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Routes to chaos in a class-B laser coupled to a neutral resonator
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We study the dynamics of a class-B semiconductor microring laser coupled to a neutral microring resonator for
common fabrication parameters. For zero detuning between the resonators, we identify five dynamical regions
controlled by the laser pump parameter above threshold and the coupling strength between the resonators. These
regions show stable lasing with phase locking for either sufficiently small or large coupling strength parameter
values. Multistability and chaos arise in between these stable regions where at least one fixed point is attractive.
The transition from stable to unstable lasing regions in the parameter space phase diagram is a crossover.
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I. INTRODUCTION

Arrays of coupled semiconductor microring lasers are of
both technological and fundamental importance in optics.
They may be engineered to emit in synchronization, pro-
ducing a coherent light source where the power of several
microrings is added [1,2]. Coupled in specific configurations,
these arrays may harbor topological effects, such as edge
states [3–7], or may exhibit dynamic instabilities that lead to
chaos. While seemingly undesirable, chaos synchronization in
these systems enables secure communications, for example,
chaos-based cryptography [8–12].

The most common type of semiconductor laser is the
class-B laser [5,13,14]. Its mathematical model arises from
Maxwell-Bloch equations in the limit where the lifetime of
the active medium polarization is much shorter than the life-
time of both carriers in the media and photons in the cavity
[13,15]. A single class-B laser by itself produces a stable
field and, therefore, does not lead to dynamic instabilities
or chaos. When several class-B lasers are coupled, the array
can display synchronization [16,17], cluster synchronization
[18], and chaos and chaos chimeras [19,20]. These effects are
relevant for coherent emission [1,2], topological states [3–7],
and chaos-based encryption [11,12].

The dynamical behavior of coupled arrays of identical
[16,17] and nonidentical [21] class-B lasers has been eluci-
dated in the literature. Laser arrays are often built by repeating
a unit cell formed by a few coupled semiconductor lasers.
Understanding the behavior of these unit cells is necessary
to describe the larger arrays. The unit cell formed by a pair of
coupled microring lasers pumped at different rates has been
extensively studied. It displays nonlinear dynamics similar to
those of a non-Hermitian PT dimer [22] that displays limit
cycles and tunability [23], phase synchronization [23–25], and
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bifurcations and chaos [26–28]. Arrays formed by coupling
copies of this differentially pumped cell enable novel topo-
logical and collective effects [5–7,29].

Here, we focus on a class-B microring semiconductor laser
coupled to a passive microring. This simple unit cell produces
equivalent dynamics to the gain-loss dimer and shows dynam-
ical instabilities and chaos even if a single class-B laser does
not. The passive microring has an effect similar to coupling
a mirror to the laser, which introduces time-delay effects and
leads to dynamical instabilities [30,31], however, our model is
free from explicit time delays. In Sec. II, we provide a brief
review of the dynamics in a single class-B laser. Next, we
present our model, and study its fixed points and the phase
diagram provided by its parameters in Sec. III; we focus on
the zero detuning case and find two fixed points, one where
the phases of the microrings are synchronized and one where
they differ by half a cycle. In Sec. IV, we characterize the
parameter regions where these fixed points are stable, leading
to stable synchronization and antisynchronization. We also ex-
plore the parameter values where dynamical instabilities and
chaos arise. Finally, in Sec. V, we close with our conclusions.

II. SINGLE CLASS-B LASER

To provide context, we present a brief review of the dy-
namics in a single class-B laser [13,14,32],

iĖ (t ) = i(1 − iα)

2

{
− 1

τp
+ σ [n(t ) − 1]

}
E (t ), (1)

ṅ(t ) =R − n(t )

τs
− 2[n(t ) − 1]

τs
|E (t )|2, (2)

in terms of the complex amplitude of the resonant electric
field mode E (t ) and the carrier density normalized to trans-
parency n(t ). The parameters of the model are the linewidth
enhancement factor α, carrier lifetime τs, cavity lifetime τp,
differential gain σ , and normalized pump rate R. We may
safely assume that in any given experimental realization, the
carrier lifetime is larger than the cavity lifetime which in turn
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TABLE I. Fixed-point classification from the stability analysis of a single class-B laser.

Region (I (1), N (1) ) (I (2), N (2) )

P < P(A) Sink or node (type I), stable Saddle point
P(A) < P < P(B)

− Saddle point Sink or node (type I), stable
P(B)

− < P < P(B)
+ Saddle point Spiral sink, stable

P(B)
+ < P Saddle point Sink or node (type I), stable

is larger than the inverse differential gain, τs � τp � σ−1

[14,15]. For the sake of simplicity, we move into the frame,

d

ds
I (s) = N (s)I (s), (3)

d

ds
N (s) = γ {P − N (s) − [N (s) + 1]I (s)}, (4)

provided by the dimensionless time s = t/τp, twice the
squared absolute value of the field mode amplitude I (s) =
2|E (s)|2, that allows us to uncouple the dynamics of phase,
and a new carrier parameter N (s) = στp[n(s) − 1] − 1, that

is related to the carrier density normalized to transparency.
Additionally, two new constants are introduced, the cavity to
carrier lifetime ratio γ = τp/τs and the pump parameter above
threshold P = στp(τsR − 1) − 1. This frame allows us to find
two fixed points,

I (1) = 0, N (1) = P, (5)

I (2) = P, N (2) = 0. (6)

A standard stability analysis of the system requires the eigen-
values of the Jacobian,

λ
( j)
± = − 1

2

[
γ (I ( j) + 1) − N ( j)

] ± 1

2

√
[γ (I ( j) + 1) − N ( j)]2 + 4γ (N ( j) − I ( j) ), (7)

evaluated at each fixed point, where j = 1, 2, to understand
the dynamics in the neighborhood of that point [33,34].

The fixed points and Jacobian eigenvalues lead to various
critical values of the pump parameter above threshold. Among
these, three are crucial,

P(A) = 0, (8)

P(B)
± = −1 + 2

γ
± 2

γ

√
1 − γ . (9)

The first one corresponds to the critical pump parameter above
threshold where the absolute value of the field amplitude at
the second fixed point becomes non-negative, and therefore
physical. Above that value, P(A) < P, the second fixed point
is stable. There, for all physical initial conditions the system
evolves to stable nonzero values for both the squared abso-
lute value of the field amplitude and carrier parameter. These
values are provided by the second fixed point (I (2), N (2) ). For
values of the pump parameter below it, P < P(A), neither fixed
point has finite and stable field amplitudes; in fact, the first
fixed point (I (1), N (1) ) always has vanishing field amplitude.
Below this value, for all physical initial conditions the system
evolves to zero-field amplitude and carrier parameter to a neg-
ative value equal to N = P. The latter is smaller than the stable
carrier parameter when the laser is pumped above the thresh-
old. The other pair of critical values of the pump parameter
above threshold, P(B)

± , arise from evaluating the Jacobian at the
second fixed point and finding the values where the Jacobian
eigenvalues acquire or lose an imaginary part. At these critical
values of the pump parameter above threshold P(B)

± , the fixed
point acquires or loses spiral behavior. Under the hierarchy
τs � τp � σ−1, these critical rates organize themselves,

P(A) < P(B)
− < P(B)

+ , (10)

in a manner that highlights four regions leading to a clas-
sification of the fixed points (Table I). Thus, we observe
lasing once the pump parameter above threshold reaches the
threshold value of zero, Pth = P(A). After this threshold value,
the second fixed point (I (2), N (2) ) behaves as a stable sink in
the region Pth < P < P(B)

− , then as a stable spiral sink in the
region P(B)

− < P < P(B)
+ , and, finally, as a stable sink after that,

P(B)
+ < P [13,32].

III. CLASS-B LASER COUPLED TO
A NEUTRAL RESONATOR

An usual path to chaos in class-B lasers is to induce feed-
back by introducing an external mirror [30,31]. Here, we want
to study the dynamics of a class-B laser interacting with a
neutral resonator under minimal coupling [35,36],

iĖ1(t ) = i(1 − iα)

2

{
− 1

τp
+ σ [n(t ) − 1]

}
E1(t )

+ω1E1 + gE2(t ), (11)

iĖ2(t ) = ω2E2(t ) + gE1(t ), (12)

ṅ(t ) = R − n(t )

τs
− 2[n(t ) − 1]

τs
|E1(t )|2, (13)

where we define the complex amplitudes E j (t ) of the electric
field modes localized at each resonator, its corresponding res-
onant frequency ω j , and the coupling strength between them
g. Moving into a frame rotating at the resonant frequency of
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TABLE II. Fixed-point classification from the stability analysis of a class-B laser coupled to a neutral resonator.

Region (I (1)
1 , I (1)

2 , ϕ (1), N (1) ) (I (2)
1 , I (2)

2 , ϕ (2), N (2) )

Region I Saddle point Saddle point
Region II Saddle point Sink or spiral sink, stable
Region III Sink or spiral sink, stable Sink or spiral sink, stable
Region IV Sink or spiral sink, stable Saddle point
Region V Saddle point Saddle point

the laser,

E j (t ) = √
I j (t )/2 exp[iφ j (t )], (14)

and rewriting the differential equation set,

d

ds
I1(s) =N (s)I1(s) − 2gτp

√
I1(s)I2(s) sin ϕ(s), (15)

d

ds
I2(s) =2gτp

√
I1(s)I2(s) sin ϕ(s), (16)

d

ds
ϕ(s) =
ωτp − α

2
N (s) + gτp

I1(s) − I2(s)√
I1(s)I2(s)

cos ϕ(s), (17)

d

ds
N (s) =γ {P − N (s) − [N (s) + 1]I1(s)}, (18)

using the dimensionless time s = t/τp, the detuning between
the resonator frequencies 
ω = ω2 − ω1, twice the squared
amplitudes I j (s) = 2|E j (s)|2, the carrier parameter N (s) =
στp[n(s) − 1] − 1, and the phase difference ϕ(s) = φ1(t ) −
φ2(s), we find four fixed points,{(

I ( j)
1 , I ( j)

2 , ϕ( j), N ( j)
)}

, (19)

with j = 1, 2, 3, 4, arising from the combination of the two
sign options for the square root in the squared absolute value
of the field amplitude inside the neutral resonator I ( j)

2 and the
two phase difference options ϕ( j),

I ( j)
1 =P, (20)

I ( j)
2 = 1

2g2

(
2g2 + 
ω2 ± 
ω

√
4g2 + 
ω2

)
P, (21)

ϕ( j) =0, π, (22)

N ( j) =0. (23)

It is straightforward to notice that the case of microrings with
identical resonator frequencies, 
ω = 0, reduces to just two
fixed points with an equal squared absolute value of the field
amplitudes, I ( j)

2 = I ( j)
1 . For the sake of simplicity, we focus

our analysis on this case.
For this zero detuning case, 
ω = 0, the squared absolute

value of the field amplitudes at either fixed point is negative
and therefore unphysical, unless the pump parameter is above
a threshold value of zero,

Pth = 0, (24)

identical to that of the single class-B laser. This threshold
depends only on the gain-resonator parameters and is not
influenced by the coupling to the neutral resonator. Again, the
system will not lase if the pump parameter P is below zero,
Region I in Table II and Fig. 1(a) where both fixed points

are saddle points. However, the behavior above the lasing
threshold is richer. We find one stable fixed point in regions
II and IV, and two of them in region III. These should provide
us with stable lasing. In region V, both fixed points behave as
saddle points and chaos arises [33,34]. In the following, we
address with more detail the dynamics of our model in these
five regions.

IV. PARAMETER SPACE PHASE DIAGRAM

Our dynamical system displays two fixed points in the zero
detuning case, 
ω = 0. We use a standard stability analysis
[33,34] to find the parameter values where these fixed points
become attractive, pulling nearby trajectories. This leads to
stable behavior of the system for configurations (I1, I2, ϕ, N )
at and near the fixed point. To do this, we use typical class-
B laser parameters α = 3, τs = 4 ns, τp = 40 ps, and σ−1 =
1.67 ps [5], and couplings ranging from zero to a few tens
of inverse nanoseconds [6,7]. Figure 1 displays the regions
defined by the dynamical characteristics nearby the two fixed
points. This parameter space phase diagram depends on the
pump parameter above threshold P and the coupling strength
g and contains five different regions.

FIG. 1. Fixed-point classification from the stability analysis of
a class-B laser coupled to a neutral resonator. Region I (gray) is a
nonlasing region where the pump parameter lies below its threshold,
P < Pth. In region II (red with horizontal stripes), the first fixed point
is a saddle point and the second is a stable sink or stable spiral sink.
Region IV (blue with vertical stripes) is the opposite. In region III
(overlap), both fixed points are stable sinks or stable spiral sinks.
In region V (white), both fixed points are saddle points and we find
chaos in it and near its boundaries with region II and region IV.
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FIG. 2. Bifurcation diagrams for (a) twice the squared absolute
value of the field amplitude I1 and (b) phase difference between the
field amplitudes ϕ for fixed pump parameter above threshold and
variable coupling strength following line II in Fig. 1. The coloring
matches that of regions in Fig. 1.

A. Region I

The pump parameter of the semiconductor laser is below
its threshold value Pth and no lasing occurs, so both fields in
the resonators deplete. At either fixed point, twice the squared
absolute value of the amplitudes I ( j)

1 and I ( j)
2 is negative and

therefore the fixed points are unphysical. The eigenvalues of
the Jacobian evaluated on these fixed points predict saddle-
point dynamics near them. This case is similar to a single
class-B laser pumped below threshold. The system evolves to
zero-field amplitudes and the carrier parameter to a negative
value N = P smaller than the stable carrier parameter for a
single class-B laser pumped above threshold.

B. Region II

From this region forward, the two fixed points have iden-
tical nonzero amplitude, but their phase difference is zero,
ϕ(1) = 0, at the first fixed point and half a cycle, ϕ(2) = π ,
at the second one. This region corresponds to large coupling
strengths. Here, the first fixed point produces saddle dynamics
and the second one produces stable sink dynamics, either
spiral or nonspiral depending on the parameter values. In other
words, we expect stable lasing as the fields reach steady state
and their phase difference locks into a value of π . Region II
shares a boundary with region V and region III on its left.
Near these boundaries, we observe competition between the
attractive component of the saddle point (fixed point 1) and
the stable sink (fixed point 2). This produces a crossover from
stability to multistability and eventually to chaos (Fig. 2) as
the coupling strength g decreases while the pump parameter
above threshold is kept constant (see line II in Fig. 1). This
transition from chaos to a stable fixed point corresponds to
a Hopf bifurcation for the second fixed point. There, the real
part of a pair of eigenvalues of the Jacobian goes from positive
to negative as the coupling strength g decreases. The multiple
lines in the red region of Fig. 2 may arise due to limit cycles
that are associated with Hopf bifurcations.

C. Region III

Region III appears for large values of the pump parame-
ter above threshold, P � 350. Here, both fixed points have

FIG. 3. Same as Fig. 2 but following line III in Fig. 1.

stable behavior either as spiral or nonspiral sinks such that
trajectories sufficiently close to either one of them will be
attracted and remain there. Region III lies between regions II
and IV where just one of the fixed points is stable. We expect
equal and stable absolute values for the amplitudes at the
resonators, a stable carrier parameter, and a phase difference
locked at either zero or π , depending on the initial conditions.
For a fixed pump parameter above threshold, as the coupling
strength g increases, we go from a region on the left where
the first fixed point is stable, to a region in the center where
both fixed points are stable, to a region on the right where
the second fixed point is stable (line III in Fig. 1). In both
the extreme left and extreme right of this line, we find the
expected stable behavior with a stable squared absolute value
of the field amplitudes and stable phase differences of zero
and π on the left and right, respectively. However, as we
approach the boundaries between region IV and region III,
we observe multistability and chaos (Fig. 3) as a consequence
of the competition between the attractive components of the
fixed points. While stable behavior is expected in both regions
II and IV because of the presence of just one stable fixed
point, we find chaotic behavior in region IV. Chaotic behavior
coexisting with one or more stable fixed points has been found
before [37,38].

D. Region IV

This region corresponds to small coupling strength values.
The first fixed point produces stable sink dynamics, both spiral
or nonspiral depending on the value of the pump parameter
above threshold, and the second one produces saddle dynam-
ics. We expect stable lasing as the fields reach steady state
and their phase difference locks to zero. Region IV shares
a boundary with region III and region V on its right. Near
these boundaries, we observe competition between the sta-
ble sink provided by the first fixed point and the attractive
component of the saddle point due to the second fixed point.
This produces a crossover from stability to multistability and
to chaos (Fig. 4) as the coupling strength g increases with
a constant pump parameter above threshold (see line IV in
Fig. 1). This transition from a stable fixed point to chaos
corresponds to a Hopf bifurcation for the first fixed point.
There, the real parts of a pair of eigenvalues of the Jaco-
bian go from negative to positive as the coupling strength g
increases.
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FIG. 4. Same as Fig. 2 but following line IV in Fig. 1.

E. Region V

This region exists for intermediate values of the coupling
strength and relatively small values of the pump parameter
above threshold, P � 350. Both fixed points present saddle
dynamics. Competition between the attractive directions of
the two saddle points leads to multistability and chaos. In this
region both fixed points display saddle dynamics, meaning
that neither is stable but both have attractive directions which
pull trajectories. Region V shares a boundary on the right (left)
with region II (region IV), where the second (first) fixed point
is stable. For a fixed pump parameter above threshold, as the
coupling strength g decreases (increases), the stability of the
second (first) fixed point in region II (region IV) becomes
multistable, eventually leading to chaos as we approach region
V, Fig. 1 and line II (line IV) in Fig. 2 (Fig. 4). Figure 5
displays the full transition from region IV through region V
and into region II for initial conditions nearby the first (sec-
ond) fixed point with zero (π ) phase difference, Figs. 5(a) and
5(b) [Figs. 5(c) and 5(d)]. For a fixed pump parameter above
threshold, as the coupling strength increases, we go from a
single attractive first fixed point on the left to a region where
neither fixed points is attractive, in the center, to a single
attractive second fixed point on the right. At the extreme left
of this line, we find stable lasing and the phase difference ϕ

locks to zero. As we approach the boundary with region V,

FIG. 5. Same as Fig. 2 but following line V in Fig. 1. The first
(second) row displays initial conditions nearby the fixed point with
zero (π ) phase difference.

multistability and chaos arise. In the center of the line, we
observe chaotic behavior. Finally, on the extreme right of the
line, we find stable lasing and the phase difference ϕ locks to
a value of π . We want to stress that the system shows unstable
behavior in the parameter regions where at least one fixed
point is attractive (Fig. 5). This is to be expected. The stability
analysis at fixed points is local and only implies that nearby
trajectories get pulled to attractive fixed points. Therefore,
whether a trajectory gets pulled or not depends on the initial
conditions.

V. CONCLUSION

We studied a class-B laser resonator coupled to a neutral
one and find a parameter space phase diagram showing a range
of dynamical behaviors including phase-locked stable lasing,
multistability, and chaos. This system may serve as a building
block for larger arrays of coupled semiconductor lasers; it may
be particularly useful for arrays requiring effective gain-loss
dimers. Our basic dimer shows a rich dynamical landscape
where sufficient control of the parameters in the system al-
lows exploring stability with phase locking, multistability, and
chaos.

For typical parameters of the class-B laser, we identified
five regions in the parameter space phase diagram for zero
detuning between the resonators. These regions are defined
by the characteristics of the two fixed points from the system
dynamics and controlled by the values of the pump parameter
above threshold of the laser and coupling strength between
resonators. In the first region, there is no lasing and the res-
onators are depleted but transient dynamics near the two fixed
points shows an unstable phase difference. In the second and
fourth regions, one fixed point is a stable sink and the other is
a saddle point, leading to stable lasing with an equal squared
absolute value of the field amplitudes and phase difference
locked to π and zero, in that order, independently of the
initial conditions. For any given initial condition in the second
(fourth) region with large (small) coupling strength values, we
are more likely to find stable lasing with the phase difference
locked to a value of π (zero). For large values of the pump
parameter above threshold, there is a region, the third one,
with two attractive fixed points, where the phase difference
locks to zero or π values depending on the initial conditions.
In the fifth region, we are more likely to find multistable
lasing and chaos. The transition from stable lasing to chaotic
lasing is a crossover occurring in the boundaries between
the second and the fifth regions and the fourth and the fifth
regions.

In this work, for some initial configurations, we find un-
stable, multistable, and chaotic behavior for parameter values
where at least one fixed point is stable. While this may seem
counterintuitive, it is not forbidden. Cases of chaos coexisting
with one or more stable fixed points have been reported before
[37,38]. We want to stress that the stability analysis is local,
i.e., it focuses the evolution of time-dependent quantities close
to the fixed point. In consequence, the existence of an attrac-
tive fixed point only guarantees the stability of trajectories that
start sufficiently close to it. For the same system, with the
same pump rate, coupling, and laser parameters there could
be unstable trajectories that do not start sufficiently close
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to the attractive fixed point. In our system, we observe this
chaotic behavior and multistability in the presence of one or
two attractive fixed points for some trajectories that do not
begin sufficiently close to these fixed points.
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