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Spin-polarized vortices with reversed circulation
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We present the analysis of the structure of fermionic vortices with the spin-polarized core from a weak
coupling limit to the unitary regime. We show the mechanism for the generation of the reversed circulation in
the vortex core induced by an excess of majority spin particles. We introduce the classification of the polarized
vortices based on the number of Fermi circles where the minigap vanishes. This provides a unique description of
the vortex as one cannot smoothly map wave functions into one another corresponding to vortices differing by
the number of Fermi circles. The effective mass of quasiparticles along the vortex core is analyzed and its role
in the propagation of spin-polarization along the vortex line is discussed.
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I. INTRODUCTION

Quantum vortices are one of the most prominent examples
of topological excitations in superfluids [1,2]. They occur
both in bosonic systems, where 4He liquid below λ point and
atomic BECs are prime examples, as well as in fermionic
systems including superfluid 3He, metallic superconductors,
or fermionic ultracold gases. They are also believed to exist
in superfluid neutron matter forming neutron stars. Although
the stability of the vortex originates from the topology of the
order parameter, its properties vary significantly for fermionic
and bosonic systems. Namely, in bosonic systems at low tem-
peratures, the core of the vortex is essentially empty as the
superfluid density reaches zero in the center of the vortex.
The only particles that can reside there are those that form the
thermal cloud vanishing at T = 0 [3]. In the case of fermionic
systems, the strength of the interparticle interaction to large
extent defines the core structures (see, e.g., Refs. [4–7] dis-
cussing the vortex structures in 3He, type-II superconductors,
fermionic ultracold gases, and in multiply quantized vortices,
respectively).

For dilute Fermi gases the interaction is parametrized via
dimensionless quantity akF, where a is s-wave scattering
length and kF = (3π2n)1/3 is Fermi wave vector correspond-
ing to the density n. If akF is positive then bound states
(dimers) are formed, and typical characteristics of bosonic
systems are recovered, with the modification that bosons
can split into two fermions, which may form a normal state
occupying the center of the vortex. In the far BEC limit
(akF → 0+) this would require significant excitation energy
and therefore in practice is not expected to occur below the
condensation temperature. The situation is different for the
dimers that are getting weakly bound when approaching the
unitary limit (akF → ±∞) at which their binding energy
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eventually reaches zero. At a certain point, the first An-
dreev state appears inside the core and the density of normal
fermions becomes nonzero in the core. As the strength of the
interaction becomes weaker the system enters into the BCS
regime (akF → 0−) where fermions with opposite spins form
Cooper pairs. In this regime, the density of Andreev states
increases, implying that density of matter in the core reaches
a significant level, comparable with the bulk value [8–10].

Spin imbalance may serve as another degree of freedom
affecting pairing properties in Fermi system. It also affects the
structure of the vortex as the excess of unpaired fermions tend
to accumulate at the core [11,12]. In this paper, we investigate
impact of the spin polarization on the structure of the vortex
in weakly and strongly interacting Fermi superfluid. We find
that the spin imbalance affects the flow inside the vortex core,
leading eventually to its inversion at sufficiently high imbal-
ances. This peculiar phenomenon is presented in Fig. 1, where
we show velocity fields as a function of distance from the core.
The three cases correspond to different amounts of mismatch
between chemical potentials of two spin components �μ =
μ↑ − μ↓. As we increase �μ, the velocity field in the core
is suppressed, and eventually changes direction. In this article
we reveal the origin of the reversed circulation and discuss
its consequences. The effect is relevant for ultracold atomic
systems with spin imbalance at the BCS regime up to the
unitary limit, where quantum vortices were already observed
[13,14] and numerically simulated [15], and also to neutron
stars. Particularly for magnetars that are expected to generate
magnetic field of the order or larger than 1016G [16,17], which
is sufficient to effectively spin polarize neutron matter inside
vortex core [18,19].

II. BdG EQUATIONS FOR SPIN-IMBALANCED
SYSTEM

Our studies rely on Bogoliubov-de Gennes (BdG) formal-
ism. The explicit form of BdG equations for spin-imbalanced
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system reads (no spin-orbit coupling is considered):

H

⎛
⎜⎝

un,↑(r)
un,↓(r)
vn,↑(r)
vn,↓(r)

⎞
⎟⎠ = En

⎛
⎜⎝

un,↑(r)
un,↓(r)
vn,↑(r)
vn,↓(r)

⎞
⎟⎠

H =

⎛
⎜⎜⎝

h↑(r) − μ↑ 0 0 �(r)
0 h↓(r) − μ↓ −�(r) 0
0 −�∗(r) −h∗

↑(r) + μ↑ 0
�∗(r) 0 0 −h∗

↓(r) + μ↓

⎞
⎟⎟⎠,

(1)

where μ↑,↓ are chemical potentials for two spin components.
Single-particle Hamiltonian in the BdG approximation is de-
fined as h↑ = h↓ = − h̄2

2m ∇2. The form of the Hamiltonian
leading to the BdG equations reads:

Ĥ =
∑

σ=↑,↓

∫
dr ψ̂†

σ (r)

[
− h̄2

2m
∇2 − μσ

]
ψ̂σ (r)

+ g

2

∑
σ=↑,↓

∫
drψ̂†

σ (r)ψ̂†
−σ (r)ψ̂−σ (r)ψ̂σ (r) (2)

with coupling constant g. In the BdG equations one usu-
ally omits the mean-field term contributing to h↑ and h↓
and takes into account pairing contribution �↑↓(r) = �(r) =
g〈ψ̂↓(r)ψ̂↑(r)〉 only. Then the formalism is applicable to
weakly interacting (BCS) regime. In more general case, the
single-particle Hamiltonian hσ explicitly depends on the spin
state. For example, asymmetric superfluid local density ap-
proximation (ASLDA), that applies to the unitary Fermi gas
(UFG), provides hσ = ∇ −h̄2

2m∗
σ (p)∇ + Uσ (n, p), where m∗

σ is an
effective mass of particle with spin σ = {↑,↓} that depends

FIG. 1. Evolution of velocity profiles (in units of the Fermi ve-
locity vF = pF /m) as a function of distance from the core (in units
of BCS coherence length ξ ). Calculations were carried out for akF =
−0.84 and correspond to selected chemical potential differences of
two spin states �μ = μ↑ − μ↓. For sufficiently large spin imbalance
the flow in the vortex core exhibits reversed circulation (red line,
circles). Structure of the vortex core for such case is visualized in
the inset: arrows show the direction of the flow, while the color map
displays the density distribution of the fluid. Dashed line corresponds
to velocity profile of an ideal quantum vortex v(r) ∼ 1/r.

on local polarization p(r) = n↑(r)−n↓(r)
n↑(r)+n↓(r) , and U is a mean field,

which depends on the polarization and the total density of par-
ticles n(r) = n↑(r) + n↓(r). For explicit form of the ASLDA
energy density functional and corresponding single-particle
Hamiltonian see Ref. [20]. The pairing gap is related to quasi-
particle wave functions:

�(r) = −geff

2

∑
0<En<Ec

(un,↑(r)v∗
n,↓(r) − un,↓(r)v∗

n,↑(r)), (3)

where geff is a regularized coupling constant and Ec is cutoff
energy scale, see Ref. [20] for details of the regularization
scheme. In the mean-field BdG approximation, the coupling
constant is related to the scattering length (bare coupling
constant is given by g = 4π h̄2a/m) whereas for ASLDA the
coupling constant is fitted to the quantum Monte Carlo data.
The densities nσ and currents jσ of spin components are
constructed as:

nσ (r) =
∑

0<En<Ec

|vn,σ (r)|2 (4)

jσ (r) =
∑

0<En<Ec

Im[vn,σ (r)∇v∗
n,σ (r)]. (5)

The BdG equations (1) decouple into two independent sets:(
h↑(r) − μ �(r)

�∗(r) −h∗
↓(r) + μ

)(
un,↑(r)
vn,↓(r)

)
= En+

(
un,↑(r)
vn,↓(r)

)
,

(6)(
h↓(r) − μ −�(r)
−�∗(r) −h∗

↑(r) + μ

)(
un,↓(r)
vn,↑(r)

)
= En−

(
un,↓(r)
vn,↑(r)

)
,

(7)

where μ = 1
2 (μ↑ + μ↓) denotes mean chemical potential and

En± = En ± �μ

2 with �μ = μ↑ − μ↓. Solutions of Eqs. (6)
and (7) are connected via symmetry relation, namely, if vec-
tor ϕ+ = (un↑, vn↓)T represents a solution of Eq. (6) with
eigenvalue En, then vector ϕ− = (v∗

n↑, u∗
n↓)T is a solution of

Eq. (7) with eigenvalue −En. In practice it is sufficient to
solve Eqs. (6) only (for all quasiparticle energy states), and
then solutions with positive quasiparticle energies contribute
to the spin-down densities, whereas solutions with negative
energies to the spin-up densities. The equations were solved
numerically for selected parameters presented in Table I. The
calculations were executed on spatial three-dimensional (3D)
lattice Nx × Ny × Nz with lattice spacing �x. We considered
straight vortex along z direction, and thus by imposing the
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TABLE I. Characteristic parameters used in the numerical calculations. Nσ stands for particle number of given spin σ . The Fermi wave
vector and Fermi energy are related to density at large distance from the vortex core n∞ as follows kF = √

2mεF /h̄ = (3π 2n∞)1/3. The �∞
stands for the paring gap far from the vortex and defines the coherence length through relation ξ = εF /kF�∞. Chemical potentials for individual
spin components are indicted as μ↑ and μ↓.

BCS UFG
P = N↑−N↓

N↑+N↓
[%] 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Lattice 150×150×32 100×100×80 100×100×120
kF 1.222 0.756 0.510
�∞[εF ] 0.06 0.16 0.53
εF 0.747 0.286 0.130
ξ [�x] 13.7 8.5 3.7
akF −0.61 −0.84 ∞
μ↑[εF ] 1.077 1.089 0.294 0.299 0.026 0.027

1.031 0.279 0.014
μ↓[εF ] 0.986 0.975 0.265 0.260 0.004 0.003

generic form of wave functions ϕ(r) = ϕ(x, y)eikzz the prob-
lem was effectively reduced to collections of 2D problems
(parametrized by quantum number kz). For calculations in
BCS regime we have applied BdG approximation, while for
calculations at the unitarity ASLDA functional has been em-
ployed [20]. The vortex solution was generated by imprinting
technique, i.e., by imposing the particular structure of the
order parameter of the form �(x, y) = |�(

√
x2 + y2)|eiφ with

φ = arctan(y/x). The calculations have been performed using
W-SLDA Toolkit [15,21,22].

Figure 2 presents cross sections through the vortex core
along radial directions for the following quantities: spin-up
n↑(r) and spin-down n↓(r) atoms density, strength of the order
parameter |�(r)|, and the velocity field v(r) = | j(r)|/n(r).
Different lines correspond to different spin-imbalance pop-
ulations measured by chemical potential difference �μ =
μ↑ − μ↓. The lattice formulation of the problem implies the
usage of periodic boundary conditions. In order to remove the
impact of periodicity on the results we placed the system in
the potential well of a given radius R. The external potential
induces the vanishing of the density and the order parameter
close to the boundary of simulation domain. Clearly, the
extracted velocity field is affected close to the boundary and
thereby substantial numerical uncertainties occur in regions
n → 0. However, here we focus on the core properties and the
structure of the vortex in the vicinity of the core is properly
reproduced. In particular, the main effect that is the subject
of the analysis is profoundly visible in Fig. 2(d): the reversed
flow is present for spin-imbalanced solutions.

III. ORIGIN OF REVERSED CIRCULATION

The properties of polarized vortices are determined by the
states in the cores. Their energies, for the unpolarized case,
have been first estimated in Ref. [23]. In the BCS limit, due to
the separation of scales related to pairing (coherence length
ξ ) and single-particle motion (de Broglie wavelength λB),
these states can be conveniently described in the Andreev
approximation [24]. In the unitary regime despite the fact that
chemical potential μ is of the same order as the pairing gap
�, as will be seen below, it can still provide useful qualitative
relations.

In this approximation one decomposes the variation of u
and v components of wave functions [see Eq. (1)] at the
Fermi surface into rapidly oscillating parts associated with kF

and smooth variations governed by the coherence length, i.e.,
u(r) = eikF·rũ(r) with |kF| = kF, and similarly for the v com-
ponent [25]. The Andreev approximation can be also used for
studies of spin-imbalance systems, providing the local polar-
ization is relatively weak �μ = μ↑ − μ↓ � 1

2 (μ↑ + μ↓) ≈
εF = k2

F/2. For the reasons presented in Sec. II we will focus
only on one set of BdG equations, which in Andreev approxi-
mation describing states close to the Fermi surface acquire the
form (we set h̄ = m = 1):(−ikF · ∇ �(r)

�∗(r) ikF · ∇
)(

ũn,↑(r)
ṽn,↓(r)

)
= Ẽn+

(
ũn,↑(r)
ṽn,↓(r)

)
, (8)

where Ẽn+ = En+ + �μ

2 . The second pair of equations for
ũn,↓(r) and ṽn,↑(r) has similar form and correspond to Ẽn− =
En− − �μ

2 . One may consider a schematic structure of a vor-
tex core defined by the pairing field �(r) expressed in the
polar variables (ρ, φ): �(ρ, φ) = |�|eiφθ (ρ − rv ) (counter-
clockwise rotating vortex), where θ is Heaviside step function.
Ignoring for the moment the degree of freedom along the
vortex axis (2D case), one may solve Eqs. (8) and arrive
at the quantization conditions associated with the trajectory
of angular momentum Lz (detailed derivation is provided in
Appendix A):

Ẽn+
εF

kFrv

√
1 −

( Lz

kFrv

)2

+ arccos
(−Lz

kFrv

)
−

− arccos
Ẽn+
|�| = πn, (9)

where n ∈ {0,±1,±2, . . . }, rv denotes radius of the vortex
core, and |Lz| = ρkF. Note that only the states with n = 0 cor-
respond to core states, i.e., E±,n=0 � |�|. The limit |E |

|�| � 1
can be quite accurately approximated by the expression:

E±,n=0,m ≈ − |�|2
εF

rv

ξ

( rv

ξ
+ 1

)m ∓ �μ

2
, (10)

where m is the magnetic quantum number associated with
Lz = h̄m, pointing along the vortex axis and ξ = εF

kF|�| is a
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FIG. 2. Cross sections through the vortex core of various quantities presented as a function of radial direction for BCS (a)–(h) and UFG
(i)–(l) regimes, respectively. Densities n↑,↓(r) (first two columns) and order parameter |�(r)| (third column) are normalized to their bulk values,
while velocity field v(r) is normalized to its maximal value (last column). The velocity profile is computed as v(r) = ( j↑(r) + j↓(r))/(n↑(r) +
n↓(r)). In each case, for the velocity profile we recover expected dependence v(r) ∼ 1/r for large distances (except regions where n → 0, due
to large numerical uncertainties).

coherence length. The energy of the first Andreev state in
spin-symmetric case (�μ = 0), known as the minigap, is
recovered when taking rv = ξ : E0 = |�|2/2εF [26]. Since
the vortex rotates counterclockwise (generating the flow with
positive angular momentum along z axis Lz > 0) for an un-
polarized vortex (�μ = 0), the negative energies E±,n=0,m

correspond to quasiparticles rotating in the same direction.
In the case of nonzero spin imbalance, the two degenerate
branches, corresponding to different spins, become shifted
with respect to each other by the value �μ. Consequently,
part of the branch of majority spin particles corresponds to
states with the opposite value of Lz. The condition E ≈ 0
sets the limit for the maximum value of the opposite angular
momentum generated by the majority spin particle:

max |mopposite| ≈ 1

2

εF

|�|2
rv

ξ

(
rv

ξ
+ 1

)
�μ. (11)

In Fig. 3(a) we present comparison of Eq. (10) originated
from Andreev approximation and results of direct numerical
solution of BdG equations (see Sec. II) for the BCS regime.
Clearly, the formula reveals satisfactory agreement with data
when parameter rv is set to be approximately ξ .

The reversed total flow arises due to the cancellation effect
of negative and positive contributions to angular momentum
Lz inside the core. To demonstrate this let us consider first

the spin-symmetric system. In Fig. 3(b) we present contri-
bution to the current in the core (r � ξ ) coming from states
forming chiral branch only (E±,n=0,m < �) and contrast it
with the total current. For a better visibility, the currents are
expressed in units of maximal total current. One may notice
that contribution from the chiral band already exceeds the total
current, which is due to the fact that they are formed by the
states having angular momenta coinciding with the vortex,
and therefore are the closest to the Fermi surface. Whereas
the states with other values of angular momenta are shifted
up in energy. Thus the current arising from the higher-energy
states, En > �, must have reverted circulation.

In the case of spin-imbalanced scenario occupation of the
states with opposite angular momentum in the core practically
cancels current arising from their positive counterparts.1 Since
states with small m are localized close to the core, the net
current carried by the chiral states almost vanishes there, see
Fig. 3(c). In this way, the reversed current produced by non-
Andreev states is revealed. To some extent, the cancellation

1To be precise the cancellation is not exact and a small reversed
current is produced due to larger occupations of states with opposite
angular momentum. This is a consequence of the opposite slope of
the bands corresponding to positive and negative angular momenta.
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FIG. 3. (a) Quasiparticle energies Em of states in the core as a
function of magnetic quantum number m for selected spin imbal-
ances of the system. The energies are expressed in units of paring
field far away from the vortex core �∞ (bulk value). The points are
extracted as numerical solution of BdG equations for BCS regime
akF = −0.84, while (dashed) lines display prediction of Eq. (10)
with rv = 0.86ξ . The BdG equations were solved numerically in
three dimensions, but only states with wave vector along the vortex
line kz = 0 are shown (see Sec. II for details). (b) and (c) display
comparison of currents, generated by subgap states (filled symbols)
and all states (open symbols): for spin-symmetric system �μ/εF =
0 (b) and for spin-imbalanced system �μ/εF = 0.14 (c). In both
cases the currents are normalized to the maximal value of the cor-
responding total current.

effect observed here is similar to an effect resulting with
the reversion of a supercurrent in a controllable Josephson
junctions [27–29], which is due to the occupation pattern of
Andreev states.

We note also that, qualitatively, the same effect of reversed
circulations is observed in a strongly interacting regime, with
the only difference that the density of Andreev states is lower
in this case (see discussion of Fig. 4). The calculations for
strong interactions (unitary regime) were carried out within
ASLDA framework [20]. The ASLDA calculations were also
conformed with experimental data [14] revealing remarkable
agreement, and indicating that the vortices with polarized
cores were already created in the laboratory [30]. We point out
that the effect gets stronger as we tune the interaction strength
towards the deep BCS regime. For example for akF ≈ −0.6
the reversed flow in the core has the magnitude comparable
to the maximum value of the current outside the core, see
Fig. 2(d). One has to emphasize that increasing spin polar-
ization even more may eventually lead to spatial modulation
of the order parameter, even in the core, which represent a
qualitatively different regime [31].

IV. FLAT BANDS AND EFFECTIVE MASS

The straight vortex admits the solution in the form of plane
waves along the vortex line, which we choose to be the z
axis: ϕ(x, y)eikzz. A peculiarity of Andreev reflection, how-
ever, leads to the significant suppression of the motion along
the vortex core. In the pure Andreev scheme, the quasiparticle
at the Fermi surface is reflected exactly backward and thus,

FIG. 4. Quasiparticle energies of the spin-symmetric system for
different m states as a function of momentum kz along the vortex
line. In the top half (positive energies) we show results for the BCS
regime (akF = −0.84), while in the bottom half (negative energies)
we provide results for the UFG. In the insets we display probability
of the state to be occupied by the particle

∫ |v↑/↓(r)|2dr, respectively
for each case. Its value at level ≈0.5 for k < kF indicates that these
states are superpositions of particles and reflected holes, as expected
for the Andreev states.

except the case of a particle moving exactly in the direction
of the vortex line, it will be localized not only within a plane
perpendicular to the vortex core, but also along the vortex line.
The manifestation of this behavior will result in almost flat
bands E (kz ) ∝ const for kz � kF. This oversimplified result
is, however, modified by the fact that the particles within a
core are not exactly at the Fermi surface and, in particular, the
departure from the Fermi energy by the value of the minigap
E0 leads to a creeping motion along the vortex line. In this case
the particle moving within the core are subject to the Andreev
reflection law:

√
εF + E sin α = √

εF − E sin β, where α and
β are angles of trajectories for incident particle and reflected
hole, respectively [25,32], and E is the quasiparticle energy.
Considering a series of Andreev reflections in a tube of radius
rv = ξ , we derive the relation between effective velocity of a
particle (hole) and momentum kz along the vortex line, which
reads (see Appendix A for details):

vz = kz

√
k2

p − k2
z −

√
k2

h − k2
z√

k2
p − k2

z +
√

k2
h − k2

z

, (12)

where kp = √
2(εF + E ) and kh = √

2(εF − E ). The above
formula estimates the relation for the effective mass of
the particle along the vortex axis. Namely, considering
the linear term in kz and E on the right-hand side one
gets: M−1

eff ≈ E/2εF . Note that this result agrees with the
effective mass derived as M−1

eff = 1
kz

dE (kz )
dkz

|kz=0 from the for-
mula for the dispersion relation in the BCS limit: E (kz ) =
E (0)/

√
1 − k2

z /(2εF ) [23]. Consequently one may easily es-
timate the magnitude of the effective mass component along
the vortex line corresponding to angular momenta Lz = h̄m:
M−1

eff (m) ≈ 2|m|
3 ( �

εF
)2. In the deep BCS limit, the inverse of

the effective mass will be exponentially small since �/εF ∝
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eπ/2akF , and clearly the departure from the flat band behavior
will be significant at the unitarity where �/εF ≈ 0.5.

The shape of the bands in the BCS limit and at the unitary
regime, are shown in the Fig. 4. As expected in the BCS
regime, the obtained quasienergies form the flat bands for k <

kF. At unitarity, the flatness is less pronounced, which reflects
the importance of corrections beyond the Andreev approxi-
mation. In order to demonstrate this fact, let us consider BdG
equations for the straight vortex: H (kz )ϕn(r) = En(kz )ϕn(r),
where ϕn = (un,↑, vn,↓)T and r = (x, y). The Hamiltonian is
given as:

H =
(

h2D(r) + 1
2 k2

z − μ↑ �(r)
�∗(r) −h∗

2D(r) − 1
2 k2

z + μ↓

)
, (13)

where h2D describes the 2D part of the single-particle Hamil-
tonian. The quasiparticle energy can be computed as En(kz ) =∫

ϕ†
n (r)Hϕn(r)d2r. Thus, the departure from the flat band be-

havior is due to the fact that dEn
dk2

z
≈ ∫

(|un(r)|2 − |vn(r)|2)d2r,
where we have disregarded the dependence of � on kz, which
is marginal. Clearly, in the pure Andreev scheme, the integral
is exactly zero as the Andreev states are composed of particles
and holes in equal proportions. It is also obvious that the
flatness of the band is effective until kF is reached beyond
which E ∝ k2

z limit is reproduced. In the insets of Fig. 4, the
occupation probabilities are shown. The correlation between
the departure from the occupation number 1/2 and the shape
of the band is clearly visible.

The band flatness resulting in the increase of the effective
mass is going to affect the propagation of the confined polar-
ization along the vortex core. Namely, in the case of inducing
locally polarization of the core, which may occur, e.g., during
the reconnection or collision with a polarized vortex [33], it
will propagate along the vortex line. If the local polarization
is essentially of 1-quasiparticle nature, the excitations of the
pairing field and spin waves can be neglected. Consequently,
the propagation along the vortex line will occur simply due
to the motion of the wave packet composed of Andreev states
carrying spin excess particles. The propagation will thus occur
with velocity vz = k0/Meff ∝ k0( �

εF
)2, where k0 is the initial

momentum of the wave packet. Similarly the wave packet
width in the limit of long times behaves as

√
〈(z − vzt )2〉 ∝

t ( �
εF

)2 and leads to an effective suppression of the polarization
propagation, see Appendix B for the full derivation.

V. CLASSIFICATION OF POLARIZED VORTICES

The presence of the polarization in the vortex core leads
inevitably to disappearance of the minigap at certain points of
the Fermi surface. It can be seen by examining the spectrum
of the Hamiltonian (13). The spin imbalance generates the
relative shift of states corresponding to different spins, and
thus the spectrum is not symmetric with respect to E = 0 and
has a different number of positive and negative energy states.
On the other hand, in the limit of large momentum component
k2

z � μ↑,↓, the spectrum becomes fully symmetric with the
same number of positive and negative eigenvalues. Therefore,
one may infer that for certain values of kz = ±kz1,±kz2, . . .

the spectrum will contain the zero eigenvalues E (±kzi ) = 0,
which correspond to the quasiparticle configuration change.

FIG. 5. Quasiparticle energies of states corresponding to differ-
ent m values as a function of momentum along the vortex line kz. The
results are obtained for spin-imbalanced system with �μ = 0.14 εF

in the BCS regime akF = −0.84. The purple dots on E = 0 axis indi-
cate positions of a level crossing, where the configuration changes by
�m = |2m − 1|. For a better visibility, the negative energy states of
E− branch are shown as positive and the energy levels are not plotted
around the crossing point. The inset presents the classification of the
polarized vortices based on the number of Fermi circles where the
minigap vanishes.

Precisely, when changing the energy from negative to positive,
the particle state v↑ with momentum m is converted into hole
state u↑ with momentum −m + 1, i.e., the state that rotates in
opposite direction and is shifted by unit of angular momentum
with respect to v↓ state. Thus, at the crossing the configuration
change by �m = |2m − 1| occurs. This effect is presented on
Fig. 5 for spin-imbalanced Fermi gas in the BCS regime.

Since the number of quasiparticle crossings is well defined
for a polarized vortex, one can use the number of crossings
through the E = 0 level to classify the vortices in spin-
polarized Fermi systems. Namely, for spin-symmetric vortex,
the number of crossings is zero. Polarizing the vortex is equiv-
alent to introducing a series of crossing at the Fermi surface,
i.e., points for which minigap vanishes. As a consequence, the
Fermi sphere will acquire a peculiar structure, consisting of
rings which separate regions differing by a peculiar quasipar-
ticle excitation pattern, see inset of Fig. 5 for illustration.

VI. SUMMARY

We have shown that polarized vortices in Fermi superfluid
acquire a peculiar structure with a reversed circulation inside
the core. Their structure admits the vanishing minigap with a
characteristic pattern of single-quasiparticle level crossings at
the Fermi surface. It is also predicted that the dynamics along
the vortex line of spatially localized polarization inside the
core will be suppressed. Bragg spectroscopy technique may
provide experimental signatures of reversed flow [34,35], see
also Appendix C.
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APPENDIX A: ANDREEV STATES IN THE CORE
OF POLARIZED VORTEX

The Andreev approximation assumes separation of two
length scales: k−1

F � ξ (ξ = εF
kF|�| being coherence length).

It clearly holds in deep BCS regime and then also μ ≈
εF = h̄2k2

F
2m is satisfied. The components of quasiparticle wave

functions attain generic form ϕ(r) = eikF·rϕ̃(r). Action of the
Hamiltonian (h − μ)ϕ simplifies to:(

− h̄2

2m
∇2 − μ

)
ϕ(r) ≈ eikF·r

(
− ih̄

m
kF · ∇ϕ̃(r)

)
, (A1)

where the term proportional to ∇2ϕ̃ is neglected, due to as-
sumption of slow variation of the function ϕ̃ over the length
scale k−1

F . Inserting (A1) into (6) one arrives at Eq. (8) from
the main paper (we set units: h̄ = m = 1):(−ikF · ∇ �(r)

�∗(r) ikF · ∇
)(

ũn,↑(r)
ṽn,↓(r)

)
= Ẽn+

(
ũn,↑(r)
ṽn,↓(r)

)
, (A2)

where Ẽn+ = En+ + �μ

2 . The second pair of equations for
ũn,↓(r) and ṽn,↑(r) has similar form and correspond to Ẽn− =
En− − �μ

2 :(−ikF · ∇ −�(r)
−�∗(r) ikF · ∇

)(
ũn,↓(r)
ṽn,↑(r)

)
= Ẽn−

(
ũn,↓(r)
ṽn,↑(r)

)
, (A3)

In the case of the schematic vortex core structure in the form
�(r) = �(ρ, φ) = |�|eiφθ (ρ − rv ) (counterclockwise rotat-
ing vortex) one arrives at the quantization condition from
Eq. (A2) (see Fig. 6):

Ẽn+
εF

kFrv

√
1 −

(y0

rv

)2
+ arccos

(y0

rv

)
−

− arccos
Ẽn+
|�| = πn, (A4)

where n = 0,±1,±2, . . .. Introducing the angular momen-
tum component Lz = −y0kF one gets:

Ẽn+
εF

kFrv

√
1 −

( Lz

kFrv

)2

+ arccos
(−Lz

kFrv

)
−

− arccos
Ẽn+
|�| = πn. (A5)

In the limit of |y0/rv| � 1 and |Ẽn+/�| � 1 the equation
simplifies to:

Ẽ+ ≈ − |�|2
εF

rv

ξ

( rv

ξ
+ 1

)Lz, (A6)

FIG. 6. Schematic picture of the vortex core used for determi-
nation of states in Andreev approximation. The classical trajectory
representing particle of momentum kF is denoted by red solid line,
and reflected hole is shown as brown dashed line. Note that the
angular momentum component Lz corresponding to the trajectory is
negative.

where only the lowest-energy branch corresponding to n = 0
is considered. Note that the minus sign appears as a result of
counterclockwise rotation of the superflow. The other solution
corresponding to Eq. (A3) can be obtained by noting that
they are equivalent to complex conjugate solutions of (A2)
with relation E− = −E+. Therefore the particle momentum is
reversed kF → −kF and consequently Lz → −Lz. As a result
one arrives at Ẽ− = Ẽ+. In the case of spin-polarized system
the solutions are shifted with respect to each other by �μ.
Note that the energies corresponding to the highest angular
momenta in the core are of the order of |�|. Namely, for the
maximum Lz = ∓kFrv one gets Ẽ± = ±|�|, respectively.

In order to extract the effective mass in the Andreev ap-
proximation one needs to consider particle (hole) motion
along the vortex line. Due to the properties of Andreev re-
flection the problem reduces to 2D problem, see Fig. 7.
Contrary to the quantization condition, which resulted from
the assumption that the hole (particle) is reflected exactly
backward (which is true if the incoming particle (hole) is
exactly at the Fermi surface), here one needs to take into
account more general case. Namely, as a result of mo-
mentum conservation along the vortex line the reflection

FIG. 7. Schematic picture of the section through the vortex core
used for determination of the effective mass along the vortex line.
The classical trajectory representing particle of momentum kp is
denoted by red solid line, and reflected hole of momentum kh is
shown as brown dashed line.
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law reads:
√

εF + E sin α = √
εF − E sin β, where kp =√

2(εF + E ) and kh = √
2(εF − E ), are particle and hole mo-

menta, respectively. The effective velocity along the vortex
line can be defined as v = S/T , where S denotes the dis-
tance between two consecutive reflections where particle is
converted into hole (see Fig. 7), and T is the time inter-
val between these reflections. Consequently one gets: v =√

2(εF + E ) sin α sin(β − α)/ sin(β + α). Using the reflec-
tion law this relation can be rewritten as:

vz = kz

√
k2

p − k2
z −

√
k2

h − k2
z√

k2
p − k2

z +
√

k2
h − k2

z

, (A7)

where kz = kp sin α = kh sin β is the momentum component
along the vortex line. Note that the expression does not depend
on the core radius and therefore in the Andreev approximation
all bands originated from states (A6) will have the same slope.
Andreev approximation in practice is expected to work for
small |Lz| � kFrv and small kz � kF (small angles of reflec-
tion) as is shown in the paper.

APPENDIX B: WAVE PACKET EXCITATION IN THE
VORTEX CORE

Let us consider an unpolarized vortex of length L. The
Hamiltonian describing the structure of the vortex core reads:

Ĥ = L

2π

∫
dkz

∑
m>0

[
Em↑(kz )α†

m↑(kz )αm↑(kz )

+ Em↓(kz )α†
m↓(kz )αm↓(kz )

]
, (B1)

where for kz/kF � 1: Em↑↓(kz ) ≈ �m + 1
2Meff

k2
z with � being

proportionality coefficient between energy and quantum num-
ber m = Lz/h̄ in Eq. (A6) and

α
†
m↑↓(kz )

=
∫

d3reikzz(vm(ρ)eimφa↓↑(r) + um(ρ)ei(m−1)φa†
↑↓(r)).

(B2)

One quasiparticle excitation within a band formed by states
with well-defined m value can be constructed in the standard
way:

|k0m ↑↓〉

= 1√√
2πσ

∫
dkz exp

(
− (kz − k0)2

4σ 2

)
α

†
m↑↓(kz )|0〉 (B3)

and clearly 〈k0m ↑↓ |k0m ↑↓〉 = 1. The wave packet excita-
tion change the spin polarization by unity, since, e.g., 〈k0m ↑
|(N̂↑ − N̂↓)|k0m ↑〉 − 〈0|(N̂↑ − N̂↓)|0〉 = 1, where N̂↑, N̂↓
are particle number operators for spin-up and spin-
down particle, respectively. The evolution of this wave
packet: |k0m ↑↓, t〉 = exp(−iĤt )|k0m ↑↓〉 gives rise to the

relations:

〈z〉 = 〈k0m ↑↓ |z|k0m ↑↓〉 = k0

Meff
t (B4)√

〈
(

z − k0

Meff
t

)2

〉 = 1

2σ

√(
2

σ 2

Meff
t

)2

+ 1 ≈ σ

Meff
t (B5)

for long times: t � Meff
2σ 2 .

APPENDIX C: IMPACT OF REVERSED CIRCULATION
ON BRAGG SCATTERING

Reversed circulation is manifested as a change in the col-
lective motion of atoms in a condensate. Bragg spectroscopy
can be a promising tool for the investigation of this effect.
Below we present qualitative arguments supporting the de-
sign of the Bragg scattering experiment, omitting the issue
if current experimental capabilities allow sufficiently accurate
measurements.

Bragg scattering experiments were successfully employed
to investigate fermionic condensates [36,37] as well as to
probe quantum vortices in BEC [38,39]. In a typical setup of
the experiment two laser beams (having certain frequency dif-
ference ω) are generated, crossing each other inside the atomic
cloud. They produce a standing wave moving in the labora-
tory frame and thus inducing Bragg scattering of the atomic
cloud. Namely, crossing laser beams form an effective optical
potential Vopt ∝ cos(q · r − ωt ) acting on a gas [34,40]. As a
result, energy h̄ω and momentum q are transferred to an atom
through the two-photon scattering process.

The resonant Bragg scattering occurs under condition:

h̄ω = h̄2q2

2m
+ q · v

h̄
, (C1)

where v denotes velocity of an atom. In the above expres-
sion we assumed that the dispersion relation for an atom
in the cloud is the same as for noninteracting particle (see,
e.g., Refs. [35,37,38]), although more realistic expression
can be employed as well. The second term is crucial in this
case as it makes Bragg scattering process sensitive to lo-
cal atomic velocity. In the case of ultracold Fermi gas with
vortex line, we define the velocity field through ratio of the
probability current and the density v(r) = j(r)/n(r), which
corresponds to expectation value of single atom velocity. Note
that Bragg scattering process selects in this case group of
atoms from a particular part of the system where the condition
holds:

h̄(ω − δ(r)) = h̄2q2

2m
. (C2)

with h̄δ(r) = q · v(r)/h̄. The quantity δ(r) is shown in Fig. 8
for vortex with and without reversed flow. The figure reveals
qualitative and quantitative changes of resonant frequency
distribution due to the reversed circulation.

As an experimental signal one can use density distribution
of scattered atoms [36,38,39]. Due to the sensitivity of Bragg
scattering process on the local flow velocity the presence
of reversed circulation should induce a significant modifica-
tion in the density distribution. Consequently we expect that
the density distributions corresponding to spin unpolarized
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FIG. 8. Color maps are showing the relative change in Bragg scattering resonance frequency distribution δ(r)/δmax due to velocity of atoms
for spin unpolarized (BCS, P = 0%) and spin polarized systems (BCS, P = 0.5%), in (a) and (b), respectively. In this particular setup we chose
q to be aligned along x axis of the system (while vortex is oriented along z axis). The quantity is normalized to its maximal value δmax for
unpolarized case. Vector field related to the vortex v(r) is indicated by arrows. In the insets we show corresponding velocity profiles as a
function of distance from the vortex core obtained numerically (solid line). The ideal quantum vortex velocity profile v(r) ∼ 1/r is marked by
dashed line.

and polarized vortex can be distinguished. We emphasize
that more refined study of Bragg scattering intensity and the

density distribution evolution for given q, ω is required in
order to settle if such measurements are feasible.
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