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Surface plasmaritons: Wave-mechanical and second-quantized theories
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In the wake of recently established quantum theories for bulk and surface plasmons, and for bulk plasmaritons
[Jung and Keller, Phys. Rev. A 103, 063501 (2021); 104, 053508 (2021)] wave-mechanical and second-quantized
(QED) theories for surface plasmaritons are developed. Our photon wave-mechanical theory is based on the
covariant four-potential in the Lorenz gauge, where dynamical equations for surface plasmariton quantum
particles consisting of scalar (S), longitudinal (L), and transverse (T 1, T 2) photons and driven by a surface
current density sheet are obtained. The second quantized QED theory of surface plasmaritons is formulated
on the basis of the Heisenberg equations of motion for the contravariant four-potential annihilation operators.
The connection of the surface plasmariton quantum theory to the quasiparticle picture of bulk plasmaritons
is elucidated by studying the T -photon exponential decay lengths appearing in the description. The shortest
decay length (equal on both sides of the surface) characterizes the one-dimensional spatial confinement of the
T -photon source. Starting from a reexamination (and correction) of the dynamic boundary conditions for a flat
jellium-vacuum interface carrying a surface current density, the dispersion relation for surface plasmaritons
is obtained. The explicit form of the dispersion relation is derived upon a study of the local field in the
selvedge region of the boundary. Fundamental aspects of the dispersion relation are pointed out, modeling the
electron dynamics by the microscopic electrodynamics of a quantum well. Remarks on (i) our covariant surface
plasmariton quantum theory seen in a broader perspective, (ii) suggestions for applications of the theory, and
(iii) a comparison of the key ingredients in our trio of papers on plasmon and plasmariton quantum physics are
presented.
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I. INTRODUCTION

A surface polariton, roughly speaking, is a p-polarized
electromagnetic wave that propagates in a wavelike fashion
along the (plane) surface of a solid medium or along the
interface between two media. The strength of the electro-
magnetic field associated with the wave decays exponentially
as one moves away from the interface into either medium.
In the special case (studied in this paper) where the surface
separates a metal (or free-electron-like plasma) from vacuum,
the electromagnetic surface modes are often called surface
plasmaritons (SPMs), a name we shall use below, not least
because this name fits our treatment of the electron dynamics
in the framework of the jellium (solid-state plasma) approach.

Although basic properties of electromagnetic surface
waves have been studied since the turn of the 19th century,
starting with the theoretical works of Zenneck [1], Som-
merfeld [2,3], and Hörschelmann [4,5], the interest and the
number of studies of surface polaritons increased significantly
by the initial works of Otto [6], Kretschmann [7], and Raether
[8–10]. These authors pointed out how surface polaritons
could be generated (approximately) using attenuated or frus-
trated total reflection methods.

To a large extent, much of the basic understanding of the
macroscopic and semiclassical (field-unquantized) properties
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of surface polaritons (and plasmaritons) were in place in the
beginning of the 1980s. Good general accounts of the basic
theory and its many diverse applications can be found in
Refs. [11–13]. More recently, studies aimed at technological
applications of SPMs (so-called plasmonics) have attracted
much attention [14–17] and, in recent years, research on the
border of quantum optics and plasmonics has emerged as a
rapidly growing field of study entitled quantum plasmonics
[18–21].

SPMs (and in a broader context polaritons) are eigenmodes
of electromagnetic fields bound to a surface, and as such
these modes are unobservable. All observations require an
externally impressed excitation method, and the SPM appears
as a resonance in all methods; cf. the methods of Sommer-
feld (a dipole over a conducting surface), Otto, Kretschmann,
Raether, and others.

Sharp-boundary models have a prominent position in the
theory of SPMs and, in the long-wavelength regime, where
spatial nonlocality (spatial dispersion) often can be neglected,
a survey of the literature reveals that textbook boundary con-
ditions, with neglect of possible surface charges, are used
universally. This means that the boundary is electromagneti-
cally passive, and the derived eigenmode dispersion relation
becomes particularly simple; see Sec. II. If spatial disper-
sion effects, which are important at short wavelengths, are
included, additional boundary conditions (ABCs) must be
included even in the framework of sharp-boundary plasmari-
ton models [11,22]. The various ABCs suggested over the
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years, in one way or another, give rise to surface charges
and currents. Even in the absence of spatial dispersion, the
inevitably present electron density variations (in the sur-
face region) give rise to microscopic surface currents [23].
Here we call a surface carrying charge or current an elec-
trodynamically active surface (or boundary). In the wake
of our recently developed wave mechanical and second-
quantized theories for bulk and surface plasmons [24] and
for bulk plasmaritons [25], we establish in this paper co-
variant wave-mechanical and second-quantized descriptions
of SPMs. To a certain extent, our covariant formalism was
inspired by a theory for covariant photon wave mechanics
of evanescent fields [26], an alternative to the pioneer-
ing Carniglia and Mandel triplet-photon description of such
fields [27].

The paper is organized as follows. In Sec. II, we dis-
cuss the shortcomings of the spatially local classical standard
theory for SPMs [11–13,28]. The dispersion relation of the
eigenmodes usually is obtained using the textbook boundary
conditions at the surface [29]. For a SPM with active boundary
electrodynamics, these conditions are insufficient because a
dynamic component of the electron current density incorrectly
is omitted, a component necessary for upholding charge con-
servation [30,31]. The surface current density sheet model has
its roots in an electric-dipole approximation to the selvedge
dynamics (discussion in Sec VI). Section II is closed with a
general expression for the SPM dispersion relation with an
active boundary, yet with the elimination of the surface current
density in favor of the prevailing field left to the analysis in
Sec. VI.

In Sec. III, the covariant theory of evanescent plamariton
fields is presented. In the covariant formalism, four kinds of
photons appear: Two transverse photons (T1, T2), a longitu-
dinal photon (L), and a scalar photon (S). The four photons
are related to the covariant four-potential [32] subject to the
Lorenz-gauge constraint [33]. Although the covariant theory
is a standard formalism in relativistic quantum electrodynam-
ics [34–36], it has turned out to be of substantial importance
in nonrelativistic near-field electrodynamics [38], not least in
relation to studies of evanescent fields [37,38].

In Sec. IV, the covariant photon-wave mechanical theory
of SPMs in the wave vector-time domain is established, pay-
ing particular attention to the four-potential state tied to a
propagating electron sheet mode. In Sec. V, the covariant
second-quantized description of SPMs is given. This formal-
ism is based on the Heisenberg equations for the contravariant
four-potential annihilation operators.

In Sec. VI, a self-consistent integral equation for the local
electromagnetic field in the selvedge is derived, and from
this a constitutive relation between the surface current density
and the electric field in vacuum just outside the current sheet
is established. On the basis of the constitutive relation, the
final expression for the SPM dispersion relation with active
boundary conditions is derived. The small extension of the
selvedge makes it possible to neglect the field retardation
across the selvedge profile, and as a consequence obtain a
somewhat simpler form of the dispersion relation—in fact,
a form analogous to that of the passive boundary case, just
with an effective dielectric function showing spatial disper-
sion stemming from the selvedge. It is beyond the scope of the

present paper to develop a microscopic formalism treating the
selvedge response beyond the electric-dipole approximation.
Some remarks on the covariant theory in a broader framework
are given in Sec. X.

A quantitative microscopic study of the SPM dispersion
relation with an electrodynamically active surface is presented
in Sec. VII, where we model the selvedge as a quantum
well (QW). This model can with the modest modification
also be used to study SPMs on a metal surface covered with
an conducting overlayer. From the one-electron microscopic
conductivity tensor [taken in the low-temperature limit (ap-
proximation)], we derive a compact expression for the QW
surface current density. To clarify the role of the QW current
densities parallel and perpendicular to the jellium surface, we
derive explicit theoretical results for the SPM dispersion in the
diamagnetic and paramagnetic conductivity response limits.
In the diamagnetic case, the dynamic surface electron motion
is parallel to the surface and in the paramagnetic case the
surface current density predominantly is perpendicular to the
surface. Numerical results for the SPM dispersion relation are
presented for one-level (diamagnetic response) and two-level
(paramagnetic response) QWs.

In Sec VIII, the connection between the SPM and the
quasiparticle bulk plasmariton is studied. Furthermore, the
physics of the T photons tied to the surface plasmariton is
discussed, and a comparison of similarities and differences of
the covariant theory for T -photon tunneling [26,38] and the
tied T -photon picture of the SPM is presented. The relation
between spatial photon localization and the extension of the
source region for the SPM’s T photons is clarified.

In Sec. IX, remarks on SPM interaction with an external
prescribed gauge field are given. An outlook is presented in
Sec. X. In particular, we suggest that the SPM theory might be
useful in Möbius band electrodynamics, cavity QED, and for
investigations of accelerated solid-state plasmas. In Sec. X, we
also compare key points in our trio (Refs. [24,25] and this pa-
per) of papers on plasmon and plasmariton quantum physics.
In Sec. XI, we present a summary including a schematic dia-
gram showing the connections between the central fragments
of the SPM theory developed in the present paper.

II. CRITICISM OF THE SPATIALLY LOCAL STANDARD
THEORY FOR SURFACE PLASMARITONS

A. Dynamic boundary conditions

It may come as a surprise to the reader that we start our es-
tablishment of the quantum theory for SPMs with a discussion
(correction) of the standard (textbook) boundary conditions
for the electromagnetic field at a sharp boundary. However,
we shall realize below that these—perhaps better-called jump
(or in German saltus) conditions—play an important role.

Let us assume that the jellium occupies the z > 0 half space
described in a Cartesian (x, y, z)-coordinate system, the rest
of the space (z < 0) being vacuum. The jump in a given field
component, with generic name F , across the z = 0-plane, we
denote by

‖F‖ ≡ F (0+) − F (0−). (1)

Without loss of essential generality, let the real wave vector of
a p-polarized monochromatic (ω) electromagnetic field along
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the surface surface plane (q‖) be pointing in the x direction
(q‖ = q‖x̂; x̂ being a unit vector in the positive x direction).
The (macroscopic) electric (E) and magnetic (B) fields hence
have the form

E(x, z, t ) =
⎛
⎝Ex(z; q‖, ω)

0
Ez(z; q‖, ω)

⎞
⎠ei(q‖x−ωt ), (2)

B(x, z, t ) =
⎛
⎝ 0

By(z; q‖, ω)
0

⎞
⎠ei(q‖x−ωt ), (3)

with amplitudes in the mixed (z)-(q‖, ω) domain. The text-
book field jump conditions (also used in the most research
literature) are [29]

‖Ex‖ = 0 (i), ‖By‖ = −μ0JS
x (ii), ‖Dz‖ = ρS (iii), (4)

where JS
x ≡ JS

x (0; q‖, ω) is the x component of the surface
(superscript S) current density and ρS ≡ ρS (0; q‖, ω) is the
surface charge density. (ii) and (iii) follow from the Maxwell’s
equations, and thus hold in general, but (i) is correct only if
the surface current density, JS (0; q‖, ω), has no component
perpendicular to the plane of the surface [JS

z (0; q‖, ω) = 0].
The generally wrong condition JS

z (0; q‖, ω) = 0 originates
in a brute force extension of the zero-frequency condition
JS

z (0; q‖, ω = 0) to finite frequencies. At ω = 0, the current
density can of course not posses any z component, but for
ω �= 0 nothing prevents an oscillatory component from exist-
ing perpendicular to the surface plane. The reader should here
remember that an ideal infinitely thin surface layer physically
is a mathematical truncation of a layer of finite thickness (see
Secs. VI A and VI B). In layers so thin that QW phenomena
play a role, the situation with JS

z (0; q‖, ω) �= 0 is well-known
[39]. The neglect of the JS

z -component also has the fatal con-
sequence that the equation of continuity for the charge is not
satisfied in general.

The general dynamic (ω �= 0) jump conditions have been
derived previously [30,31,40] and can be expressed explicitly
as follows for p-polarized fields:

‖Ex‖ = 1

ε0

q‖
ω

JS
z , (5)

‖Dz‖ =q‖
ω

JS
x , (6)

‖By‖ = − μ0JS
x , (7)

noting that the equation of continuity has been used to elimi-
nate ρS in favor of JS

x in Eq. (6).
We name the boundary conditions passive if one can use

the approximation JS (0; q‖, ω) = 0. If either JS
x (0; q‖, ω) or

JS
z (0; q‖, ω) (or both) are nonvanishing, we speak of active

boundary conditions (or just an active surface). As we shall
realize below, a SPM eigenmode always has active jump
conditions and a quantum theory can only be established in
a rigorous sense under active saltus conditions (see Secs. IV
and V).

To determine the dispersion relation for SPMs, two of the
three jump conditions in Eqs. (5)–(7) have to be used. Since
it follows from the Maxwell’s equation, ∇ × B = μ0J −
iμ0ωD [D = ε0ε(ω)E in the long-wavelength limit ε(q →

0, ω) ≡ ε(ω)] that

‖By‖ = −μ0
ω

q‖
‖Dz‖, (8)

a result which also follows directly from Eqs. (6) and (7),
the dispersion relation is obtained using Eq. (5) together with
either Eq. (6) or Eq. (7).

The standard theory for spatially local SPMs is based on
the use of passive boundary conditions, so one can pick two
of the three ‖Ex‖ = ‖By‖ = ‖Dz‖ = 0, as wished. For a loss-
less jellium with ε(ω) = 1 − (ωp/ω)2, the dispersion relation
becomes (as is well-known [11,13])

q‖ = ω

c

[
ε(ω)

1 + ε(ω)

]1/2

= ω

c

[
ω2 − ω2

p

2ω2 − ω2
p

]1/2

. (9)

The dispersion relation has two branches: (i) The Brewster
branch, existing only for ω � ωp [0 � ε(ω) < 1], and radia-
tive in vacuum, and (ii) the Fano branch describing bound
(tied) surface modes, with 1 + ε(ω) = 2 − (ωp/ω)2 < 0. The
bound Fano modes all have frequencies below the long-
wavelength (q → 0) surface plasma frequency, ωS

p = ωp/
√

2.

B. Surface plasmaritons with active surface

The eigenmodes can be obtained from the ansatz (vacuum,
V; jellium, J),

EV
x (z; q‖, ω) = AV e−iq0

⊥z, EV
z (z; q‖, ω) = q‖

q0
⊥

AV e−iq0
⊥z,

(10)

EJ
x (z; q‖, ω) = AJeiq⊥z, EJ

z (z; q‖, ω) = − q‖
q⊥

AJeiq⊥z, (11)

where

q0
⊥ =
[(ω

c

)2
− q2

‖
]1/2

, (12)

q⊥ =
[(ω

c

)2
ε(ω) − q2

‖
]1/2

. (13)

The p-polarized ansatz given above is guaranteed divergence-
free (∇ · E = 0) in both the vacuum and jellium domains.
From the dynamic jump conditions in Eqs. (5) and (6), one
obtains

AJ − AV = 1

ε0

q‖
ω

JS
z , (14)

ε(ω)

q⊥
AJ + 1

q0
⊥

AV = − 1

ε0ω
JS

x , (15)

and hence in the surface active case, the following eigenmode
condition for the SPMs:

1

q‖
(AV − AJ )JS

x =
(

ε(ω)

q⊥
AJ + 1

q0
⊥

AV

)
JS

z . (16)

Returning to Eqs. (14) and (15), it is possible to eliminate
JS

x and JS
z in favor of the prevailing field in the selvedge as

we shall realize in Secs. VI A and VI B. In turn, one can
use the resulting equations to derive the eigenmode condition
(dispersion relation) in the presence of an active surface; see
Sec. VI C.
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In the passive surface case (JS = 0), Eqs. (14) and (15) give
the determinant (|. . .|) eigenmode condition,∣∣∣∣ 1 −1

ε(ω)
q⊥

1
q0

⊥

∣∣∣∣ = 0 ⇔ q⊥ + q0
⊥ε(ω) = 0, (17)

leading to the dispersion relation cited in Eq. (9), as is well-
known.

III. COVARIANT DESCRIPTION OF EVANESCENT
PLASMARITON FIELD

A. Near-field electrodynamics in the Lorenz gauge

In nonrelativistic quantum electrodynamics, one most of-
ten uses the Coulomb gauge for the quantization procedure
because this choice simplifies the theoretical formalism, in
general [32]. Although the Coulomb gauge also can be used in
relativistic QED, it has the disadvantage that it is not manifest
covariant. For most detailed relativistic calculations, it is of
importance to keep track of manifest covariance. From this
point of view, it is preferable to use the Lorenz gauge (or
some other relativistically covariant gauge). In the Lorenz
gauge, the vector (A) and the scalar (�) potentials are treated
symmetrically, with the result that four types of photons enter
the quantization procedure: (i) Two transversely polarized (T 1
and T 2 photons), (ii) one longitudinal polarized (L photon),
and (iii) one scalar photon (S photon).

However, it was pointed out by one of the present authors
(Keller) more than a decade ago that the covariant Lorenz
gauge formalism may be preferable also in nonrelativistic
QED in connection to studies in near-field quantum electro-
dynamics [37]. Here, it is furthermore sometimes convenient
to transform the L- and S-photon set, to a new set consisting of
a gauge photon (G photon) and a so-called near-field photon
(NF photon) [37]. The G photon can be eliminated from the
formalism by a transformation within the Lorenz gauge.

Evanescent electromagnetic fields fall within the definition
of what a near field is [38]. The manifest evanescent Lorenz
gauge description was shown in 2012 to provide a physically
transparent description of the photon tunneling effect [26],
and in the book Light—The Physics of the Photon [38], many
details of this tunneling effect are discussed. In the following,
we shall take advantage of the knowledge obtained from the
photon tunneling effect in our quantum physical theory for
SPMs. Since a number of calculations in this section run
parallel to those for the tunneling phenomenon, we will often
refer the reader to the above-mentioned book for calculational
details.

B. Lorenz gauge and the four-potential in the rim (near-field)
zone of a sheet

Using four-vector notation, with the summation over
repeated lower and upper indices kept implicit, the inhomo-
geneous wave equations for the components (μ = 0 − 3) of
the contravariant four-potential {Aμ} ≡ (A0 = �/c, A) read

∂ν∂νAμ(x) = −μ0Jμ(x), μ = 0 − 3, (18)

where {Jμ(x)} = (J0 = cρ, J) is the contravariant four-
current density, and {∂μ} = (c−1∂/∂t,∇) and {xμ} = (ct, r),

x = (r, ct ). Metric signature (−1, 1, 1, 1) is used here and in
what follows. The complete solution to Eq. (18) can be written
in the integral form

{Aμ(x)} = {Aμ

inc(x)
}+ μ0

∫ ∞

−∞
DR(x − x′){Jμ(x′)}d4x′,

(19)

where {Aμ

inc} is the incident (inc) four-potential and with X =
x − x′ and τ = t − t ′,

DR(X ) = 1

c
g(X ) = 1

c
g(R, τ ) = 1

4πR
δ

(
R

c
− τ

)
(20)

is the retarded (R) scalar propagator [34,35,39].
For use in relation to SPMs, the components of all vector

fields {Fμ(r, t )} have the generic form

Fμ(r, t ) = Fμ(z; q‖, ω)ei(q‖x−ωt ), (21)

cf. Eqs. (2) and (3). Leaving out the reference to q‖ and ω, that
is,

Fμ(z; q‖, ω) ≡ Fμ(z), (22)

one obtains

Aμ(z) = Aμ

inc(z) + μ0

∫ ∞

−∞
g(Z )Jμ(z′)dz′, (23)

where Z = z − z′ and

g(Z ) = i

2q0
⊥

eiq0
⊥|Z|. (24)

When q‖ > q0 ≡ ω/c, q0
⊥ [Eq. (12)] becomes purely imagi-

nary, i.e., q0
⊥ = iκ0

⊥, with

κ0
⊥ =
[
q2

‖ −
(ω

c

)2]1/2

(>0). (25)

The four-potential related to the evanescent modes in vacuum
thus has the form

∼e−κ0
⊥|Z| exp [i(q‖x − ωt )] (26)

in the two domains Z ≶ 0.

C. Evanescent T , L, and S potentials of a surface plasmariton

Let us denote the z-dependent surface current density by

JS (z) = Iδ(z). (27)

As shown and analyzed in detail in Ref. [38], in connection to
photon tunneling, the T , L, and S parts of the four-potential
from a p-polarized sheet current density placed in otherwise
vacuum is given by

AT (z) = eκ0
⊥z

2ε0κ
0
⊥ω2

(ŷ × q<)(ŷ × q<) · I, z < 0, (28)

AL(z) = eκ0
⊥z

2ε0κ
0
⊥ω2

q<q< · I, z < 0, (29)

AS (z) = eκ0
⊥z

2ε0κ
0
⊥cω

q< · I, z < 0, (30)
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where

q< = q‖x̂ − iκ0
⊥ẑ, z < 0. (31)

In the homogeneous jellium, which occupies the half-space
z > 0, the expressions for the various parts of the potentials
are obtained from Eqs. (28)–(30), making the replacements
z → −z,

κ0
⊥ ⇒ κ⊥ =

[
q2

‖ −
(ω

c

)2
ε(ω)
]1/2

, (32)

and q< ⇒ q>, where

q> = q‖x̂ + iκ⊥ẑ, z > 0. (33)

Hence,

AT (z) = e−κ⊥z

2ε0κ⊥ω2
(ŷ × q>)(ŷ × q>) · I, z > 0, (34)

AL(z) = −eκ⊥z

2ε0κ⊥ω2
q>q> · I, z > 0, (35)

AS (z) = e−κ⊥z

2ε0κ⊥cω
q> · I, z > 0. (36)

The expressions for associated electric fields follow from

ET (z) = iωAT (z), z ≶ 0, (37)

EL(z) = iωAL(z) − icq≶AS (z). z ≶ 0. (38)

At this point, one should recall that the Coulomb in-
teraction between stationary pairs of charged particles (∼
electrons) in the covariant Lorenz gauge is described as an
exchange of scalar photons [32,38]. If the two particles move
relatively to each other, the longitudinal photon also enters as
a part of the interaction [38].

IV. PHOTON-WAVE MECHANICAL THEORY
OF SURFACE PLASMARITONS

A. Four-potential in the wave vector (Q)-time domain

Since photon-wave mechanics is known to take a partic-
ularly simple form in the wave-vector-time domain [38], let
us transform the expressions for AT (Z ), AL(z), and AS (z) to
the 1D Fourier space. For later convenience, we also make
the notational replacement q‖ → Q‖. The components of the
monochromatic (ω) four-potential, {Aμ(r, t )}, with wave vec-
tor Q‖ = Q‖x̂ along the surface thus has the integral form

Aμ(r, t ) =
[

(2π )−1
∫ ∞

−∞
Aμ(Q⊥)eiQ⊥zdQ⊥

]
ei(Q‖x−ωt ), (39)

where

Aμ(Q⊥) =
∫ ∞

−∞
Aμ(z)e−iQ⊥zdz (40)

is the Fourier integral transform of Aμ(z).
From a calculational point of view, it is useful first to

determine the Fourier transform of the scalar potential. From
Eqs. (30) and (36), it appears that

AS (Q⊥) = 1

2ε0cω

[
q< · I

∫ 0

−∞

1

κ0
⊥

e(κ0
⊥−iQ⊥ )zdz

+ q> · I
∫ ∞

0

1

κ⊥
e−(κ⊥+iQ⊥ )zdz

]
, (41)

and hence

AS (Q⊥) = 1

2ε0cω

[
q<

κ0
⊥(κ0

⊥ − iQ⊥)
+ q>

κ⊥(κ⊥ + iQ⊥)

]
· I.

(42)

The result in Eq. (42) is reduced to

AS (Q⊥) = 1

ε0cω

Q · I
(κ0

⊥)2 + Q2
⊥

= 1

ε0cω

Q · I
Q2 − q2

0

, (43)

where

Q = Q‖x̂ + Q⊥ẑ (44)

if there is vacuum to both sides (half spaces) of the current
density sheet (κ⊥ ⇒ κ0

⊥). The expression in Eq. (43) has been
used to study the optical (photon) tunneling between two
current density sheets previously [38].

The Lorenz gauge condition

AL = q0

q2
qAS, (45)

with q = q< (q>) in the half space z < 0 (z > 0), immedi-
ately gives for the longitudinal mode

AL(Q⊥) = μ0

2

[
1

κ0
⊥(κ0

⊥ − iQ⊥)

q<q<

q2
<

+ 1

κ⊥(κ⊥ + iQ⊥)

q>q>

q2
>

]
· I. (46)

A comparison of Eqs. (28) and (29) [Eqs. (34) and (35)]
leads, with

q̃≶ = ŷ × q≶, (47)

immediately to the following result for the transverse poten-
tial:

AT (Q⊥) = μ0

2

[
1

κ0
⊥(κ0

⊥ − iQ⊥)

q̃<q̃<

q2
<

+ 1

κ⊥(κ⊥ + iQ⊥)

q̃>q̃>

q2
>

]
· I. (48)

B. Sheet surface current density

The surface current density used in Sec. II is given as

JS =
∫ ∞

−∞
Iδ(z)dz = I, (49)

and the surface charge density divided by c, J0,S , is readily
obtained via the equation of continuity. Thus,

J0,S = 1

q0
Q · I. (50)

The monochromatic contravariant sheet four-current density
consequently is given by (eQ = Q/Q)

{Jμ(Q; t )} =
(

Q

q0
eQ · I, I

)
e−iωt (51)

in the wave-vector (Q)-time domain.
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C. Surface plasmariton: Four-potential state tied
to propagating electron mode

Physical insight in the wave-mechanical theory of SPMs
can be obtained by addressing the similarities and differences
to the first-quantized theories of transverse, longitudinal, and
scalar photons.

For this purpose, let us begin with the introduction of the
following abbreviations:

SA(Q⊥, Q‖, ω) = 1

2ε0ω

[
q<

κ0
⊥(κ0

⊥ − iQ⊥)

+ q>

κ⊥(κ⊥ + iQ⊥)

]
, (52)

LA(Q⊥, Q‖, ω) = μ0

2

[
1

κ0
⊥(κ0

⊥ − iQ⊥)

q<q<

q2
<

+ 1

κ⊥(κ⊥ + iQ⊥)

q>q>

q2
>

]
, (53)

TA(Q⊥, Q‖, ω) = μ0

2

[
1

κ0
⊥(κ0

⊥ − iQ⊥)

q̃<q̃<

q2
<

+ 1

κ⊥(κ⊥ + iQ⊥)

q̃>q̃>

q2
>

]
. (54)

Note that

TA(Q⊥, Q‖, ω) = LA(Q⊥, Q‖, ω; q≶ ⇒ q̃≶). (55)

With the abbreviations in Eqs. (52)–(54), it appears from
Eqs. (42), (46), and (48) that the monochromatic (ω) plane
wave (Q = Q‖x̂ + Q⊥ẑ) potentials are given by

AS (Q, t ) = SA(Q⊥, Q‖, ω) · Ie−iωt , (56)

AL(Q, t ) = LA(Q⊥, Q‖, ω) · Ie−iωt , (57)

AT (Q, t ) = TA(Q⊥, Q‖, ω) · Ie−iωt , (58)

in the wave vector (Q)-time domain. From Eq. (57), one
may obtain an expression for the amplitude AL(Q; t ) = eQ ·
AL(Q; t ), viz.,

AL(Q; t ) = [LA(Q⊥, Q‖, ω) · eQ] · Ie−iωt , (59)

utilizing that LA is a symmetric tensor.
Since, for a generic T (Q⊥, Q‖, ω),(

cQ − i
∂

∂t

)
T (Q⊥, Q‖, ω)e−iωt

= (cQ − ω)T (Q⊥, Q‖, ω)e−iωt , (60)

one can obtain the dynamical differential forms(
cQ − i

∂

∂t

)
AS (Q; t )

= (cQ − ω)SA(Q⊥, Q‖, ω) · Ie−iωt , (61)(
cQ − i

∂

∂t

)
AL(Q; t )

= (cQ − ω)[LA(Q⊥, Q‖, ω) · eQ] · Ie−iωt , (62)

(
cQ − i

∂

∂t

)
AT (Q; t )

= (cQ − ω)TA(Q⊥, Q‖, ω) · Ie−iωt (63)

for the SPM potentials. The dynamical equations above are
form-identical to those for S, L, and T photons (two polar-
ization types) driven by a certain current density [37]. In the
photon case, we can think of free propagation of these modes
(the right-hand-side of the equations equal to zero), although
one physically has no net effect of the S and L photons
(AS − AL = 0).

For SPMs (with active boundary conditions), the effec-
tive current densities appearing on the right-hand side of
Eqs. (61)–(63) always are nonvanishing. Due to the fact that
the same surface current density I (see Sec. VI B) enters all
three dynamical equations, the SPM possesses an internal
structure consisting of three (four) tied photons [T (T 1, T 2),
L, S] when the SPM is considered as a quasiparticle. In
Sec. VIII, we discuss the SPM quasiparticle picture in some
detail.

V. SECOND-QUANTIZED THEORY OF SURFACE
PLASMARITONS

In Sec. III, a covariant potential description of evanescent
surface fields originating in a sheet current density source was
established, and in Sec. IV a related classical (first-quantized)
photon-wave mechanical theory of SPMs was formulated.
Limiting the analysis to monochromatic transverse, longitu-
dinal, and scalar photons the coupled dynamical equations for
these photon types were set up [Eqs. (61)–(63)]. In the fol-
lowing, we shall indicate how the photon-wave mechanical
formulation of SPMs, when extended to the second-quantized
level, constitutes a sector of covariant quantum electrodynam-
ics (QED).

Let us denote the contravariant four-potential field annihi-
lation operator for the mode Q by {âμ(Q)}. In the Heisenberg
picture, each of the four (μ = 0 − 3) annihilation operators
satisfies the Heisenberg equation

ih̄
∂

∂t
âμ(Q; t ) = [âμ(Q; t ), ĤR] + [âμ(Q; t ), ĤI ], (64)

where ĤR and ĤI are the radiation (R) and interaction (I)
Hamilton operators, respectively [38]. From the Heisenberg
equation above, one may obtain the following dynamical
equation for {âμ}:(

∂

∂t
+ icQ

)
{âμ(Q; t )} = i

(2ε0h̄cQ)1/2
{Ĵμ(Q; t )}, (65)

where

{Ĵμ(Q; t )} =
∫ ∞

−∞
{Ĵμ(r, t )}e−iQ·rd3r (66)

is the spatial Fourier transform of the four-current density
operator in direct space.

The second-quantized theory of SPMs with active bound-
ary conditions constitutes a particular sector of the general
QED theory—the Heisenberg equation for the four-potential
field operator is given by Eq. (65). To establish the connection
between the fundamental QED theory and the extension of
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the photon-wave mechanical theory of SPMs (Sec. IV) to the
second-quantized level, rather than using a fixed Cartesian
basis for {âμ}, one projects {âμ} on the two (orthogonal)
transverse unit vectors perpendicular to Q, and one unit vector
Q/Q along Q. This leads to dynamical equations for âS (Q; t ),
âL(Q; t ) and two transverse annihilation operators âT,s(Q; t ),
s = 1, 2, belonging, e.g., to the photon helicity basis.

The manner in which the covariant quantized theory for the
SPM may be connected to the general QED formalism runs in
parallel for the S, L, T 1, and T 2 potential modes, so in the
following it is sufficient to consider in detail the connection
for the S mode, say.

It is known that the scaling

AS (Q, ω) =
(

h̄

2ε0cQ

)1/2

αS (Q, ω) (67)

leads to the second-quantized operator formalism for the
scalar potential by extending the classical normal variable
αS (Q; ω) to the operator level, i.e.,

αS (Q, ω) ⇒ âS (Q; ω). (68)

The reader may find a comprehensive discussion of the for-
malism which leads to the extension cited in Eq. (68) in
Chap. V of Ref. [32]. In particular, the covariant Heisenberg
equation for the field operator âμ is established in Sec. VA3 of
Ref. [32] of the interacting Dirac (or Schödinger) and
Maxwell fields, and the covariant commutation rules are ob-
tained in Sec. V B of Ref. [32]. The application of the general
formalism to evanescent fields driven by a sheet current den-
sity is described in Chap. 19 of Ref. [38].

It appears from Eq. (56) that

αS (Q, ω) =
(

2ε0cQ

h̄

)1/2

SA(Q⊥, Q‖, ω) · I(Q‖, ω) (69)

and thus

âS (Q; ω) =
(

2ε0cQ

h̄

)1/2

SA(Q⊥, Q‖, ω) · Î(Q‖, ω), (70)

where Î(Q‖, ω) is the extension of the surface current density
I(Q‖, ω) [Eq. (49)] to the operator level. The source vector,
Î(Q‖, ω), in an operator in particle space. An explicit expres-
sion for Î(Q‖, ω) is not needed here. By a multiplication of
Eq. (70) by (cQ − ω) exp(−iωt ), followed by an integration
over all frequencies, one obtains

∫ ∞

−∞
(cQ − ω)âS (Q, ω)e−iωt dω

=
(

2ε0cQ

h̄

)1/2 ∫ ∞

−∞
(cQ − ω)SA(Q⊥, Q‖, ω) · Î(Q‖, ω)

× e−iωt dω. (71)

The Heisenberg equation for the mode annihilation operator
for the scalar field therefore has the form(

∂

∂t
+ icQ

)
âs(Q; t )

= i

(
2ε0cQ

h̄

)1/2 ∫ ∞

−∞
(cQ − ω)SA(Q⊥, Q‖, ω) · Î(Q‖, ω)

× e−iωt dω. (72)

A comparison of Eq. (72) and the general dynamical equa-
tion [Eq. (65)] shows that the time-dependent scalar current
density mode operator is given by

ĴS (Q; t )

= 2ε0cQ
∫ ∞

−∞
(cQ − ω)SA(Q⊥, Q‖, ω) · Î(Q‖, ω)e−iωt dω

(73)

for a SPM with an active boundary. A self-consistent de-
termination of âS (Q; t ) requires use of the field-dependent
Schrodinger equation. In the framework of linear electrody-
namics, the Î operator can be expressed in terms of the sheet
current density and the field

Ê = iω(ÂT + ÂL ) − icq≶ÂS (74)

acting at the surface; see Secs. VI A and VI B. A discussion of
the classical local field in the selvedge and the related surface
current density is presented in Sec. VI.

The Heisenberg equation for the longitudinal mode anni-
hilation operator, âL(Q; t ), can be obtained from Eq. (72),
making the replacement SA ⇒ LA · eQ, as obvious from
Eqs. (56) and (59). The dynamical equations for the two trans-
verse annihilation operators, âT,s(Q; t ), s = 1, 2 follow by use
of, for instance, the helicity basis projections of AT (Q; t),
namely,

(U − eQeQ) · AT (Q; t )

= e∗
+e+ · AT (Q; t ) + e∗

−e− · AT (Q; t ), (75)

where e±(Q/Q) are positive (+) and negative (−) helicity
unit vectors belonging to a given Q direction [38]. The two
replacements SA ⇒ e∗

±e± · TA afterward are used on the right
side of Eq. (72) to obtain the dynamical equations for âT,s,
s = 1, 2.

VI. LOCAL FIELD IN THE SELVEDGE. SURFACE
CURRENT DENSITY, JS(0; q‖, ω)

A. Fundamental selvedge electrodynamics

At the outermost atomic layers of the metal-semiconductor
surface, here treated in the jellium approximation, the electron
density changes from zero (in vacuum) to its homogeneous
jellium bulk value. The basis for a determination of the
ideal surface current density, JS (0; q‖, ω) = JS

x (0; q‖, ω)x̂ +
JS

z (0; q‖, ω)ẑ, is a calculation of the local electric field,
E(z; q‖, ω), inside the selvedge region, followed by a deter-
mination of the associated selvedge (superscript SE) current
density, JSE(z; q‖, ω). Over the years, various authors have
studied the selvedge problem using different approaches
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[8,11,29,41]. For what follows, the electromagnetic propaga-
tor formalism [41] is particularly convenient. Once the current
density across the selvedge has been determined, the sur-
face current density, JS (0; q‖, ω), is obtained considering the
selvedge as a sort of electric-dipole (ED) absorber and radiator
[40]. For notational simplicity, we leave out the reference to
q‖ and ω below; cf. Eq. (22).

In the absence of an external driving field, the local elec-
tric field inside the selvedge profile, ESE(z), is related to
the selvedge current density, JSE(z), by an integral relation
extending over the selvedge, viz.,

ESE(z) = −iμ0ω

∫
SE

G(z, z′) · JSE(z′)dz′. (76)

Depending on one’s aim, various field propagator [G(z, z′)]
choices can be made. In the selvedge region, the propagator
has two parts: (i) a part, GD, related to the direct (D) propa-
gation between the source (z′) and observation (z) planes and
(ii) an indirect (I) part, GI , reaching the plane of observation
upon reflection from the bulk jellium [40]. If one uses the
vacuum propagator, the direct part depends on the difference
z − z′, only, i.e., GD(z − z′). Electronic screening effects may
be incorporated in GD, giving the general form GD(z, z′). In
the jellium bulk, it is often useful to use the so-called semi-
classical infinite-barrier model, giving a nonlocal screened
propagator which allows one to study the roles of bulk plas-
mons, bulk plasmaritons, and single-electron excitations in the
jellium [40].

To close the eigenmode loop for the local selvedge field
the selvedge current density must be related to the prevailing
selvedge field. In the absence of nonlinear electrodynamic
effects, these quantities are connected linearly and nonlocally
(in space) as follows [40]:

JSE(z) =
∫

SE
σSE(z, z′) · ESE(z′)dz′, (77)

where

σSE(z, z′) = σ(z, z′) − σbulk(z, z′) (78)

is the microscopic selvedge conductivity response tensor,
given as the difference between the “exact” conductivity ten-
sor, σ(z, z′), and the bulk conductivity tensor. By combining
Eqs. (76) and (77), one obtains a homogenous integral equa-
tion

ESE(z) =
∫

SE
K(z, z′) · ESE(z′)dz′ (79)

for the local field inside the selvedge profile. The dyadic
kernel, K(z, z′), is given by

K(z, z′) = −iμ0ω

∫
SE

G(z, z′′) · σSE(z′′, z′)dz′′. (80)

Due to the fact that the selvedge conductivity tensor has the
following sum over tensor-product structure [39]:

σSE(z, z′) =
∑

N

AN BN (z)CN (z′) −
∑

n

anbn(z)cn(z′), (81)

it is possible to convert the integral problem [Eq. (79)] into
a matrix problem for eigenmode determination [39,42]. In a
forthcoming theoretical paper, dealing with current density

functional formalism extending the standard density func-
tional theory to the transverse high-frequency regime, Eq. (81)
will be used.

In Eq. (81), N and n run over pairs of (many-body) en-
ergy eigenstates and BN (z) [CN (z′)] and bn(z) [cn(z′)] are
transition current densities related to σ(z, z′) and σbulk(z, z′),
respectively. Note that these quantities are taken at z and z′
planes.

B. Surface current density (I). Surface electric field
on the vacuum side [EV (0−)]

It appears from Eqs. (27), (49), and (77) that the integral
of the z-dependent selvedge current density, JSE(z), is to be
identified as the surface current density, I, given by

I =
∫

SE
JSE(z)dz =

∫
SE

σSE(z, z′) · ESE(z′)dz′dz. (82)

For consistency, the electric field used in Sec. II B on the
vacuum side at z = 0−, viz.,

EV (0−) = AV

(
x̂ + q‖

q0
⊥

ẑ
)

, (83)

must be connected to the local selvedge field, ESE(z), by an
integral relation of the following from

EV (0−) ≡
∫

SE σSE(z, z′) · ESE(z′)dz′dz∫
SE σSE(z, z′)dz′dz

. (84)

Thus,

I = S · EV (0−), (85)

where

S =
∫

SE
σSE(z, z′)dz′dz. (86)

C. Dispersion relation with active boundary conditions

To determine the dispersion relation from Eqs. (14) and
(15), one writes the constitutive relation in Eq. (85) in the
2 x 2-matrix form(

JS
x

JS
z

)
=
(

Sxx Sxz

Szx Szz

)(
1
q‖
q0

⊥

)
AV . (87)

By inserting the expressions for JS
x and JS

z into Eqs. (14) and
(15), and setting the determinant of the two homogeneous
equations for AJ and AV to zero, one obtains from microscopic
electrodynamics the following SPM dispersion relation in im-
plicit form:

q⊥ + ε(ω)q0
⊥ + q0

⊥
ε0ω

[
ε(ω)q‖

(
Szx + q‖

q0
⊥

Szz

)

+ q⊥

(
Sxx + q‖

q0
⊥

Sxz

)]
= 0. (88)

It is obvious that the mean value of the selvedge field, ESE(z),
with a two-point (z, z′) dyadic distribution function σSE(z, z′)
necessarily must result in a much more complicated dis-
persion relation [Eq. (88)] than for a model with passive
boundary conditions [Eq. (9)].
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In a somewhat similar study, the electrodynamics of a QW
sheet placed outside a sharp jellium surface was investigated
a number of years ago [30,31].

A number of authors have attempted to investigate the
plasmariton surface modes with active boundary conditions
(yet with JS

z = 0), treating the selvedge profile as an inhomo-
geneous plasma with a local scalar conductivity, σ SE(z; ω)
[or, equivalently, a dielectric function εSE(z; ω)]. It appears,
e.g., from the review article by Boardman [43], that also the
local theory leads to a quite complicated dispersion relation
of the SPM. In the framework of the local jellium model, the
characteristic matrix

M(q‖, ω) =
(

1 ic
ω

∫
SE

q2
‖−ε(z;ω)( ω

c )2

ε(z;ω) dz
− iω

c

∫
SE ε(z; ω)dz 1

)

(89)

relates the tangential components of the electric and mag-
netic fields on the two sides of the selvedge profiles. Thus,
if the profile extends from z = 0 to z = d , Ex(d ) = Ex(0) −
M12By(d ), and By(d ) = By(0) − M21Ex(d ).

It must be emphasized that the local approximation breaks
down when q‖λSE � 1, where λSE is the characteristic length
of the selvedge profile. In relation to the transverse dielectric
function of Lindhard [44,45], this is the regime where the
quantum parameter z = q/(2kF ) � 1, kF being the electron
Fermi wave number. For z � 1, electronic quantum interfer-
ence effects play an essential role. It is these interference
effects which are responsible for the Friedel oscillations in the
selvedge profile.

Also the use of a z-dependent plasma frequency, ωp(z), in
itself gives rise to inconsistencies, e.g., light pulse reflection
studies [45,46].

D. Self-field approach: Neglect of field retardation

The short length of the selvedge profile makes it possible
to neglect the retardation in the field propagation across the
selvedge. The vacuum propagator G(z − z′) then can be re-
placed by its self-field (SF) part [31,39]:

gSF(z − z′) = −q−2
0 δ(z − z′)ẑẑ. (90)

From Eq. (76), one then obtains a spatially local relation be-
tween the electric selvedge field, ESE

SF (z), and the local surface
current density JSE(z), namely,

ESE
SF (z) = 1

iε0ω
JSE

z (z)ẑ. (91)

In the self-field approximation, the selvedge field is perpen-
dicular to the plane of the surface, and the surface current
density only has a z component.

The kernel in Eq. (80) now depends alone on electronic
properties [K(z, z′) ⇒ KSF(z, z′)]. Hence,

KSF(z, z′) = 1

iε0ω

[
σ SE

zx (z, z′)ẑx̂ + σ SE
zz (z, z′)ẑẑ

]
. (92)

The absence of σ SE
xx (z, z′) and σ SE

xz from the description
implies that the related SPM dispersion relation is given by
Eq. (88) setting Sxx = Sxz = 0. By writing the dispersion rela-

tion as follows:

q⊥ + εeff(q‖, ω)q0
⊥ = 0, (93)

where

εeff(q‖, ω) = ε(ω)

[
1 + q‖

ε0ω

(
Szx(q‖, ω) + q‖

q0
⊥

Szz(q‖, ω)

)]
,

(94)

it appears that its form is analogous to that of the passive case
[Eq. (17)], just with the local dielectric function ε(ω) replaced
by an effective one with spatial dispersion, εeff(q‖, ω). The
spatial dispersion here stems from the selvedge alone.

The reader should compare this result to the dispersion
relation

q⊥ + εT (q, ω)q0
⊥ = 0, (95)

obtained for SPMs with (i) bulk spatial dispersion in the
jellium, (ii) passive boundary conditions, and (iii) no L-mode
contribution (the situation outside the strong L-T coupling
region). If retardation is neglected in total (c → ∞), Eq. (95)
is reduced to

1 + εT (q‖, ω) = 0, ELECTROSTATIC. (96)

No magnetic field is present in the c → ∞ limit, and the SPM
dispersion relation takes the electrostatic form. This was to
be expected since retardation plays a negligible role when the
wave number (q) is much larger than the electron Fermi wave
number (kF ). For electrostatic (ES) bulk plasmaritons,

εT (q, ω) = 0, ES (97)

as we have discussed in Ref. [25], starting from Lindhard’s
transverse dielectric function. For plasmons (L plasmons),
the corresponding formulas are εL(q, ω) = 0 (bulk) and 1 +
εL(q‖, ω) = 0 (surface) [24]. These last two dispersion rela-
tions hold for all q (q‖) due to the fact that light properties
cannot enter longitudinal dynamics.

VII. SURFACE PLASMARITON DISPERSION RELATION
IN THE FRAMEWORK OF A QUANTUM WELL MODEL

To carry out an explicit calculation of the dispersion
relation given in Eq. (88), one needs a model for the field-
unperturbed state of the jellium-vacuum system. Once the
model has been chosen, one may, at least in principle, de-
termine the related energy eigenstates and the associated
(many-body) stationary-state electron wave functions. Below
we shall limit ourselves to a single-electron approach and
assume that the ion (background) potential is sharp and in-
finitely high. Although this model has a number of limitations
(it excludes photoemission processes, e.g.), it illustrates the
main principles of Sec. VI, and an analytic calculation can be
carried through almost completely, provided the wave num-
ber of the field along the surface (q‖) is much smaller than
the electron Fermi wave number (kF ). In the most common
situation where the relation of plasmariton surface modes to
electromagnetic (∼optical) reflectivity is studied, the inequal-
ity q‖ � kF is justified.
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A. One-electron conductivity tensor

It is known that the many-body expression for the micro-
scopic conductivity tensor in the general three-dimensional
case can be written in the form [39]

σ(r, r′; ω)

= h̄

i

∑
I,J ( �=I )

PJ − PI

EJ − EI

1

h̄ω + EJ − EI
JI→J (r)JJ→I (r′) (98)

in the space-frequency domain. The many-body stationary
state �I (�J ) is occupied with a probability PI (PJ ), and
the associated eigenenergy is EI (EJ ). The quantity JI→J (r)
[JJ→I (r)] denotes the transition current density from state I
to state J (state J to I). The spatially nonlocal character of
σ(r, r′; ω) manifests itself through the fact that the transition
current densities in Eq. (98) are taken at two (in general)
different space points [r, r′].

An important remark should be made here. No irreversible
damping mechanisms (often characterized phenomenologi-
cally via a set of inverse relaxation times) have been included
in Eq. (98). The SPM eigenmodes we seek belong to a closed
system, and hence we should not include irreversible relax-
ation processes. In calculations where the gauge conserving
diamagnetic part of σ(r, r′, ω) is neglected, σ(r, r′, ω) → ∞
for ω → 0, and in such simplified calculations it is necessary
to include some kind of relaxation time to avoid the (unphysi-
cal) divergence of σ(r, r′, ω) at ω = 0. BCS superconductors
are excluded here because the vanishing of the paramagnetic
part of σ(r, r′, ω) implies that the conductivity tensor does
diverge at ω = 0 (infinite conductivity). The sum of the para-
and diamagnetic parts appear in Eq. (98), and it is obvious that
there is no divergence in the ω → 0 limit.

From a fundamental theoretical point of view, a rig-
orous inclusion of relaxation processes first requires an

identification of the most important microscopic scattering
mechanism(s). For each these (impurities, phonons, etc.),
a suitable (always cumbersome) calculation has to be car-
ried out. Even in the framework of a QW surface model
(Sec. VII D), such ab initio calculations are far beyond the
scope of this paper. However, one might emphasize that per-
haps a 2D calculation will be sufficient in the diamagnetic case
(Sec. VII D 1), and a calculation similar to that carried out for
two-level atoms may be sufficient, at least near the interlevel
resonance frequency.

Experimental studies are most often linked to the relevant
dispersion relation for the field, and relaxation phenomena are
in many cases included via a phenomenologically introduced
relaxation time (τ ). In our numerical calculations for the one-
level diamagnetic intraband and the two-level paramagnetic
interband transistions, to be presented in Sec. VII E, one might
to some extent include (all) irreversible relaxation processes
by replacing ω by ω + i/τdia and ω + i/τpara in the relevant
dispersion relations [Eqs. (125) and (128), with N0 and β

given by Eqs. (129) and (136)].
Let us now turn our attention toward the one-electron ap-

proximation. For flat adjacent jellium-vacuum systems, we
make the ansatz

ψn(r) = 1

2π
exp(ik‖ · r)un(z), (99)

k‖ being an electron wave vector along the surface. The ansatz
in Eq. (99) is the relevant one here, because we assume that
the self-consistent potential energy alone is a function of
z, U (z). The central quantity for the analysis below is the
mixed conductivity tensor, σ(q‖, ω; z, z′). With assumed spin
degeneracy (factor of 2 in front of the summation sign in the
subsequent equation) [39],

σ(q‖, ω; z, z′) = 2h̄

i

∑
n,n′

∫ ∞

−∞

{
f0
(
εn + h̄2

2m k2
‖
)− f0

(
εn′ + h̄2

2m |k‖ + q‖|2
)

εn − εn′ + h̄2

2m k2
‖ − h̄2

2m |k‖ + q‖|2
1

h̄ω + εn − εn′ + h̄2

2m k2
‖ − h̄2

2m |k‖ + q‖|2

× jn′→n(k‖, k‖ + q‖; z)jn→n′ (k‖, k‖ + q‖; z′)

}
d2k‖
(2π )2

, (100)

where

jn→n′ (k‖, k‖ + q‖; z′) = − eh̄

2im

{
i(2k‖ + q‖)u∗

n′ (z′)un(z′) + ẑ
[

u∗
n′ (z′)

dun(z′)
dz′ − un(z′)

du∗
n′ (z′)
dz′

]}
(101)

is the electron [charge: −e, mass: m] transition current density
from state n to state n′, evaluated at z. An analogous expres-
sion for jn′→n(k‖, k‖ + q‖; z) follows from Eq. (101), making
the interchanges n → n′, n′ → n, and z′ → z. The quan-
tity f0(En) [ f0(En′ )] is the Fermi-Dirac distribution function
for En = εn + [h̄2/(2m)]k2

‖ [En′ = ε′
n′ + [h̄2(2m)]|k‖ + q‖|2]

εn [εn′ ] being the nth eigenenergy belonging to the one-
dimensional time-independent Schrödinger equation:

[
− h̄2

2m

d2

dz2
+ U (z) − εn

]
un(z) = 0. (102)

With assumed spin degeneracy, f0 is normalized to half the
number of electrons.

For q‖ � kF , one just needs the expression for
σ(q‖, ω; z, z′) in the small q limit, viz.,

σ(q‖ → 0, ω; z, z′)

= 2h̄

i

∑
n,n′

∫ ∞

−∞

f0
(
εn + h̄2

2m k2
‖
)− f0

(
εn′ + h̄2

2m k2
‖
)

(εn − εn′ )(h̄ω + εn − εn′ )

× jn′→n(2k‖; z)jn→n′ (2k‖; z′)
d2k‖
(2π )2

, (103)
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where

jn′→n(2k‖; z) = − eh̄

2im

{
2ik‖u∗

n(z)u′
n(z)

+ ẑ
[

u∗
n(z)

du′
n(z)

dz
− u′

n(z)
du∗

n(z)

dz

]}
. (104)

B. The diagonal form of σ(q‖, ω; z, z′ )

In the integration over k‖ appears the Fermi-Dirac dis-
tribution function, which is a function of k2

‖ = k2
‖,x + k2

‖,y,
and dyadic products proportional to k‖k‖ [k‖ = k‖,xx̂ + k‖,yŷ],
k‖ẑ, ẑk‖, and ẑẑ. Integrals [

∫∞
−∞(. . . )d2k‖] with integrands

uneven in k‖,x or k‖,y vanish, leaving one with the generally
nonvanishing elements σxx, σyy, and σzz.

For the plasmariton case, the conductivity tensor (in 2 × 2-
matrix form) hence is diagonal in the limit q‖ = q‖x̂ → 0, i.e.,

σ(q‖ → 0, ω; z, z′) =
(

σxx(ω; z, z′) 0
0 σzz(ω, z, z′)

)
. (105)

Using the explicit expression for the Fermi-Dirac distri-
bution function (normalized to half the number of electrons),
viz.,

f0(En) =
[

1 + exp
(εn − μ

kT

)
exp

(
h̄2k2

‖
2mkT

)]−1

, (106)

where μ, k, T are the chemical potential, the Boltzmann
constant, and the absolute temperature, respectively, the k‖
integrals belonging to σxx and σzz are (ε = εn and εn′ )

Fxx(ε) ≡
∫ ∞

−∞
f0

(
ε + h̄2k2

‖
2m

)
k2
‖,x

d2k‖
(2π )2

= 1

2π

(
mkT

h̄2

)2 ∫ ∞

0

xdx[
1 + exp

(
ε−μ

kT

)
ex
]

−−→
T →0

{
1

4π

(
m
h̄2

)2
(εF − ε)2; ε < εF

0; ε > εF
(107)

and

Fzz(ε) =
∫ ∞

−∞
f0

(
ε + h̄2k2

‖
2m

)
d2k‖
(2π )2

= 1

2π

mkT

h̄2 ln
[
1 + exp

(ε − μ

kT

)]

−−→
T →0

{
1

2π
m
h̄2 (ε − εF ); ε < εF

0; ε > εF .
(108)

With the k‖ integrations carried out, the one-electron con-
ductivity tensor takes the following dyadic form:

σ(q‖ → 0, ω; z, z′)

= 2h̄

i

(
eh̄

2m

)2∑
n,n′

1

(εn − εn′ )(h̄ω + εn − εn′ )

× {4Pxx[Fxx(εn) − Fxx(εn′ )]x̂x̂

−Pzz[Fzz(εn) − Fzz(εn′ )]ẑẑ}, (109)

where

Pxx = u∗
n(z)un′ (z)u∗

n′ (z′)un(z′) (110)

and

Pzz =
[

u∗
n(z)

dun′ (z)

dz
− un′ (z)

du∗
n(z)

dz

]

×
[

u∗
n′ (z′)

dun(z′)
dz′ − un(z′)

du∗
n′ (z)

dz′

]
. (111)

C. Electric-dipole conductivity tensor
in the low-temperature limit

As a first step toward a calculation of the selvedge tensor
S [given in Eq. (86)] for a specific model, let us determine the
tensor

S0 ≡
∫ ∞

−∞
σ(q‖ → 0, ω, z, z′)dz′dz (112)

in the low-temperature limit. Since∫ ∞

−∞
Pxx(z, z′)dz′dz = δn,n′ (113)

due to the orthonormality of the stationary state eigenfunc-
tions, and

[Fxx(εn) − Fxx(εn′ )]T →0

= 1

4π

( m

h̄2

)2
(εF − εn)2�(εF − εn)

− (εF − εn′ )2�(εF − εn′ ), (114)

where �(εF − εn′ ) is the Heaviside step function, elementary
calculations give the following result for the xx component of
S0 for T → 0:

S0
xx(ω|T → 0) = e2

π ih̄2

1

ω

∑
n

(εn − εF )�(εF − εn), (115)

possibly with
∑

n(εn − εF ) = −(2/5)εF n inserted (n =
N/V : number of electrons per unit volume).

To determine the zz component of S0, we utilize the
well-known result (and an analogous one with n and n′ in-
terchanged)∫ ∞

−∞

[
u∗

n(z)
dun′ (z)

dz
− un′ (z)

du∗
n(z)

dz

]
dz

= 2m

h̄2 (εn′ − εn)Pn′→n, (116)

where

Pn′→n =
∫ ∞

−∞
u∗

n(z)zun′ (z)dz (117)

is the matrix element connected with an electric-dipole transi-
tion form state n′ to state n (n′ → n). Hence,∫ ∞

−∞
Pzz(z, z′)dz′dz

=
(

2m

h̄2

)2

(εn′ − εn)(εn − εn′ )Pn′→nPn→n′ . (118)
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In the low-temperature limit:

Hzz(εn, εn′ ) ≡ [Fzz(εn) − Fzz(εn′ )]T →0

= 1

2π

m

h̄2 [(εn − εn′ )�(εF − εn)

�(εF − εn′ )

+ (εn − εF )�(εF − εn)�(εn′ − εF )

+ (εn′ − εF )�(εn − εF )�(εF − εn′ )]. (119)

By gathering the information in Eqs. (110), (113), (118), and
(119), one obtains

S0
zz(ω|T → 0)

= 2e2

ih̄

∑
n,n′

Hzz(εn, εn′ )
εn − εn′

h̄ω + εn − εn′
Pn′→nPn→n′ . (120)

Although the result obtained for S0 = S0
xxx̂x̂ + S0

zzẑẑ is
extremely simple for T → 0, one cannot proceed to a deter-
mination of the selvedge tensor S [Eq. (86)] unless a specific
model is chosen for the field-unperturbed state of the adjacent
vacuum-jellium system.

D. Quantum-well surface current density

In the following, we shall study the SPM eigenmodes in a
model where the surface current density originates in a QW
film deposited on the jellium surface. From a qualitative point
of view, the QW film thus acts as a kind of selvedge. [σSE ∼
σQW]. In the q‖ → 0 limit, we start from a model conductivity
tensor of the form

σ(ω; z, z′) = σQW(ω; , z, z′)�(−z)�(z + d ) + σ J(ω)U�(z).
(121)

In line with our previous assumption (Sec. II), we consider
an isotropic and spatially nondispersive semi-infinite jellium
(J) with σ J (ω) = iε0ω

2
p/ω [corresponding to εJ(ω) = 1 −

(ωp/ω)2], and we neglect the selvedge profile. Instead the
active surface current density is associated to a QW with
infinitely high potential barriers located at z = −d and z = 0.
Inside the QW, the potential is flat. The infinitely high barrier
assumed at z = 0 implies that electrons are not exchanged
between the QW and J parts.

In free-electron-like (∼jellium) semiconductors (like InSb
and GaAs), it is possible to change the relative importance of
SQW

xx and SQW
zz . The relative importance may be changed by

displacing the Fermi level via doping.

1. Diamagnetic response

It appears from Eq. (115) that the xx component of the QW
S-matrix is given by

SQW
xx (ω|T → 0) = e2

π ih̄2

1

ω

∑
n

(εn − εF )�(εF − εn) (122)

in the low-temperature limit. The energies εn ≡ εQW
n entering

Eq. (122) are those of the QW film. For q‖ = 0, there are no
electric-dipole transitions parallel to the jellium-vacuum in-
terface, remembering that n = n′ [Eq. (115)]. Physically, this
means that SQW

xx originates alone in dynamic diamagnetism,

letting the electrons stay in the given εn level. The general
trend is that the diamagnetic contribution to the S matrix tends
to dominate in the low-frequency region [cf. the ω−1 factor in
Eq. (122)]. Although, SQW

zz does not vanish for small ω, SQW
zz

gives a frequency-independent term for ω � |εn − εn′ |/h̄,
∀n, n′. In the case where the film thickness is so small that
there effectively is only one bound level (below the Fermi
energy)—a possibility for finite barrier height, yet so high that
electron flow between the QW and jellium is negligible—one
may take S0

zz(ω|T → 0) ≈ 0 for small frequencies.
In view of the discussion of the dynamic boundary con-

ditions in Sec. II, it appears that the active surface current
density flows parallel to the interface if only diamagnetic
effects are included in the analysis. The associated SPM dis-
persion relation follows from Eq. (88), setting SQW

xz = SQW
zx =

SQW
zz = 0. With the abbreviation

α = e2

π h̄2

∑
n

(εF − εn)�(εF − εn), (123)

its implicit form is given by

q⊥ + ε(ω)q0
⊥ + iα

ε0ω2
q⊥q0

⊥ = 0. (124)

For evanescent solutions, we utilize q⊥ = iκ⊥ and q0
⊥ = iκ0

⊥
and obtain

κ⊥ + ε(ω)κ0
⊥ − α

ε0ω2
κ⊥κ0

⊥ = 0. (125)

2. Paramagnetic response

Another extreme occurs if the diamagnetic response is
negligible. It appears from previous studies that this can be
a good approximation in relation to certain optical reflection
studies [30,31] and in small-hole diffraction from microscopic
holes in two (or few) level QW screens [40,47,48]. Setting
SQW

xz = SQW
zx = SQW

xx = 0, the dispersion relation in Eq. (88) is
reduced to

q⊥ + ε(ω)q0
⊥ − iε(ω)

ε0ω
β(ω)q2

‖ = 0, (126)

where

β(ω) = 2e2

h̄

∑
n,n′

HQW
zz (εn, εn′ )

εn − εn′

h̄ω + εn − εn′
Pn′→nPn→n′ .

(127)

The quantity HQW
zz (εn, εn′ ) is given formally by Eq. (119),

remembering that one must take εn = εQW
n and εn′ = ε

QW
n′ .

For evanescent solutions, we arrive at the following dispersion
relation:

κ⊥ + ε(ω)κ0
⊥ − ε(ω)

ε0ω
β(ω)q2

‖ = 0. (128)

E. Numerical results

Below we calculate and discuss numerical results for the
dia- and paramagnetic cases. Material parameters for n-InSb
are used (see Fig. 2 caption), and it is assumed that the QW
barrier is infinitely high. We limit ourselves to a QW film
so thin that only the two lowest-lying electron energy levels
need to be included in the relevant optical frequency range.
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FIG. 1. Schematic illustration of a quantum well (QW) squeezed
between vacuum (V ) and jellium (J). For a one-level (ε1) QW, where
ε1 < εF (Fermi energy), the current flow (black double arrow) is
everywhere parallel to the surface plane whereas a two-level QW,
with ε1 < εF < ε2, predominantly is perpendicular to the interface
(white double arrow), for optical frequencies in the vincinity of the
Bohr transistion frequency, ωBohr = (ε2 − ε1)/h̄.

By suitable (n-type) doping, the Fermi is located between the
two levels. A sketch of the two-level QW model belonging to
the dia- and paramagnetic surface current densities is shown
in Fig. 1.

1. One-level diamagnetic case

By introduction of the surface electron density [42],

N0 = m

π h̄2

∑
n

(εF − εn)�(εF − εn), (129)

which for only one level (ε1) below the Fermi energy becomes
N0 = m(εF − ε1)/(π h̄2), the dispersion relation in Eq. (125)
can be rewritten in the form

κ⊥ + ε(ω)κ0
⊥ −
(

�dia

ω

)2

κ⊥κ0
⊥ = 0. (130)

The quantity

�dia =
(N0e2

mε0

)1/2

(131)

may be named a sheet plasma frequency because of its form,
although the dimension of �dia is a frequency divided by the
square root of a wave number.

Figure 2 shows the SPM dispersion relation obtained from
Eq. (130) plotted in normalized form, i.e., ω/ωp as a function
of q‖c/ωp. At small wave numbers, the dispersion relation
becomes identical to the Fano mode for a passive boundary.

FIG. 2. Diamagnetic dispersion relation (thick green line) on
normalized form (i.e., ω/ωp versus cq‖/ωp) for a surface plasmari-
ton with an active boundary in the form of a one-level quantum
well (assuming infinitely high barriers). For small wave numbers,
the dispersion relation coincides with the passive boundary Fano
branch (thin dashed line). This branch approaches the surface plasma
frequency, ω/ωp = 1/

√
2 for q‖ → ∞. At high wave numbers, the

dispersion relation coincides with that obtained in an electrostatic
(c → ∞) approximation (thin black line). For q‖ = 0, ω/ωp = 1/

√
2

in the electrostatic approximation. The transition region between the
Fano and electrostatic branches is plotted in the inset to the right. The
numerical plots in Figs. 2–4 are for a semiconducting n-InSb plasma,
using the following data: m = 0.015m0 (m0: free-electron mass) and
n = 4 × 1018 cm−3. The width of the quantum well active boundary
is d = 10 nm.

The Fano mode approaches the surface plasma frequency
ωpS = ωp/

√
2 from below for q‖c/ωp → ∞, whereas the dia-

magnetic dispersion relation (active boundary) crosses ωpS , as
shown. It appears that most of the dispersion relations lying
above ωpS is well represented by an electrostatic approxima-
tion (c → ∞). In the electrostatic regime, where κ0

⊥ → q‖,
κ⊥ → q‖, Eq. (130) is reduced to

qES
‖ (ω) = 2ω2 − ω2

p

�2
dia

. (132)

In the electrostatic approximation, the decay constants are
the same in the plasma and the vacuum, viz., κ⊥ = κ0

⊥ = q‖;
cf. Eqs (25) and (32). This means that the jellium properties
play no role: The diamagnetic sheet current density is placed
in vacuum, essentially. In Sec. V III, we describe how this
finding relates to a SPM quasiparticle picture.

Before proceeding to the paramagnetic case, it is worth
mentioning that the calculation of q‖ = q‖(ω) (or its inverse)
is not without numerical pitfalls if the expressions for κ0

⊥
[Eq. (25)] and κ⊥ [Eq. (32)] are inserted into Eq. (130) di-
rectly. If one instead, for a given ω, determines the crossing
point of the κ0

⊥ = κ0
⊥(κ⊥), viz.,

κ0
⊥ = κ⊥(

�dia
ω

)2
κ⊥ − ε(ω)

, (133)

κ0
⊥ =
[
κ2

⊥ −
(ωp

c

)2]1/2

, (134)
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FIG. 3. Paramagnetic dispersion relation with its two branches
(thick green lines) in normalized form (i.e., ω/ωp versus cq‖/ωp)
for a surface plasmariton with an active boundary in the form of
a two-level quantum well (infinitely high barriers assumed). As in
Fig. 2, the lower branch is well represented by the passive Fano and
electrostatic models at low and high wave numbers, respectively. The
upper branch is essentially electrostatic, yet with a low wave number
cutoff at cq‖/ωp � 5.4. At q‖ = 0, ω/ωp = ωBohr/ωp � 1.25. The
numerical calculations are for semiconducting n-InSb (data as for
Fig. 2).

and thereafter calculates q‖(ω) from q‖ = [(κ0
⊥)2 +

(ω/c)2]1/2, pitfalls are avoided—an analogous numerical
scheme we employed in the paramagnetic case.

2. Two-level paramagnetic case

To determine the paramagnetic dispersion relation for a
two-level QW (ε1 < εF < ε2), one first determines β(ω) from
Eq. (127). A straightforward calculation gives from Eq. (119)

HQW
ZZ (ε2, ε1) = HQW

ZZ (ε1, ε2) = m

2π h̄2 (ε1 − εF ), (135)

and then

β(ω) = 2me2

π h̄3 |P1→2|2(ε1 − εF )
(ε2 − ε1)2

(ε2 − ε1)2 − (h̄ω)2
. (136)

By inserting this expression for β(ω) into Eq. (128), the
numerical calculation of the paramagnetic dispersion relation
can be carried out. Hence, utilizing that q2

‖ = (κ0
⊥)2 + (ω/c)2

one can employ the same numerical scheme as in the diamag-
netic case.

The normalized paramagnetic dispersion relation [ω/ωp

versus q‖c/ωp] is shown in Fig. 3. The dispersion relation
has two branches. The lower branch is qualitatively similar to
the diamagnetic dispersion relation. The high-wave-number
part of the lower branch and the entire upper branch are well
described by the electrostatic approximation, namely,

qES
‖ (ω) = 2ε0ω

β(ω)

ω2 − ω2
pS

ω2 − ω2
p

. (137)

For q‖ ⇒ 0, the two electrostatic branches approach the
points ω = ωpS and ω = ωBohr = (ε2 − ε1)/h̄ (ωBohr/ωp ≈

FIG. 4. Surface plasmariton decay constants in vacuum (κ0
⊥) and

in the jellium (κ⊥) as a function of the normalized wave number
along the surface (cq‖/ωp). Results are presented for both the dia-
magnetic and paramagnetic cases, for which dispersion relations are
shown in Figs. 2 and 3. For q‖ → ∞, κ0

⊥ → q‖ and κ⊥ → q‖, giving
a straight line κ⊥ = κ0

⊥ = q‖. The value q−1
‖ in the electrostatic region

corresponds to the 1D confinement of the T -photon source (see also
Figs. 5 and 6).

1.25, here). There is a low wave number cutoff in the upper
branch, as the reader may infer from the dispersion relation in
Eq. (128), since β(ω) > 0 for ω > ωB.

In Fig. 4, the decay constants κ0
⊥ and κ⊥ are shown as a

function of q‖, all three quantities being multiplied by the
factor c/ωp. The plots give a qualitative expression of how
good the electrostatic approximation κ0

⊥ = κ⊥ = q‖ is.

VIII. CONNECTION TO THE PLASMARITON
QUASIPARTICLE PICTURE

A. Remarks on the bulk plasmariton quasiparticle theory

In a recent paper on the wave-mechanical and second-
quantized theories of bulk plasmaritons [25], we developed a
Hamiltonian quasiparticle description in which the transverse
part of the microscopic displacement field, multiplied by a
factor of minus one, viz.,

M ≡ −DT = −(ε0ET + PT ), (138)

acts as a canonical field momentum. The time evolution of
the jellium polarization (P) which is transversely polarized
(P = PT ) in the plasmariton case becomes equivalent to that
of an essentially charged harmonic oscillator. The transverse
electric field is the sum of retarded (R) and self-field (SF)
parts,

ET = ER
T + ESF

T , (139)

since DT relates to the free field momentum, DT must be given
by

DT = ε0ER
T . (140)
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A combination of Eqs. (138)–(140) then shows that the trans-
verse electric self-field is

ESF
T = − 1

ε0
PT . (141)

One may write the relation between the transverse electric
self field and the transverse polarization as ESF

T = −PT /(nε0),
with n = 1. The positive integer relates to the dimensionality
of the field confinement (here 1D: n = 1, for the plasmariton
field). In the atomic case, where one has 3D confinement,
n = 3, and thus ESF

T = −PT /(3ε0); cf. the propagator theory
describing the spatial confinement of quantized light emitted
from a single atom [38].

In the Hamiltonian description based on DT , a term

Htied ≡ P2
T

2ε0
= ε0

2

(
ESF

T

)2
, (142)

appears in the Hamiltonian density. This term, which only
depends on the polarization density variables, is to be grouped
with the oscillator part of the total Hamiltonian density. Htied

describes the T -photon cloud tied (attached) to the plasmari-
ton quasiparticle [25].

In the DT formalism, the interaction (I) Hamiltonian den-
sity is given by

HI = 1

ε0
M · PT = ε0ER

T · ESF
T , (143)

and hence relates to the scalar product between the retarded
and self-field parts of the transverse electric field. In Sec. IX,
we shall study the SPM’s interaction with an retarded external
field, ER

ext.

B. Surface plasmariton self-field

In the covariant formalism, the transverse vector potential
is invariant against gauge transformation within the Lorenz
gauge, and more generally the same in all gauges. This means
that the quantization schemes for AT (z; ω) and ET (z; ω) =
iωAT (z, ω) essentially are the same; cf. Eq. (37).

To obtain the transverse self-field of the SPM field, let
us return Eqs. (10) and (11) in the form these take in the
evanescent regime (q0

⊥ ⇒ iκ0
⊥, q⊥ = iκ⊥). Multiplied by the

plane-wave factor exp(iq‖x), one has

EV
T (x, z; ω) = AV

(
x̂ − i

q‖
κ0

⊥
ẑ
)

eκ0
⊥zeiq‖x, (144)

EJ
T (x, z; ω) = AJ

(
x̂ + i

q‖
κ⊥

ẑ
)

e−κ⊥zeiq‖x. (145)

The nonretarded parts of Eqs. (144) and (145) constitute the
transverse self-field of the SPM field. Since κ0

⊥ → q‖ and
κ⊥ → q‖ for c → ∞, one gets

EV,SF
T (x, z) = AV (x̂ − iẑ)eq‖(ix+z), (146)

EJ,SF
T (x, z) = AJ (x̂ + iẑ)eq‖(ix−z). (147)

The transverse self-field is circular polarized in every
space point. The polarization vector rotates in planes per-
pendicular to the y direction (ŷ). From the quantity Re{(x̂ ∓
iẑ) exp(−iωt )}, it appears that the direction of rotation is
opposite in the vacuum and jellium half spaces. The transverse

self-field is linked to the electrostatic (c → ∞) part of the
SPM dispersion relation, and therefore the transverse self-
field is necessarily rotational-free, i.e.,

∇ × EV,SF
T (x, z) = ∇ × EJ,SF

T (x, z) = 0. (148)

The reader may readily verify that Eq. (148) is correct.
The transverse self-field is related to the transverse part,

JSE
T (x, z), of the surface (sheet) current density, I. Thus,

ESF
T (z, x; ω) = (iε0ω)−1JSE

T (x, z; ω), (149)

as we shall realize in Sec. VIII D.
From the general microscopic relation [39] JT = iωPT , it

appears that Eq. (149) in a sense is a special case of the bulk
plasmariton relation given in Eq. (141).

The inhomogenous wave equation for the transverse vector
potential associated to the surface current density, viz.,[

∂2

∂x2
+ ∂2

∂z2
+
(ω

c

)2
]

AT (x, z; ω) = −μ0JSE
T (x, z; ω),

(150)

tells us [based on Eq. (149)] that the field profile given by
Eqs. (146) and (147) is the photon source domain profile.
Further insight in the plasmariton source-field dynamics is
given in Fig. 5.

The retarded part of the SPM field,

EV,R
T (x, z; ω) = EV

T (x, z; ω) − EV,SF
T (x, z; ω), (151)

EJ,R
T (x, z; ω) = EJ

T (x, z; ω) − EJ,SF
T (x, z; ω), (152)

describes the photon field emitted from the surface current
density. We shall see in Sec. VIII that there exists an intimate
relation between frustrated T -photon emission in photon tun-
neling and the confined T -photon picture of the SPM. In the
covariant description of SPMs, the L and S photons exist (are
nonvanishing) in the entire evanescent profile cf. Eqs (29),
(30), (35), and (36). A certain combination of these gives one
the longitudinal electric field, EL(z) [Eq. (38)], the quanta of
which have been named near-field photons [37].

C. Nonretarded eigenmode loop

To (i) determine the transverse self-field of a SPM, and thus
its tied T -photon cloud, and (ii) obtain the connection to the T
photon-dressed picture of the bulk plasmariton quasiparticle,
it is convenient to make use of a propagator formalism, in
analogy with what has been done in the atomic case.

It appears from Sec. VIII A that the self-field for SPMs
necessarily is connected to the nonretarded part of the electro-
magnetic propagator. The geometry of the part of the problem
makes it convenient to use the Weyl expansion of the propaga-
tor. In the mixed Fourier domain, the propagator’s nonretarded
part, GNR(q‖, ω; Z ), is given by

GNR(q‖, ω; Z )

= −q2
0δ(Z )ẑẑ+ q‖

2q2
0

e−q‖|Z|[ẑẑ−q̂‖q̂‖−i(q̂‖ẑ+ẑq̂‖)sgn(Z )],

(153)

where Z = z − z′ and q̂‖ = q‖/q‖. The expression on the right
side of Eq. (153) multiplied by −q2

0 can be recognized as the
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FIG. 5. Graphical representation of the two types of decay length
which relates to a T photon tied to a surface plasmariton. (a) The
one-dimensional confined source of the T photon has an extension
characterized by the decay length q−1

‖ (the same in vacuum and
jellium), and the self-field is circular polarized in opposite directions.
As q‖ → ∞, one approaches (via the electrostatic region) the geo-
metrical optical limit where essentially complete spatial confinement
can be obtained (see Ref. [38], Sec. 5.2). (b) The extension of the
T -photon source region (in violet) is in the Coulomb gauge deter-
mined by the dynamic Coulomb field extension of the electrons in
the current density sheet. In the covariant description, this dynamic
field is replaced by the L- and S-photon dynamics (black and white
double arrows, respectively). (c) The range of the tied 1D T -photon
domain is characterized by the two decay lengths (κ0

⊥)−1 (in vacuum)
and κ−1

⊥ (in the jellium). (d) As indicated by the three double arrows,
a dynamically balanced interaction between the L, S, and T photons
in the surface plasmariton state prevents the T photon (red double
arrow) from propagating to infinity (be radiated). The double arrow is
meant to indicate the dynamic (oscillating) character of the attached
energy flows associated to the L, S, and T photons. Compare also to
the discussion and arrows related to Fig. 7.

longitudinal part, δL(q‖; Z ), of the 2D Dirac delta function
tensor, (x̂x̂ + ẑẑ)δ(Z ). Hence,

GNR(q‖, ω; Z ) = [≡GSF(q‖, ω; Z )] = −q2
0δL(q‖; Z ). (154)

The small width of the selvedge (∼k−1
F ) usually justifies

a neglect of the field retardation in propagation across the
selvedge, and thus a reduction of the general loop equation for
the SPM selvedge field [Eq. (79)] to

ESE
SF (z) =

∫
SE

KSF(z, z′) · ESE
SF (z′)dz′, (155)

where

KSF(z, z′) = 1

iε0ω

∫
SE

δL(z − z′′) · σSE(z′′, z′)dz′′. (156)

As discussed in relation to a study of the field reflection and
transmission from a QW selvedge, it is often sufficient to
keep only the local part of the self-field propagator [Eq. (78)]
in the analyses [see Sec. V D]. The self-field dyad L = ẑẑ,
entering gSF(z − z′) = −q−2

0 δ(z − z′)L, and its form in other
contraction schemes than disk contraction has been discussed
in detail in Ref. [39].

D. T photons tied to surface plasmaritons

The selvedge current density [JSE(z)] always can be written
as a sum of its longitudinal [JSE

L (z)] and transverse [JSE
T (z)]

parts, and for the surface current density in Eq. (27), one
obtains in planes outside z = 0,

JSE
L (z) = δL(z) · I, z �= 0, (157)

and

JSE
T (z) = δT (z) · I, z �= 0, (158)

where the sum of the longitudinal (δL) and transverse (δT )
delta functions equals the Dirac delta function times the unit
tensor. For z �= 0,

δT (z) = −δL(z), (159)

implying that

JSE
T (z) = −JSE

L (z), z �= 0 (160)

outside the plasmariton surface current density. The transverse
electric field generated by JSE

T is given by

ET (z) = iμ0ω

∫ ∞

−∞
g(z − z′)JSE

T (z′)dz′, (161)

where g(z − z′) is the relevant Huygens propagator in the
mixed representation. Two physically equivalent descriptions
of the transverse field radiation are shown in graphical form
in Fig. 6. In the evanescent part of the q‖ spectrum,

g(Z ) = 1

2κ⊥
e−κ⊥|Z| (162)

inside the jellium, κ⊥ being given by Eq. (32). The Huygens
propagator in the vacuum half space is obtained with the
replacement κ⊥ → κ0

⊥ [Eq. (25)] in Eq. (162).
The transverse electric self-field generated by JSE

T (z) is
obtained from Eq. (161) letting c → ∞ in the Huygens prop-
agator in Eq. (162). Hence, one obtains

ESF
T (z) = iμ0ω

2q‖

∫ ∞

−∞
e−q‖|z−z′ |JSE

T (z′)dz′ (163)

in planes inside the jellium half space. By inserting Eq. (158)
into Eq. (163) and carrying out the integration over z′, one
obtains the result cited in Eq. (149).

Further insight into the inner dynamics of the SPM field
can be obtained by studying the associated cycle-average
(〈...〉) momentum density, given by

〈g(z)〉 = ε0〈ET (z) × B(z)〉
= ε0
〈
ER

T (z) × B(z)
〉+ ε0

〈
ESF

T × B(z)
〉
, (164)

where ER
T and ESF

T are the retarded (R) and self-field (SF) parts
of the field; see Eqs. (151) and (152). The magnetic fields in
the two half spaces [calculated from B = (iω)−1∇ × E] are

BV (z) = ŷ
iω

(
κ0

⊥ − q2
‖

κ0
⊥

)
AV eκ0

⊥z, (165)

BJ (z) = ŷ
iω

(
−κ⊥ + q2

‖
κ⊥

)
AJe−κ⊥z. (166)

From Eqs. (10), (11), (165), and (166) (each multiplied by
the factor exp[i(q‖x − ωt )]), a simple calculation shows that
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FIG. 6. Graphical representation of the two physically equiv-
alent descriptions of the T -field propagation between source (z′)
and observation (z) planes. Top figure: With JSE

T (z′) taken as the
source domain (extension given by q−1

‖ ), retarded (with the vacuum
speed of light) field propagating connects the z′ and z planes, as
described by the Huygens scalar propagator. Bottom figure: With
the current-density sheet (confined to the plane z′ = 0), the propa-
gation is described by the dyadic electromagnetic propagator which
contains a nonretarded (self-field) part. This part originates in our
(mathematical) compression of the source field from JSE

T (z′) to Iδ(z′).
To obtain the field at z, an integration over z’ points in the q−1

‖ -
extended domain is needed in the JSE

T (z′) picture.

the cycle-averaged z component of the momentum density
perpendicular to the surface, i.e.,

ẑ · 〈g(z)〉 = ε0

2
Re[ẑ · E∗

T (z) × B(z)] (167)

is zero in every z plane outside the current density sheet, that
is,

ẑ · 〈gV 〉 = ẑ · 〈gJ〉 = 0. (168)

Not only is the total momentum density flow in the z direction
zero, also its retarded and self-field parts vanish for all z �= 0:

ẑ · 〈gX,R〉 = ẑ · 〈gX,SF〉 = 0, X = V, J. (169)

It is obvious that 〈gX,SF〉 = 0, and thus also its z component,
since there is no magnetic field connected with a self-field
(electrostatic field). For the plasmariton, BV (z) = BJ (z) = 0
as one sees immediately setting κ0

⊥ = κ⊥ = q‖ in Eqs. (165)
and (166).

In the T -photon language, both the self-field and the re-
tarded T photons are tied in a SPM state. In the Bethe theory
for atomic mass renormalization [49], for the propagator de-
scription of quantized light emission from an atom [50] and
for bulk plasmariton quasiparticles [25], only the transverse
self-field is tied to the particle source. The reason for the above
difference stems from the fact that the SPM is a nonradiative
(confined) eigenstate for the particle-field system. In the other
cases, one has a radiative T -photon part.

(a)

(b)

(c)

FIG. 7. A graphical representation comparing the momentum
energy density pattern perpendicular to the surface in (i) the surface
plasmariton state, (ii) total internal reflection (TIR), and (iii) pho-
ton tunneling [frustrated total internal reflection (FTIR)]. (a) In the
surface plasmariton state, there is no retarded T -photon flow away
or toward the source (red dots). The sum of the L and S flows also
vanishes (black-white dots). (b) In TIR, the net T -photon flow in the
vacuum is balanced by the momentum density flow containing the
electric self-field associated with combined L and S photons. (c) In
FTIR, the T photon can escape the bound state in the vacuum by
inserting a detector (prism) in the (κ0

⊥)−1 tail.

Is it possible to release the tied retarded photon part
in a SPM? Strictly speaking no, but in T -photon tunnel-
ing, where the p-polarized amplitude reflection coefficient
rp(q‖, ω) plays an important role, the SPM dispersion appears
as a pole in the denominator of rp(q‖, ω). Briefly speaking,
this is so because a SPM is a state with reflected and trans-
mitted field components without an incident field. Although
ẑ · 〈gV 〉 = 0, in a reflection process with q‖ > ω/c, the re-
tarded and self-field momentum flows are not zero, but [26]

ẑ · 〈gV,SF〉 = −ẑ · 〈gV,R〉 (>0). (170)

Roughly speaking, one may say, on the basis of Eq. (170),
that the retarded T photons are pulled back toward the sur-
face plane due to the fact that they never come outside the
transverse self-field current density domain, JSF

T (z). In photon
tunneling between, say two prisms, a tied retarded T pho-
ton may be released from the tail of the photon amplitude
probability distribution from the source prism once this tail
overlaps a detector prism’s surface. A schematic illustration
of the relation between retarded T -photon tunneling and the
SPM state is shown in Fig. 7.
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IX. REMARKS ON THE SURFACE PLASMARITON
INTERACTION WITH AN EXTERNAL GAUGE FIELD

The SPM with active boundary conditions has the status of
an eigenmode of the electromagnetic field, and as such it is
nonobservable. This means that one has to seek an excitation
of the SPM by an impressed external electromagnetic field.
The external field is an impressed field with a prescribed time
evolution determined alone by the current density dynamics
in the source. If one denotes the contravariant four-potential
operator of the external field by {Âμ

ext}, the μ component of the
symmetrized contravariant current density operator is given as

Ĵμ(r, t ) = e

2m

∑
e

[(
p̂μ − eÂμ − eÂμ

ext

)
δ(r − re)

+ δ(r − re)
(
p̂μ − eÂμ − eÂμ

ext

)]
, (171)

where re is the electron position operator in the r represen-
tation. The electron charge and mass are denoted by [e(<0)]
and m, respectively.

In the presence of an external field, the Heisenberg equa-
tion of motion keeps the same form as in Eq. (65), yet with
the current density operator component Ĵμ(r, t ) given by
Eq. (171). The impressed external field can only influence
the time evolution of the dynamic quantized four-potential
through the particle current density.

Since the dynamical equation for {Âμ(Q; t )} relates to the
SPM eigenmode for {Âμ

ext(r, t )} = 0, it appears that the set of
equations (65), (66), and (171) cannot in any way lead to an
exact excitation of SPM eigenmodes, as is well-known in the
classical theory. While passive boundary conditions often can
be used in the classical approach, an active surface (layer) is
indispensable in the field-quantized description.

In the field-unquantized approach total internal reflection
(TIR) of an external incoming field at a dielectric-to-vacuum
interface stands as a paradigm for SPM excitation. A covariant
photon wave mechanical description of the TIR process was
published in Ref. [26]. It appears from this work that in case of
a spatially nondispersive dielectric medium (relative dielectric
constant ε(ω), as in this paper), the whole process reduces to
that of an active current density sheet [38].

A calculation of the p-polarized amplitude reflection coef-
ficient, rp(q‖, ω) gives the result

rp(q‖, ω) = q0
⊥εeff(q‖, ω) − q⊥

q0
⊥εeff(q‖, ω) + q⊥

, (172)

where εeff is the effective dielectric function introduced in
Eq. (94). It appears that the denominator in Eq. (172) be-
comes zero when the SPM dispersion relation is satisfied; see
Eq. (93). The plasmariton eigenmode condition thus appears
as a resonance in rp(q‖, ω); a well-known result in the case
of a passive boundary. The condition rp(q‖, ω) → ∞ physi-
cally corresponds to the situation where one has reflected and
transmitted field components without having an incident field.
Since both field components are evanescent, this is precisely
the SPM eigenmode with an active boundary.

X. PERSPECTIVES

A. The covariant theory in a broader framework

In nonrelativistic quantum electrodynamics, the Coulomb
gauge most often is used in dynamical studies of atoms and
molecules [32]. The Coulomb gauge, which has the advantage
of simplicity, explicitly yields the often predominant Coulomb
interaction between particles. This usually is convenient for
studies of bound states of charged particles. Although the
Coulomb gauge approach does not change the fundamental
nature of the field-matter interaction, it has the disadvantage
of not retaining manifest covariance of the field in relativistic
QED. In studies on (larger) molecules, it is often necessary
to employ a multipole expansion of the field-particle inter-
actions. In such cases, it is often preferable to replace the
Coulomb gauge formulation by the Power-Zinau-Wolley ap-
proach [51–53], a relative to the Poincare gauge [32].

In QED studies of collective charged particle modes bound
near interfaces and surfaces, evanescent mode quantization
was opened a little by the Carniglia and Mandel paper [27]
on triplet mode quantization used in studies of TIR from a flat
surface [q‖ > n(ω)ω/c; n(ω) refractive index without spatial
dispersion]. Although the Carniglia and Mandel work does
not provide a covariant formalism, the paper was of valuable
inspiration for the later Keller and Olesen article [26], giving
a manifest covariant photon wave-mechanical description of
evanescent fields, quite easily extended to the QED level. As
discussed in Sec. VIII D, the covariant formulation allows
one to establish a link between the SPM state, total internal
reflection analysis, and T -photon tunneling.

In near-field electrodynamics, the covariant formalism can
be used in an effective (and economic) manner, carrying out
an extra gauge transformation within the Lorenz gauge. Thus,
a unitary transformation [37]

âNF(q; t ) = i√
2

(âL(q; t ) − âS (q; t )), (173)

âG(q; t ) = 1√
2

(âL(q; t ) + âS (q; t )) (174)

of the annihilation operators for longitudinal (L) and scalar
(S) photons leads to two new photon types, viz., a near-field
photon and a gauge (G) photon. The associated annihilation
operators are denoted by âNF(q; t ) and âG(q; t ). The gauge
photon can be eliminated by a suitable gauge transformation
within the Lorenz gauge as already mentioned, leaving us with
the near-field photon, which, as the word indicates, plays a
(prominent) role in near-field QED. The near-field photon,
as well as the longitudinal and scalar photons are of impor-
tance only when the field-matter interaction is present. These
photon types are therefore often called virtual photons. The
near-field photon vanishes outside the near-field zone, and
the net physical effect of the L and S photons is zero in the
absence of field-matter interaction.

The covariant theories of near-field electrodynamics has a
meeting point in the electrodynamic near-field interaction of a
microscopic near-field probe (atom, molecule, cluster,...) with
the plasmariton (and plasmon) spectra of a flat surface.
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B. Possible applications of the covariant surface
plasmariton theory

1. Möbius band

In the wake of a recently established field-unquantized
theory describing the microscopic linear electrodynamics of
a Möbius wire [54], it has turned out that also a theory for
the electrodynamics of an infinitely thin Möbius band can be
formulated. Elements of this theory come out of a general
theory for the electrodynamics of curved jellium surfaces in
the limit where the Gaussian curvature is identically zero
[55]. The general theory is based on a combination of the
2D Schrödinger equation (with the appropriate kinetic energy
operator proportional to the Beltrami-Laplace operator, and
with an added so-called geometrical potential) and the micro-
scopic Maxwell equations (in the potential formulation with
an important term proportional to the Ricci tensor (a certain
contraction of the Riemann curvature tensor). The infinitely
thin band can carry a dynamic surface current density, and
if the length of the Möbius band is much larger than the
characteristic wavelength(s) of the electromagnetic field pre-
vailing at the surface, the Möbius band is locally flat, and this
allows one to apply the SPM theory with an active boundary
described in this paper locally. Gluing together the flat neigh-
boring elements with their slightly changed surface normal
vectors, it seems in reach to establish the global eigenmode
condition for SPMs on a Möbius band. Initial steps of this
program are in progress, and we hope to report on our findings
before long.

2. T photon in a cavity

In a matter-free closed cavity, the zero-point fluctuations of
the electromagnetic field may play an important physical role.
Since field-matter interaction is always present, the cavity
eigenmodes cannot be determined in a rigorous sense without
including the field-matter interaction in the cavity wall. This
interaction involves the exchange of T , L, and S photons.
For a metal cavity, the interaction takes place mainly in the
surface region (macroscopically characterized by a character-
istic field penetration length). Part of the surface interaction
is embedded in SPM states. The prevailing surface current
density gives the boundary condition for the T -photon field
inside the cavity. On the basis of the Ewald-Oseen extinction
theorem, the SPMs and plasmons roles can be elucidated [55].

The cavity eigenmodes are unobservable, and thus one
must open the cavity in one way or another to apply a pre-
scribed external excitation. In atomic physics, an excited atom
propagating through the cavity may change its lifetime due to
interaction with the cavity field. The role of the SPMs in this
interaction has, to the best of our knowledge, not been studied
on the QED level yet.

The importance of the SPMs in a cavity perhaps can be elu-
cidated, making a mesoscopic hole in the cavity. It is known
that the diffraction from a mesoscopic hole in a flat screen
can give microscopic information on the quantum state of the
incoming field (here the cavity field is the incident field). The
transmitted field through the mesoscopic hole is what couples
to the detector. In an improved version, one may make use of
Young diffraction from two mesoscopic holes. A QED theory

TABLE I. Overview of the QED approach used in our trio of
papers.

P SP PM SPM

Scalar K-Ga Vectorial K-G T 1, T 2, L, S

Lagrange-Hamilton formalismb Heisenberg Eq. {âμ}
Minimal coupling principle: Gauge field interaction

In LP In { jμ}
aThe scalar Klein-Gordon equation is only formerly covariant.
bAn alternative approach for PM in which the displacement field
multiplied by (−1) acts as canonical field momentum has also been
presented in Ref. [25].

for Young diffraction from two such holes has been published
recently [56].

3. Accelerating jellium

In recent years, some attention has been given to the inter-
action (in Minkowski space) of uniformly accelerating solids
with semiclassical and quantum fields, particularly with re-
gard to the thermal Unruh effect [57,58] playing a prominent
role in curved space-time. For instance, it is of fundamental
interest to understand how a uniformly accelerated jellium
interacts with injected charged particles. Such an understand-
ing, obtained via electromagnetic reflection from the jellium,
we believe may give valuable information on the microscopic
physics of quantized SPMs, possible by extending a photon
wave-mechanical theory to the QED level. Some informa-
tion on the SPM and surface plasmon dispersion relations
with passive boundary conditions can be obtained studying
the electromagnetic surface dressing of an electron moving
uniformly parallel to the jellium surface [59].

C. Comparison of plasmon and plasmariton quantum physics

Recently, in two papers we established photon wave-
mechanical and QED theories of bulk and surface plasmons
[24] and of bulk plasmaritons [25]. Together with the present
paper, our trio of works form a faceted description of the
eigenmodes of collective jellium excitations coupled to T , L,
and S photons, and their coupling to externally impressed (and
prescribed) electromagnetic fields. In Table I, key elements
of the trio of papers are listed, using the following abbre-
viations: P (bulk plasmon), SP (surface plasmon), PM (bulk
plasmariton), and SPM. The QED theories for P and SP are
based on a scalar Klein-Gordon (K-G) equation which is only
formerly covariant since the characteristic phase velocity is
a = √

3/5vF (vF : Fermi velocity of jellium electron sea) and
not the vacuum speed of light. Since the plasmariton theory
(PM) involves attached photons, it turns out that the vectorial
K-G equation is covariant in the rigorous sense. The QED the-
ory for SPM is formulated in terms of a covariant four-photon
(T 1, T 2, L, S) description, particularly convenient for evanes-
cent mode quantization of p-polarized dynamics. For P, SP,
and PM, the quantization is based on the Lagrange-Hamilton
formalism. For SPM, the fundamental QED approach is based
on the Heisenberg equations of motion for the covariant set of
annihilation operators, {âμ}. The interaction with a prevailing
(or external) gauge field is in all cases based on the minimal
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TABLE II. Dielectric function entering the P, SP, PM, SPM
eigenmodes.† indicates that the spatial dispersion in εeff(q‖, ω) is
associated with the selvedge, the dynamics of which is calculated
with neglect of field retardation across the selvedge profile.

P SP PM SPM

εL (q, ω) εL (q‖, ω) εT (q, ω) †εeff(q‖, ω)

coupling principle (substitution); Lagrangian density (LP) for
P, SP, and PM, and four-current density ({ jμ}) for SPM.

The P and SP eigenmode conditions are given by
εL(q, ω) = 0 and εL(q‖, ω) = −1, respectively. The PM
eigenmode condition is given by εT (q, ω) = (cq/ω)2, and at
long wavelengths the spatial dispersion usually is negligible,
εT (q, ω) � εT (ω). For SPM, the effective dielectric function
εeff(q‖, ω) is given in Eq. (94), and its spatial dispersion stems
from the constitutive relation associated with the selvedge
(surface) current density; see also Table II.

XI. SUMMARY

A SPM is an ideal self-sustained dynamical (lossless) elec-
trodynamical eigenmode requiring an active electron-photon
interaction. As such, a SPM always must carry a surface
current, which, with some justice, most often can be treated
as an electric dipole delta function sheet. In the sheet approx-
imation, the electron dynamics is accounted for in the form of
a set of jump (boundary) conditions for the electromagnetic
field. In Sec. II, we showed that use of the standard (textbook)
boundary conditions, in general, is wrong (insufficient) for the
SPM eigenmode analysis. Afterward, we established a correct
set of what we call active boundary conditions.

From a fundamental quantum physical point of view, the
SPM sheet model in this case can be obtained from an ad-
equate reduction of the local-field electrodynamics in the
selvedge region. In Sec. VI, we studied the microscopic
electrodynamic conditions for reaching the sheet model ap-
proximation, and we derived the related SPM dispersion
relation for general active boundary conditions.

Most often, nonrelativistic quantum electrodynamic stud-
ies are carried out in the Coulomb gauge. In this gauge, the
extension of the current density domain of SPMs must be
identified with that of the transverse part of a delta func-
tion sheet. Since the selvedge dynamics is closely related
to near-field electrodynamics, it often is preferable to uti-
lize microscopic local-field analyses on a manifest covariant
Lorenz gauge approach. In Secs. III and IV, our wave mechan-
ical theory of SPMs was established using the four-potential
connection to the T , L, and S photons. These photon types
are coupled via the self-consistently determined sheet current
density. In Sec. V, our second-quantized theory of SPMs was
developed, starting from the Heisenberg equations for the
photon four-potential annihilation operators and the covariant
Lorenz gauge.

In Sec. VII, we derived microscopic dispersion relations
for the SPMs, modeling the selvedge as a QW. The key quan-
tity in the calculation is the microscopic conductivity tensor,
as this appears in the ED limit. Numerical results were pre-

FIG. 8. Schematic diagram showing the connections between
central fragments of our SPM theory. Photon wave mechanics
abbreviated PWM. The dotted arrow indicates the Heisenberg equa-
tion extension from PWM to QED.

sented for one- and two-level QWs assumed to be dominated
by diamagnetic and paramagnetic couplings, respectively.

In Sec. VIII, we showed that the inner dynamics of a SPM
can be understood using a Hamiltonian quasiparticle picture,
which is an extension of our quasiparticle theory for PM’s. In
particular, we showed that the evanescent field of the SPM is
associated to the counterpropagating and balanced momentum
flows associated to the retarded and self-field parts of the
transverse electric field. Thus, outgoing T photons originating
in the sheet current density distribution are pulled back toward
the sheet and kept in a tied state. In Sec. IX, we showed that
this mechanism is frustrated in p-polarized photon tunneling
experiments between, say, two parallel-oriented ED current
density sheets. It is argued that a physically nice quasipar-
ticle picture of p-polarized photon tunneling appears if this
is considered as a frustrated (incomplete) backcoupling of T
photons of a SPM. The frustration by the introduction of a
second (detector) sheet allows an escape of the T photon from
its tied (backcoupled) state.

In Fig. 8, the connections between key parts of our micro-
scopic SPM theory are shown in schematic form.
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APPENDIX: COMPARISON TO HYDRODYNAMIC
SURFACE PLASMARITON DISPERSION RELATION

Within the framework of the hydrodynamic model, a SPM
dispersion relation formally in the form presented in the
present paper has been given Moreau et al. in Ref. [60] and
Pitelet et al. in Ref. [61]. For the jellium case, their dispersion
relation reads (in our notation)

q⊥ + ε(ω)q0
⊥ − iε(ω)� = 0, (A1)

where � is a quantity related to the spatial nonlocality in the
surface density profile. In Refs. [60,61], the electron current
density (J), and the electric field (E) are in the frequency do-
main, and with neglect of irreversible relaxation mechanisms
(as in our paper) related by the standard expression (see, e.g.,
Ref. [11]):

ω2J = β2∇(∇ · J) − iε0ω
2
pE. (A2)

Equation (A2) originates in the classical Boltzmann transport
equation for the particle velocity, i.e.,

m

[
∂

∂t
+ (v · ∇)

]
v = −e(E + v × B) − mνv − mβ2

n
∇n.

(A3)

The first moment of Eq. (A3) [with relaxation frequency (ν)
and magnetic field (B) both equal to zero] and linearization
lead to Eq. (A2). The parameter β usually is taken from a
quantum calculation based on the density functional formal-
ism in some approximation. Often, the approximate value
β = √

3/5vF is used. In our quantum theory of bulk plas-
maritons [55], a detailed discussion of the Lindhard RPA
theory [44] and the Boltzmann transport equation is given. In
Refs. [60,61], one obtains in the jellium case

� = q⊥
K2

, (A4)

where

K2 = q2
⊥ +
(

ωp

β

)2 1

χ f
, (A5)

χ f = −ω2
p/(ω2 + iνω) being the free ( f ) electron suscep-

tibility. For ν = 0, � = q⊥/[q2
⊥ − (ω/β )2]. In a sense, the

calculation of � is based on a spatially dispersive bulk model
(L mode included) extended to space-dependent density vari-
ations in the surface profile. In our model, there is no spatial
dispersion in the bulk jellium [ε(q, ω) → ε(ω)]. The active
surface current density arises solely from a calculation of the
mean value of the microscopic conductivity tensor over the
selvedge. This gives a general SPM dispersion relation with

� = iq0
⊥

ε0ε(ω)ω

[
ε(ω)q‖

(
Szx+ q‖

q0
⊥

Szz

)
+q⊥

(
Sxx + q‖

q0
⊥

Sxz

)]
,

(A6)

a quantum result beyond the scope of the hydrodynamic
model. In fact, in deriving the result for � is was assumed that
Ex is continuous at the interface (ABCs for the semiclassical
infinite barrier model). Perhaps, the closest one can come
to the result of Refs. [60,61] at the low frequencies studied
therein is with the diamagnetic QW model. This model has
Jz = 0 at the surface. From Eq. (125), our microscopic disper-
sion relation gives

� = − αq⊥q0
⊥

ε0ε(ω)ω2
(A7)

and then

K−2 = − αq0
⊥

ε0ε(ω)ω2
, (A8)

where α is the quantum parameter, given in Eq. (123). Note
that our K−2 is independent of q⊥, thus simplifying the dis-
persion relation in comparison to that of Refs. [60,61], which
give a third-degree equation in q⊥. In fact, a hydrodynamic
dispersion relation with spatial dispersion [and quantum pa-
rameter β2 = (3/5)v2

F ] has been studied many years ago [62],
and the solutions to the resulting third-degree equation in q⊥
calculated numerically for (Al).
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