMm,+

)(
k̂zM

∗
e,− + iM∗

m,−
)

fn+1 f ∗
n−1

})}
(95)
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Let us instead consider a symmetric combination w
def= |E|2 + |ηH|2, which is proportional to the time-averaged energy density

of the electromagnetic field if the host medium is nonabsorbing (i.e., both ε and μ are real). The latter is conventionally given
as (ε|E|2 + μ|H|2)/4 [59], although other definitions have been proposed in the case of a magnetic medium [60]. In a weakly
absorbing medium, w is approximately equal to the energy density. Using the property of a trace of matrix product, i.e., tr(AB) =
tr(BA), we obtain

w = ∣∣E2
0

∣∣tr[X1
(
M′H M′)− Y1

(
M′H iRM′)], (96)

where the Hermitian matrices X1 and Y1 are defined as:

X1
def= T′ fnC1T′H f ∗

n + T′
2 fnC1T′H

2 f ∗
n = 1

2

[(
k̂4

t + 8k̂2
z

)| fn|2
(

1 0
0 1

)
+ k̂4

t

(| fn+2|2 2 fn+1 f ∗
n−1

c.c. | fn−2|2
)

+ (1 − k̂4
z

)(2| fn+1|2 fn f ∗
n−2 + fn+2 f ∗

n
c.c. 2| fn−1|2

)]
(97)

Y1
def= T′ fnC1T′H

2 f ∗
n + T′

2 fnC1T′H f ∗
n = 2k̂z

(
1 + k̂2

z

)| fn|2
(

1 0
0 −1

)
+ k̂2

t k̂z

(
2| fn+1|2 fn f ∗

n−2 − fn+2 f ∗
n

c.c. −2| fn−1|2
)

, (98)

where c.c. denotes the complex conjugate of another off-
diagonal term in the same matrix.

Equation (96) consists of traces of products of two Her-
mitian matrices; each equals the element-wise inner product
of these matrices. Thus, albeit being still cumbersome, w has
a simple structure of linear combinations of various products
of fn with weights given by elements of matrices M′H M′ and
M′H iRM′. Obviously, Eq. (12) implies

fn f ∗
l = Jn(ktρ )J∗

l (ktρ )exp[i(n − l )ϕ]exp(−2z Im kz ), (99)

which means that the diagonals of matrices X1 and Y1

contribute to ϕ-independent terms, while off-diagonal terms
contribute to ϕ-dependent ones.

The first important conclusion is that w is CS (independent
of ϕ) if and only if both M′H M′ and M′H RM′ are diagonal
since the terms fn+1 f ∗

n−1 in X1 cannot be compensated by any
terms in Y1. This is equivalent to the condition:

Me,+M∗
e,− + Mm,+M∗

m,− = 0 = Me,+M∗
m,− − Mm,+M∗

e,−,

(100)

which, in turn, is equivalent to either (1) M′
+ = 0 or M′

− = 0,
i.e., any linear combination of the TE and TM beams of the
same order [cf. Eqs. (46) and (72)] or (2) all elements of M′
are not zero, and

Me,+
Mm,+

= Mm,−
Me,−

= ±i. (101)

In terms of matrix M, Eq. (101) is equivalent to

Me,x = ±Mm,y and Me,y = ∓Mm,x, (102)

where the ± sign corresponds to that in Eq. (101). Looking at
Table II, one can see that the corresponding matrix is either
M(α,β )

CS or M(α,β )
CS′ . On the one hand, we have justified the name

CS for these beams—they indeed have CS w (see Figs. 6 and
10). On the other hand, we have enumerated all Bessel beams
described by a single matrix M, possessing such symmetry.

One-way implication, i.e., the symmetry of the TE, TM,
and CS beams, is known [18,23] and can be easily derived
from their properties (as well as for the CS′ beam). The rota-
tion of the field is given by Eq. (51), where the phase factor
vanishes after multiplication by its transpose in sesquilinear

combinations of fields. Thus, Eq. (54) implies circular sym-
metry of both |E|2 and |H|2 and, hence, of w for the TE
and TM beams. For the CS and CS′ beams, Eqs. (73) and
(74) allow one to move Rψ and R−ψ to the outer sides of
the right-hand side of Eq. (93), where they cancel each other,
after taking the trace, proving the circular symmetry of w. In
other words, for the latter beams, the polarization rotation is
replaced by duality rotation, to which w is obviously invariant.

The circular symmetry of |E|2 is harder to achieve—it
requires all three quadratic combinations of coefficients inside
Re(. . .) in Eq. (95) to vanish. This holds if and only if either
M′

+ = 0 or M′
− = 0, i.e., for any linear combination of the

TE and TM beams of the same order. Again, this symmetry is
known [23], but we also proved that no other Bessel beam
described by a matrix M has such symmetry. Due to the
duality, the same requirement holds for the circular symmetry
of |H|2.

We are further interested in the time-averaged Poynting
vector [59]:

S = 1

2
Re(E × H∗), (103)

although three different alternative expressions exist [61,62].
Analogously to Eq. (93), let us consider the 2 × 2 skew-
Hermitian matrix:

(
E
ηH

)
×
(

E
ηH

)H

= ∣∣E2
0

∣∣(M′T′
2 − iRM′T′) fniC2(M′T′

2 − iRM′T′)H f ∗
n ,

(104)

where C2 is the Hermitian matrix of vectors, obtained using
Eq. (13):

C2
def= −i

⎛
⎝e+

e−
ez

⎞
⎠×

⎛
⎝e+

e−
ez

⎞
⎠

H

=
⎛
⎝−2ez 0 e+

0 2ez −e−
e− −e+ 0

⎞
⎠.

(105)
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FIG. 10. Magnitude profiles of the Poynting vector components and energy density for E(x)
CS′ with the same parameters as in Fig. 2. The

transverse component is scaled for better visibility.

We will further calculate the expression 2Re[E × (ηH)∗] by
combining off-diagonal elements in Eq. (104). This expres-
sion is proportional both to Eq. (103) and to alternative
definitions in a nonabsorbing host medium and is approxi-
mately proportional to them in a weakly absorbing one, like
the discussion of the energy density above.

Taking the trace of R times Eq. (104), we obtain

2Re[E × (ηH)∗] = ∣∣E2
0

∣∣tr[X2
(
M′H iRM′)− Y2

(
M′H M′)],

(106)

where the Hermitian matrices X2 and Y2 are defined analo-
gously to Eqs. (97) and (98), but their elements are vector

functions:

X2
def= T′ fnC2T′H f ∗

n + T′
2 fnC2T′H

2 f ∗
n = ez

2

[(
k̂4

t + 8k̂2
z

)| fn|2
(−1 0

0 1

)
+ k̂2

t

(
k̂2

t | fn+2|2
(
1 + k̂2

z

)
( fn+2 f ∗

n − fn f ∗
n−2)

c.c. −k̂2
t | fn−2|2

)]

+ k̂zk̂t

2

[(
3 + k̂2

z

)(−gn 0
0 gn−1

)
+ k̂2

t

(−gn+1 hn+1 − hn

c.c. gn−2

)]
, (107)

Y2
def= T′ fnC2T′H

2 f ∗
n + T′

2 fnC2T′H f ∗
n = −k̂zez

[
2
(
1 + k̂2

z

)| fn|2 k̂2
t ( fn+2 f ∗

n + fn f ∗
n−2)

c.c. 2
(
1 + k̂2

z

)| fn|2
]

− k̂t

2

[(
1 + 3k̂2

z

)(gn 0
0 gn−1

)
+ k̂2

t

(
gn+1 hn + hn+1

c.c. gn−2

)]
, (108)

and the transverse vector functions gn and hn are the follow-
ing:

gn
def= i(e− fn+1 f ∗

n − e+ fn f ∗
n+1) = 2Im(e+ fn f ∗

n+1), (109)

hn
def= i(e− fn+1 f ∗

n−2 − e+ fn f ∗
n−1). (110)

Again, the final expressions are cumbersome but allow
straightforward analysis. First, the z component of Eq. (106)
(in many cases proportional to Sz) is CS if and only if both
M′H M′ and M′H RM′ are diagonal (completely analogous to
w). In this case, the transverse component of Eq. (106) is a
linear combination of gn. On the one hand, this combination
never vanishes (unless α → 0) due to slightly different coeffi-
cients in Eqs. (107) and (108)—(3k2 + k2

z ) vs (k2 + 3k2
z ). On

the other hand, gn has a simple azimuthal dependence:

gn = 2Im[(eρ + ieϕ )Jn(ktρ)J∗
l (ktρ )]exp(−2z Im kz ), (111)

i.e., it rotates with ϕ the same way as the unit vectors of the
cylindrical coordinate system eρ and eϕ . Moreover, for real k,
the vector gn is always directed along eϕ . However, even for
complex k, any linear combination of gn would not change
its magnitude with ϕ. Thus, we have proved that, for Bessel
beams, given by Eq. (31) in a nonabsorbing host medium
(for real k), both Sz and |St| (and hence |S|) are CS if and

only if w has the same property, i.e., the beam is either CS,
CS′, or a linear combination of the TE and TM beams. This
symmetry is well known for the TE, TM, and CS [18,23]
and can be derived directly like the case of w above, but
here, we present a complete list of conforming beams. For
a weakly absorbing medium, the above symmetry property is
approximately satisfied.

To finalize this section, let us show an example of the CS′
beam profiles in Figs. 10 and 11.

E. Orthogonality and norm

The discussion of relations of different Bessel beam types
naturally leads to a question: What is the basis of Bessel
beams? While there is no unique answer to this question, one
can at least examine the orthogonality and norm relations. Any
reasonable norm for electromagnetic fields is based on the
quadratic functionals, described in the previous section, such
as w, |E|2, and |H|2. However, they should be integrated over
some domains to become independent of r. Since the idealized
Bessel beams have trivial dependence on z, integration over
this coordinate is meaningless in contrast to the transverse
coordinate ρ. However, plain integration over ρ leads to an
infinite result due to slow decay of the Bessel functions, like
the case of plane waves. Hence, some renormalization is re-
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FIG. 11. Intensity profiles of components of E(x)
CS′ with the same parameters as in Fig. 2. The z component is scaled for better visibility.

quired. Using asymptotic expansion of a Bessel function for
large (complex) arguments (eq. 10.17.3 of Ref. [63]), one can
obtain∫

ρ�R
d2ρ|Jn(ktρ)|2 = 2π

∫ R

0
dρ ρ|Jn(ktρ)|2 ∼ ξ−1(kt,R),

(112)

where the normalization function is

ξ (kt,R)
def= |kt| Im kt

sinh (2R Im kt )
→

Im kt→0

|kt|
2R

. (113)

Thus, we further assume z = 0 in this section and define the
finite norm of the electric field of Bessel beams as

‖E(r)‖2 def= lim
R→∞

ξ (kt,R)
∫

ρ�R
d2ρ|E(r)|2, (114)

which can also be applied to the magnetic field. Note that,
in a weakly absorbing medium (i.e., when Im kt � |kt|), the
limiting value is obtained already for moderate values of R,
when the limit of ξ (kt,R) in Eq. (113) is approximately valid.

A natural next step is to define the functional inner product
conforming to the above norm:

〈E1, E2〉 def= lim
R→∞

ξ (kt,R)
∫

ρ�R
d2ρE1(r) · E∗

2(r), (115)

which we further evaluate for two beams specified by arbitrary
matrices M1 and M2. For that, we use the following equality
(for z = 0), which follows from Eqs. (99) and (112):

lim
R→∞

ξ (kt,R)
∫

ρ�R
d2ρ fn f ∗

l = δnl , (116)

where δnl is the Kronecker symbol. Let us start from Eq. (93)
generalized to two different beams and integrate it over the
beam cross section:〈(

E1

ηH1

)
,

(
E2

ηH2

)〉
= ∣∣E2

0

∣∣[(1 + k̂2
z

)(
M′

1M′H
2 − RM′

1M′H
2 R
)

− 2ik̂z
(
RM′

1I′M′H
2 + M′

1I′M′H
2 R
)]

,

(117)

where I′ is the reflection matrix:

I′ def=
(

1 0
0 −1

)
, (118)

and we used the equivalence with respect to calculation of
integrals, following from Eq. (116):

T′C1T′H ∼ T′
2C1T′H

2 ∼ (1 + k̂2
z

)
I,

T′C1T′H
2 ∼ T′

2C1T′H ∼ 2k̂zI′ (119)

[cf. also Eq. (97) and (98)].
Equation (117) implies that both diagonal elements of the

resulting matrix are equal and can be concisely expressed
through its trace:

〈E1, E2〉 = |η|2〈H1, H2〉
= ∣∣E2

0

∣∣tr[(1 + k̂2
z

)
M′

1M′H
2 − 2ik̂zRM′

1I′M′H
2

]

= |E2
0 |

2
tr
[(

1 + k̂2
z

)
M1MH

2 − 2k̂zRM1RMH
2

]
,

(120)

where the last part follows from Eq. (32) and identities
W−1W−H = I/2, W−1I′W−H = −iR/2. One can also de-
fine the norm of the beam through w—the conforming inner
product will be equal to 2〈E1, E2〉. As expected, this inner
product is invariant to both duality and polarization rotation,
which is evident from the corresponding transformations of
matrices M1 and M2 (see Sec. III A). Moreover, beams with
two orthogonal polarizations, i.e., with matrices M and MR
[Eq. (53)], have zero inner product whenever

tr
(
RMH M

) = tr(RMMH ) = 0. (121)

This is true for arbitrary real matrix M (due to the trace
of a product of a symmetric and a skew-symmetric matrix
being zero) as well as for any its linear transformation of the
form α1M + β1RMR (∀α1, β1 ∈ C). This obviously includes
the LE, LM, CS, CS′, TEL, and TML beams with any real
polarization (given by α, β ∈ R, see Table II). Based on this
rigorous analysis, we define the linear and elliptical polariza-
tions of the Bessel beams as the ones for which Eq. (121)
is valid and not valid, respectively. Constructing the second
(orthogonal) polarization and using (α,β ) notation should be
done only when starting with a linear polarization. The nor-
malization, given by Eq. (68), then preserves the beam norm,
and any (α,β ) combination with α/β /∈ R, applied to a linear
polarization, necessarily leads to an elliptical (or circular) po-
larization. The circular polarization can generally be defined
as an eigenfunction of the rotation operator [Eq. (70)], which
includes the TE and TM beams.

It is straightforward to compute the norms of various beams
using Eq. (120) (and ‖E(r)‖2 = 〈E, E〉); the results are sum-
marized in Table IV. Different norms of the CS and CS′
beams correspond to their plane-wave limits (see Table I);
however, this relation is not that trivial. The plane-wave limit
is taken for fixed r, i.e., effectively for r = 0, while the norm is
computed over the whole cross section, including the maxima
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TABLE IV. Norms of various Bessel beam types. The results for
y polarizations are the same as shown for x ones. Results for (α,β )
polarizations differ by a factor of

√
|α|2 + |β|2.

Type ‖E‖/E0

E(x)
LE, E(x)

LM

√
(1 + k̂2

z )/2

E(x)
CS (1 + k̂z )/2

E(x)
CS′ (1 − k̂z )/2

E(x)
TEL, E(x)

TML k̂t/
√

2

ETE, ETM k̂t

of the fields located at large values of ρ (at certain fixed values
of ktρ). This difference is crucial for beams that have zero field
intensity in the center.

Let us further discuss the cross products of the Bessel
beams. While the LE and LM beams have the simplest ma-
trices M (see Table III), they do not constitute an orthogonal
basis due to the last term in Eq. (120). Specifically,

〈
E(x)

LM, E(y)
LE

〉 = −〈E(x)
LE, E(y)

LM

〉 = k̂z

∣∣E2
0

∣∣, (122)

while other cross products are zero due to the factors being
connected by duality or polarization rotations. Alternatively,
a beam with diagonal M is always orthogonal to the beam
with zero-diagonal M. The same arguments apply to the sets
{E(x),(y)

CS , E(x),(y)
CS′ } and {E(x),(y)

TEL , E(x),(y)
TML }, proving the vanishing

of most cross products. One only need to check manually the
inner products involving diagonal matrices, which happen to
vanish as well:〈

E(x)
CS, E(x)

CS′
〉 = 〈E(x)

TEL, E(y)
TML

〉 = 0. (123)

Thus, we have identified two orthogonal bases for beams
of a fixed order specified by any matrix M: {CS, CS′} and
{TEL, TML} (using two orthogonal linear polarizations for
each). They can easily be made orthonormal by dividing by
the corresponding norms (Table IV). After normalization, the
pairs of these basic vectors are related by rotation, e.g., those
in Eq. (123) [cf. Eqs. (83) and (84)]. Obviously, any other
(four-dimensional) rotation of a set of four orthonormal beams
will produce another orthonormal basis. For instance, another
obvious option is {E(1,±i)

TEL , E(1,±i)
TML }, which corresponds to the

TE and TM beams of orders n ± 1 [Eq. (63)] or, more gen-
erally, to the orthogonal basis of CVWFs (see Secs. II A and
III A). Interestingly, the basis of {CS, CS′} is closely related
to the set of Pauli matrices.

Finally, let us discuss the orthogonality of beams of var-
ious orders, more specifically, with orders n and n + l (for
fixed l > 0). Let us start from the known relations for the
TE and TM beams. Orthogonality of these beams for l = 2
follows from the discussion above (they are parts of the same
orthonormal basis), while for all other l �= 0, the orthogonality
follows immediately from Eqs. (19), (20), and (116) since
the same orders of fn and f ∗

n appear only for l = 1 and
only in different vector components, e.g., in transverse and
longitudinal ones. This, again, is a well-known orthogonality
of the set of CVWFs [52]. Together with Eqs. (79) and (80),
it immediately implies that two beams with any matrices M1

and M2 are always orthogonal for l �= 2 [also obvious from
Eq. (35)].

For the case of l = 2, we first consider the basis of the TEL
and TML beams, for which we obtain

〈
E(x)

TEL,n, E(x)
TEL,n+2

〉 = −〈E(y)
TEL,n, E(y)

TEL,n+2

〉 = k̂2
t

4
,

〈
E(x)

TEL,n, E(y)
TEL,n+2

〉 = 〈E(y)
TEL,n, E(x)

TEL,n+2

〉 = − ik̂2
t

4
,

(124)

and the same for TML, while the TEL and TML beams remain
orthogonal to each other for any polarizations. The additional
minus sign appears during rotation (switching between x and
y polarizations) due to the phase factor in Eq. (51), which
is opposite for orders n and n + 2. This can be continued to
calculate cross products of other beams, but let us, first, derive
a general expression for any two matrices M1 and M2 from the
first principles. Analogously to Eq. (117), we obtain〈(

E1

ηH1

)
n

,

(
E2

ηH2

)
n+2

〉

= ∣∣E2
0

∣∣k̂2
t

[
M′

1

(
0 1
0 0

)
M′H

2 − RM′
1

(
0 1
0 0

)
M′H

2 R
]
,

(125)

where we used the equivalence with respect to calculation of
the integrals:

T′C1T′H ∼ T′
2C1T′H

2 ∼ k̂2
t

(
0 N2

0 0

)
,

T′C1T′H
2 ∼ T′

2C1T′H ∼ 0 (126)

[cf. also Eqs. (97) and (98)]. Again, both diagonal elements of
the resulting matrix are equal and can be concisely expressed
through its trace:

〈E1,n, E2,n+2〉 = |η|2〈H1,n, H2,n+2〉

= ∣∣E2
0

∣∣k̂2
t tr

[
M′

1

(
0 1
0 0

)
M′H

2

]

= ∣∣E2
0

∣∣ k̂2
t

4
tr

[
M1

(
1 −i
−i −1

)
MH

2

]
. (127)

The expressions for any specific beams, including
Eq. (124) and orthogonality of the TE and TM beams, follow
trivially from Eq. (127). Moreover, any beam of order n with
real matrix M is orthogonal to the dual beam (with matrix
RM) of order n + 2 since the argument of trace is then the
product of R and a symmetric matrix. Specifically, the CS
beams are mutually orthogonal even with changing orders; the
same holds for the CS′ beams. However, their cross products
are not zero:

〈
E(x)

CS,n, E(x)
CS′,n+2

〉 = −〈E(y)
CS,n, E(y)

CS′,n+2

〉 = k̂2
t

8
,

〈
E(x)

CS,n, E(y)
CS′,n+2

〉 = 〈E(y)
CS,n, E(x)

CS′,n+2

〉 = − ik̂2
t

8
,

(128)

Similarly, the LE beams are always orthogonal to the LM
beams (for any two polarizations), while the cross products of
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the LE beams are minus that for the TEL beams [Eq. (124)]:

〈
E(x)

LE,n, E(x)
LE,n+2

〉 = −〈E(y)
LE,n, E(y)

LE,n+2

〉 = − k̂2
t

4
,

(129)〈
E(x)

LE,n, E(y)
LE,n+2

〉 = 〈E(y)
LE,n, E(x)

LE,n+2

〉 = ik̂2
t

4
.

The results for the LM beams are the same.
To conclude this section, we have shown that the basis

based on either TEL and TML or CS and CS′ beams is orthog-
onal and complete if we consider every second odd and every
second even order, for instance, n = 4l and n = 4l + 1 for any
integer l (see also Sec. III A). Thus, they are comparable to the
well-known basis of the TE and TM beams of all orders n. The
basis of the LE and LM beams, which directly corresponds to
elements of the matrix M, is not fully orthogonal but is the
most convenient one, when a single order n is considered due
to simple rotation and duality transformations and ability to
express all other beam types. Thus, we chose it for implemen-
tation in the light-scattering simulation code, as discussed in
the next section.

IV. SCATTERING OF BESSEL BEAMS

A. Extension of the Mueller calculus to Bessel beams

Most light scattering codes, including ADDA, are tailored
for the Mueller calculus that implies consideration of two
polarizations of incident electromagnetic field [28]. This cal-
culus is typically considered for nonmagnetic materials and a
nonabsorbing host medium; the same limitation is currently
present in ADDA. Thus, we further assume real k and μ = 1
and discuss only the electric field. The amplitude scattering
matrix, by definition, relates polarizations of incident and
scattered fields, expanded into a basis of two orthogonal com-
ponents, so-called Jones vectors [28]:(

E‖
E⊥

)
sca

= exp[ik(r − z)]

−ikr

(
S2 S3

S4 S1

)(
E‖
E⊥

)
inc

. (130)

The central role in scattering problems is played by the Stokes
parameters (I, Q,U,V ) which are quadratic combinations of
the fields, when the latter are fully coherent [28]:

I = E‖E∗
‖ + E⊥E∗

⊥, (131)

Q = E‖E∗
‖ − E⊥E∗

⊥, (132)

U = E‖E∗
⊥ + E⊥E∗

‖ , (133)

V = i(E‖E∗
⊥ − E⊥E∗

‖ ). (134)

Originally, Stokes parameters were proposed as a set of mea-
surable quantities that describe polarization states for plane
waves [28] (e.g., I is the intensity). Importantly, the Stokes
vectors for the scattered and incident waves are linearly re-
lated through the Mueller (scattering) matrix:
⎛
⎜⎝

I
Q
U
V

⎞
⎟⎠

sca

= 1

k2r2

⎛
⎜⎝

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

⎞
⎟⎠
⎛
⎜⎝

I
Q
U
V

⎞
⎟⎠

inc

. (135)

The elements of the Mueller matrix can be expressed through
that of the amplitude scattering matrix [28] and allow express-
ing the measured signal for any detector configuration. For
instance, the scattering intensities for parallel and perpendic-
ular incident polarizations are given as

I‖ = S11 + S12, (136)

I⊥ = S11 − S12, (137)

which, for axisymmetric particles, are equivalent to scattering
intensities in parallel and perpendicular scattering planes (E
and H planes, respectively) for the same incident polarization.

In the following, we extend the Mueller calculus to the
Bessel beams. For that, we focus on the linear relation in
Eq. (130), which remains valid for any definition of two
incident polarizations (basis components). Specifically, once
one solves the scattering problem for two incident fields and
obtains the corresponding amplitude matrix, Eq. (130) pro-
vides the solution of the scattering problem for any linear
combination of these two incident fields. In contrast to the
case of a plane wave, such linear combinations do not cover
the full range of incident fields. Still, if the two polarizations
are related by a rotation, the linear combinations will cover
all their possible rotations. Note that both Jones and Mueller
vectors remain intact for the scattered field since the latter is
equivalent to a plane wave in the far field irrespective of the
incident beam.

Next, we postulate that two basic fields (polarizations) of
the incident beam E⊥(r) and E‖(r) are related by Eq. (53),
i.e., by a π/2 rotation with additional phase factor. Omitting
further the dependence on r, this definition corresponds to
{E(x),E(y)} for most of the Bessel beam types, as discussed in
Sec. III B. The components E‖ and E⊥ then exactly correspond
to β and α, respectively, in the definition of E(α,β ) [Eq. (62)].
The advantage of such a postulate is the simplest rotation
relations, based on Eq. (69). Specifically, rotating the beam
by angle ψ over the z axis transforms its components as

(
E‖
E⊥

)′

inc

= exp(−inψ )R−ψ

(
E‖
E⊥

)
inc

. (138)

The same rotation of the coordinate frame (by angle ψ), which
corresponds, e.g., to rotation of the scatterer, is equivalent to
the inverse rotation of the incident beam. The action of the am-
plitude matrices in the original and rotated reference frames
(A and A′, respectively) on the corresponding Jones vectors
must lead to the same result, if the scattered direction is the
same (its azimuthal scattering angle changes accordingly) [see
Eq. (130)]. Thus, they are related as

A′ = exp(−inψ )AR−ψ, (139)

i.e., the relation is different from that for the plane wave [58]
only by a common phase factor, naturally related to the beam
vorticity.

We further postulate that the Stokes vector is still defined
by Eqs. (131)–(134), which implies the same relation between
the amplitude and the scattering matrix as for the plane wave.
Thus, when the reference frame (or the scatterer) is rotated,
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the generalized Mueller matrix is transformed as

S′ = S

⎡
⎢⎣

1 0 0 0
0 cos(2ψ ) −sin(2ψ ) 0
0 sin(2ψ ) cos(2ψ ) 0
0 0 0 1

⎤
⎥⎦. (140)

As mentioned above, the main goal of the generalized Mueller
calculus is to provide a quick solution for any linear com-
bination of two basic beams. For instance, Eqs. (136) and
(137) remain valid together with their meaning of scattering
intensity in two planes for axisymmetric particles.

The main drawback of this generalization is that the Stokes
vector of the vortex beam no longer has a clear physical
meaning. The fundamental issue with measurability of this
vector stems from the fact that the signal of the detector,
illuminated by the Bessel beam, is not proportional to the
detector area in contrast to the plane-wave case. In principle,
one can normalize the reading of a large detector placed on
the beam axis (integral of the Poynting vector) by inverse
radius [cf. Eq. (114)]. According to Secs. III D and III E, such
normalized intensity will be related to the Stokes parameter I .
However, it is not clear how to adapt the standard techniques
to measure other Stokes parameters (using linear and circular
polarizers [28]) to vortex beams. Alternatively, one may relate
the Stokes vector of the Bessel beam to that of a plane wave
used to produce this beam, e.g., using an axicon. However,
we leave the analysis of both these approaches to measure
generalized Stokes vector for future research. We also do not
consider existing options to expand the Mueller calculus by
increasing the size of the matrices, e.g., to separately account
for transformation of each Fourier component of the incident
field [64].

Moreover, in the case of the TE and TM beams, applying
the above Mueller calculus will be misleading since there
are no two independent polarizations related by rotation [see
Eq. (54)]. However, as we showed previously [Eq. (55)], these
beams are circular polarizations of the TEL or TML beams,
respectively. A similar correspondence holds for the Stokes
vectors. Specifically,
(

E‖s

E⊥s

)
TE,TM

= E0
exp[ik(r − z)]

−ikr

(
S2 S3

S4 S1

)
TEL,TML

(
i
1

)
,

(141)⎛
⎜⎝

Is

Qs

Us

Vs

⎞
⎟⎠

TE,TM

= 2|E0|2
k2r2

⎛
⎜⎝

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

⎞
⎟⎠

TEL,TML

⎛
⎜⎝

1
0
0

−1

⎞
⎟⎠,

(142)

where Eq. (141) is valid for the yz scattering plane. Otherwise,
an additional phase factor is required according to Eq. (138)
or (54). However, this phase factor cancels out in the Mueller
matrix; hence, Eq. (142) is valid for any scattering plane
through the z axis [cf. Eq. (140)].

Finally, the described generalization of the Mueller calcu-
lus is fully applicable to other vortex beams, as the formulas
have only a single additional parameter—vorticity n, corre-
sponding to the additional phase incurred by a full rotation
over the beam axis.

B. Implementation in the ADDA code

Through the discussion in previous sections, we showed
that all known Bessel beams can be parametrized by their
matrices M (Table III). This parametrization constitutes the
core of the implementation of the Bessel beams in the ADDA

code [65]. Any beam matrix can be specified through the
command line:

−beam besselM<n> <α0> <Re Me,x> <Re Me,y>

<Re Mm,x><Re Mm,y>[<Im Me,x><Im Me,y> <Im Mm,x>

<Im Mm,y>],

where 〈. . .〉 denotes the values of the corresponding variables.
Since matrix M is real for most of the Bessel beam types,
only the real part of M is strictly required; the imaginary part
is optional. Coordinates of the beam center relative to the
particle center can be defined with a separate command line
option (-beam_center …).

To simplify the code usage for standard Bessel beams, we
also enabled separate specification of the LE, LM, CS, CS′,
TEL, and TML types (although, internally, it is a wrapper
substituting a specific matrix M). Those beams can be selected
by the command line options:

−beam bessel <X><n><α0 >,

where <X> is the beam identifier, for example, -beam
besselLE …. We chose these beam types since they have
well-defined parallel and perpendicular components (see
Sec. III B). ADDA performs separate simulations for these two
incident polarizations to calculate the amplitude and scat-
tering matrices (see Sec. IV A). The same happens for any
other matrix M—it is assumed to define the perpendicular
polarization, while the parallel one is taken from Eq. (53).
In other words, matrix M (or beam type) is considered with
respect to the beam reference frame, in which the yz plane is
the scattering one. Then in the case of a scatterer rotationally
symmetric with respect to the beam axis, both the amplitude
and Mueller matrix are invariant with respect to the rotation
of the scattering plane around this axis.

Technically speaking, ADDA performs 90° rotation of a
perpendicular polarization with further correction of the phase
to obtain the parallel one. Such a transformation may lead
to redundant calculations when MR is proportional to M,
which is equivalent to M being a superposition of generalized
circular polarizations of the same handedness [cf. Eq. (71)].
A specific case of the latter is the TE and TM beams, which
can only be specified through their matrix M. However, an
alternative option is to specify TEL or TML incident beam,
respectively; the scattered Stokes vector can then be obtained
from the computed Mueller matrix using Eq. (142). Finally,
the initialization of the Bessel beam, i.e., computation of the
incident electric field at each dipole position in ADDA, is neg-
ligibly fast. In most cases, it is faster than a single iteration of
the iterative solver used to determine the dipole polarizations.

V. NUMERICAL RESULTS

First, we test our implementation of the Bessel beams in
ADDA by comparing its results to reference data. The obvious
choice for the reference method is the GLMT [30], which
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FIG. 12. The comparison of the scattering intensities (a) I‖ and (b) I⊥ calculated with the discrete dipole approximation (DDA; our results)
and generalized Lorenz-Mie theory (GLMT; data from Ref. [34]) for scattering of the zero-order circularly symmetric (CS) Bessel beam by a
sphere. The logarithmic scale is used. See the text for details.

allows one to calculate the scattering of sophisticated beams
by particles with spherical symmetry. For instance, it was used
to simulate the scattering of the zero-order Bessel beam by a
concentric sphere [34]. Hereinafter, we compare the scattering
intensities in two planes: E (parallel) and H (perpendicular),
given by Eqs. (136) and (137), respectively.

To quantify the discrepancy between the DDA and GLMT,
we use the root mean square error (RMSE), defined as [36]

RMSE = 1

max|Iref (θ )|

√√√√ 1

N0

N0∑
j=1

(|I (θ j ) − Iref (θ j )|)2, (143)

where I and Iref are the scattering intensity calculated by
the DDA and the GLMT, respectively, and N0 = 181 is the
number of scattering angles.

The first test is on-axis scattering of the CS beam with
the beam order n = 0 and half-cone angle α0 = 15◦ by a
concentric sphere with outer and inner radii equal to λ and λ/2,
respectively. The refractive indices of the shell and core are
denoted as m1 and m2, respectively. We chose excessively fine
discretization (Nx = 128 dipoles per the particle diameter) to
avoid any concerns about the accuracy and used the default

DDA formulation (so-called, lattice dispersion relation) [43].
The results for the case m1 = m2 = 1.33, i.e., a homogeneous
sphere, are shown in Fig. 12. The small discrepancy is visible
only in the backscattering, the overall RMSE is 1.6% for both
scattering planes. The second case is m1 = 1.33 and m2 =
1.55; the results are presented in Fig. 13. Here, the agreement
is even better (within the size of symbols), with RMSE being
0.3% for both scattering planes.

While it is known that the DDA accuracy is commonly the
worst at the backscattering direction [66–68], we investigate
the remaining discrepancy in Fig. 12 in some detail. For
that, we performed the DDA simulations for discretization
from Nx = 64 to 256 and performed quadratic extrapolation
of the backscattering intensity vs the discretization parameter
kdm1 = 2πm1/Nx (where d is the dipole size) to the value of
d = 0. The details of this procedure are described in Ref. [66].
Note that the backscattering intensity is the same for both scat-
tering planes due to the rotational symmetry of the scatterer.
The convergence curve and the extrapolation results (includ-
ing the 95% confidence interval) are shown in Fig. 14 together
with the reference value. The DDA shows very smooth (and
almost linear) convergence for the finer discretization, which

FIG. 13. The same as Fig. 12 but for a coated sphere. Generalized Lorenz-Mie theory (GLMT) data are from Ref. [34].

033508-20



VECTOR BESSEL BEAMS: GENERAL CLASSIFICATION … PHYSICAL REVIEW A 106, 033508 (2022)

FIG. 14. Discrete dipole approximation (DDA) convergence
with refining discretization for backscattering intensity of the same
sphere as in Fig. 12. Quadratic extrapolation to d = 0 is performed,
and a 95% confidence interval for the corresponding value is also
shown. See the text for details.

is reflected by small uncertainty of the extrapolation result.
Thus, ∼ 1

3 of the discrepancy between the DDA (for Nx = 128)
and the GLMT at backscattering is due to the DDA error,
while 2

3 are due to the GLMT one. The latter can probably
be decreased by tuning the parameters of that method.

Second, to illustrate the DDA capabilities for nonspher-
ical particles, we demonstrate the scattering of high-order
Bessel beams of CS, CS′, TEL, and TML types (n = 4,

α0 = 45◦, and λ = 632.8 nm) by a glass cube (cube side
a = 1 μm, m = 1.52, Nx = 15) in Fig. 15. The intensity pro-
files of these beams are also shown; they were calculated with

ADDA itself using command line option -store_beam. This
figure demonstrates the wide variation between the vector
Bessel beam types of the same parameters. Naturally, the
similarity in beam profiles leads to similarity in scattering
intensities (e.g., TEL and TML types). Note also that lack of
global intensity maximum at the forward direction is due to
the dark spot in the center of Bessel beams of nonzero order.

VI. CONCLUSIONS

We have proposed an alternative approach to describe any
vortex Bessel beam using a 2 × 2 matrix M comprised
of transverse Hertz vector potentials. The duality and po-
larization rotations are then trivially expressed through the
multiplication of M by rotation matrices from the left and
right, respectively. Previously known beam types, specifically
the TE, TM, LE, LM, and CS beams, are included as specific
cases in this framework. It additionally includes an alternative
type with circular symmetric energy density, denoted as CS′.
When combined with the CS type and two different polar-
izations, it leads to a complete basis of all Bessel beams,
like the previously known bases of the TE, TM or LE, LM
beams. For each beam type (except TE and TM), we in-
troduced the notation for elliptical polarization (α,β ). This
definition also applies to the introduced linearly polarized
components of the TE and TM beams, denoted as TEL and
TML. The latter two also form a complete basis for Bessel
beams, while their circular polarizations result in the TE and
TM beams, respectively, of adjacent orders. The generalized
elliptical polarizations are tightly connected with the beam
rotations, which are expressed by standard rotation matrices

FIG. 15. Intensity profiles for incident Bessel beam of (a) circularly symmetric (CS), (b) alternative CS (CS′), (c) linear component of
transverse electric (TEL), and (d) linear component of transverse magnetic (TML) types (n = 4, α0 = 45◦, and λ = 632.8 nm) over the
central slice (z = 0) of the dipole grid for a cube (a = 1 μm, m = 1.52, Nx = 15) calculated by ADDA. Also shown are the simulated scattering
intensities (e) I‖ and (f) I⊥ for these scattering problems. See the text for details.
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with additional phase factor depending on the beam order n
(vorticity). The orthogonal polarizations for linearly polarized
beam types are then defined accounting for this phase factor
in agreement with the existing x and y polarizations of some
beam types in the literature.

To gain more insight into both previously known and
alternative Bessel beam types, we described their behavior
in two limiting cases: the plane-wave (n = 0, α0 → 0◦) and
bullet limits (α0 → 90◦). As expected, some of the beam
types vanish in the plane-wave limit, while others become
equivalent to each other. We also derived expressions for
quadratic functionals of the fields (such as the energy density
and Poynting vector) for a beam with arbitrary matrix M and
derived orthogonality relations between various beam types.
For the latter, we introduced a normalization of the integrals
since the ideal Bessel beams are not square integrable. The
orthogonality relations complete the discussion of various
bases for the Bessel beams. For instance, the basis of LE
and LM beams, which directly corresponds to the elements of
matrix M, is not completely orthogonal. Thus, we constructed
a general unified framework for description of Bessel beams
and provided a comprehensive reference of all their properties
that may be relevant for any applications.

To enable simulation of scattering of Bessel beams by
arbitrary particles, we first generalized the classical Mueller
calculus to this case. We defined the amplitude matrix in terms
of two orthogonal polarizations for the same beam type (as
discussed above), which leads to the simplest transformation
rule under the rotation of the scattering plane around the
beam axis. This rule differs from the case of plane-wave
scattering only by a constant phase factor that cancels out in
the rotation transformations of Mueller matrices. Importantly,
the same generalized definitions can be used for any vortex
beams.

Finally, we have modified the open-source code ADDA to
enable simulation of Bessel beam scattering. Apart from the
beam order, half-cone angle, and its position relative to the
particle, a user needs to specify either the beam type (one
of the above options) or a complete matrix M. ADDA then
computes the angle-resolved Mueller matrix, which can be
used to compute the scattering of any elliptical polarization
of the same beam without any extra efforts. The simulated
scattering intensity of a zero-order Bessel beam by a homo-
geneous or coated spheres shows perfect agreement with the
reference data, obtained with the GLMT. Thus, this version
of ADDA allows easy and efficient simulation of scattering
of any Bessel beam by a particle with arbitrary shape and
internal structure. This can be used to supplement theoretical
analysis of Bessel beams, including their symmetry, as well
as for advancing various practical applications of such beams.
Promising future research directions include consideration of
Bessel beam scattering near a plane substrate and efficient
calculation of optical forces (e.g., in optical tweezers).

Figures 12 –15 and the underlying DDA data can be repro-
duced by Python scripts in the ADDA repository [69].
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