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Spin-flip-induced superfluidity in a ring of spinful hard-core bosons
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The t − J Hamiltonian of the spinful hard-core bosonic ring in the Nagaoka limit is solved. The energy spec-
trum becomes quantized due to presence of spin, where each energy level corresponds to a cyclic permutation
state of the spin chains. The ground state is true ferromagnetic when the ring contains N = 2 and 3 spinful
hard-core bosons; for all other N it is a mixture of the ferromagnetic and nonferromagnetic states. This behavior
is different from the fermionic ring, where ground state is true ferromagnetic only for N = 3. It is shown that the
intrinsic spin-generated gauge fields are analogous to the synthetic gauge fields generated by rotation of either
the condensate or the confining potential. It is argued that the low-lying excited levels of the spin-flipped states
intrinsically support the superfluidity. Possible ways to experimentally verify these results are also discussed.
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I. INTRODUCTION

Rapid progress in the experimental techniques of trapping
and manipulating cold atoms has opened numerous possi-
bilities for their use in quantum simulation and quantum
computing [1–4]. Spinor bosons—atoms with integer spins—
in optical lattice are one of the modern work horses used to
probe the physics of the strongly correlated systems [5–7].
They have several advantages over their condensed matter
counterparts, e.g., precise knowledge of the underlying mi-
croscopic model, the possibility to control the parameters of
the lattice Hamiltonian, and the absence of impurity in phys-
ical realizations. In this work we theoretically investigate the
physics of one of the simplest systems, yet rich in physics, that
can be constructed using spinor bosons: the one-dimensional
(1D) ring lattice loaded with spinful hard-core bosons
(HCBs) [8].

The spinless bosonic ring is a well-studied problem both
theoretically and experimentally [6,7,9–11]. In Ref. [11] the
Yrast states for fermionic and bosonic ring were given. In
Ref. [10] several exactly solvable models for one-dimensional
bosonic systems were reviewed. In Ref. [12] a model for
neutral spinless HCBs on a ring was solved. Reference [13]
considered spinful HCBs on a N × N plaquette. On this
plaquette they solved the usual t-J Hamiltonian by divid-
ing the spinful HCBs into two different species of spinless
HCBs. Reference [14] also considered spinful HCBs on a
finite 2D plaquette. They investigated the effect of fermionic
and bosonic statistics on the emergence of the ferromagnetic
phase. In Ref. [15] the phase diagram of a 1D chain, when
even and odd numbers of spinful bosons are present at a
single site, was investigated. In Refs. [16,17] the ground state
properties of the spinful fermions and bosons in thermody-
namic limits were studied. Most of the work done till now has
been related either to the bosons on one- and two-dimensional
periodic lattices, and their behavior in the thermodynamic
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limit (N � 1), or to spinless HCBs on a ring. Apart from some
comments about the energy levels of the spinful bosonic ring
in Ref. [11], a comprehensive study of the properties of the
spinful hard-core bosons on a ring away from the thermody-
namic limit is still missing.

One of the interesting effects observed in the ring of bosons
is the persistent current, which is related to the superfluid-
ity [18–20]. In Ref. [21] the phase diagram of superfluid
and insulating phases was studied for spinless hard-core
bosons. Reference [22] investigated the ground-state and
superfluidic properties of the spinless hard-core bosons in
one-dimensional potential. Recently, Ref. [23] estimated the
values of persistent current for two hard-core bosons in a
ring lattice. From the experimental side the persistent current
was observed in spinor (not hard-core) condensates [24] and
fermion rings [25,26]. It is well known that the ground state
can never support the persistent current [27–29]. Hence, one
accesses the excited superfluidic states by applying a velocity
field, either by rotating the confined particles in the ring lattice
or by rotating the ring lattice itself [18–20,27,28]. The rota-
tion of the lattice is analogous to the generation of synthetic
gauge fields, which in turn is related to the twisted boundary
condition [18,28]. We show that, for the case of hard-core
spinful bosons, the twisted boundary condition is generated
intrinsically without application of any external velocity field.

The main focus of our work is the investigation of the
ground-state properties and the necessary condition for oc-
currence of superfluidity in these systems. This article is
structured as follows. In Sec. II we solve the Hamiltonian of
the spinful HCBs on a ring in the Nagaoka limit. In this limit
the spin and charge degrees of freedom can be treated sepa-
rately; hence, the Hamiltonian is easily solvable. In Sec. III we
investigate the dependence of the ground-state energies on the
total spin and the structure of the total spin chains. We discuss
the necessary conditions for the emergence of superfluidity in
these systems. Here, we also suggest the experimental setups
to corroborate our theoretical predictions. Finally, In Sec. IV
we summarize the results.
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II. THE MODEL

We take a ring of L sites and N spinful HCBs with spin
projections σ = {↑,↓} [30]. Because of the hard-core nature
of the bosons, in the ring every site contains at most a single
boson (N � L). The t-J Hamiltonian in the Nagaoka limit with
periodic boundary conditions [31,32] can be written as (see
Supplemental Material [33])

H = −t
L−1∑

i=1,σ

b̃†
iσ b̃i+1σ − t

∑
σ

b̃†
Lσ b̃1σ + H.c. (1)

Here, t is the boson hopping factor from the ith site to the
neighboring i + 1th site. b̃†

iσ and b̃iσ are the HCB creation and
annihilation operators with spin projections σ = {↑,↓}. The
operators b̃iσ and b̃†

iσ imply the single occupancy constraint:∑
σ

b†
iσ biσ � 1.

Due to the 1D nature of the ring, and the absence of the
spin interaction, the initial spin configuration of the spin chain
is fixed during electron hopping. Hence, we can separate the
spin and charge degrees of freedom in the Hamiltonian:

H = −t
L−1∑
i=1

b†
i bi+1 − tb†

Lb1P̂ + H.c. (2)

Here, b†
i (bi ) is a spinless hard-core bosonic creation

(annihilation) operator. The spin content of the problem is
encoded in the spin permutation operator P̂. It displaces the
spin to the next nonempty site:

P̂
∣∣sz

1, sz
2, . . . , sz

N

〉 = ∣∣sz
N , sz

1, . . . , sz
N−1

〉
.

The boson hopping part of Eq. (2) is analogous to the XY
spin-chain Hamiltonian [10,12,34,35]. Hence, one can use
the Jordan-Wigner transformation to represent the Hamilto-
nian in Eq. (2) in terms of spinless fermionic operators (see
Supplemental Material [33]):

H = −t
L−1∑
i=1

f̂ †
i f̂i+1 + teıπN f̂ †

L f̂1P̂ + H.c. (3)

Here, f̂ †
i ( f̂i) is the spinless fermionic creation (annihilation)

operator. Defining the function

h(N ) =
{

0, odd N,

1, even N,
(4)

we can write Eq. (3) as

H = −t
L−1∑
i=1

f̂ †
i f̂i+1 − teıπh(N ) f̂ †

L f̂1P̂ + H.c. (5)

The spin permutation and spinless fermionic operators
are separately diagonalized, because they are independent of
each other. The eigenvalues (λν) and eigenfunction (ψν) of

P̂ are [36]

λν = eı2π pν/Nν , (6a)

|ψν〉 = 1√
Nν

Nν−1∑
q=0

eı2π pν
q

Nν P̂q |ψ̃ν〉 . (6b)

Here, ν enumerates all possible disconnected spin blocks.
A spin block contains only connected spin chains. When two
spin chains can be transformed into each other by application
of the P̂ operator they are connected; otherwise they are dis-
connected. Nν represents the total number of connected spin
chains in the νth spin block. pν enumerates the connected
spin chains in the νth spin block; it takes the values pν =
0, 1, . . . , Nν − 1. ψ̃ν is the wave function of one of the spin
chains of the νth spin block.

For example, we have a chain of four sites and three par-
ticles. We take the spin chain |↑ • ↑↓〉 out of 23 possible
spin chains. It is connected to the |↑ • ↓↑〉 spin chain, as
P̂2 |↑ • ↑↓〉 = |↑ • ↓↑〉. In this case both these configurations
belong to the same νth spin block. This particular νth block
has three possible configurations; hence Nν = 3, and pν = 0,
1, and 2 [37]. The wave function of three pν states can be
found using Eq. (6b) [see Appendix C]. Consequently, every
spin chain in the νth spin block has its own wave function
and spin momentum pν . The number of disconnected blocks
depends on the number of particles present in the ring (N)
and the spin of these particles (sz). Due to these disconnected
blocks of spin chains, the total spin Hamiltonian correspond-
ing to the P̂ operator is a block Hamiltonian with ν blocks.
We find the Hamiltonian corresponding to the νth block by
substituting λν from Eq. (6b) into Eq. (5):

Hν = −t
L−1∑
i=1

f̂ †
i f̂i+1 − tei2π[ pν

Nν
+ h(N )

2 ] f̂ †
L f̂1 + H.c. (7)

The total Hamiltonian of the whole system is a direct sum of
these spin-block Hamiltonians: H = ∑

ν

⊕Hν .

Equation (7) is nothing but the tight -binding model
with a penetrating magnetic flux �ν ≡ 2π [ pν

Nν
+ h(N )

2 ] through
the ring. Using the gauge fi 	→ eı�νxi/L fi, one maps the
Hamiltonian in Eq. (7) onto the twisted Hamiltonian:

Hν = −t
L−1∑

i

eı �ν
L f̂ †

i f̂i+1 − teı �ν
L f̂ †

L f̂1 + H.c. (8)

Here, xi = 1, 2, . . . , L, enumerates the L sites. The locally
induced phase factor eı�ν/L is known as the Peierls phase.
The explicit expression for the kth mode energy of this tight-
binding Hamiltoinian Hν is (see Supplemental Material [33])

EPBC(k, ν, pν ; N, L) = −2t cos
2π

L

(
k + pν

Nν

+ h(N )

2

)
. (9)
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The total energy is found by summing over all N low-lying
kth mode energies:

EPBC, g = −2t
sin{[N + 1 + h(N )]π/2L}

sin(π/L)

× cos

[
4π
L

( pν

Nν
+ h(N )

2

) + [N−1+h(N )]π
L

2

]

− 2t
sin {[N + 1 + h(N )]π/2L}

sin(π/L)

× cos

[
4π
L

( pν

Nν
+ h(N )

2

) − [N−1+h(N )]π
L

2

]

+ 2t[1 + h(N )] cos

[
2π

L

(
pν

Nν

+ h(N )

2

)]
. (10)

The Hamiltonian of the antiperiodic boundary condition
(b̃L+1,σ = −b̃1,σ ) is written by introducing the extra phase eiπ

in the second term of Eq. (1). Repeating the aforementioned
procedure, the kth mode energy levels and the ground-state
energies can be calculated. One can directly find these expres-
sions from Eqs. (9) and (10) by replacing h(N ) → h(N + 1).
If a magnetic field B is applied perpendicular to the ring, then
an additional flux �B = 2πBA—where A is the area of the
ring—penetrates through the ring. To find the total energy
one repeats the above calculation by substituting �ν 	→ �ν +
�B and adds the total-spin (Sν)-dependent Zeeman energy,
Z = gμBBSν (see Supplemental Material [33]). Here, g is the
Lande factor; μB is the Bohr magneton; and Sν is the total spin
of the νth block.

III. GROUND-STATE PROPERTIES AND SUPERFLUIDITY

In a ring geometry the energy levels corresponding to
the cyclic permutation (pν) of the initial spin configurations
become available, because particles can jump directly from
the Lth site to the 1-st site. One can further group these per-
mutation states into irreducible representations of the cyclic
symmetry groups Cn. It should be noted that a single cyclic
group can contain more than one spin block (ν). For example,
for N = 4 the C4 group contains the ν = 2 and 3 spin blocks
as shown in Table I. The more general relation between N , pν ,
and ν can be found using Burnside’s Lemma [38].

We show the detailed spin configurations for N = 4 and
5 in Tables I and II, respectively. The corresponding energy
levels with L = 8 are shown in Fig. 1. Here, for N � 4 the
ground state is a mixture of the ferromagnetic phase (S =
N/2) and the nonferromagnetic phases (S = N/2 − 2, N/2 −
3, . . . ). It should be noted that the single spin-flipped phase
(S = N/2 − 1) is absent in the ground state due to the unavail-
ability of the pν = 0 state (see Appendix A). Interestingly for
N = 2 and 3, the ground state is pure ferromagnetic, because
the spin-flipped phases (S = N/2 − 2, N/2 − 3, . . . ) are not
available. This behavior is different from that of the fermionic
ring, for which the ground state is pure ferromagnetic only for
N = 3 [36].

Physically the spinful hard-core bosonic ring can be re-
alized by loading spinor bosons [39,40] in optical tweezers

TABLE I. The spin configurations for N = 4 bosons. Column
S represents the total spin of the chain. Column ν represents the
enumerated spin blocks. Nν represents the total number of connected
spin chains contained in the νth spin block. pν enumerates the con-
nected spin chains in the νth block.

S ν Nν

2 1 N1 = 1
p1 = 0 ≡ |↑↑↑↑〉

1 2 N2 = 4
p2 = 0 ≡ |↑↑↑↓〉
p2 = 1 ≡ |↓↑↑↑〉
p2 = 2 ≡ |↑↓↑↑〉
p2 = 3 ≡ |↑↑↓↑〉

0 3 N3 = 4
p3 = 0 ≡ |↑↑↓↓〉
p3 = 1 ≡ |↓↑↑↓〉
p3 = 2 ≡ |↓↓↑↑〉
p3 = 3 ≡ |↑↓↓↑〉

4 N4 = 2
p4 = 0 ≡ |↑↓↑↓〉
p4 = 1 ≡ |↓↑↓↑〉

[41–43] or Paul traps [44,45]. The two hyperfine states (F )
of the spinor bosons can be considered as two pseudospin
states. Recently numerous experiments have successfully gen-
erated several 2D and 3D crystals with high fidelity [46–51].
Hence, generating 1D rings should not be difficult. One of
the interesting facts to observe experimentally is the depen-
dence of the energy levels on underlying spin structures. For
example, one can generate a ring of spinor bosons with the
initial spin configuration |↑↑↓↓〉 (ν = 3 in Table I). Then the

FIG. 1. Energy levels for the periodic boundary condition when
N = 4 and 5 bosons reside on a ring of L = 8 sites. The x axis
represents the spin (S), and the y axis represents the energy (E/2t).
ν represents the spin block. The spin-chain configurations corre-
sponding to different S and ν are shown in Tables I and II. For ν = 2
(squares, orange) and ν = 3 (down triangles, green) the pν = 0 state
is not available [see Appendix A]. For both S = 0 and S = 1/2
spin states, there are two corresponding spin blocks: ν = 3 (down
triangles, green) and ν = 4 (up triangles, red).
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system is excited to the higher energy levels (pν = 1, 2, 3)
through rotation of the confining potentials [18,19]. To re-
turn to the ground state the system should radiate the energy
proportional to E (pν ) − E (pν = 0), which can be easily mea-
sured. In the next step one can prepare the system with the
spin arrangement |↑↓↑↓〉 (ν = 4 in Table I). Analogously
the system will be excited to the higher energy levels, and
the radiated energy will be measured. In the former case the
radiated energy will be higher than that of the latter case,
because only a single pν = 1 state is available. It will be the
direct experimental evidence of the spin-chain-configuration-
dependent quantization of the energy in the spinful hard-core
bosonic rings.

As an example of the physics displayed by the spinful
hard-core bosonic ring, let us show that a slight change of
the underlying spin structure of the HCBs on a ring might
provide a necessary condition for a superfluidity to emerge.
According to the two-fluid picture, the superfluid contains
both normal as well as superfluid components. One therefore
defines a quantity, the so-called superfluid fraction ( fs), to
represent the degree of superfluidity. There are different ways
to calculate it [28,52]. We use the definition where fs is cal-
culated through the reaction of the system under a change in
boundary conditions. Mathematically, the change in boundary
conditions is equivalent to imposing a linear phase variation
�x/L over length L of the system [28]. Hence, if 	(x) is the
wave function of the superfluid, then 	(x + L) = ei�	(x). It
should be stressed that the phase variation should be linear in x
to conserve the symmetry of the system and avoid a phase slip.
Physically it means that the particles acquire a similar phase
�/L while tunneling to the neighboring sites. Physically, the
twisted phase � is imposed by rotating the system with some
angular velocity ω [28,53,54]. For a unit radius 1D ring, � is
related to the superfluid velocity: vs = h̄�/(mL) [28,29,54].
Experimentally, the twisted phase can be imposed through
atom-light interactions [55], rotating the confining potential
[18], or rotating the confined atoms [19]. However, there is an-
other way to impose the twisted boundary condition: through
the change in the underlying spin configurations. Indeed the
phase factor �ν/L in Eq. (8), which is dependent on the spin
configuration through ν, is equivalent to the twisted phase.
The persistent current appears when �ν � π , because only
for this case the high-energy excitation is absent in the system
[53]. In this limit the superfluid density is [54]

fs = L2

tN

E�ν
− E0

�2
ν

. (11)

Here, E0 (E�ν
) is the energy of the system in the absence

(presence) of the phase twist.
Equation (11) is directly applicable when the ring con-

tains odd and large numbers of particles. In this case the
low-lying excited energy levels (pν � Nν) satisfy the condi-
tion �odd

ν := 2π pν/Nν � π . For even N , the twisted phase
takes on the form �even

ν := 2π pν/Nν + π . An extra phase
factor of π accounts for a passage from odd N to even N .
Therefore, to calculate fs induced solely by a change in the
spin structure at fixed even N , we should replace �even

ν 	→
�even

ν − π = �odd � π . In Fig. 2 we plotted the dependence
of the superfluid fraction on the number of sites in the
ring for N � 5 and pν/Nν = 1/N . It can be observed that,

FIG. 2. Dependence of superfluid fraction ( fs) on number of
sites (L) while number of particles (N) is fixed. fs is calculated
using Eq. (11) with phase θ = 2π/N for N = 5 (blue, plus), N =
6 (red, down-triangle), N = 9 (orange, circle), N = 10 (violet,
cross), N = 21 (green, square), and N = 26 (brown, up-triangle).

when N ≈ L (commensurate), superfluidity is absent ( fs ≈
0). However, the superfluid fraction increases as L increases
(incommensurate). The occurrence of the superfluidity for
the incommensurate case (N/L � 1) is a manifestation of
the fact that a 1D dilute gas of hard-core bosons is always
superfluid [28].

It should be mentioned that the condition �ν � π , is
necessary but not sufficient for the appearance of superfluidity,
because it does not say anything about the stability of the
persistent currents [27]. We propose the following experiment
to detect superfluidity generated by a single spin-flip. One can
prepare a 1D ring of spinor bosons using optical tweezers,
and containing N � 1. All the particles should be in the same
spin state; in other words, the system is in the ferromagnetic
phase (S = N/2). Then the spin of a single atom is flipped.
Due to the absence of the pν = 0 state for spin S = N/2 − 1,
the ground state will then be the first excited state (pν = 1). It
is equivalent to generating a small twisted phase � = 2π/N .
One can then experimentally find the matter-wave interfer-
ence pattern and structure factor to get information about
superfluidity [53].

IV. CONCLUSIONS

We have shown that in the spinful hard-core bosonic ring
energy spectrum is quantized. Here each excited energy level
corresponds to a cyclic permutation state (pν) of the spin
chain. Interestingly, depending on the underlying spin con-
figuration of the spin chains, the spin blocks with identical
total spin (S) can have different sizes (Nν). For example,
although the total spin of the spin-chains |↑↑↓↓〉 and |↑↓↑↓〉
are same (S = 0), however due to different spin configura-
tions the size of the corresponding spin blocks will be 4
and 2 respectively (see Table I). To corroborate this fact,
one can perform experiments measuring the radiated energy
from the first excited state (pν = 1) to the ground states.
For |↑↑↓↓〉 the radiated energy will always be lower com-
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pared to |↑↓↑↓〉. We have shown that the ground phase
of the bosonic ring is true ferromagnetic only for N = 2
and 3. This is important, because for the fermionic ring the
ground state is true ferromagnetic only for N = 3. Usually
the superfluid fraction is measured by measuring the energy
change due to the imposed twisted phase �ν � π . We have
shown that apart from already existing methods for gener-
ating the twisted phase—rotation of either the condensate
or the confining potential, and the light atom interaction—
one can use the spin-generated intrinsic phases 2π pν/Nν as
a twisted phase. This provides another way to generate the
twisted phase in hard-core bosonic rings. We argue that the
low-lying energy levels occurring due to cyclic permutation
of the spin chains (pν � N) can support the persistent cur-
rent without any external excitation, when (i) N � 1 and
(ii) N/L � 1. In other words, superfluid emerges sponta-
neously during the transition from the fully polarized state
(S = N/2) to the spin-flipped states. In this article we have
also proposed several experiments to corroborate the above-
mentioned results.
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APPENDIX A: UNAVAILABILITY OF pν = 0 STATE FOR
S = (N/2) − 1

For the case of pν = 0 the spin wave function |ψ〉 in
Eq. (6b) is symmetric. It corresponds to the fully polarized
case. Hence, if we have x number of pν = 0 states, then
one of the pν = 0 states corresponds to the fully polarized
case, and x − 1 number of pν = 0 states correspond to the
spin-flipped case. For example, we take a ring with five
spinful HCBs (N = 5). The spin configurations for N = 5 is
shown in Table II. Here we observe that for S = 5/2 a single
pν = 0 state is available, for S = 3/2 a single pν = 0 state
is available, and for S = 1/2 two pν = 0 states are available.
For S = 3/2 no pν = 0 state is available, because the sin-
gle pν = 0 corresponds to the fully polarized (ferromagnetic)
state. However, for S = 1/2, because two pν = 0 states are
available, one pν = 0 state corresponds to the fully polarized
(ferromagnetic) state, and the other pν = 0 state corresponds
to the nonferromagnetic phase.

APPENDIX B: SPIN CONFIGURATIONS FOR N = 4 AND
N = 5 SPINFUL HCB ON A RING

In Table I we represent all possible spin configurations of
four spinful HCBs. It should be noted that number of sites
L does not have any effect on the spin configurations. In

TABLE II. The spin configurations for N = 5 bosons. Column
S represents the total spin of the chain. Column ν represents the
enumerated spin blocks. Nν represents the total number of connected
spin chains contained in the νth spin block. pν enumerates the con-
nected spin chains in the νth block.

S ν Nν

5
2 1 N1 = 1

p1 = 0 ≡ |↑↑↑↑↑〉
3
2 2 N2 = 5

p2 = 0 ≡ |↑↑↑↑↓〉
p2 = 1 ≡ |↓↑↑↑↑〉
p2 = 2 ≡ |↑↓↑↑↑〉
p2 = 3 ≡ |↑↑↓↑↑〉
p2 = 4 ≡ |↑↑↑↓↑〉

1
2 3 N3 = 5

p3 = 0 ≡ |↑↑↑↓↓〉
p3 = 1 ≡ |↓↑↑↑↓〉
p3 = 2 ≡ |↓↓↑↑↑〉
p3 = 3 ≡ |↑↓↓↑↑〉
p3 = 4 ≡ |↑↑↓↓↑〉

4 N4 = 5
p4 = 0 ≡ |↑↑↓↑↓〉
p4 = 1 ≡ |↓↑↑↓↑〉
p4 = 2 ≡ |↑↓↑↑↓〉
p4 = 3 ≡ |↓↑↓↑↑〉
p4 = 4 ≡ |↑↓↑↓↑〉

Table II we represent all possible spin configurations of five
spinful HCBs.

APPENDIX C: MATRIX REPRESENTATION OF SPIN
WAVE FUNCTION

For a spin-chain configuration |↑ • ↑↓〉, using Eq. (6b),
the wave functions of the spin chain can be represented
in a compact form using the matrix notation |ψ (pν )〉 =
(1/

√
Nν )C |ψ̃ν〉. Here |ψ (pν )〉 is a Nν × 1 column matrix.

Its components represent the wave function corresponding
to the pν th value. C is the Nν × Nν matrix. Its rows and
columns are indexed as pν = 0, 1, . . . Nν . Hence, the Cmnth
term is eı2πm(n/Nν ). The wave function |ψ̃ν〉 is an Nν × 1
column matrix of all possible connected spin chains of the
νth block. If the νth block represents all the connected
spin chains of |↑ • ↑↓〉, the total wave function of the νth
block is⎡
⎣ψν (pν = 0)

ψν (pν = 1)
ψν (pν = 2)

⎤
⎦ = 1√

Nν

⎡
⎣1 1 1

1 eı2π/3 eı4π/3

1 eı4π/3 eı8π/3

⎤
⎦

⎡
⎣|↑ • ↑↓〉

|↓ • ↑↑〉
|↑ • ↓↑〉

⎤
⎦.

(C1)

Equation (C1) can be generalized to arbitrary N .
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