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Feasibility of a Fulde-Ferrell-Larkin-Ovchinnikov superfluid Fermi atomic gas
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We theoretically explore a promising route to achieve the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in
a spin-imbalanced ultracold Fermi gas. In the current stage of cold atom physics, search for this exotic Fermi
superfluid is facing two serious difficulties: One is the desperate destruction of the FFLO long-range order
by FFLO pairing fluctuations, which precludes entering the phase through a second-order transition, even in
three dimension. The other is the fierce competition with the phase separation into the BCS (Bardeen-Cooper-
Schrieffer) state and the spin-polarized normal state. By including strong FFLO pairing fluctuations within the
framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that the anisotropy
of Fermi surface introduced by an optical lattice makes the FFLO state stable against the paring fluctuations. This
stabilized FFLO state is also found to be able to overcome the competition with the phase separation under a
certain condition. Since the realization of unconventional Fermi superfluids is one of the most exciting challenges
in cold atom physics, our results would contribute to the further development of this field.
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I. INTRODUCTION

Recent successive experimental reports in condensed-
matter physics on the observation of the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [1–5] in various materials, such
as heavy fermion compounds CeCoIn5 [6–8] and CeCu2Si2

[9], organic conductor κ-(BEDT-TTF)2Cu(NCS)2 [10–12], as
well as Fe-based superconductors KFe2As2 [13] and FeSe
[14,15], have stimulated the search for this exotic pairing
state in cold Fermi gas physics [16–20]. Since the FFLO
state has also been discussed in superfluid liquid 3He under
confinement [21–25], chiral condensate in high-density QCD
(quantum chromodynamics) systems [26–29], nuclear matter
(proton superconductors and neutron superfluids) [30–32], as
well as nonequilibrium systems [33–38], once a FFLO super-
fluid Fermi atomic gas is realized, it is expected to be used as
a quantum simulator for the study of these various systems, by
using the high tunability of atomic gases. At present, although
a consistent phase diagram with the presence of the FFLO
state has been reported in a quasi-one-dimensional 6Li Fermi
gas [39], there is no experimental evidence that the FFLO
superfluid is really realized there.

The FFLO state is characterized by a spatially oscillating
superfluid order parameter (which is symbolically written as
�eiQ·r), reflecting the nonzero center-of-mass momentum Q
of the FFLO Cooper pair [1–5]. Because of this unique pairing
structure, the FFLO superfluid is weak against nonmagnetic
impurity scatterings, which is in contrast to the ordinary
s-wave BCS (Bardeen-Cooper-Schrieffer) state (Anderson’s
theorem) [40]. Thus, as a difficulty of realizing the FFLO
state, one needs to prepare a very clean sample. Indeed, the
above-mentioned materials all satisfy this condition [6–15]. In
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addition, in metallic superconductivity, to stabilize the FFLO
Cooper pairs with nonzero Q, the misalignment of the Fermi
surfaces between ↑-spin and ↓-spin electrons is tuned by the
Zeeman effect under an external magnetic field above the
Chandrasekhar-Clogston limit (where the ordinary uniform
BCS state no longer exists) [41,42]. However, such a strong
magnetic field is known to also cause the orbital effect [43],
which mixes the FFLO and the Abrikosov vortex states. This
makes the realization of the pure FFLO state difficult, espe-
cially in three dimensions.

Ultracold Fermi gases are free from the above-mentioned
difficulties: (1) This system has no impurity. (2) The mis-
alignment of two Fermi surfaces can be realized by simply
imposing spin imbalance on the system, which is nothing to do
with the unwanted orbital effect. Thus, at a glance, ultracold
Fermi gases look very suitable for the FFLO state.

However, the search for the FFLO-superfluid Fermi gas
in cold atom physics is also facing the following other
serious problems: The first one is that the second-order
phase transitions into both Fulde-Ferrell-type [�(r) = �eiQ·r]
and Larkin-Ovchinnikov-type [�(r) = � cos(Q · r)] states
are known to be completely suppressed by pairing fluctua-
tions at nonzero temperatures [44–51]. A similar instability
phenomenon is also known in the ordinary BCS state in
one and two dimensions (which is sometimes referred to
as the Hohenberg-Mermin-Wagner theorem in the literature
[52,53]). However, in the FFLO case it occurs even in three
dimensions [54].

This anomalous instability of the FFLO state originates
from the spatial isotropy of an ultracold Fermi gas [44–51]:
When the system possesses such a continuous rotational sym-
metry in space, the FFLO state in this system is infinitely
degenerate with respect to the direction of the FFLO Q vector.
This degeneracy remarkably enhances FFLO pairing fluctua-
tions to completely destroy the FFLO long-range order [55].
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Roughly speaking, in the case of the ordinary BCS state at
the superfluid phase transition temperature Tc, effects �fluct

of low-energy pairing fluctuations on system properties are
symbolically written as

�fluct ∼
∫ qc

0
qD−1dq

1

|q|2 , (1)

where qc is a momentum cutoff. Equation (1) converges when
the system dimension D is larger than 2, indicating the oc-
currence of the superfluid phase transition. In the FFLO state
with Q �= 0, on the other hand, Eq. (1) is replaced by [45]

�fluct ∼
∫ qc

0
qD−1dq

1

[|q| − |Q|]2
, (2)

which always diverges irrespective of the system dimension
D, leading to the vanishing superfluid phase transition. We
briefly note that a similar instability is also discussed in
inhomogeneous chiral condensations in high-density QCD
[56–61].

The second problem is the phase separation [62–64]. In-
deed, instead of the desired FFLO state, phase separation into
the BCS state and the spin-polarized normal state has so far
only been observed in spin-imbalanced Fermi gases [65–69].

The purpose of this paper is to explore a promising route to
reach the FFLO superfluid Fermi atomic gas, overcoming the
above-mentioned two obstacles. To describe effects of strong
FFLO pairing fluctuations, we extend the strong-coupling
theory developed by Nozières and Schmitt-Rink (NSR) [70]
to the case with spin imbalance. To remove the continuous
rotational symmetry from a Fermi gas, we consider the case
when the gas is loaded on a three-dimensional cubic optical
lattice. We then examine how the FFLO state revives by the
suppression of FFLO pairing fluctuations when the contin-
uous rotational symmetry of the system is replaced by the
discrete fourfold one in the cubic optical lattice. Within the
same strong-coupling scheme, we also examine whether or
not the FFLO state that is stabilized by the optical lattice can
also survive the competition with the phase separation. We
briefly note that the importance of removing the continuous
rotational symmetry from the system to stabilize the FFLO
state has been pointed out [44–51]; however, to our knowl-
edge the quantitative assessment of this idea, as well as the
competition between the stabilized FFLO state and the phase
separation, have not explicitly been examined yet.

This paper is organized as follows. In Sec. II we explain
how to extend the NSR theory to a spin-imbalanced lattice
Fermi gas. We show our results in Sec. III. Here we first
examine how the optical lattice stabilizes the FFLO state.
We then study the competition between the stabilized FFLO
state and the phase separation. Throughout this paper we set
h̄ = kB = 1, and the system volume V is taken to be unity, for
simplicity.

II. FORMULATION

A. Model Hamiltonian

We consider a two-component spin-imbalanced Fermi gas
loaded on a three-dimensional cubic optical lattice. To model
this system, we employ the attractive Hubbard Hamiltonian

[17,71],

Ĥ = −
∑
i, j,σ

ti, j ĉ
†
i,σ ĉ j,σ − U

∑
i

n̂i,↑n̂i,↓ −
∑
i,σ

μσ n̂i,σ . (3)

Here ĉi,σ is the annihilation operator of a Fermi atom at the
ith lattice site, and n̂i,σ = ĉ†

i,σ ĉi,σ is the number operator,
where the pseudospin σ =↑,↓ describes two atomic hyper-
fine states. −ti, j is the hopping matrix element between the ith
and jth sites. In this paper the particle hopping is assumed to
occur between the nearest-neighbor (NN) sites (−ti, j = −t),
as well as between the next nearest-neighbor (NNN) sites
(−ti, j = −t ′). The on-site pairing interaction −U (< 0) is as-
sumed to be tunable by adjusting the threshold energy of a
Feshbach resonance [72]. μσ is the Fermi chemical potential
in the spin-σ component. In this paper we ignore effects of a
harmonic trap, for simplicity [73–77].

For later convenience, we divide the model Hamiltonian in
Eq. (3) into the sum Ĥ = ĤMF + ĤFL of the mean-field part
ĤMF and the fluctuation part ĤFL. The former has the form

ĤMF = −
∑
i, j,σ

ti, j ĉ
†
i,σ ĉ j,σ −

∑
i,σ

μ̃σ n̂i,σ

−
∑

i

[
�iĉ

†
i,↑ĉ†

i,↓ + �∗
i ĉi,↓ĉi,↑ − �H

↑ �H
↓

U
− |�i|2

U

]
.

(4)

Here,

μ̃σ = μσ − �H
σ (5)

is the effective Fermi chemical potential in the spin-σ compo-
nent, and

�i = U 〈ĉi,↓ĉi,↑〉MF, (6)

�H
σ = −U 〈n̂i,−σ 〉MF, (7)

are the superfluid order parameter and the Hartree energy,
respectively. In Eqs. (6) and (7), the average 〈· · ·〉MF is taken
for the mean-field Hamiltonian ĤMF in Eq. (4), and −σ means
the opposite spin component to σ . In this paper we assume
a uniform particle density so that Eq. (7) has no site depen-
dence. For the superfluid order parameter �i in Eq. (6), we
consider the Fulde-Ferrell (FF) type [1,3–5],

�i = �eiQ·Ri , (8)

where Ri is the spatial position of the ith lattice site, and � is
taken to be positive real, without loss of generality.

We note that Eq. (4) has two kinds of mean fields, that is,
superfluid order parameter �i and the Hartree term �H

σ . (This
type of theoretical framework is sometimes referred to as the
BCS-Stoner theory in the literature [78–81].) The reason for
the appearance of the latter is that we are dealing with the
single-band Hubbard model with a finite bandwidth. In the
case without optical lattice nor high-energy cutoff, the Hartree
term is known to vanish [82,83],

In momentum space, the mean-field Hamiltonian ĤMF

in Eq. (4) is written as, by using the FF superfluid order
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parameter in Eq. (8),

ĤMF =
∑

k

�̂
†
k

[
ξ̃ s

k,Qτ3 + ξ̃ a
k,Q − �τ1

]
�̂k

+
∑

k

[
ξ̃−k+Q/2,↓ + �H

↑ �H
↓

U
+ �2

U

]
. (9)

Here,

�̂k =
(

ĉk+Q/2,↑

ĉ†
−k+Q/2,↓

)
(10)

is the two-component Nambu field [84], and τi (i = 1, 2, 3)
are corresponding Pauli matrices acting on particle-hole
space. In Eq. (9),

ξ̃ s
k,Q = 1

2 [ξ̃k+Q/2,↑ + ξ̃−k+Q/2,↓], (11)

ξ̃ a
k,Q = 1

2 [ξ̃k+Q/2,↑ − ξ̃−k+Q/2,↓], (12)

where ξ̃k,σ = εk − μ̃σ is the kinetic energy of a Fermi atom,
measured from the effective chemical potential μ̃σ given in
Eq. (5). The single-particle energy εk is given by

εk = − 2t
∑

α=x,y,z

cos(kα ) − 4t ′[cos(kx ) cos(ky)

+ cos(ky) cos(kz ) + cos(kx ) cos(kz )]. (13)

Here the lattice constant is taken to be unity, for simplicity.
The fluctuation part ĤFL of the Hamiltonian Ĥ = ĤMF +

ĤFL has the form, in momentum space,

ĤFL = −U
∑

q

ρ̂+(q)ρ̂−(−q). (14)

Here ρ̂±(q) = [ρ̂1(q) ± iρ̂2(q)]/2 are the generalized density
operators [85,86], where

ρ̂α=1,2(q) =
∑

k

�̂
†
k+q/2τα�̂k−q/2 (15)

physically describe amplitude (α = 1) and phase (α = 2)
fluctuations of the superfluid order parameter around the
mean-field value �.

B. Hartree-shifted Nozières-Schmitt-Rink (HNSR) theory

Following the standard NSR approach, we treat ĤHF in
Eq. (9) as the nonperturbative Hamiltonian, to perturbatively
include ĤFL in Eq. (14) within the Gaussian fluctuation level
[85–90]. In the present case, one difference from the ordi-
nary NSR case is that the nonperturbative part ĤMF already
involves the Hartree corrections �H

σ . In this section we explain
how to construct this “Hartree-shifted” NSR (HNSR) theory
for a spin-imbalanced lattice Fermi gas.

1. Mean-field part

For the nonperturbative part ĤMF, the corresponding 2 × 2
matrix single-particle thermal Green’s function has the form
[84–86]

G(k, iωn) = 1

iω − ξ̃ a
k,Q − ξ̃ s

k,Qτ3 + �τ1

=
[
iω − ξ̃ a

k,Q

] + ξ̃ s
k,Qτ3 − �τ1[

iω − ξ̃ a
k,Q

]2 − Ẽk,Q

, (16)

where Ek,Q =
√

(ξ̃ s
k,Q)2 + �2 , and ωn is the fermion Matsub-

ara frequency. Using Eq. (16), we can evaluate the magnitude
� of the FF superfluid order parameter in Eq. (8), as well as
the Hartree energies �H

σ in Eq. (7), as, respectively,

� = UT
∑
k,ωn

G12(k, iωn)

= U
∑

k

�

2Ek,Q

[
1 − f (E+

k,Q) − f (E−
k,Q)

]
, (17)

�H
↑ = UT

∑
k,ωn

G22(k, iωn)e−iωnδ

= −U

2

∑
k

[[
1 + ξ̃ s

k,Q

Ek,Q

]
f (E−

k,Q)

+
[

1 − ξ̃ s
k,Q

Ek,Q

]
f (−E+

k,Q)

]

≡ −U
∑

k

nMF
−k+Q/2,↓, (18)

�H
↓ = −UT

∑
k,ωn

G11(k, iωn)eiωnδ

= −U

2

∑
k

[[
1 + ξ̃ s

k,Q

Ek,Q

]
f (E+

k,Q)

+
[

1 − ξ̃ s
k,Q

Ek,Q

]
f (−E−

k,Q)

]

≡ −U
∑

k

nMF
k+Q/2,↑. (19)

Here, f (±E±
k,Q) is the Fermi distribution function and δ

an infinitesimally small positive number. E±
k,Q = Ek,Q ± ξ̃ a

k,Q
describes Bogoliubov single-particle excitations in the FF
state [1–5]. nMF

k+Q/2,↑ = 〈c†
k+Q/2,↑ck+Q/2,↑〉MF and nMF

−k+Q/2,↓ =
〈c†

−k+Q/2,↓c−k+Q/2,↓〉MF are the mean-field momentum dis-
tributions of Fermi atoms in the spin-↑ and the spin-↓
components, respectively.

The Q vector in Eq. (8), which physically means the center-
of-mass momentum of a FF Cooper pair, is determined from
the stationary condition,

∂�MF

∂Q
= 0, (20)

where

�MF = −T ln[Tr[e−βĤMF ]]

= −
∑

k

[
ξ̃−k+Q/2,↓ − E−

k,Q − T [ln(1 + e−βE+
k,Q )

+ ln(1 + e−βE−
k,Q )] + �H

↑ �H
↓

U
+ �2

U

]
(21)
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FIG. 1. Fluctuation correction �FL to the thermodynamic poten-
tial � in the HNSR theory. The solid line and the dashed line are
the 2 × 2 matrix mean-field single-particle thermal Green’s function
in Eq. (16) and the pairing interaction −U , respectively. �i j is the
pair-correlation function in Eq. (27). The solid circle denotes a Pauli
matrix τi in the Nambu representation.

is the mean-field thermodynamic potential. Equation (20)
gives the vanishing total current condition [3],

J =
∑

k

[[
k + Q

2

]
nMF

k+Q/2,↑ +
[
−k + Q

2

]
nMF

−k+Q/2,↓

]
= 0,

(22)

which is consistent with the so-called Bloch’s theorem, stating
the vanishing spontaneous total current in any thermodynam-
ically stable state [91,92].

We briefly note that the gap equation (17), as well as the
Hartree corrections in Eqs. (18) and (19), are also respectively
obtained from the stationary conditions,

∂�MF

∂�
= 0, (23)

∂�MF

∂�H
σ

= 0. (24)

2. Fluctuation corrections to thermodynamic potential �

We treat the fluctuation term ĤFL in Eq. (14) within
the NSR diagrams shown in Fig. 1 [70,85–90] to evaluate
fluctuation correction �FL to the thermodynamic potential
� = �MF + �FL. In Fig. 1, since the present single-particle
thermal Green’s function G in Eq. (16) already involves the
Hartree self-energy �H

σ given in Eqs. (18) and (19), the dia-
grammatic series starts from the second-order term in terms
of ĤFL in order to avoid double counting [93]. The summation
of these diagrams gives

�FL = T

2

∑
q,iνm

Tr[ln[1 + U�(q, iνm)] − U�(q, iνm)]. (25)

Here, νm is the boson Matsubara frequency, and

�(q, iνm) =
(

�−+(q, iνm) �−−(q, iνm)

�++(q, iνm) �+−(q, iνm)

)
(26)

is the 2 × 2 matrix pair-correlation function, where

�±±(q, iνm)

= T
∑
k,iωn

Tr[τ±G(k + q, iωn + iνm)τ±G(k, iωn)], (27)

with τ± = [τ1 ± iτ2]/2. In Eq. (25), the last term in [· · ·]
removes the first-order contribution of ĤFL from �FL.

The HNSR equation for the number Nσ of Fermi atoms
in the spin-σ component is derived from the thermodynamic
identity,

Nσ = − ∂�

∂μσ

= −∂�MF

∂μσ

− ∂�FL

∂μσ

. (28)

The set of Eqs. (17)–(19), (22), and (28) is the basis of the
HNSR theory.

In considering a spin-imbalanced lattice Fermi gas, it is
convenient to introduce the polarization,

P = N↑ − N↓
N↑ + N↓

, (29)

and the filling fraction,

n = N

M
, (30)

where N = N↑ + N↓ and M are the total number of Fermi
atoms and the number of lattice sites, respectively. Since
we assume uniform particle density in this paper, the filling
fraction n equals the number of occupied Fermi atoms at each
lattice site.

In the superconducting case, on the other hand, the popu-
lation imbalance is tuned by adjusting an external magnetic
field. To describe this situation, useful parameters are the
effective “magnetic field” h = [μ↑ − μ↓]/2 and the averaged
Fermi chemical potential μ = [μ↑ + μ↓]/2.

As in the NSR theory [85,89,90], the present HNSR the-
ory also satisfies the required Goldstone theorem, stating the
existence of the gapless collective phase oscillation in the
superfluid phase. We briefly note that a similar extension of
the NSR theory to a spin-imbalanced Fermi gas has been
discussed in Ref. [94], where the phase separation in a trapped
spin-imbalanced Fermi gas is successfully described by the
combined NSR theory with the local density approximation.

C. Determination of phase boundaries

1. First- and second-order phase transition in T-h phase diagram

We explain how to determine the boundary between the
superfluid (BCS or FFLO) state and the normal state by using
the schematic T -h phase diagram in Fig. 2(a). When one
passes through the second-order superfluid phase transition
along the path (A), the HNSR theory (as well as the NSR
theory) determines the superfluid order parameter � so as
to minimize �MF(�) in Eq. (21). Around the critical mag-
netic field h = h2nd

c , �MF(�) behaves like Fig. 2(b1), so that
the superfluid order parameter �̄ at the minimum of �MF

continuously grows from zero below h2nd
c . According to the

Ginzburg-Landau theory, when one expands �MF with respect
to �, the coefficient of the second-order term changes its sign
at the second-order phase transition. Thus, h2nd

c is determined
so as to satisfy

0 = ∂2�MF(�)

∂�2

∣∣∣∣
�→0

= 1

U
− �

(
q = Q, iνm = 0, μ, h2nd

c

)
,

(31)
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0

0

0
_

_

_

_

superfluid state

normal state

(A)

(B)

0

0

0
0

FIG. 2. (a) Schematic superfluid phase diagram to explain how to determine phase boundaries. The solid (dashed) line represents an
assumed second-order (first-order) superfluid phase transition temperature. When we approach the superfluid phase (BCS or FFLO state) from
the normal state by decreasing the effective magnetic field h = [μ↑ − μ↓]/2 along path (A) [path (B)] and pass through the second-order
(first-order) phase transition line under the condition that the averaged chemical potential μ = [μ↑ + μ↓]/2 is fixed, the thermodynamic
potential �MF(�) as a function of � varies as shown in panel (b1) [panel (b2)]. In this case, as shown in panel (c1) [panel (c2)], the superfluid
order parameter �̄ continuously (discontinuously) grows from zero in the superfluid phase below h = h2nd

c (h = h1st
c ). In panels (b1) and (b2),

the solid circle represents the value of � (> 0) at which �MF(�) takes a local minimum. In the normal state, �MF(�) is always the smallest
at � = 0.

where

�(q, iνm, μ, h) =
∑

k

1 − f (ξ̃k+q/2,↑) − f (ξ̃−k+q/2,↓)

ξ̃k+q/2,↑ + ξ̃−k+q/2,↓ − iνm
(32)

is the pair-correlation function in the normal state. The
Hartree term involved in ξ̃p,σ is reduced to, at h2nd

c ,

�H
σ = −U

∑
k

f (ξ̃k,−σ ). (33)

Equation (31) is essentially the same as the gap equation (17)
in the limit � → +0. When Q = 0, Eq. (31) is reduced to
the ordinary BCS gap equation at Tc under an external mag-
netic field. We briefly note that, in the NSR theory, this Tc

equation is usually derived from the Thouless criterion, stating
that the superfluid phase transition occurs when the particle-
particle scattering matrix,

�(q, iνm) ≡ − U

1 − U�(q, iνn)
, (34)

has a pole at q = νm = 0 [95–98].
In the FF case (Q �= 0), the vanishing current condition in

Eq. (22) is automatically satisfied at the second-order super-
fluid phase transition, regardless of the value of Q:

J(� = 0) =
∑

k

[[
k + Q

2

]
f (ξk+Q/2,↑)

+
[
−k + Q

2

]
f (ξ−k+Q/2,↓)

]

=
∑
k,σ

k f (ξk,σ ) = 0. (35)

Thus, the FF Q vector at the phase boundary is determined
from Eq. (31) so that the largest h2nd

c can be obtained.

We numerically solve Eq. (31), together with the HNSR
number equation (28) with � = 0, to determine (Q, h2nd

c , μ)
[or equivalently, (Q, μ↑, μ↓)] at the second-order superfluid
phase transition for a given parameter set (T,U, N↑, N↓). The
latter equation is obtained from Eqs. (21), (25), and Eq. (28),
as, by setting � = 0,

Nσ =
∑

k

f (ξ̃k,σ ) − T
∑

σ ′=↑,↓

∑
q,iνm

eiνmδ[�(q, iνm) + U ]

×
(

∂�(q, iνm)

∂μ̃σ ′

)
T,μ̃−σ ′

(
∂μ̃σ ′

∂μσ

)
T,μ̃−σ ′

, (36)

where �(q, iνm) is given in Eq. (32), and⎛
⎝ ∂μ̃↑

∂μ↑
∂μ̃↓
∂μ↑

∂μ̃↑
∂μ↓

∂μ̃↓
∂μ↓

⎞
⎠ = 1

1 − U 2κ↑κ↓

(
1 Uκ↑

Uκ↓ 1

)
. (37)

In Eq. (37),

κσ =
∑

k

∂ f (ξ̃k,σ )

∂μ̃σ

= 1

4T

∑
k

sech2

(
ξ̃k,σ

2T

)
(38)

is the isothermal compressibility in the mean-field approxi-
mation, which comes from the Hartree term involved in μ̃ in
Eq. (5).

We note that the coupled equations (31) with (36) may give
multiple Ql vectors (l = 1, 2, . . .) having the same magnitude
|Q1| = |Q2| = · · ·, reflecting the discrete fourfold rotational
symmetry of the cubic optical lattice. Thus, although we have
assumed the “single-Q” FF state in Eq. (8), a more compli-
cated FFLO-type superfluid order parameter, for example,

�i = �
∑

l

eiQl ·Ri , (39)
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is also possible [99,100]. However, at the second-order su-
perfluid transition (� = 0), any multiple-Q FFLO state has
the same critical magnetic field h2nd

c as that in the single-Q
case. This means that the coupled equations (31) with (36)
can cover all nonuniform superfluid states with the superfluid
order parameter in Eq. (39). Keeping this in mind, we simply
call the superfluid state with Q �= 0 the FFLO state in what
follows, as far as the second-order phase transition of this state
is concerned.

We next consider the first-order critical magnetic field h1st
c ,

which we meet when moving along path (B) in Fig. 2(a)
under the condition that the averaged chemical potential μ is
fixed. Near the first-order phase transition, �MF(�) exhibits
a double-minimum structure [101], as schematically shown in
Fig. 2(b2). In the HNSR scheme, h1st

c is determined from the
condition

�MF(� = 0, μ, h1st
c , T ) = �MF

(
�̄ > 0, μ, h1st

c , T
)
, (40)

where �̄ satisfies the stationary condition in Eq. (23) [solid
circles in Fig. 2(b2)]. In this case, the superfluid order
parameter discontinuously becomes nonzero at h = h1st

c , as
schematically shown in Fig. 2(c2).

In principle, the FF state with Q �= 0 may be possible as the
superfluid state in the right-hand side of Eq. (40). However,
within our numerical results, the BCS state always satisfies
Eq. (40) before the single-Q FF state [that is, �MF(�̄, Q =
0) < �MF(�̄, Q �= 0) is always satisfied] [102]. Regarding
this, we will later explain that Eq. (40) also determines the
phase boundary between the normal state and the phase sep-
aration into the normal and the superfluid states. In this sense
our numerical results are consistent with the experimental fact
that the phase separation into the BCS state and the polarized
normal state is always observed in spin-polarized Fermi gases
[65–69]. [If the FF state satisfies Eq. (40) before the BCS
state, a phase separation into the FF state and the polarized
normal state would occur.] Thus, in this paper we only con-
sider the BCS case in Eq. (40).

2. Phase separation in T-P phase diagram

The T -h phase diagram is useful for the study of the FFLO
state in metallic superconductivity, because the misalignment
of the two Fermi surfaces is tuned by an external magnetic
field h. On the other hand, the T -P phase diagram is con-
venient in the Fermi gas case, because the spin imbalance
in this case is experimentally tuned by directly adjusting the
polarization P [65–69].

Regarding the T -P phase diagram, we point out that the
coupled equations (31) with (36) can still be used to determine
the second-order phase transition line in this phase diagram.
That is, once the critical magnetic field h2nd

c in the T -h phase
diagram is obtained by solving these equations, the corre-
sponding critical polarization Pc in the T -P phase diagram can
be immediately obtained by evaluating Eq. (29) at h2nd

c .
On the other hand, we need to be careful in dealing with

the first-order phase transition: At h1st
c in the T -h phase

diagram in Fig. 2(a), we should note that the number N
of Fermi atoms at � = 0 is usually different from that at
� = �̄, for a fixed value of the averaged chemical potential
μ. This means that when N is fixed as in the cold Fermi

gas experiments [65–69], we have two different values of
μ at the first-order phase transition: (1) μN that is obtained
by approaching this phase boundary from the normal state
(�̄ = 0), and (2) μSF that is obtained by approaching this
phase boundary from the superfluid state (�̄ �= 0). These give
different values of critical polarizations, Pc(N, μN, T ) and
Pc(N, μSF, T ) [< Pc(N, μN, T )]. In the region between the
two, Pc(N, μSF, T ) < P < Pc(N, μN, T ), neither the normal
state nor the superfluid state can satisfy the constraint on the
fixed N , indicating the occurrence of the phase separation
into the superfluid state and the (polarized) normal state
[103,104]. In other words, the first-order phase boundary
in the T -h phase diagram in Fig. 2(a) splits into two phase
boundaries in the T -P phase diagram [103,104]: one is the
boundary between the normal state and the phase separation,
and the other is the boundary between the superfluid state and
the phase separation.

For the phase separation, this paper only deals with the
boundary between the phase separation and the normal state.
In this case, this boundary can be determined by solving the
number equation (36), together with Eq. (40) [105]. As men-
tioned previously, the phase separation in our case is always
into the BCS state and the spin-polarized normal state, as
observed experimentally [65–69].

3. Computational remarks

Before ending this section, we comment on the parame-
ter region that we consider in this paper: (1) For the filling
fraction n, we restrict our computations to the low-filling case
(n < 1). This is because, although the nested Fermi surface
near the half-filling (n = 1) strongly enhances fluctuations in
the particle-hole channel when t ′ = 0 [71], the present HNSR
theory only takes into account fluctuations in the Cooper
channel. (2) For the interaction strength U , we only deal with
the weak-coupling case, because the NSR theory is known
to unphysically give negative spin susceptibility [106,107], as
well as negative polarization for h = [μ↑ − μ↓]/2 > 0, in the
strong-coupling regime. (We have numerically confirmed that
the same problems also exist in the HNSR theory.) However,
since the FFLO state is expected in the weak-coupling regime
where large spin-↑ and spin-↓ Fermi surfaces exist, the HNSR
theory is still applicable to the study of the FFLO state, even
under this restriction. (3) Because of computational problems,
the temperature region is restricted down to T/Tc  0.1.

III. FEASIBILITY OF FFLO STATE IN SPIN-IMBALANCED
LATTICE FERMI GAS

In Sec. III A, we first examine how the optical lattice
stabilizes the FFLO state, within the ignorance of the phase
separation. The competition between this stabilized FFLO
state and the phase separation is discussed in Sec. III B.

A. Stabilization of FFLO state against FFLO
pairing fluctuations

Figure 3 shows the second-order superfluid phase transi-
tion temperature Tc in a spin-balanced Fermi gas in the weak-
coupling regime [108]. In the absence of the cubic optical
lattice, the FFLO superfluid phase transition obtained in the
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FIG. 3. Calculated second-order superfluid phase transition temperature Tc. In this figure we fix the total number N = N↑ + N↓ of Fermi
atoms. Tc is normalized by the value at P = 0 (≡ T 0

c ). (a) Fermi gas in the absence of optical lattice, when (kFas )−1 = −1. (Here, as and kF are
the s-wave scattering length and the Fermi momentum, respectively.) (b) Lattice Fermi gas, when U/(6t ) = 0.4, n = 0.3, and t ′ = 0. Panels
(a1) and (b1) show the mean-field results (where pairing fluctuations are ignored). Panels (a2) and (b2) show the results including pairing
fluctuations within the NSR and HNSR theories, respectively. The solid (dashed) line is the phase boundary between the BCS (FFLO) state
and the normal state. Panels (c) and (d) show the intensity of the particle-particle scattering matrix �(q, iνn = 0) in Eq. (34) at the positions
(c) and (d) shown in panels (a2) and (b2), respectively. In panel (d), the lattice constant is taken to be unity (same for Figs. 4–6). The phase
separation is ignored in this figure.

mean-field theory [panel (a1)] vanishes, when one includes
effects of pairing fluctuations, as shown in panel (a2). [We
summarize the NSR theory to obtain panel (a2) in Appendix]
This vanishing FFLO state is consistent with the previous
work, stating the complete destruction of the FFLO long-
range order by strong FFLO pairing fluctuations [44–51].

Figures 3(b1) and 3(b2) show the revival of the FFLO
state when the system is loaded on the cubic optical lattice.
However, the critical polarization Pc at the superfluid instabil-
ity in Fig. 3(b2) is overall smaller than the mean-field result
in Fig. 3(b1), indicating that FFLO pairing fluctuations still
disturb the FFLO phase transition to some extent there.

To explain the background physics of the vanishment and
revival of the FFLO state seen in Figs. 3(a2) and 3(b2), we
recall that when Eq. (31) is satisfied, the particle-particle
scattering matrix �(q = Q, iνm = 0) in Eq. (34) always di-
verges. In the absence of optical lattice, because of the spacial
isotropy of the system, �(q, iνm) behaves as, around (q, νm) =

(Q, 0) [45],

�(q, iνm)  −U

γ [|q| − |Q|]2 + λ|νm| , (41)

where γ = −(U/2)∂2�(q, 0)/∂q2|q→Q and λ =
−U∂Im�(Q, iνn → z + iδ)/∂z|z→0. Substituting this into
the NSR number equation (A3), one finds

Nσ 
∑

k

f (ξk,σ ) + T
∂�(Q, 0)

∂μσ

×
∑
q,iνm

eiνmδ U

γ [|q| − |Q|]2 + λ|νm|


∑

k

f (ξk,σ ) + UT

γ

∂�(Q, 0)

∂μσ

∫ qc

0

q2dq

2π2

1

[|q| − |Q|]2
,

(42)
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where qc is a cutoff, and we have only retained the most
singular term with νm = 0 in obtaining the last line, for sim-
plicity. The last term in Eq. (42) always diverges unless Q =
0, which means that Eqs. (31) and (A3) are never satisfied
simultaneously. Since �(Q, iνm) physically describes pairing
fluctuations with the center-of-mass momentum Q, this result
is interpreted as the destruction of the FFLO long-range order
by FFLO pairing fluctuations. Indeed, at the position (c) in
Fig. 3(a2), Fig. 3(c) shows that �(q, 0) has large intensity
around |q| = |Q|, indicating the existence of strong FFLO
pairing fluctuations there. The ring structure seen in this fig-
ure reflects the degeneracy of FFLO pairing fluctuations in
terms of the direction of Q in the absence of optical lattice.

The divergence of �(Q, 0) also occurs in the lattice Fermi
gas, when Eq. (31) is satisfied; however, the number of Q vec-
tors that satisfy Eq. (31) becomes finite in this case, reflecting
the discrete fourfold rotational symmetry of the cubic lattice
system around the x, y, and z axis. Indeed, at the position
(d) shown in Fig. 3(b2), Fig. 3(d) shows that the intensity of
�(q, 0) directly reflects this symmetry property. Denoting the
Q vectors that satisfy Eq. (31) as Q±

α=x,y,z (‖ ±iα , where iα is
the primitive vector along the α axis), one can approximate
�(q  Q±

α , iνm) to

�(q, iνm)  −U

γ̃ [q − Q±
α ]2 + λ̃|νm| , (43)

where γ̃ = −(U/2)∇2
q�(q, 0)|q→Q±

α
and λ̃ =

−U∂Im�(Qζ
α, iνm → z + iδ)/∂z|z→0. Substitution of

Eq. (43) into the number equation (36) gives

Nσ 
∑

k

f (ξk,σ ) + TU

γ̃

∑
η=±,α=x,y,z,σ ′

(
∂�(Qη

α, 0)

∂μ̃σ ′

)

×
(

∂μ̃σ ′

∂μσ

) qc∑
q

1

[q − Qη
α]2

− TU
∑

q,iνm,σ ′
eiδνm

(
∂�(q, iνm)

∂μ̃σ ′

)(
∂μ̃σ ′

∂μσ

)
. (44)

Replacing q − Qη
α by q in the second term in Eq. (44), we find

that this term converges in three dimensions. Since the last
term in Eq. (44) also converges, the coupled equations (31)
and (36) can have simultaneous solutions for the FFLO state
in three dimensions, when the system is loaded on the cubic
optical lattice [109].

We note that while the six solutions specified by Q±
α=x,y,z

vectors are all degenerate at the second-order FFLO phase
transition, this degeneracy is lifted in the FFLO phase. For
the FF state [1], one of the Q±

α is chosen (for example, Q+
x ).

For a FFLO state [2], a pair of them, e.g., (Q+
x , Q−

x ), is chosen.
To identify what combination is realized, we need to evaluate
the free energy of each candidate in the superfluid state below
Tc, which remains as one of our future problems.

Figure 4 shows how the filling fraction n affects the
second-order superfluid phase transition temperature Tc in the
presence of optical lattice. In the low-filling region (n � 0.3),
by comparing the upper HNSR results with the lower mean-
field ones in this figure, we find that the FFLO state is still
remarkably suppressed by FFLO pairing fluctuations, even

0 0
00

RSNH )2a(RSNH )1a(

(b1) mean field (b2) mean field

FIG. 4. Second-order superfluid phase transition temperature Tc

in a lattice Fermi gas, as a function of the polarization P and the
filling fraction n. (a1) HNSR theory. (b1) Mean-field BCS theory.
The solid (dashed) line shows the BCS (FFLO) phase transition. The
solid circle shows the Lifshitz point (LP), at which three kinds of
phase boundaries between (1) the BCS and the normal states, (2) the
FFLO and the normal states, as well as (3) the BCS and the FFLO
states, meet one another. Panels (a2) and (b2) show the magnitude
of the Q vector along the Tc line shown in panels (a1) and (b2),
respectively. We set U/(6t ) = 0.4 and t ′ = 0. T 0

c is the superfluid
phase transition temperature when P = 0.

in the presence of optical lattice. In the mean-field theory,
the Lifshitz point (solid circle in Fig. 4) at which the BCS
phase transition changes to the FFLO one [110,111] is known
to always appear at T/T 0

c  0.56, regardless of the value of
n [5,112–117] (where T 0

c is the superfluid phase transition
temperature at P = 0). While this property is really seen in
the lower mean-field results in Fig. 4, the upper panels show
that it no longer holds, especially in the low-filling regime,
which also supports the existence of strong FFLO pairing
fluctuations there.

When n � 0.3, although the critical polarization Pc at the
FFLO phase transition [Fig. 4(a1)], as well as the magnitude
of the FFLO Q vector at Tc [Fig. 4(a2)], are still smaller than
the mean-field values, their qualitative behavior is found to
be similar to the mean-field case shown in the lower panels
in Fig. 4. This filling dependence implies that FFLO pairing
fluctuations are more suppressed for higher filling cases.

We point out that the key to understand the above-
mentioned filling dependence of the FFLO phase transition
is the anisotropy of Fermi surface. For example, in the low-
filling limit (n � 1), even in a lattice Fermi gas, particles
near the Fermi level feel an almost isotropic Fermi surface,
because the kinetic energy εk in Eq. (13) with t ′ = 0 behaves
as, around k = 0,

εk0  −6t + tk2. (45)
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FIG. 5. Assessment of the anisotropy of Fermi surface. We in-
troduce an averaged Fermi sphere that has the same volume VFS as
the anisotropic Fermi surface in a optical lattice [panel (a1)]. We
then sum up the magnitude δVFS of the difference between these
two Fermi surfaces at each momentum direction [panel (a2)]. (b1)
Calculated δVFS/VFS, as a function of the filling fraction n. We set
t ′ = 0. (b2) δVFS/VFS as a function of the NNN hopping parameter
t ′, when n = 0.4. For clarity, n dependence and t ′ dependence of the
Fermi surface shape at kz = 0 are explicitly shown in panels (c1) and
(c2), respectively.

As a result, strong FFLO pairing fluctuations still exist as
in the absence of optical lattice, that remarkably disturb the
FFLO phase transition there.

As one increases the filling fraction n, the Fermi surface
shape gradually deviates from spherical, reflecting the de-
tailed momentum dependence of the band dispersion εk in
Eq. (13). To simply quantify this deformation of Fermi sur-
face, we introduce an averaged Fermi sphere that has the same
volume (≡ VFS) as the Fermi surface of the system to mea-
sure the magnitude δVFS of the difference between these two
Fermi surfaces in all momentum directions [see Figs. 5(a1)
and 5(a2)]. Then Fig. 5(b1) shows that the increase of the
filling fraction done in Fig. 4 really enhances the anisotropy
δVFS/VFS of the Fermi surface [see also Fig. 5(c1)]. This
enhancement weakens FFLO pairing fluctuations to more sta-
bilize the FFLO state, which explains the filling dependence
of the FFLO phase transition temperature seen in Fig. 4(a1).

0 0

0 0

RSNH )2a(RSNH )1a(

(b1) mean field (b2) mean field

FIG. 6. Same plots as Fig. 4 for various values of the NNN
hopping amplitude t ′, when n = 0.4.

To support the above explanation, it is useful to consider
effects of the NNN hopping t ′. As shown in Figs. 6(a1) and
6(a2), the increase of t ′ suppresses the FFLO phase transition.
Regarding this result, we note that while the increase of the
filling fluctuation n enhances the anisotropy of the Fermi
surface, the increase of t ′ tends to round the Fermi surface,
as shown in Figs. 5(b2) and 5(c2). In addition, the mean-field
results shown in the lower panels in Fig. 6 only weakly depend
on t ′. Thus the suppression of the FFLO phase transition with
increasing t ′ can also be explained as a result of the shape
change of the Fermi surface by the NNN hoping.

In the current stage of cold Fermi gas physics, a superfluid
6Li Fermi gas in an optical lattice has been realized only
when the lattice potential is very shallow [118]. Regarding
this, although this experimental situation is somehow differ-
ent from the simple Hubbard model in Eq. (3), our results
indicate that the crucial key to stabilize the FFLO state is
not the detailed lattice potential but the resulting anisotropy
of Fermi surface. Thus, if such a shallow optical lattice can
still deform the Fermi surface enough to suppress the FFLO
pairing fluctuations, the FFLO superfluid Fermi gas would be
realized there.

We note that the importance of Fermi surface for the stabil-
ity of the FFLO state has so far mainly been discussed in terms
of the nesting effect [5,119,120]: A nested Fermi surface is
preferable for the stabilization of the FFLO state, being anal-
ogous to the nesting effects on the charge-density-wave, as
well as the spin-density-wave states. Besides this, our results
suggest that the anisotropy of Fermi surface is also important
to stabilize the FFLO state against FFLO pairing fluctuations.

B. Competition between FFLO state and phase separation

We next examine whether or not the stabilized FFLO state
can also overcome the competition with the phase separa-
tion in a spin-imbalanced Fermi gas. When (U/6t, n, t ′) =
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FIG. 7. (a) HNSR results on the second-order superfluid phase transition temperature Tc (solid line: BCS transition, dashed line: FFLO
transition), as well as the phase-separation temperature TPS (dotted line). In each upper panel, the filling fraction n is fixed (n = 0.3, 0.305, and
0.31). Below TPS, the system separates into the BCS and the spin-polarized normal states. (b) Thermodynamic potential �MF(�) − �MF(0),
measured from the value at � = 0. Each panel shows the � dependence along the path (b1)–(b3) shown in the upper panels. In panels (b1)
and (b2), �̄ (> 0) is the position at which �MF(�) takes a local minimum (solid circle), and Pc is the polarization at the phase-separation line.
Pc in panel (b3) denotes the polarization at the FFLO superfluid phase transition. We set U/(6t ) = 0.4 and t ′ = 0.

(0.4, 0.3, 0), Fig. 7(a1) shows that the Tc line of the FFLO
state is always located on the inside of the phase-separation
temperature TSP. [�MF(0) = �MF(�̄) is satisfied at TPS (P =
Pc) as shown in Fig. 7(b1).] That is, starting from the normal
state, the system always experiences the phase separation be-
fore reaching the FFLO superfluid phase transition. Regarding
this result, we note that Tc in this figure is determined within
the ignorance of the phase separation. Thus, although the Tc

line of the FFLO state is still drawn on the left side of the TPS

line in Fig. 7(a1), it does not mean the occurrence of the FFLO
phase transition, when one further decreases the polarization
P from the phase-separation line.

When the anisotropy of the Fermi surface is enhanced by
increasing the filling fraction n, the unwanted FFLO pairing
fluctuations are suppressed so that the phase boundary of the
FFLO state shifts toward the higher polarization regime. On
the other hand, since the phase-separation phenomenon is
dominated by the spin imbalance of the system, TPS is not so
sensitive to n compared to the FFLO phase transition. Thus,
the Tc line of the FFLO state eventually exceeds the phase-

separation line, as shown in Figs. 7(a2) and 7(a3). When n =
0.305 [panel (a2)], while the phase separation still masks the
FFLO state in the temperature region 0.28 � T/T 0

c � 0.55,
one can reach the FFLO superfluid phase transition when
T/T 0

c � 0.28. [See also the difference between Figs. 7(b2)
and 7(b3).] In the case of n = 0.31 shown in panel (a3), we
can always reach the FFLO state when T/T 0

c � 0.5, without
being disturbed by the phase separation.

Figure 8 shows how the NNN hopping t ′ affects the com-
petition between the FFLO state and the phase separation. As
expected from the property that t ′ tends to round the Fermi
surface shape [see Figs. 5(b2) and 5(c2)], the phase boundary
of the FFLO state shifts toward the left as one moves from
panel (a) to (c). As a result, while the FFLO phase transition
is possible when t ′/t = 0.06, it is completely masked by the
phase separation when t ′/t = 0.1, due to the insufficient sup-
pression of FFLO pairing fluctuations by a nearly spherical
Fermi surface.

The recovery of the FFLO state by the enhancement of
the anisotropy of the Fermi surface can also be seen in the
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FIG. 8. Same plots as Figs. 7(a1)–7(a3) for different values of
NNN hopping t ′/t , when n = 0.4.

T -h phase diagram as shown in Fig. 9. We note that, as in
the T -P phase diagram shown in Figs. 7(a1) and 7(a2), the
phase separation occurs at TPS in panels (a) and (b) when the
filling fraction n is fixed [104]. On the other hand, when one
decreases h from the phase boundary at Tps under the condi-
tion that the average chemical potential μ is fixed, such phase
separation does not occur. Instead, the system experiences
the first-order phase transition into the BCS state at TPS, as
discussed in Sec. II C 2.

FIG. 9. Same plots as Fig. 7(a) in the T -h phase diagram. Since
the filling fraction n is fixed in each panel, the phase separation
occurs at TPS as in the T -P phase diagram in Fig. 7(a). Regarding
this, we note that when h is decreased from the phase boundary at
TPS under the condition that the averaged chemical potential μ is
fixed, the BCS first-order phase transition occurs, without the phase
separation.

IV. SUMMARY

To summarize, we have discussed the feasibility of the
FFLO state in a spin-imbalanced Fermi gas loaded on a cubic
optical lattice. The current cold Fermi gas physics is facing
two difficulties in achieving the FFLO state: (1) desperate
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destruction of FFLO long-range order by FFLO pairing fluc-
tuations and (2) competition between the FFLO state and
the phase separation. In this paper we theoretically explore
a possible route to realize an FFLO superfluid Fermi atomic
gas, overcoming these difficulties. For this purpose, going
beyond the mean-field theory, we included FFLO pairing fluc-
tuations by extending the strong-coupling theory developed
by Noziéres-Schmitt-Rink (NSR) to a three-dimensional spin-
imbalanced attractive Hubbard model.

We showed that the FFLO state becomes stable when the
Fermi gas is loaded on a cubic optical lattice; however, the
FFLO phase transition is still sensitive to the filling fraction n,
especially in the low-filling regime. To understand this, we
pointed out the importance of the anisotropy of the Fermi
surface: When the Fermi surface is deformed from the sphere
by varying the filling fraction and the next-nearest-neighbor
hopping amplitude, the unwanted FFLO pairing fluctuations
become weak, which promotes the stabilization of the FFLO
long-range order.

For this stabilized FFLO state, we have further examined
whether or not it can still survive, when the possibility of
the phase separation is taken into account. We clarified that,
starting from the normal state, we can reach the FFLO phase
transition without being disturbed by the phase separation
when the anisotropy of the Fermi surface remarkably sup-
presses FFLO pairing fluctuations.

In this paper we have only examined the phase boundary of
the FFLO state. Extension of the present theory to the FFLO
superfluid state below Tc is an interesting future challenge.
Even for the study of the phase boundary, we need to extend
to the present strong-coupling scheme to also include fluctua-
tions in the particle-hole channel in order to access the region
near the half-filling (where the nested Fermi surface is known
to enhance charge-density-wave fluctuations [71]). We also
note that the possibility of the FFLO state has been discussed
in unitary Fermi gases [121–123]. Based on a nonperturbative
approach, it has been shown that a splitting point (where the
uniform superfluid, a gapless superfluid, and the FFLO super-
fluid phases meet) exists in the BEC regime, which indicates
a robust FFLO phase around the unitary limit [121]. However,
it is known that the NSR theory is not applicable to the unitary
regime in the presence of spin imbalance, because it unphys-
ically gives negative spin susceptibility when (kFas) � −0.5
[106]. Thus, to examine the FFLO state in this regime, we
need a more sophisticated strong-coupling theory, such as the
self-consistent T -matrix approximation. Although these fu-
ture problems still remain, our results would provide a useful
clue for cold Fermi gas experiments toward the achievement
of the FFLO state. Since this unconventional Fermi superfluid
is also discussed in condensed-matter physics as well as high-
energy physics, the realization of a FFLO superfluid Fermi
atomic gas would make a great impact on these research fields.
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APPENDIX: NSR THEORY FOR A SPIN-IMBALANCED
FERMI GAS IN THE ABSENCE OF OPTICAL LATTICE

We explain the outline of the NSR theory for a spin-
imbalanced Fermi gas in the absence of optical lattice [19,96],
which is used to obtain Fig. 3(a2). We start from the BCS
Hamiltonian,

H =
∑

k,σ=↑,↓
ξk,σ ĉ†

k,σ
ĉk,σ

− U
∑
k,k′,q

ĉ†
k+q/2,↑ĉ†

−k+q/2,↓ĉ−k′+q/2,↓ĉk′+q/2,↑. (A1)

Here, ĉk,σ is the annihilation operator of a Fermi atom with
pseudospin σ =↑,↓. ξk,σ = k2/2m − μσ = εk − μσ is the
kinetic energy, measured from the Fermi chemical potential
μσ (where m is an atomic mass). In the continuum case, it is
convenient to measure the interaction strength −U in terms of
the s-wave scattering length as, which is related to the pairing
interaction −U as [88]

4πas

m
= −U

1 − U
∑kc

k
1

2εk

, (A2)

where kc is a momentum cutoff. In Fig. 3(a2), we take
(kFas)−1 = −1, which corresponds to the weak-coupling BCS
regime [where kF = (3π2N )1/3 is the Fermi momentum of a
spin-balanced two-component Fermi gas with N atoms].

In the NSR theory, the Tc equation is given by Eq. (31),
where the Hartree-shifted kinetic energy ξ̃k,σ involved in � in
Eq. (32) is replaced by ξk,σ . Since this equation exhibits the
ultraviolet divergence, we renormalize it by using the s-wave
scattering length as in Eq. (A2) [88].

We solve the (renormalized) Tc equation, together with the
NSR number equation,

Nσ =
∑

k

f (ξk,σ ) − T
∑
Q,iνm

eiνmδ�(Q, iνm)
∂�(Q, iνm)

∂μσ

,

(A3)

to self-consistently determine Tc and μσ , for a given parameter
set [(kFas)−1, N↑, N↓]. In Eq. (A3), the particle-particle scat-
tering matrix � is given by Eq. (34), with ξ̃k,σ being replaced
by ξk,σ .
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