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Interplay between optomechanics and the dynamical Casimir effect
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We develop a model of a quantum field confined within a cavity with a movable wall where the position of
the wall is quantized. We obtain a full description of the dynamics of both the quantum field and the confining
wall depending on the initial state of the whole system. Both the reaction and back-reaction of the field on the
wall, and the wall on the field, can be taken into account, as well as external driving forces on both the cavity
and the wall. The model exactly reproduces the resonant cavity mode stimulation due to the periodic motion of
the mirror (dynamical Casimir effect), as well as the standard radiation pressure effects on the quantized wall
(optomechanics). The model also accounts for the interplay of the two scenarios. Finally, the time evolution of
the radiation force shows the interplay between the static and dynamical Casimir effect.
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I. INTRODUCTION

Optomechanics is the study of the light-matter interac-
tion, which focuses its efforts on the study of the interaction
between the modes of the electromagnetic field and the vi-
brational modes of macroscopic bodies, such as reflective
mirrors [1–4]. The employment of optomechanical systems
for technological purposes [5], such as laser cooling [6–10]
and quantum sensing [11,12], as well as the possibility to
involve macroscopic objects in the investigation of quantum
physics, such as studies of entanglement [13,14], has lead
to a growing interest in this field throughout the last two
decades [15–17].

The optomechanical coupling arises due to a nonlinear
interaction wherein the excitation (or relaxation) of the vi-
brational mode of the mirror is determined by the radiation
pressure induced by the presence of photons within the cavity.
The most common approach to the analysis of optomechanical
interactions treats the mirror and the electromagnetic field as
two independent quantum harmonic oscillators [18–20]. In
this approach, modeling the electromagnetic field as a single
harmonic oscillator turns out to be extremely helpful for the
description of the effects of cavity losses [21]. Moreover, it
can be employed in order to investigate phenomena of vacuum
squeezing acting on either the mechanical mode [22,23] or the
cavity field. The latter case is known as the dynamical Casimir
effect (DCE) [24], which can be understood through the lens
of optomechanics as the resonant exchange of quantum exci-
tations between the mechanical mode and one, or two, cavity
modes of the electromagnetic field [25–28].

The single-mode description of the field trapped in a cav-
ity conveniently simplifies the study of the system in many
scenarios. Nevertheless, the investigation of the multimode
nature of the quantum field in the framework of optome-
chanics leads to a more comprehensive interpretation of the
interplay between the quantum degrees of freedom of the wall

and the quantum fluctuation of the field [29]. Concretely, this
translates into the quantization of the position of the wall that
is classically determined by Dirichlet boundary conditions
for the field [30–32], and subsequently the quantization of
the fluctuations of the length which become coupled to the
creation and annihilation operators of the cavity modes [29].
This additional quantum degree of freedom can be exploited
to investigate many interesting features of this system, such
as the correction to both the vacuum state and its energy
of the multimode cavity field caused by the motion of the
wall [33–35].

In this work we propose an approach to extend the stan-
dard optomechanical radiation-pressure coupling to include
the mode-mixing and squeezing field terms in the Hamiltonian
of the system. We specialize our computations to a real scalar
field fulfilling static Dirichlet boundary conditions without
loss of generality. Our goal is achieved by adding a small
fluctuation to the length of the cavity, corresponding to the
oscillation amplitude of the wall, and then performing the
spatial integration of the Hamiltonian density to lowest order
in the fluctuation length. This additional degree of freedom
is then quantized, and the resulting quantum Hamiltonian
reproduces the standard optomechanical one with the addition
of all cavity modes [29].

We compute the time evolution of the whole system in-
cluding possible time-dependent external drives acting on two
different modes of the cavity field, as well as on the mechan-
ical degree of freedom. Moreover, we consider an input state
that accounts for the effects of displacement, squeezing, and
thermal fluctuation of the mechanical mode [36]. One of our
most interesting results is the excitation of the vacuum state of
the cavity mode by means of a time-dependent displacement
acting on the mechanical degree of freedom. We demonstrate
that our model allows to formally recover the DCE as a result
of a time-dependent external drive, without necessarily intro-
ducing the dynamics into the boundary conditions of the field.
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Furthermore, our approach allows us not only to recover well-
known results, such as the DCE caused by both the resonant
oscillating wall and thermal fluctuations of the mechanical
state [28], but also to unveil features, such as the DCE in the
presence of squeezed thermal input states for the mechanical
mode, the impact of external drives on the dynamics, as well
as to estimate the Casimir force between the two cavity walls
throughout the dynamics.

The paper is structured as follows. In Sec. II we intro-
duce the system of interest. In particular, starting from the
Lagrangian of the confined field, we present the quantization
process, as well as the time evolution formalism. In Sec. III
we describe the dynamics of relevant quantities, such as the
position of the moving wall, the number of photons within
the cavity and the force between the two mirrors composing
the cavity, showing the interplay between the Casimir force
and the time-dependent radiation pressure due to the arising
number of photons. In Sec. IV we discuss a list of possible
experimental realizations of our system as well as an exten-
sion of our model to a scalar massive field. In Sec. V we
include some considerations as well as an outlook. Finally,
we summarize in Sec. VI.

II. THEORETICAL MODEL

Here we introduce the model that will be used in this work.
Standard approaches to quantum fields confined in cavities
can be found in the literature [29].

A. Classical Lagrangian and Hamiltonian density

Let us consider a massless real scalar field φ(t, x) in
1 + 1-dimensional flat spacetime with coordinates (t, x).1 The
classical Lagrangian for the field density is

L(t, x) = h̄

2
∂μφ∂μφ. (1)

The Lagrangian provides the classical field equation, i.e.,
the Klein-Gordon equation, which reads ∂2

t φ − ∂2
x φ=0. We

then impose the static Dirichlet boundary conditions φ(t, 0) =
φ(t, L) = 0 to implement the confinement of the field in a
cavity of length L.

Since we are interested in the time evolution of the sys-
tem, we introduce a basis for the field modes φn(t, x) =√

c
ωnL e−iωnt sin( nπ

L x), where ωn := nπc
L is the frequency of

mode n ∈ N. The field can therefore be expanded as

φ(t, x) =
∑
n=1

[αn φn(t, x) + α∗
n φ∗

n (t, x)], (2)

where the constants αn are Fourier coefficients.
We can construct the Hamiltonian density H := �∂tφ −

L by first finding the conjugate momentum �(t, x) :=
−∂tφ(t, x), then by substituting the expression of ∂tφ in
terms of the momentum into H, thereby obtaining H(t, x) =
1
2 [�2(t, x) + (∂xφ(t, x))2]. Finally, in the Schrödinger picture
the explicit expression in term of the field expansion coeffi-

1We use Einstein’s summation convention.

cients therefore reads

H = − h̄

2L

∑
nm

√
ωnωm[αn − α∗

n ][αm − α∗
m]sn(x)sm(x)

+ h̄

2L

∑
nm

√
ωnωm[αn + α∗

n ][αm + α∗
m]cn(x)cm(x), (3)

where we have introduced sn(x) := sin( nπ
L x) and cn(x) :=

cos( nπ
L x) only for the sake of presentation.

B. Quantization

So far we have dealt with a classical system. We now wish
to quantize the system, and in particular the Hamiltonian, with
classical Hamiltonian density (3). To obtain our goal we adopt
the following four-step strategy:

(i) In Eq. (3) we substitute L → L + δL, where δL/L � 1,
and Taylor-expand up to the first order in δL/L

(ii) We integrate the Hamiltonian density from 0 to L and
obtain the classical Hamiltonian H := ∫ L

0 H dx
(iii) We quantize both the field Fourier coefficients αn and

the position of the wall δL:

αn → ân, α∗
n → â†

n, δL → δL0(b̂† + b̂). (4)

Here δL0 is a constant and represents the zero-point fluctua-
tions of the harmonic oscillator b̂ (details on this topic are left
to the literature [4]), and the operators all satisfy the canonical
commutation relations [ân, â†

n′ ] = δnn′ and [b̂, b̂†] = 1, while
all other commutators vanish. We have therefore assumed that
the (small) displacement of one of the two cavity walls is
characterized by a harmonic degree of freedom with intrinsic
frequency ω and annihilation and creation operators b̂ and b̂†,
respectively.

(iv) Finally, we normal order the quantum Hamiltonian Ĥ
that we obtained this way and we introduce the dimensionless
amplitude ε := δL0/L � 1, which will act as our perturbative
parameter.

The system is pictorially illustrated in Fig. 1. The proce-
dure described here allows us to obtain the total Hamiltonian
Ĥ (t ) of the form

Ĥ (t ) =Ĥ0 + Ĥdr(t ) + εĤI, (5)

where each term reads

Ĥ0 :=
∑

n

h̄ωn â†
nân + h̄ωb̂†b̂,

Ĥdr (t ) := Ĥdk(t ) + Ĥdk′ (t ) + Ĥdb(t ),

ĤI := −2
∑

n

h̄ωn â†
nânX̂b −

∑
n

h̄ωn
(
â†2

n + â2
n

)
X̂b

− 4
∑
n,m
n �=m

(−1)n+mh̄
√

ωnωm X̂nX̂mX̂b. (6)

Here the added term Ĥdr(t ) includes potential external driving
forces that can be applied to both the cavity field, for example,
to the modes k and k′, and the mechanical mode b, Ĥdj(t ) =
2λx j (t )X̂ j + 2λp j (t )P̂j with j = k, k′, or b. We have also com-
pacted our notation by introducing the quadrature position and
momentum operators X̂b = 1

2 (b̂† + b̂), P̂b = i
2 (b̂† − b̂), X̂n =

1
2 (â†

n + ân), and P̂n = i
2 (â†

n − ân).
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FIG. 1. Schematic picture of the system. A 1+1-dimensional
scalar field is confined in a cavity of length L which possesses a
movable wall. The fundamental oscillation amplitude is proportional
to the zero point fluctuation δL0 of the quantum harmonic oscillator.

We want to emphasize that we perform both the sub-
stitution and the Taylor expansion with respect to δL/L
before the spatial integration of the Hamiltonian density.
Interestingly, this approach spontaneously provides both
the standard optomechanical interaction Hamiltonian ĤOM =
−2ε

∑
n ωn â†

nânX̂b commonly found in the literature [4],
and the cavity multimode mono- and two-color squeez-
ing interaction Hamiltonian Hsq = −∑

n h̄ωn (â†2
n + â2

n)X̂b −
4

∑
n �=m(−1)n+mh̄

√
ωnωm X̂nX̂mX̂b, which induces the dynam-

ical Casimir effect [29,33].

C. Time evolution operator

In the last section we derived the Hamiltonian of the sys-
tem. In general, such Hamiltonian can depend on time due
to either the modulation of the coupling constants gn := εωn

(which has been considered in the literature [4,37]) or the
presence of time-dependent external drives [38]. Here we do
not consider coupling modulation and instead investigate the
dynamics of a system described by the Hamiltonian (5). The
time evolution operator Û (t ) induced by a time-dependent
Hamiltonian Ĥ (t ) reads

Û (t ) =
←
T exp

[
− i

h̄

∫ t

0
dt ′ Ĥ (t ′)

]
, (7)

where
←
T stands for the time-ordering operator.

It is not difficult to show that

Û (t ) = Û0(t )Û (+)
dr (t )Û (−)

dr (t )ÛI, (8)

modulo an overall complex phase that has no physical signif-
icance. This expression is specified by the following unitary
operators:

Û0(t ) := exp[−i/h̄ Ĥ0t], (9)

Û (+)
dr (t ) := exp{−2i[�xb(t )X̂b + �xk (t )X̂k + �xk′ (t )X̂k′ ]},

(10)

Û (−)
dr (t ) := exp{−2i[�pb(t )P̂b + �pk (t )P̂k + �pk′ (t )P̂k′ ]},

(11)

ÛI(t ) :=
←
T e− i

h̄ ε
∫ t

0 dt ′ ˆ̃HI (t ′ ). (12)

We also need the definition of the auxiliary functions

�p j (t ) :=
∫ t

0
dt ′[λx j (t

′) sin(ωt ′) − λp j (t
′) cos(ωt ′)],

�x j (t ) :=
∫ t

0
dt ′[λx j (t

′) cos(ωt ′) + λp j (t
′) sin(ωt ′)], (13)

and j ≡ k, k′ or b, and we also have

ˆ̃HI(t ) := Û †
d (t )Û †

0 (t )ĤI(t )Û0(t )Ûd(t ), (14)

with Ûd(t ) := Û (+)
dr (t )Û (−)

dr (t ). The explicit expression of
ˆ̃HI(t ) is cumbersome and is provided in Appendix A.

D. Time evolution and the initial state

We are now able to determine the time evolution of the
expectation value of any observable Â. In the Heisenberg
picture, this is given by

A(t ) = Tr[Û †(t )Â(0)Û (t )ρ̂(0)], (15)

where ρ̂(0) is the initial state of the total cavity field and wall
system. We choose to work with the following general initial
state:

ρ̂(0) = |μk〉〈μk| ⊗ |μk′ 〉〈μk′ | ⊗ ρ̂rest ⊗ ρ̂(DST)
m , (16)

where ρ̂rest := ∏
n �=k,k′ |0n〉〈0n| is the vacuum state of all

modes except two modes k, k′. Concretely, we have assumed
that two specific cavity modes k, k′ are initially found in a co-
herent state defined by âk|μk〉 = μk|μk〉 and with coherent pa-
rameter μk ∈ R (analogously for k′), whereas the mechanical
quantum mode of the wall is prepared in a displaced squeezed
thermal (DST) state ρ̂(DST)

m = D(β )S(ζ )ρm(T )S†(ζ )D†(β ),
where T is the temperature, and β = |β|eiθ and ζ = reiφ are
the coherent and the squeezing parameter of the mechanical
degree of freedom, respectively [36].

The total number of excitations at t = 0 is there-
fore Ntot (0) = Nk (0) + Nk′ (0) + Nb(0), where Nk (0) = μ2

k ,
Nk′ (0) = μ2

k′ , and

Nb(0) = |β|2 + sinh2 r + NT cosh(2r), (17)

with NT = sinh2(rT) and the parameter rT defined by
tanh rT := exp[− h̄ω

2kBT ].

Concretely, we can compute the time evolution of Â by
Taylor expanding the unitary operator UI (t ) up to the second
order in ε,

UI (t ) � 1 − iε

h̄

∫ t

0
dt ′ ˆ̃HI(t

′)− ε2

h̄2

∫ t

0
dt ′ ˆ̃HI(t

′)
∫ t ′

0
dt ′′ ˆ̃HI(t

′′).

(18)

From now on, we assume that all quantities are truncated at
second order.
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Following this procedure we obtain

A(t ) � A(0)(t ) + i

h̄
ε�A(1)(t ) + 1

h̄2 ε2�A(2)(t ), (19)

where each term has the expression

A(0)(t ) = Tr[ ˆ̃A(t )ρ̂(0)],

A(1)(t ) = Tr

{[∫ t

0
dt ′ ˆ̃HI(t

′), ˆ̃A(t )

]
ρ̂(0)

}
,

A(2)(t ) = −Tr

[∫ t

0
dt ′

∫ t ′

0
dt ′′ ˆ̃HI(t

′′) ˆ̃HI(t
′) ˆ̃A(t )ρ̂(0)

]

− Tr

[∫ t

0
dt ′

∫ t ′

0
dt ′′ ˆ̃A(t ) ˆ̃HI(t

′) ˆ̃HI(t
′′)ρ̂(0)

]

+ Tr

[∫ t

0
dt ′ ˆ̃HI(t

′) ˆ̃A(t )
∫ t

0
dt ′′ ˆ̃HI(t

′′)ρ̂(0)

]
, (20)

and where ˆ̃A(t ) := Û †
d (t )Û †

0 (t )Â(t )Û0(t )Ûd(t ).

E. Time average of measurable quantities

We anticipate that the observables computed in our
work will depend on time through complicated oscillatory
functions. While this functional dependence on time can ap-
parently obfuscate the physical significance, we can extract
meaningful significance by taking the time average of such
quantities. This is particularly useful because the time average
in general eliminates oscillations around mean values.

Given the expectation vale A(t ) of an observable Â(t ), we
define the time average 〈A〉τ of the expectation value A(t ) as

〈A〉τ := 1

τ

∫ τ

0
dt A(t ). (21)

These time-averaged quantities will be computed case by case
below.

III. DYNAMICS OF THE SYSTEM

In the following analysis, we focus our investigation on
three quantities: The position of the oscillating wall, the num-
ber of photon for the single mode k, and the radiation pressure
within the cavity.

A. Dynamics of the wall

We start by studying the dynamics of the wall. We are
therefore interested in calculating the average position x(t ) of
the wall at time t . This is given by

x(t ) = L + δL0Tr[Û †(t )(̂b̂ + b̂†)Û (t )ρ̂(0)], (22)

which has the general expression x(t ) = x(0)(1 + εx̃(1) +
ε2x̃(2) ). Notice here that, since the length has a dimension, it
must be rescaled in order to have dimensionless perturbative
contributions. In the following we consider the terms x̃(n) as
the rescaled corrections to the zero order. In our frame of
reference, the second wall, which remains static, is assumed
to be located at x = 0.

1. Zero order: x(0)(t )

We are now able to investigate the dynamics of the wall
starting from the zero order contribution. It is immediate
to show that the trajectory of the movable mirror at lowest
order is

x(0)(t ) = L. (23)

This is expected and, for our purposes, not of particular sig-
nificance.

2. First order: x̃(1)(t )

We continue by looking at the first order, i.e., the terms that
contribute as a consequence of the back reaction of the field
on the cavity wall. It is easy to find

x̃(1)(t ) = 2|β| cos(ωt − θ ) + 2ξ (t ), (24)

where the function ξ (t ) is defined in Appendix A.
The dynamics is triggered by two terms. In particular, the

first one accounts for the harmonic oscillation of the mirror,
and directly stems from the quantization of its mechanical
motion; indeed, the oscillation amplitude is strictly connected
to the number of phonons due to the factor |β|, whereas
both the initial position and velocity are established by the
coherent phase θ , which also determines the orientation of
the phonon momentum. There are a few interesting values
that the phase can assume. For instance, if θ = 0 (or π ), the
mirror is initially pushed (or pulled) at maximal amplitude
δL0|β| and the canonical momentum of phonons is zero. If
θ = ±π/2 instead, the mirror initially moves at maximal ve-
locity, and the phonons have positive (θ = +π/2) or negative
(θ = −π/2) momentum. The second term is the contribution
of the mechanical drive to the motion of the wall, and its
explicit expression depends on our choice of λxb(t ) and λpb(t ).

Let us define the external drive as follows:

λxb(t ) = −g�

2
e−�t cos(ωt ),

λpb(t ) = −g�

2
e−�t sin(ωt ),

(25)

where g is the coupling constant of the external drive and �

has units of frequency. Accordingly, the equation of motion
Eq. (24) becomes

x̃(1)(t ) =2|β| cos(ωt − θ ) + g sin (ωt )(1 − e−�t ). (26)

The specific choice of the external drive generates a sinu-
soidal modulation of the wall when �t � 1; moreover, it
ensures both x̃(1)(0) = 0 and ˙̃x(1)(0) = 0 when β = 0, namely,
a smooth transition from the static to the dynamical regime.
The constant g determines both the intensity and the initial
direction of the modulation. Throughout this paper we will
always assume two conditions: � �= ωn and � � ω. The first
condition prevents any resonances between the frequency �

and any cavity modes of the field, whereas the second one al-
lows us to neglect the exponential decay e−�t in our formulas.

3. Second order: x̃(2)(t )

We proceed to the second-order corrections. Unfortunately,
the presence of cavity drives makes the second-order cor-
rections quite difficult to compute, therefore we opt for
discussing the scenario without cavity drives for this case. We
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report the full formula (B1) in Appendix B. Thus, henceforth
we impose λxk (t ) = λxk′ (t ) = λpk (t ) = λpk′ (t ) ≡ 0.

We will focus our analysis on the specific case when one of
the possible resonances between the cavity modes ωn and the
mechanical frequency ω occurs. From Eq. (B1) we identify
three possible resonance conditions:

(i) Degenerate resonance (also known as single-mode
squeezing): ω = 2ωk

(ii) Nondegenerate resonance (also known as two-mode
squeezing): ω = ωk + ωk′

(iii) Intermode coupling (also known as mode mixing):
ω = ωk − ωk′ .

We stress that only a multimode description of the cavity
field as the one presented here can take the second and the
third resonances into account [24,32].

We assume to operate in the degenerate case (i), where
ω = 2ωk for a chose mode k. This choice allows us to employ
Eq. (B1) to obtain

x̃(2)(t ) � μ2
k[1 − cos (2ωkt ) + ωkt sin(2ωkt )]. (27)

In this formula all off-resonant terms were neglected, since
they are by a factor ωk or even ω2

k smaller than the
resonant ones.

We note that also the second-order contributions (27) show
a linear growth of the oscillation amplitude. The occurrence of
this linear growth stems specifically from both the choice of
an initial coherent state for the cavity mode and the resonance
between the excited cavity mode and mechanical oscillation.

The time average of the correction x̃(2)(t ) for large enough
times reads

〈x̃(2)〉τ =μ2
k

(
1 − 1

2 cos(2ωkτ )
)
. (28)

Interestingly, we note that since the | cos α| � 1, we have
that 〈x̃(2)〉τ � 0 for all times. This implies that, on average to
this order, the wall of the cavity is always pushed outwards,
and we trace this effect to the back reaction of resonance
between the cavity mode and the harmonic oscillator. This
effect is subdominant to the one obtained at first order, which
is expected since back reaction on the wall in the form of
radiation pressure occurs as a higher order than the direct
effect of driving the wall with an external force, or with an
initial displacement.

4. Role of the phase in the initial wall displacement

We are now able to discuss the role played by the phase
θ throughout the dynamics of the system. As already pointed
out in Sec. III A 1, the coherent phase θ determines both the
expected position and momentum of coherent phonons. We
now focus on two specific values.

Purely real mechanical coherent parameter. This situa-
tion occurs if θ = nπ with n ∈ Z. Manipulating the overall
expression for x(t ) we find

x(t ) � L
{
1 + ε

[
2(−1)n|β| − εμ2

k

]
cos(2ωkt ) + ε2μ2

k

+ ε sin(2ωkt )
(
εμ2

kωkt + g
)}

. (29)

Although this expression clearly highlights the impossibility
to annul the linear growth of the oscillation amplitude, the
mechanical drive could partially inhibit it as long as g is neg-
ative. Moreover, by properly tuning the coherent parameter

β, we could suppress the additional beat caused by the term
proportional to cos(2ωkt ).

Purely imaginary mechanical coherent parameter. We now
prepare the harmonic oscillator in a coherent state with purely
imaginary parameter: This occurs if θ = (n + 1/2)π , with
n ∈ Z. This choice allows us to rewrite the equation of motion
of the wall as following:

x(t ) � L
{
1 + 2ε2μ2

k sin2 (ωkt )

+ ε sin(2ωkt )
[
εμ2

kωkt + 2(−1)n|β| + g
]}

. (30)

The action of the external drive does not differ from the case
reported above, and therefore we can momentarily switch it
off.

In order to appreciate the role played by phonons through-
out the dynamics in more detail, we distinguish two possible
scenarios: Either θ = +π/2, achieved by assuming n = 0,
merely leading to an increment of the oscillation amplitude,
or θ = −π/2, namely, n = 1, which leads to a reduction
of the oscillation. We interpret the latter case as follows;
phonons, having maximal negative momentum, initially boost
the oscillation of the wall leftwards; on the other hand, the
resonance between cavity and mechanical mode induces a
positive (rightward) push of the wall by means of the radiation
pressure within the cavity due to the coherent photons; the
damping of the oscillation of the wall in fact ensues from
the combination of these two effects, and the damping time is
found to be t̄ (1)

f = Nb(0)/|β|μ2
kωk with t̄ = εt . In Sec. III B 2

we will see that the attenuation of the motion is connected
with both a reduction in time of the number of phonons, and
the corresponding enhance of the photon number.

5. Third order: x(3)(t )

In the last section we studied the motion of the wall when
one cavity mode is initially found in a coherent state. When
the cavity field is initially in its vacuum state, i.e., μk = 0,
the first- and second-order corrections due to the cavity field
initial state (namely, proportional to the photon number μ2

k)
vanish, and third-order effects become dominant. We note that
these effects do not arise due to genuine third-order contri-
butions, but due to a combination of first- and second-order
dynamical ones. For this reason, it is relevant to compute and
analyze them. While it is true that they are greatly suppressed
in the perturbative series, they will give us additional informa-
tion regarding the dynamics.

The initial state for this case is ρ̂(0) = ∏
n |0n〉〈0n| ⊗

ρ̂(DST)
m , where now all the field modes are initially in the

vacuum state. In this scenario, we present only the case of
degenerate resonance where ω = 2ωk and no external drive
act on the cavity field, λxk (t ) = λxk′ (t ) = λpk (t ) = λpk′ (t ) ≡
0. The correction to the third order therefore reads

x(3)(t ) � −ω2
kt2

4
[2|β| cos(2ωkt − θ ) + g sin(2ωkt )]. (31)

Employing this formula within the full expression of the aver-
age position gives us the final expression,

x(t )

L
� 1 + 2ε|β| cos θ cos(2ωkt )�k (t )

+ ε(g + 2|β| sin θ ) sin (2ωkt )�k (t ), (32)
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where we have introduce the important quantity

�k (t ) := 1 − ε2ω2
kt2

4
≈ e− ε2ω2

k t2

4 . (33)

Recall that, since we are working in perturbation theory, our
expressions are correct and can be employed for all times
where 1 − �k (t ) � 1.

Interestingly, we can immediately observe the gradual re-
duction of the modulation amplitude since �k (t ) decreases
with time. We will see in Sec. III B 3 that this effect
stems from the resonant conversion of mechanical excita-
tions (phonons) into photons. As done before, we want to
distinguish two cases of interest, namely, when β is real or
imaginary.

Real mechanical coherent parameter. This occurs when
θ = nπ with n ∈ Z. We can rewrite Eq. (32) as

x(t )

L
� 1 + ε[2(−1)n|β| cos(2ωkt ) + g sin (2ωkt )]�k (t ).

(34)

We note that the phononic contribution and the action of the
drive give rise to two oscillating terms which are dephased by
π/2, and whose amplitude decrease in time.

Purely imaginary mechanical coherent parameter. If we
assume that β is purely imaginary in Eq. (32), θ = (n + 1

2 )
with n ∈ Z, we can immediately observe that all contributions
oscillate with the same phase:

x(t )

L
� 1 + ε[g + 2(−1)n|β|]�k (t ) sin (2ωkt ). (35)

This means that we can fully control the oscillation amplitude
of the cavity wall. In particular, by properly tuning both the
drive coefficient and the phononic coherent parameter, we can
amplify or deamplify the oscillation, or even suppress it by
imposing g = −2(−1)n|β|.

B. Number of photons

The dynamics of the mirror is strictly connected with
the amount of excitations present in the system. Therefore,
we proceed to study the average photon number Nk (t ) :=
Tr[Û †(t )â†

k âkÛ (t )ρ̂(0)] of mode k at time t . We will make
use of the initial state (16).

1. Zero order: N (0)
k (t )

We start from the lowest order contribution, which pro-
vides an accurate estimation of the photon number as long
as the total oscillation amplitude is extremely small. We recall
that this is a consequence of the fact that we have obtained a
dynamical mirror implemented by a harmonic oscillator by
assuming that the total deviation from the length L of the
cavity is small.

The cavity mode k is initially prepared in the coherent state
ρk = |μk〉〈μk|, and we consider a nonzero external drive. The
total amount of photons to lowest order is

N (0)
k (t ) = [μk + �pk (t )]2 + [�xk (t )]2, (36)

where we recognize the contribution from both the initial
amount of photons μ2

k in the coherent state, the direct exci-

tation of the cavity mode due to the external drive λxk (t ) and
λpk (t ), and their interplay.

2. First order: N (1)
k (t )

The motion of the wall stimulates the reaction of the field,
which leads to the modification of the photon number at the
first order in ε. Here we estimate the correction of the photon
number determined by the dynamics of the mirror. In order
to simplify the expressions and facilitate the comparison with
our results in Sec. III A 3, we switch off all cavity drives as
well as the coherent parameter μk′ in Eq. (16), and present
the photon number in case of degenerate resonance. We stress
that off-resonant terms are smaller than the resonant ones by
factors ωk or ω2

k , and can hence be neglected for cavities with
large frequencies. The full expression of the first-order cor-
rection with drives and the coherent excitation of two cavity
modes can be found in Appendix C. We have

N (1)
k (t ) � −μ2

kωkt (2|β| sin θ + g), (37)

where the mechanical drive is again represented by Eq. (25).
This formula expresses the resonant exchange of excitations
between the mechanical degree of freedom and the mode of
the cavity field k when such resonant cavity mode is initially
found in a coherent state. Hence, this correction would vanish
if we switched the coherent parameter μk off.

We can immediately recognize the contribution of the ini-
tial phononic state and the action of the drive. The former
strictly depends on the coherent parameter suggesting that nei-
ther the thermal fluctuation nor the squeezing play a concrete
role at the first order. We notice that it vanishes whenever β is
a real number, namely, when θ = nπ with n ∈ Z, whereas it
grows linearly whenever β is purely imaginary (θ = ±π/2).
The second term depends on the amplitude of the external
drive and can take positive or negative values.

A direct comparison of this result with both Eqs. (29) and
(30) suggests that the gradual enhancement of the oscillation
amplitude due to the degenerate resonance condition takes
place without exchange of excitations between the cavity
mode k and the mechanical degree of freedom as soon as g =
−2 sin θ |β|; whereas it occurs with exchange of excitations if
β is a pure complex number, with g �= −2 sin θ |β|. Moreover,
the efficiency of the exchange of excitations is maximized if
Im{β} = g. This behavior is confirmed by the investigation of
the phonon number, which in the case of degenerate resonance
reads Nb(t ) = N (0)

b (t ) + εÑb
(1)

(t ), with

N (0)
b (t ) � Nb(0) + g|β| sin θ + g2

4
, (38)

Ñ (1)
b (t ) � μ2

kωkt

2
(2|β| sin θ + g), (39)

where the initial number of phonons is given by Eq. (17).
We stress that the direction of conversion (phonons “down-

converted” into photon pairs or photon pairs “up-converted”
into phonons) strongly depends on the interplay between the
initial phononic coherent state and the action of mechanical
drive. This is in contrast with what we will see soon in the
next section, by discussing the second-order correction by
switching off the coherent parameter μk . Interestingly, by
switching off the mechanical drive it is immediate to obtain
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the relation

〈Nk〉τ + 2〈Nb〉τ � Nk (0) + 2Nb(0), (40)

which expresses the excitations conservation throughout
the dynamics, expected in a lossless system without time-
dependent external inputs.

We finally take advantage of our multimode model and
compute the number of photons for the mode k in case of non-
degenerate resonance between the mechanical mode and two
different modes k and k′ of the cavity field both initially found
in a coherent state with parameter μk and μk′ , respectively.
We have

N (1)
k (t ) � (−1)1+k+k′

μkμk′
√

ωkωk′t (2|β| sin θ + g). (41)

It is evident that this expression is the two-mode equivalent of
Eq. (37).

3. Second order: N (2)
k (t )

Finally, we conclude the analysis of the photon number by
computing the relevant contribution to the number of photons
at second order in ε when the field is initially found in its
vacuum state. In this case, N (2)

k (t ) = 0 and we note that the
first nonzero contribution occurs at second order. Therefore,
the existence of such photons is a pure quantum effect.

The second-order contribution N (2)
k (t ) := ω2

k t2

2 �N (2)
k (t ) to

the number of photons reads

N (2)
k (t ) = ω2

kt2

2

(|β|2�N (2)
β,k (t ) + sinh r �N (2)

sq,k (t )

+ NT �N (2)
T,k (t ) + NT sinh r�N (2)

sq,T,k (t )

+�N (2)
vac,k (t )

) + N (2)
md,k (t ), (42)

where we distinguished the single contributions according to
the physical origin. Here we want to give a physical interpre-
tation of the various elements of this formula, and we leave the
explicit form of these terms to Appendix D. It is crucial to note
that (42) is exact and does not assume any particular resonant
regime. Therefore, all time-dependent quantities on the right-
hand side have nontrivial expressions that, in general, oscillate
in time.

The first contribution is �N (2)
β,k (t ), where the index β em-

phasizes that this term stems from the coherent state of the
mechanical drive. We notice that this term reproduces the
dynamical Casimir effect induced by the harmonic oscillation
of the wall. In order to recover the photon number expected
by the DCE, we impose the degenerate resonant condition and
neglect any off-resonant terms, thereby obtaining and expres-

sion for the contribution N (2)
β,k (t ) := ω2

k t2

2 �N (2)
β,k (t ), which reads

N (2)
β,k (t ) � |β|2ω2

kt2. (43)

This directly shows the connection between the increas-
ing photon number and the amount of phonons in the
coherent state, a connection previously highlighted in the lit-
erature [28,32]. Since the motion of the wall depends only on
the displacement of the mechanical degree of freedom apart
from the external drive [see Eq. (32)], we claim that the pair
production strictly stems from the “classical” oscillation of

the wall as long as |β| � 1. This is exactly the regime that
reproduces the conditions necessary for the DCE to occur.

The next three terms in bracket, namely, �N (2)
sq,k (t ),

�N (2)
T,k (t ) and �N (2)

sq,T,k (t ), are determined by the initial
phononic state, in particular by its thermal and squeezing
features. We impose the degenerate resonant condition and

compute the total contribution N (2)
sq,T,k (t ) := ω2

k t2

2 [�N (2)
sq,k (t ) +

�N (2)
T,k (t ) + �N (2)

sq,T,k (t )], which reads

N (2)
sq,T,k (t ) � ω2

kt2(sinh2 r + NT + 2NT sinh2 r). (44)

Interestingly, since the average motion of the mirror depends
neither on squeezing of the mechanical state nor on its thermal
fluctuations, the presence of such contributions in (44) and
therefore in (42) means that both the thermal fluctuations
of the phonons and the squeezing of the mechanical mode
induce an excitation of the resonant cavity mode, aside from
the motion of the mirror ascribable to a classical harmonic
oscillation.

We want to stress that all contributions analyzed so far arise
as a direct consequence of the specific initial phononic state.
The term of the interaction Hamiltonian causing the resonant
pair creation, proportional to â†2b̂, highlights the excitation
transfer between the resonant cavity mode and the harmonic
oscillator. This motivates us the compute the second-order
contribution to the number Nb(t ) of phonons at time t , which
reads

�N (2)
b (t ) = −Nb(0)

ω2
kt2

2
, (45)

and we find once more that, as long as the mechanical drive
is switched off, the excitations conservation expressed by
Eq. (40) holds. This means that the increasing number of pho-
tons in Eqs. (43) and (44) corresponds to a gradual reduction
of the number of phonons. This is exactly what we would
expect if the DCE was produced not by an external drive of the
wall, but by an initial state of the harmonic oscillator different
from the vacuum state.

The term �N (2)
vac,k (t ) in (42) stems from the quantization of

the mechanical motion of the wall. Although its contribution
is negligible at resonance, its existence is consistent with our
quantum description of the mechanical motion of the wall, and
it is a direct consequence of vacuum fluctuations.

The last term N (2)
md,k (t ) of Eq. (42) originates from the

mechanical drive. By assuming it in Eq. (25) and imposing the
degenerate resonance, we can compute the number of photons
N (2)

md,k (t ) that arises from the action of the mechanical drive:

N (2)
md,k (t ) � gω2

k t2

4
(4|β| sin θ + g). (46)

The first contribution explicitly depends on the real part of
the coherent parameter, whereas the second one expresses the
possibility to generate photons by forcing the motion of the
mirror with the only use of an external drive at resonance with
the cavity mode. Note that, if β = 0, photons are created in the
cavity, but they do not come at the expense of the depletion of
the initial phonons, rather they derive from phonons gener-
ated at time t by the mechanical drive itself. This number of
phonons equals the last term in Eq. (38). Along with N (2)

β,k (t ),
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this term gives rise to the standard DCE following a periodical
oscillation of the mirror.

The total number of photons, in the case of degenerate
resonance, is achieved by collecting and time averaging all
contributions computed above. We find

〈N (2)
k 〉τ � ω2

kτ
2

3
(|β|2 cos2 θ + sinh2 r + NT + 2NT sinh2 r)

+ ω2
kτ

2

12
(g + 2|β| sin θ )2, (47)

where we recovered the explicit interplay between the oscil-
lation induced by the presence of coherent phonons and the
motion forced by the external drive that already emerged in
Eq. (32). As expected, the gradual reduction of the oscillation
amplitude, predicted by taking into account the correction on
the position of the wall at the third order in ε, is brought about
by the resonant conversion of phonons into photons. Such
phonons can already be present in the initial phonon state, or
generated by the external drive, as seen in Eq. (38).

Since the contribution in Eq. (46) depends on the coherent
phase θ , we report two specific scenarios.

Purely real mechanical coherent parameter. Whenever β

is a real number, namely, for θ = nπ and n ∈ N, the output
number of photons in Eq. (47) reads

〈N (2)
k 〉τ � ω2

kτ
2

3

(
Nb(0) + g2

4

)
. (48)

This formula describes the dynamical Casimir effect when the
quadratic contribution in ωk of the initial phonon number and
the action of the external drive interfere constructively with
each other.

Purely imaginary mechanical coherent parameter. If β is
a imaginary quantity, θ = (n + 1/2)π with n ∈ Z, the photon
number reduces to

〈N (2)
k 〉τ � ω2

kτ
2

3
(sinh2 r + NT + 2NT sinh2 r)

+ ω2
kτ

2

12
[g + 2(−1)n|β|]2. (49)

In contrast to the previous case, our results in Eq. (35) and
Eq. (49) suggest that we can inhibit any contribution of the
phononic displacement to the dynamics of the wall, as well as
to the resonant generation of photons, by properly tailoring g,
thereby letting photons arise from both the phononic thermal
fluctuation and the intensity of the mechanical squeezing.

We conclude this section by printing the number of photons
that are found when the mechanical frequency is nondegener-
ate resonant with two different modes k and k′ of the cavity
field:

〈
N (2)

k

〉
τ

� N̄b(θ )
ωkωk′τ 2

3
, (50)

where we have defined N̄b(θ ) := Nb(0) + g2/4 + g|β| sin θ .

C. Force between the mirrors

The resonance between the cavity mode k and the mechan-
ical oscillation of the wall induces an excitation in the mode,
leading to generation of photons, as we have shown above.

We expect that such increment of the photon number directly
affects the radiation pressure within the cavity acting on the
wall, which coincides with the force between the two mirrors
in a (1+1)-dimensional scenario. This force can immediately
be defined from first principles [4], and it reads F̂ ≡ − dĤ (t )

dL .
In our case, it has the expression

F̂ = 2h̄

L

∑
n,m

(−1)n+m√
ωnωm X̂nX̂m − λxb(t )

δL0
, (51)

where we used the fact that ε = δL0/L. For completeness, we
restored the vacuum energy of the Hamiltonian to obtain this
expression.

We want to estimate the average value of the force when
the mode of the oscillating mirror is resonant with the mode k
of the field. In this case, we find

〈F 〉τ � Fvac + N̄b(θ )
ε2h̄ω3

kτ
2

6L
, (52)

where Fvac := ∑
n

h̄ωn
2L is the (formally divergent) vacuum con-

tribution, and, as usual, we neglect all off-resonant terms.
Clearly, the normal ordering would have removed the pres-
ence of Fvac. However, since we are investigating the time
evolution of the radiation pressure in a cavity with no pho-
tons at t = 0, we want to take advantage of our multimode
description in order to include the zero-point fluctuations.

We will adopt the reasoning used in the literature [39] in
order to reinterpret the divergent term in Eq. (52). As a first
step, we suppose to have a third (static) mirror located on the
right hand side of the movable mirror, say, at L2 with L < L2.
We can therefore employ the same model used so far in order
to describe the field in the region L < x < L2. In particular,
the force acting on the movable wall due to the presence of
this second cavity is

F2(t ) = Fvac,2 −
∑

n

h̄ω′
n

2(L2 − L)
− Fosc,2(t ), (53)

where ω′
n = nπc/(L2 − L), we have introduced the vac-

uum fluctuation contribution Fvac,2 := −∑
n

h̄ω′
n

2(L2−L) and we

have introduced the function Fosc,2(t ) := ∑
n

h̄δL2
0ω′

nϕ1(t )
(L2−L)2 +∑

n,m
n �=m

h̄δL2
0

√
ω′

nω
′
mϕ2(t )

(L2−L)2 . The term F2osc(t ) includes all time-

dependent oscillating terms via the functions ϕ1(t ) and ϕ2(t ).
These oscillating terms are proportional to δL2

0, and therefore
they are negligible off-resonance. The function Fosc,2(t ) would
given us a term identical (with opposite sign) to the second
one of Eq. (52) if L2 = 2L. However, we want to take the limit
L2 → ∞, and therefore we need to keep L2 as a free variable.
Therefore we can safely neglect Fosc,2(t ).

As a second step, we impose a cutoff of the form e−γωn in
the divergent terms of (52) and (53). This is a standard pro-
cedure and it allows us to neglect any contribution from high
frequency modes that cause divergences. Since

∑
n ne−αn =

eα/(eα − 1)2, we assume that γπc/L � 1 in order to include
as many modes as we can. We therefore can expand the
divergent terms with cutoff in (52) and (53) and obtain

Fvac � h̄c

2πγ 2
− h̄πc

24L2
, Fvac,2 � − h̄c

2πγ 2
+ h̄πc

24(L − L2)2
.

(54)
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The total force acting on the movable wall is clearly the sum
of the two contributions Fvac and Fvac,2. We can now safely
remove the cutoff γ by setting γ = 0, and we can remove
the wall inserted at L2 by taking the limit L2 → ∞. We
finally have

〈F 〉τ � − h̄πc

24L2
+ N̄b(θ )

ε2h̄ω3
kτ

2

6L
. (55)

The first term of this expression is the well-known Casimir
force between two perfectly conducting plates [39]. This force
can be interpreted as arising from the zero-point fluctuations
of the field inside the cavity, and therefore it holds also at
t = 0. On the contrary, we attribute the remaining positive
term to the repulsive force that arises as a consequence of
the increasing radiation pressure that forms inside the cavity.
Since initially the cavity modes do not contain excitations, this
contribution is a direct consequence of the resonant amplifi-
cation of the field mode k. In other words, Eq. (55) describes
the interplay between static and dynamical Casimir effect, and
it highlights the dependence of the force on both the initial
phononic state and the intensity of the external drive.

IV. APPLICATIONS AND EXTENSIONS

We now briefly discuss potential applications and exten-
sions to our work.

A. Prospective experimental platforms

We expect that observing the predicted effects in an
experimental system will be challenging as the different
resonance scenarios (i) to (iii) in Sec. III A 3 require a mechan-
ical mode with high frequency exceeding the optical mode
frequencies—(i) and (ii)—or matching their difference—(iii).
While (i) and (ii) are only realistic in microwave photonic
systems, the latter poses a more modest constraint on the
involved modes. For a Fabry-Pérot type optical resonator this
condition can be met, if the mechanical resonator interacts
with modes of a long optical cavity of length L that are spaced
by the free spectral range νFSR = c/2L.

A drawback of this approach is the reduced optomechan-
ical interaction strength that scales with 1/L for systems
with mechanical resonators that only locally interact with
the involved optical modes. Therefore, platforms that make
use of extended mechanical resonances as reported in pho-
tonic crystal fibers (PCFs) [40–42] or optomechanical crystals
(OMCs) [43] are more promising. As still evenly spaced opti-
cal modes are required, the Fabry-Pérot type approach should
nevertheless be maintained. For PCFs this can be realized by
employing a reflective coating at the end facets of a fiber
piece [44] of length L as shown in Fig. 2(a). For a GHz range
mechanical mode [40,41] the required length will be on the
order of 0.1 m to realize evenly spaced optical modes within
a low dispersion region of the guided mode spectrum. This
length will be reduced for OMCs as silicon exhibits a higher
refractive index and as higher frequency acoustic modes are
realized [45]. Still, up to millimeter long waveguide paths that
support both optical and acoustic modes with photonic and
phononic reflectors at the ends will be required [46,47], for
example, using two-dimensional OMC realizations [45,48] as

FIG. 2. Potential experimental platforms that allow for inter-
mode coupling, where a mechanical resonance frequency matches
the optical mode spacing. A photonic crystal fiber (PCF) piece with
reflectively coated fiber ends as depicted in (a) can support optical
modes with a spacing c/2L that matches the frequency of acoustic
breathing modes of the core (∼ GHz) of the core for L ∼ 0.1 m.
Panel (b) shows a similar scenario for a optomechanical crystal plat-
form realization, where an extended waveguide of length L supports
both optical and acoustic waveguide modes. In (c) an electromechan-
ical platform is depicted featuring a single mechanical resonance
coupled to multiple microwave (MW) circuits. The wide range of
available MW resonance frequencies would also allow the realiza-
tions the degenerate or nondegenerate resonance, however, with an
experimentally more limited number of MW resonators.

sketched in Fig. 2(b). For a close to ideal mode overlap of
a low-dispersion optical and a �-point mechanical mode, the
resulting vacuum optomechanical coupling strength g0 scales
with the number of required unit cells nuc as 1/

√
nuc as the

effective mass of the mechanical mode linearly increases with
nuc. For nuc ∼ 103 and a waveguide optomechanical coupling
of ≈1.5 MHz [45], this would result in g0 ≈ 50 kHz. Such
approaches, especially if slight optimizations are conducted,
will therefore result in experimentally accessible systems for
resonance scenario (iii).

Electromechanical systems using superconducting mi-
crowave resonators [49,50] with a displacement-dependent
capacitance provide experimental platforms with smaller
photonic mode frequencies. With using higher frequency me-
chanical modes this would allow realizations of the other
resonance scenarios. The limitation, however, will be the
number of microwave modes coupled to the same mechani-
cal element meeting the resonance condition. Several tuned
and simultaneously coupled microwave resonators will be
required as indicated in Fig. 2(c). This strongly restricts the
number of involved modes in contrast to Fabry-Pérot-type
photonic resonators, where a large number of evenly spaced
optical modes naturally occurs.

While not giving the direct interpretation as a classical
dynamic Casimir effect as in a system of two opposing
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mirrors, analogous electro- or optomechanical systems sup-
port experimentally accessible regimes that can realize all
three resonance scenarios. The dynamics of involved photonic
modes would be reproduced by such systems providing means
for single-mode squeezing, two-mode squeezing, or mode
mixing applications.

B. Scalar massive field

The procedure presented in Sec. II can straightforwardly
be extended to the case of confined massive field. Let us
suppose that a massive real scalar field φ(t, x) is confined in a
static cavity. The classical Lagrangian density L(t, x) in 1 + 1
dimensions reads

L = h̄

2

(
∂2φ

c2∂t2
− ∂2φ

∂x2
− M2c2

h̄2 φ2

)
, (56)

where M is the mass. The classical field is solution to the
(1+1)-dimensional Klein Gordon equation for a massive
field that reads (� − M2c2/h̄2)φ(t, x) = 0. We again make
the ansatz φn(t, x) = e−iωnt sin(pnx), where the dispersion
relation now reads ωn = (h̄2c2 p2

n + M2c4)
1
2 , with wave vector

pn := nπ
L . The explicit expression of both the field φ(t, x)

and its conjugate momentum �(t, x) do not differ from those
found before, except for the massive term in the frequencies
ωn.

We can therefore apply the same procedure and find the
classical density Hamiltonian of the massive field, which
reads H = 1

2 {�2(t, x) + [∂xφ(t, x)]2 + M2c2

h̄2 φ2(t, x)}. This, in

turn, allows us to compute the Hamiltonian operator Ĥ =
Ĥ0 + εĤI, where

Ĥ0 :=
∑

n

h̄ωn â†
nân + h̄ωb̂†b̂,

ĤI := −2
∑

n

h̄c2 p2
n

ωn
â†

nânX̂b −
∑

n

h̄c2 p2
n

ωn

(
â†2

n + â2
n

)
X̂b

− 4
∑
n �=m

(−1)n+m h̄c2 pn pm√
ωnωm

X̂nX̂mX̂b. (57)

We notice that Ĥ0 is formally identical to the free Hamiltonian
of the massless case, whereas the interaction Hamiltonian ĤI

differs from Eq. (6) only in the coupling constant, which now
includes the dispersion relation for the massive field. For this
reason, the extension of our previous results to the massive
scenario can be performed straightforwardly. As a single ex-
ample, we report the number of massive excitations generated
at time t in case of degenerate resonance with a cavity mode k,
when the input state is given by ρ̂(0) = ∏

n |0n〉〈0n| ⊗ ρ̂(DST)
m

in the vacuum state of the massive field. To second order in ε

we obtain

N (2)
k (t ) � ε2c4 p4

kt2

ω2
k

Nb(0). (58)

V. CONSIDERATIONS AND OUTLOOK

A. Considerations

We now proceed with some considerations regarding our
work.

First, we notice that the combination εωk in our Hamil-
tonian exactly corresponds to the vacuum optomechanical
coupling strength [4]. This allows us to interpret δL0 as the
zero-point fluctuation of the quantum harmonic oscillator,
namely, δL0 ≡ xZPF = √

h̄/(2Mω) (with M mass of the mir-
ror), whose order of magnitude is typically much less than the
length of the whole cavity [2]. This argument reinforces the
perturbative approach employed in this work. We also want
to point out that the inverse of the coupling strength deter-
mines the regime of validity of our perturbative approach, as
observed in Eq. (33). This formula expresses the reduction of
the oscillation amplitude at resonance, and it holds as long as
t � tc ≡ 2/εωk . In typical optomechanical experiments this
quantity ranges between 10−6–10−2 s [8,9,51,52], but it can
dramatically reduce in superconducting quantum-interference
devices [53,54]. On the other hand, the inverse of the oscilla-
tion frequency, 1/ω, gives an estimation of the scale time for
resonant peak in the photon number to emerge. Such peak in-
creases its intensity rapidly in time, as shown in Fig. 3, where
the correction �N (2)

β,k (t ) in Eq. (D1) is plotted by scanning the
oscillation frequency at different time, where both frequency
and time are normalized as following: ω̃ = L

πc ω and t̃ = πc
L t .

The graph shows how the sinc functions of Eq. (D1) tend to a
Dirac delta function at resonance when t̃ � 1, or t � 2/ωk .

Now we want to give an estimation of the order of magni-
tude of the second-order correction on the Casimir force. The
expected dominant repulsive behavior of the force emerges at
L < Lc, where the critical length Lc is defined by 〈F (Lc)〉τ =
0, namely,

Lc =
(

4π N̄b(θ )c h̄ τ 2

M

) 1
3

. (59)

Moreover, the new trend of the Casimir force suggests the
presence of a minimum 〈F (Lmin)〉τ that is reached at Lmin =
(5/2)1/3Lc and has the expression

〈F (Lmin)〉τ � − h̄πc

40L2
min

. (60)

In order to provide a concrete evaluation of these quanti-
ties, we switch off the external drive, fix T = 0 and r = 0.
Moreover, we fix a reference length of the cavity when the
wall is at rest L0 = 10 μm [33], and assume that the oscil-
lating mirror has mass M ≈ 10−16 kg. We want to resonantly
excite the lowest mode of the cavity, namely, ω = 2ω1. As
can be seen in Fig. 4(a), where we plotted the trend of the
Casimir force by varying the distance between the two walls
at different time, no inversion of the sign of the force is
observed. This suggests that correction obtained above to the
standard Casimir force does not play an appreciable role when
t � tc, namely, where the radiation pressure is weak due to
the low amount of generated photons. On the contrary, the
repulsive trend becomes appreciable with the increase of
the phonon number, as shown in Figs. 4(b) and 4(c), where
the inversion point is visible for short distances. In particular,
this amounts to Lc/L0 � 0.11 in Fig. 4(b) and to Lc/L0 � 0.14
in Fig. 4(c). Furthermore, the total number of photons at t =
10−6 ranges from Nk ≈ 10−6 in Fig. 4(a) up to Nk ≈ 10−4 in
Fig. 4(c).

033502-10



INTERPLAY BETWEEN OPTOMECHANICS AND THE … PHYSICAL REVIEW A 106, 033502 (2022)

FIG. 3. Second-order correction �N (2)
β,k (t ) of the average number of excitations in mode k as a function of the dimensionless oscillation

frequency ω̃ := L
πc ω of the wall at different dimensionless times t̃ := πc

L t . We have plotted (a) at time t̃ = 30, (b) at time t̃ = 50, and (c) at
time t̃ = 100. In all figures, the four peaks correspond to the resonant frequency at ω̃ = 2ω̃1 = 2, ω̃ = ω̃1 + ω̃2 = 3, ω̃ = ω̃1 + ω̃3 = 4, and
ω̃ = ω̃1 + ω̃4 = 5. The mass of the mirror is M = 10−16 kg.

One important aspect of the the model proposed above is
that it allows us to compute the excitation transfer between
the wall and the field. As already known [28], this is carried
out by the squeezing term in the interaction Hamiltonian
proportional to (â†

k )2b̂ and can occur when the phonon state
is initially found in an excited state. However, we want to
emphasize that our model predicts the resonant excitation of
the cavity mode by means of an external drive acting on the
phononic degree of freedom. In particular, the term (gωkt/2)2

in Eq. (46) stems from a time-dependent displacement term
in the Hamiltonian, acting on the quantized mechanical
mode.

The specific choice of the external drive in Eq. (25) gives
rise to a smooth transition from a static to a dynamical regime,
which terminates once the sinusoidal motion of the wall is
stabilized. A similar equation of motion has been previously
employed [32], where the dynamics is not included in the
Hamiltonian but enters the mathematical description of the
system in terms of time-dependent Dirichlet boundary con-
ditions of the equation of motion. In our model, the use
of a time-dependent displacement acting on the mechanical
degree of freedom avoids the requirement of solving differen-
tial equations with time-dependent boundary conditions. As
expected, we can recover both the equation of motion and
the number of photons in [32] by imposing either g = 1 and
β = 0 or g = 0 and β = 1

2 eiπ/2.

In addition, by assuming ω2
kt2|β|2 = ω2

kt2g2/4 = N0/2,
r = 0 and T = 0 in Eq. (47), our model predicts an interfer-
ence of the photon number of the form Nk = N0(1 + sin θ ),
caused by the interplay between coherent phonons and me-
chanical drive, whose pattern depends on the coherent phase
θ . In particular, an effect of amplification occurs at θ = π/2,
whereas the inhibition of the output radiation is expected
whenever θ = −π/2. Coherently, such values correspond
to the maximal value of the oscillation amplitude and the
arrest of the oscillating wall respectively; see Eq. (26).
Since the DCE as a squeezing phenomenon stimulates the
creation of photon pairs, and the above-described modu-
lation of N0 involves both photons at the same time, by
scanning the phase θ we can reproduce the interference
pattern expected by a SU(1,1) interferometer character-
ized by two optical parametric amplifiers in the low gain
regime [55–58]. We leave the study of this aspect to future
work.

B. Outlook

In this work we showed that the quantization of the har-
monic oscillation of a cavity wall translates into the presence
of a further “mechanical” quantum degree of freedom, which
in turn gives rise to both the optomechanical coupling and
specific terms determining the exchange of quantum excita-

FIG. 4. The Casimir force between the two wall of the cavity at two different times, namely, t = 0 s (solid red line) and t = 10−6 s (blue
dashed line). Each panel has been obtained using different coherent phonon number: (a) |β|2 = 1, (b) |β|2 = 50, and (c) |β|2 = 100. We are
working here in the degenerate resonant regime, where the oscillation frequency ω reads ω = 2ω1. Other parameters are the following: Cavity
length L = 10 μm, mirror mass M = 10−16 kg.
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tions between photons and phonons. More specifically, we
have seen that, in a multimode description of the cavity field,
the latter degrees of freedom are responsible for effects of
multimode squeezing, which can emerge by properly tuning
the oscillation frequency of the harmonic oscillator, or its
external driving force.

The description of the whole system that we have here
achieved is general enough to be exported to many systems,
as well as to be used for modeling of concrete physical sys-
tems. Apart from the theoretical and foundational knowledge
gained by following the procedure proposed here, we also
highlight the potential implications for future research. For
example, interesting applications can be found in continuous
variables quantum information and computing, where single-
and two-mode quantum gates on bosonic degrees of freedom
are necessary as ingredients for the achievement of desired
tasks [59]. Universal quantum computing also requires non-
linear bosonic gates, i.e., unitary operations that are induced
by Hermitian operators that are at least cubic in the creation
and annihilation operators (or, equivalently, in the quadrature
operators). While single- and two-mode gates have already
been discussed in the context of resonances for field modes
of cavity fields [60–62], our current work moves beyond the
ideal scenario where abstract boundary conditions are var-
ied as functions of time and allows to concretely study the
gate-induced operations in relation to the additional interplay
between the different degrees of freedom. While our work
does not include decoherence or dissipation, which are are sig-
nificant and unavoidable in cavity systems [21,25], we believe
that the current study provides the first steps towards more
concrete realizations. However, we expect that the dynamic
effects, as show in Fig. 3, will persist in a full treatment as
their timescales are faster than the dissipation or decoherence
of optical or mechanical modes reached in current experi-
mental systems. For this reason, we leave it to future work
to include the effects of cavity loss and more realistic cavity
designs.

VI. CONCLUSION

In this paper we have studied the dynamics of a quan-
tum field trapped within a cavity with a moving quantized
wall. Our approach tackles the problem at the fundamental
Hamiltonian level and allows us to obtain a Hamiltonian that
includes the interaction between the field and the degree of
freedom of the wall avoiding the need for time-dependent
(Dirichlet) boundary conditions. The Hamiltonian contains
both the standard optomechanical interaction term as well as
the terms responsible for field dynamics, thereby allowing us
to explore each regime separately, together with their inter-
play. We achieved this result by adding external driving terms
for both the field and mirror displacement, and by considering
specifically tailored initial states of the whole system.

We employed our model to estimate the time evolution of
the position of the wall, the average photon number in the
cavity, and the pressure that acts on the wall. We focused
our efforts on the resonant regime, where either the intrinsic
frequency of the wall or the frequency of the external drive are
twice the frequency of one of the cavity modes. This regime
appears naturally in many physical systems such as degenerate

parametric down-conversion [63,64] and four-wave mix-
ing [65,66]. We were able to reproduce the standard optome-
chanical regime or the dynamical Casimir effect regime by
specifically tailoring the initial state, and the external mechan-
ical drive. We also computed the excitation transfer between
the cavity modes and the vibrational mode of the wall, which
occurs at the interplay between these two scenarios. When the
wall is initially displaced but not driven, we found that this
excitation exchange translates into the photon pair production
via DCE by means of the conversion of phonons into photons,
leading to a decrease in amplitude of the wall oscillations.
Similarly, the action of an external drive, initially pushing the
wall at the resonant frequency with one of the cavity mode,
causes the reaction of the field, which again translates into the
vacuum squeezing of the resonant mode (DCE).

Furthermore, we took advantage of the multimode struc-
ture of the cavity field in order to study the time evolution
of the radiation pressure when the cavity field is initially
prepared in its vacuum state, therefore obtaining the combined
action of the static Casimir force and the repulsive radiation
pressure caused by the increase of cavity photons by means
of the dynamical Casimir effect. In addition, we extended our
model to the case of massive scalar fields, for which the results
are formally equivalent to those achieved in the massless
scenario and therefore do not imply qualitative differences,
and we also proposed a physical system based on a photonic
crystal fiber for potential concrete implementation of the tech-
niques that we have developed. Finally, applications of this
model include single- and two-mode quantum gates acting on
the field modes in the cavity. These operations can be used
as core ingredients for quantum information processing with
continuous variables, for example, in quantum computing and
the realization of multimode quantum gates.

The proposed approach is derived from first principles that
follow a general procedure, and it can therefore be used to
tackle other applications where a boundary is quantized with-
out the need of solving time-dependent differential equations.
We believe that this work provides an important addition to
the study of the interplay of quantum field theory and op-
tomechanics, as well as theoretical tools to be used in the
development of future quantum technologies.
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APPENDIX A: INTERACTION HAMILTONIAN

The effective interaction Hamiltonian calculated via Eq. (14) is

ˆ̃HI(t ) = −h̄ε

[
ϑ (ωk, ωk′ , t ) +

∑
n

ωn

2

(
2â†

nân + e2iωnt â†2
n + e−2iωnt â2

n

)

+
∑
n,m
n �=m

(−1)n+m
√

ωnωm

2
(eiωnt â†

n + e−iωnt ân)(eiωmt â†
m + e−iωmt âm)

− 2
∑

n
n �=k

(−1)n+k√ωnωkψk (t )(eiωnt â†
n + e−iωnt ân) − 2

∑
n

n �=k′

(−1)n+k′√
ωnωk′ψk′ (t )(eiωnt â†

n + e−iωnt ân)

+ iωk′
{
e2iωk′ t�−

k′ (t )â†
k′ − e−2iωk′ t�−

k′ (t )âk′ − iωk′�pk′ (t )(â†
k′ + âk′ ) − �xk′ (t )(â†

k′ − âk′ )

]

+ iωk
[
e2iωkt�−

k (t )â†
k − e−2iωkt�−

k (t )âk − i�pk (t )(â†
k + âk ) − �xk (t )(â†

k − âk )
]}

[eiωt b̂† + e−iωt b̂ + 2ξ (t )], (A1)

where we have defined the following auxiliary functions:

�−
j (t ) = �x j (t ) − �p j (t ), (A2)

ξ (t ) = cos(ωt )�pb(t ) − sin(ωt )�xb(t ), (A3)

ψ2(t ) = cos(ωkt )�pk (t ) + sin(ωkt )�xk (t ), (A4)

ψ3(t ) = cos(ωk′t )�pk′ (t ) + sin(ωk′t )�xk′ (t ), (A5)

ϑ (ωk, ωk′ , t ) = −ωk{[�pk (t )]2 + [�xk (t )]2} − 2ωk sin(2ωkt )�pk (t )�xk (t ) − ωk cos(2ωkt ){[�xk (t )]2 + [�pk (t )]2}
− ωk′ {[�pk′ (t )]2 + [�xk′ (t )]2} − 2ωk′ sin(2ωk′t )�pk′ (t )�xk′ (t ) − ωk′ cos(2ωk′t ){[�xk′ (t )]2 + [�pk′ (t )]2}
+ (−1)k+k′

4
√

ωkωk′ {sin(ωkt ) sin(ωk′t )[�xk′ (t )]2 + cos(ωkt ) cos(ωk′t )[�pk′ (t )]2}, (A6)

with j ≡ k, k′, or b.

APPENDIX B: POSITION OF THE WALL: SECOND-ORDER CORRECTION

The correction to the position of the wall estimated to the second order in ε is performed by calculating the second term of
Eq. (20) when Â ≡ X̂ . This gives

�x(2)(t )

δL0
= ωkμ

2
kt

2

{
ωtsinc2

(ωt

2

)
+ sin

[
(2ωk − ω)t

2

]
sinc

[
(2ωk + ω)t

2

]
+ sin

[
(2ωk + ω)t

2

]
sinc

[
(2ωk − ω)t

2

]}

+ ωk′μ2
k′t

2

{
ωtsinc2

(ωt

2

)
+ sin

[
(2ωk′ − ω)t

2

]
sinc

[
(2ωk′ + ω)t

2

]
+ sin

[
(2ωk′ + ω)t

2

]
sinc

[
(2ωk′ − ω)t

2

]}

− (−1)k+k′√
ωkωk′μkμk′t

{
sin

[
(ωk − ωk′ + ω)t

2

]
sinc

[
(ωk − ωk′ − ω)t

2

]

+ sin

[
(ωk − ωk′ − ω)t

2

]
sinc

[
(ωk − ωk′ + ω)t

2

]
+ sin

[
(ωk + ωk′ − ω)t

2

]
sinc

[
(ωk + ωk′ + ω)t

2

]

+ sin

[
(ωk + ωk′ + ω)t

2

]
sinc

[
(ωk + ωk′ − ω)t

2

]}

+ i(−1)k+k′√
ωkωk′

[
μk′

(
eiωt

∫ t

0
dt ′ψk (t ′)ei(ωk′−ω)t ′ − e−iωt

∫ t

0
dt ′ψk (t ′)e−i(ωk′ −ω)t ′

+ eiωt
∫ t

0
dt ′ψk (t ′)ei(ωk′ +ω)t ′ − e−iωt

∫ t

0
dt ′ψk (t ′)e−i(ωk′ +ω)t ′

)
+ μk

(
eiωt

∫ t

0
dt ′ψk′ (t ′)ei(ωk−ω)t ′
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− e−iωt
∫ t

0
dt ′ψk′ (t ′)e−i(ωk−ω)t ′ + eiωt

∫ t

0
dt ′ψk′ (t ′)ei(ωk+ω)t ′ − e−iωt

∫ t

0
dt ′ψk′ (t ′)e−i(ωk+ω)t ′

)]

+ μkωk

[
i

(
e−iωt

∫ t

0
dt ′�pk (t ′)eiωt ′ − eiωt

∫ t

0
dt ′�pk (t ′)e−iωt ′

)
+ 1

2

(
e−iωt

∫ t

0
dt ′�−

k (t ′)ei(2ωk+ω)t ′

+ eiωt
∫ t

0
dt ′�−

k (t ′)ei(2ωk+ω)t ′ − e−iωt
∫ t

0
dt ′�−

k (t ′)e−i(2ωk−ω)t ′ − eiωt
∫ t

0
dt ′�−

k (t ′)ei(2ωk−ω)t ′
)]

+ μk′ωk′

[
i

(
e−iωt

∫ t

0
dt ′�pk′ (t ′)eiωt ′ − eiωt

∫ t

0
dt ′�pk′ (t ′)e−iωt ′

)
+ 1

2

(
e−iωt

∫ t

0
dt ′�−

k′ (t ′)ei(2ωk′ +ω)t ′

+ eiωt
∫ t

0
dt ′�−

k′ (t ′)ei(2ωk′ +ω)t ′ − e−iωt
∫ t

0
dt ′�−

k′ (t ′)e−i(2ωk′ −ω)t ′ − eiωt
∫ t

0
dt ′�−

k′ (t ′)ei(2ωk′ −ω)t ′
)]

+ 1

2i

(
eiωt

∫ t

0
dt ′ϑ (ωk, ωk′ , t ′)e−iωt − e−iωt

∫ t

0
dt ′ϑ (ωk, ωk′ , t ′)eiωt

)
. (B1)

APPENDIX C: NUMBER OF PHOTONS: FIRST-ORDER CORRECTION

The correction to the photon number in the mode k estimated up to the first order is performed by calculating the second term
of Eq. (20) when Â ≡ â†

k âk . This reads

�N (1)
k (t ) = −2μ2

kωk

{
|β|t sin

[
(2ωk + ω)t − 2θ

2

]
sinc

[
(2ωk + ω)t

2

]
+ |β|t sin

[
(2ωk − ω)t + 2θ

2

]
sinc

[
(2ωk − ω)t

2

]

+ 2
∫ t

0
dt ′ξ (t ′) sin(2ωkt ′)

}
+ (−1)k+k′√

ωkωk′μkμk′ |β|t
{

4

|β|t
∫ t

0
dt ′ξ (t ′) sin (ωk′t ′) cos (ωkt ′)

+ sin

[
(ωk + ωk′ + ω)t − 2θ

2

]
sinc

[
(ωk + ωk′ + ω)t

2

]
+ sin

[
(ωk + ωk′ − ω)t + 2θ

2

]
sinc

[
(ωk + ωk′ − ω)t

2

]

+ 2 cos

[
(ωt − 2θ )

2

]
sin

[
(ωk − ωk′ )t

2

](
sinc

[
(ωk − ωk′ + ω)t

2

]
+ sinc

[
(ωk − ωk′ − ω)t

2

])}

+ 4(−1)k+k′√
ωkωk′μk

∫ t

0
dt ′ sin(ωkt ′)ψk′ (t ′)(2 cos(ωt ′ − θ ) + ξ (t ′))

+ 4ωkμk

∫ t

0
dt ′[|β|�xk (t ′) cos(ωt ′ − θ ) + �−

k (t ′) cos(2ωkt ′) cos(ωt ′ − θ ) + �−
k ξ (t ′) cos(2ωkt ′) − �xk (t ′)ξ (t ′)]

− 2�xk (t )

(
2μkωkt cos

[
(ωt − 2θ )

2

]
sinc

(ωt

2

)
+ 2μkωk

∫ t

0
dt ′ξ (t ′) + 2μkωk

∫ t

0
dt ′ξ (t ′) cos(2ωkt ′)

+ μk|β|ωkt cos

[
(2ωk + ω)t + 2θ

2

]
sinc

[
(2ωk + ω)t

2

]
+ μk|β|ωkt cos

[
(2ωk − ω)t − 2θ

2

]
sinc

[
(2ωk − ω)t

2

]

+ (−1)k+k′
μk′

√
ωkωk′ |β|t

{
sinc

[
(ωk + ωk′ + ω)t

2

]
cos

[
(ωk + ωk′ + ω)t + 2θ

2

]

+ sinc

[
(ωk − ωk′ + ω)t

2

]
cos

[
(ωk − ωk′ + ω)t + 2θ

2

]
+ sinc

[
(ωk − ωk′ − ω)t

2

]
cos

[
(ωk − ωk′ − ω)t − 2θ

2

]

+ sinc

[
(ωk + ωk′ − ω)t

2

]
cos

[
(ωk + ωk′ − ω)t + 2θ

2

]
+ 8

|β|
∫ t

0
dt ′ξ (t ′) cos(ωkt ′) cos(ωk′t ′)

}

− 2(−1)k+k′√
ωkωk′

∫ t

0
dt ′ψk′ (t ′)[4|β| cos(ωkt ′) cos(ωt ′ − θ ) + ξ (t ′) cos(ωkt ′)]

+ 2ωk

∫ t

0
dt ′{�pk (t ′)[|β| cos(ωt ′ − θ ) + ξ (t ′)] + �−

k (t ′) sin(2ωkt ′)[2|β| cos(ωt ′ − θ ) + ξ (t ′)]}
)

. (C1)
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APPENDIX D: NUMBER OF PHOTONS: SECOND-ORDER CORRECTION

The correction to the number of photons up to the second order, when the initial state is ρ̂(0) = ∏
n |0n〉〈0n| ⊗ ρ̂(DST)

m , can be
expressed as a combination of terms, collected in Eq. (42). In more detail,

�N (2)
β,k (t ) = 2sinc2

[
(2ωk − ω)t

2

]
+ 2sinc2

[
(2ωk + ω)t

2

]
+ 4sinc

[
(2ωk + ω)t

2

]
sinc

[
(2ωk − ω)t

2

]
cos(ωt − 2θ )

+
∑
n �=k

ωn

ωk

({
sinc2

[
(ωk + ωn − ω)t

2

]
+ sinc2

[
(ωk + ωn + ω)t

2

]}

+ 2sinc

[
(ωk + ωn − ω)t

2

]
sinc

[
(ωk + ωn + ω)t

2

]
cos(ωt − 2θ )

)
, (D1)

is the contribution stemming from the coherent state of the quantum harmonic oscillator;

�N (2)
vac, k(t ) = 2sinc2

[
(2ωk + ω)t

2

]
+

∑
n �=k

ωn

ωk
sinc

[
(ωk + ωn + ω)t

2

]
, (D2)

is the correction due to the quantum vacuum state of the mechanical oscillation of the wall, and represents the contribution to
the number of photons due to the fluctuation of the phonon number;

�N (2)
sq,k (t ) = 2sinc2

[
(2ωk + ω)t

2

]
sinh r + 2sinc2

[
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2

]
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− 4 cosh rsinc
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2

]
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2

]
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+
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ωk
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2

]
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2
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2

]
sinc

[
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2

]
cosh r cos(ωt − φ)

)
,
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T,k (t ) = 2sinc2
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sq,T,k (t ) = 4 sinh r

{
sinc2

[
(2ωk + ω)t

2

]
+ sinc2

[
(2ωk − ω)t

2

]}

− 4 cosh r sinc

[
(2ωk + ω)t

2

]
sinc

[
(2ωk − ω)t

2

]
cos(ωt − φ)

+
∑
n �=k

ωn

ωk

(
2 sinh r

{
sinc2

[
(ωk + ωn − ω)t

2

]
+ sinc2

[
(ωk + ωn + ω)t

2

]}

− 4 cosh rsinc

[
(ωk + ωn − ω)t

2

]
sinc

[
(ωk + ωn + ω)t

2

]
cos(ωt − φ)

)
, (D3)

are the corrections due to squeezing alone, initial temperature in the mechanical element alone, and the interaction of the two,
and finally

N (2)
md (t ) = 2ε2ω2

kt

(
β

∫ t

0
dt ′ξ (t ′)e−2iωkt ′

{
sinc

[
(2ωk + ω)t

2

]
ei

(2ωk+ω)t
2 + sinc

[
(2ωk − ω)t

2

]
ei

(2ωk−ω)t
2

}

+ β∗
∫ t

0
dt ′ξ (t ′)e2iωkt ′

{
sinc

[
(2ωk + ω)t

2

]
e−i

(2ωk+ω)t
2 + sinc

[
(2ωk − ω)t

2

]
e−i

(2ωk−ω)t
2

})
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+
∑
n �=k

ε2ωkωnt

2

(
β

∫ t

0
dt ′ξ (t ′)e−i(ωk+ωn )t ′

{
sinc

[
(ωk + ωn + ω)t

2

]
ei

(ωk +ωn+ω)t
2 + sinc

[
(ωk + ωn − ω)t

2

]
ei

(ωk +ωn−ω)t
2

}

+ β∗
∫ t

0
dt ′ξ (t ′)ei(ωk+ωn )t ′

{
sinc

[
(ωk + ωn + ω)t

2

]
e−i

(ωk +ωn+ω)t
2 + sinc

[
(ωk + ωn − ω)t

2

]
e−i

(ωk +ωn−ω)t
2

})

+ 4ε2ω2
k

∫ t

0
dt ′ξ (t ′)e−2iωkt ′

∫ t

0
dt ′ξ (t ′)e2iωkt ′ +

∑
n �=k

ε2ωkωn

∫ t

0
dt ′ξ (t ′)e−i(ωk+ωn )t ′

∫ t

0
dt ′ξ (t ′)ei(ωk+ωn )t ′

, (D4)

is the number of photons due to the presence of the mechanical drive.
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Aspelmeyer, S. Hong, and S. Gröblacher, Nature (London) 556,
473 (2018).

[15] D. E. Bruschi, J. Math. Phys. 60, 062105 (2019).
[16] M. Metcalfe, Appl. Phys. Rev. 1, 031105 (2014).
[17] M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Č. Brukner,
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