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We provide a framework to solve generic models describing the dissociation of multiple molecular Bose-
Einstein condensates in a nonadiabatic regime. The competition between individual chemical reactions can lead
to nontrivial dependence on critical components such as path interference and symmetries, thus, affecting the
final distribution of atomic population. We find an analytical solution for an illustrative example model involving
four atomic modes. When the system parameters satisfy CPT symmetry, where C is the charge conjugation, P
is parity, and T is time-reversal symmetry, our solution predicts a population imbalance between atomic modes
that is exponentially sensitive to system parameters. However, a weakly broken symmetry alters the population
in each atomic mode and can reverse the population imbalance. Our solution also demonstrates a strong quantum
correlation between atomic modes that leads to the spontaneous production of atoms in a multimode squeezed
state. Moreover, in our framework, a time-dependent non-Hermitian quantum mechanics naturally manifests,
which can alternatively be realized experimentally in photonic systems.
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I. INTRODUCTION

Recent experimental advances in ultracold atomic and
molecular gases enable us to investigate many-body precision
physics, with the potential application in the quantum control
of chemical reactions, precision measurements, quantum sim-
ulation, and quantum information processing [1–3]. Ultracold
platforms allow control of interaction parameters that has lead
to some fascinating experimental observations including the
reaction between atomic and molecular Bose-Einstein con-
densates (BEC) [4], the realization of Unruh radiation [5],
and Bose fireworks [6]. Over the past two decades, there has
been a tremendous surge in the theoretical [7–11] and exper-
imental [1,12–15] studies on the reaction between ultracold
molecules and atoms near Feshbach resonance. There have
also been several studies on atom-molecule conversion by
Feshbach resonance due to coupled-channels [16]. However,
the time-dependent sweeping across the Feshbach resonance
to trigger conversion between atomic and molecular BECs has
been rarely explored for systems involving multiple atomic
modes.

The goal of this paper is to provide a framework to
solve a dissociation mechanism in which different types of
diatomic molecules undergo dissociation simultaneously, so
that the individual reactions are coupled. The dynamics now
involves multiple parameters and their interplay leads to var-
ious nontrivial effects such as interference and symmetry
breaking, which may emerge due to the competition between
multiple modes corresponding to different types of atoms.
Multiple modes can also describe higher degrees of free-
dom, i.e., spin angular momentum, rotational, and vibrational
modes.

The general Hamiltonian describing reaction between
atomic and molecular condensates is given by

Ĥ =
∑

n

ε�
n �̂†

n �̂n +
∑
k,n

εa
k,nâ†

k,nâk,n + εb
k,nb̂†

k,nb̂k,n

+
∑
k,n,m

gk,n,m�̂†
n âk,mb̂k,n−m + g∗

k,n,m�̂nâ†
k,mb̂†

k,n−m, (1)

where k is the reaction channel [17]; ψ̂ (ψ̂†), â(â†), and b̂(b̂†)
represent the annihilation (creation) of the molecular field
operators and atomic field operators; and n corresponds to a
particular molecular mode. Hamiltonian (1), in general, is not
analytically solvable. We propose to solve this model in the
mean-field approximation where the molecular operators can
be replaced by their expectation values [7]. For this approxi-
mation to hold, we assume that the number of atoms produced
is small compared to the number of molecules. We propose to
solve these type of models in the Heisenberg picture, where
the atomic field operators satisfy a non-Hermitian evolution
equation.

There are two types of dissociation processes, stimulated
dissociation and spontaneous dissociation. In the stimulated
process an initially populated atomic mode (or modes) stimu-
lates the dissociation of molecules. In the spontaneous process
the atomic modes are initially empty and the molecules spon-
taneously dissociate into atoms. The spontaneous process
could also describe the cosmological production of particles
and antiparticles due to vacuum fluctuations in the early stage
of the Universe, which may have been a consequence of fun-
damental parameters such as mass or interaction coefficients
becoming time-dependent and the evolution passing through
resonance [18].
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After laying out the framework, we solve an illustrative
example containing diatomic molecules with two atoms and
each atom having two degrees of freedom; thus, the model
includes four atomic modes. Let us denote the two degrees of
freedom as spin-up and spin-down, however, note that they
are bosons. We predict several key results for parameters
satisfying the CPT symmetry.

First, the analytical result predicts an exponential sensitive
imbalance of atomic population in each mode. For exam-
ple, an atomic mode initially occupied with an spin-up atom
stimulates an exponentially suppressed atomic production in
spin-down states. This suppression is an artifact of destructive
interference, which arises due to the CPT symmetry. How-
ever, a weakly broken symmetry alters the atomic production
in each mode and can reverse the spin imbalance for a finite
interference.

Our second key result appears in the spontaneous process,
where the chemical reactions are coupled, and the atoms are
produced in a multimode squeezed state. Multimode squeezed
states promise applications in quantum metrology [19], quan-
tum communication, and quantum imaging [20–22].

In addition to these two central results, our solution could
open pathways for investigations in time-dependent non-
Hermitian systems.

II. THEORY OF SINGLE DISSOCIATION PROCESS
IN THE NONADIABATIC REGIME

Let us start with the dissociation process of a molecu-
lar BEC into the two-mode atomic BEC, AB → A + B. The
dissociation process is described by the Hamiltonian in the
curve-crossing approximation [7,23]

Ĥ2 = μ1(t )â†â + μ2(t )b̂†b̂ + Jψ̂†âb̂ + J∗ψ̂ â†b̂†, (2)

where the chemical potentials μi(t ) of two atomic modes are
considered to be time-dependent. In the nonadiabtic limit,
only a small fraction of molecules get converted into atoms
[8]. Assuming the number of molecules to be much larger than
the number of atoms produced, we can replace the molecu-
lar field operator with the expectation value 〈ψ̂〉 [7,23]. The
system then reduces to interacting two atomic modes and the
corresponding Hamiltonian reads

Ĥeff(t ) = μ1(t )â†â + μ2(t )b̂†b̂ + gâb̂ + g∗â†b̂†, (3)

where g = J〈ψ†〉.
The model (3) can be solved in the Heisenberg picture

where the operators â(t ) and b̂(t ) satisfy

i
d

dt

(
â(t )
b̂†(t )

)
=

(
μ1(t ) g∗
−g μ2(t )

)(
â(t )
b̂†(t )

)
. (4)

The molecular dissociation occurs near the crossing of two
chemical potentials where the chemical potentials can be lin-
earlized. Also, note that Eq. (4) is only applicable for bosonic
atomic modes.

The number of atoms in A mode at time t → ∞ is then
given by

〈â†(t )â(t )〉t→∞ = n(A)
sp + n(A)

st , (5)

where nsp corresponds to spontaneous dissociation while
nE represents stimulated dissociation. For a linear sweep,

μ1(t ) = βt, μ2(t ) = −βt , Eq. (4) resembles a non-Hermitian
Landau-Zener (nLZ) model, and can be solved exactly (see
Appendix A). The general solution of â(t ) has the form â(t ) =
φA(t )â(t0) + φB(t )b̂†(t0), where t0 represents the initial time
and is assumed to be far away from the level crossing. The
asymptotic solution of φA(t → ∞) and φB(t → ∞), with ini-
tial condition φA(t0 → −∞) = 1, φB(t0 → −∞) = 0, leads
to the expressions

|φA(∞)|2 = |φB(∞)|2 + 1 = exp

(
π |g|2

β

)
. (6)

In contrast to the Hermitian LZ model where |φA(∞)|2 +
|φB(∞)|2 = 1, the non-Hermiticity conserves the difference
|φA(∞)|2 − |φB(∞)|2 = 1.

The number of atoms in the spontaneous dissociation is
n(A)

sp = |φB(∞)|2. In the spontaneous dissociation process, un-
pairing is quantum correlated. The atoms are produced in a
two-mode squeezed state, where the maximum uncertainty
along one direction is exponentially suppressed with the ex-
ponent proportional to |g|2/|β|.

The number of stimulated atoms in mode A depends on
the initial population of the A and B modes and the phases
of the solutions φA(t ) and φB(t ) at large times [23]. If only
the A mode is initially populated with a single atom, then the
number of atoms in the A mode is |φA(∞)|2 and in the B mode
is |φB(∞)|2. Since the atoms are always produced in pairs, the
population difference between n(A)

st and n(B)
st is conserved.

III. GENERALIZATION TO DISSOCIATION OF MULTIPLE
MOLECULAR BECs

Now let us focus on a generic scenario where multiple
molecular condensates undergo the dissociation process. Mul-
tiple molecular condensates can consist of different types of
molecules. This complex dynamics is difficult to handle. Here
we propose a way to solve such a complex dynamics in the
curve-crossing approximation. The Hamiltonian describing
dissociation of multiple molecular condensates consisting of
diatomic molecules is given by

Ĥn(t ) =
n∑

i=1

μ
(i)
1 (t )â†

i âi +
m∑

i=1

μ
( j)
2 (t )b̂†

i b̂i j

+
∑

i j

[Ji jψ̂
†
i j âib̂ j + H.c.], (7)

where μ
(i)
1 (t ) and μ

(i)
2 (t ) are the time-dependent chemical

potentials of two atomic modes for the ith-type molecule and
parameters gi are the coupling constants of the dissociation
process ABi j → Ai + Bi. The simultaneous dissociation of
different types of molecules are correlated.

Hamiltonian (7) can describe the dissociation of n × m
types of different molecules. Employing similar procedures
as before, if we replace the molecular operators with their
complex numbers then the system reduces many quadrat-
ically interacting atomic modes. We can solve model (7)
in the Heisenberg picture in a nonadiabatic regime. The
solution requires solving an equation similar to Eq. (4)
and the corresponding matrix satisfies a non-Hermitian
multistate Landau-Zener (nMLZ). The Hermitian multistate
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FIG. 1. (a) The schematic diagram of dissociation of diatomic molecules with four atomic modes. (b) The instantaneous eigenvalues of
Eq. (9) are shown as a function of time for parameters β1 = −1, β2 = 0.5, E1 = 5, E2 = 1, g = 0.5, γ = 1. The black curves are real values
and the red curves represent imaginary values. (c) The number of atoms produced in a particular mode when the system was stimulated by a
single atom in A↑ mode. The scattered points are obtained from numerical evolution of Eq. (9) while the solid curves are obtained from the
analytical formulas in Eq. (12).

Landau-Zener (MLZ) models were explored extensively,
while the non-Hermitian counterpart has not been studied at
all. In the next section we solve an illustrative example model
of Hamiltonian (7) that includes four atomic modes.

A. Example: Dissociation process including four atomic modes

Now let us model a dissociation process when different
molecular condensates have the same two atoms and each
atom can be in different rotational or vibrational states. For
simplicity, we restrict the atomic modes to two levels and
denote the levels as spin-up (↑) and spin-down (↓) states,
see Fig. 1(a). Then the Hamiltonian describing the molecular
dissociation process reads

Ĥ4 = μ1(t )(â†
↑â↑ − â†

↓â↓) + μ2(t )(b̂†
↑b̂↑ − b̂†

↓b̂↓)

+ [J1ψ̂
†
↑↑â↑b̂↑ + J1ψ̂

†
↓↓â↓b̂↓ + J2ψ̂

†
↑↓â↑b̂↓

− J2ψ̂
†
↓↑â↓b̂↑ + H.c.], (8)

where the coupling parameters describing the dissociation of
triplet (↑↑) or (↓↓) molecules are symmetric while the cou-
pling parameters describing the dissociation of singlet (↑↓) or
(↓↑) molecules are antisymmetric. This antisymmetric nature
is similar to a spin-orbit coupling [24].

We solve Eq. (8) in the mean-field approximation and
replace all the molecular operators with their expectation
values. For a linear sweep, the evolution equation of the
atomic field operators is given by i d

dt 	̂(t ) = H (o)
4 (t )	̂(t ),

where the non-Hermitian matrix H (o)
4 (t ), in the basis 	̂(t ) =

{â↑(t ), â↓(t ), b̂†
↑(t ), b̂†

↓(t )}, has the form

H (o)
4 (t ) =

⎛
⎜⎝

b1t + E1 0 g∗ −γ ∗
0 −b1t + E1 γ ∗ g∗

−g −γ b2t + E2 0
γ −g 0 −b2t + E2

⎞
⎟⎠,

(9)

where the coupling parameters are g = J1〈ψ̂†
↑↑〉 = J1〈ψ̂†

↓↓〉
and γ = −J2〈ψ̂†

↑↓〉 = −J2〈ψ̂†
↓↑〉, where J1 and J2 are real-

valued. The parameters b1 and b2 are the slopes of the
chemical potentials and Ei correspond to level separations.
Note that changing the slopes, level spacings, and coupling
parameters one can explore various emergent mechanisms.

The non-Hermitian model (9) has a form similar to the
multistate LZ (MLZ) model. The non-Hermiticity leads to the
emergence of complex eigenvalues near diabatic (diagonal)
level crossings. The anti-Hermitian couplings ensure that the
eigenvalues near level crossing are complex conjugates of
each other. This regime is known as the PT-symmetry broken
phase in the non-Hermitian literature. Note that in the two-
mode level crossing, there is one PT-broken phase [25]. The
model (9), however, has four PT broken phases. In addition,
the dynamics include two paths, the purple and green colors
in Fig. 1(b), that can amount to a finite path interference
in the system. The interplay between the PT broken phase
and the path interference strongly affects the final occupation
of the atomic modes at large times.

The solution of the evolution equation for H (o)
4 (t ) re-

quires finding the matrix S, which satisfies |	̂(t → −∞)〉 =
S|	̂(t → +∞)〉, where S ≡ U (T,−T )T →∞ is a nonunitary
matrix. In Hermitian dynamics, S is commonly known as the
scattering matrix. The number of atoms in each mode depends
on the matrix elements Si j . These elements, however, cannot
be obtained analytically for any arbitrary complex parameters
g and γ [11,26,27].

In Ref. [28] it was shown that the CPT symmetry was
partially responsible for the solvability of a Hermitian Hamil-
tonian similar to Eq. (9) with real coupling parameters. The
three simultaneous operations in CPT are defined as follows:

(i) time-reversal (T ): Change t → −t , â → â†, and
b̂† → b̂;

(ii) complex conjugation (C): Change the imaginary num-
ber i → −i, â → â†, and b̂† → b̂;

(iii) parity (P): Rename amplitudes â↑ → −â↓, â↓ → â↑,
b̂↑ → −b̂↓, and b̂↓ → b̂↑.
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It is straightforward to show that the evolution equa-
tion corresponding to the non-Hermitian model (9) is invariant
under CPT transformation if the coupling parameters are real-
valued, g = g∗ and γ = γ ∗.

The presence of CPT symmetry imposes the following
relation between the elements of the S matrix:

Ŝ = Ŝ′ ≡ ĈP̂T̂ Ŝ =

⎛
⎜⎝

S22 −S12 S42 −S32

−S21 S11 −S41 S31

S24 −S14 S44 −S34

−S23 S13 −S43 S33

⎞
⎟⎠, (10)

where Si j are the matrix elements of Ŝ and the levels {1,2,3,4}
refer to the operators {â↑, â↓, b̂†

↑, b̂†
↓}, respectively. From

Eq. (10) we obtain the following relations:

S11 = S22, S33 = S44, S12 = S21 = S34 = S43 = 0.

(11)

The amplitude of the S matrix elements Sii, S13, and S24 can be
obtained in the independent crossing approximation [29]. The
matrix elements S14 and S23 can be obtained under solvability,
when one can substitute the level spacing parameters Ei to
be zero and the model (9) is equivalent to models with four
modes crossing at a single point [30].

Our model has similarity with a particular subclass of
Hermitian multistate Landau-Zener (MLZ) problems, and
the properties of scattering matrices for the corresponding
Hermitian model are listed in Ref. [28], where the parameters
g and γ are considered real. In the Hermitian model, the transi-
tion probability is defined as Pi j = |Si j |2, and the probabilities
satisfy the conservation of probability law, e.g.,

∑
j Pi j = 1.

Here, Pi j refers to the transition probability to find an electron
in the ith state at large times t → ∞ starting from the jth
state at initial time t → −∞. The exact solution refers to the
analytical formula Eq. (15) in Ref. [28] for all the transition
matrix elements.

Here, the non-Hermiticity destroys the unitarity and the
transition probabilities do not add up to 1. Therefore, the
discussion of the transition probability becomes irrelevant.
Nevertheless, |Si j |2 still describes a physically relevant quan-
tity and we define ni j = |Si j |2, where ni j refers to the number
of atoms produced in the ith mode due to the dissociation
process triggered by a single atom in the jth mode.

To obtain matrix elements ni j , we apply similar principles
of MLZ theory from Hermitian systems and treat the dynam-
ics near each PT-broken phase as an individual nLZ transition.
There are four individual PT-broken phases, with two of them
controlled by g while the other two are controlled by γ . Now
we can replace the survival probability pg ≡ exp(−π |g|2/β2)
with ñg ≡ exp(π |g|2/β2) and the transition probability qg =
1 − pg with ñg − 1. With this substitution we find all the
matrix elements of n̂,

n̂ =

⎛
⎜⎝

ñgñγ 0 ñγ (ñg − 1) ñγ − 1
0 ñgñγ ñγ − 1 ñγ (ñg − 1)

ñγ (ñg − 1) ñγ − 1 ñgñγ 0
ñγ − 1 ñγ (ñg − 1) 0 ñgñγ

⎞
⎟⎠,

(12)

where the matrix elements in each column, with index i, repre-
sent the population in all the atomic levels when the reaction is
triggered by a single atom in the ith level. The matrix elements
in a column satisfy the conservation law

n j j −
∑

i

ni j = 1, (13)

where the jth mode is occupied with a single atom. This
conservation law essentially implies that the atoms are pro-
duced in pairs and the population difference between A and B
is invariant. If the initial mode is occupied by n0 number of
atoms then the number of atoms in each level is increased by
n0 times.

The number of stimulated atoms in each mode is shown in
Fig. 1(c) when A↑ is initially populated with a single atom.
We find that our analytical prediction (12) perfectly agrees
with the results obtained from numerical simulation of the
evolution equation. The number of atoms in the A↓ mode is
zero, as predicted by the CPT symmetry. This is an artifact
of destructive interference due to the complete cancellation
of two competing reaction channels, as shown in Fig. 1(b).
The total number of down spins is purely produced in the B↓
mode. The ratio between the total number of down spin atoms
and the total number of up spin atoms is then given by the
formula

n↓
n↑

= ñγ − 1

2ñgñγ − ñγ

. (14)

For a small value of |γ |2/β1, the expression can be reduced

to n↓/n↑ = e− π |g|2
2|β2 | (|γ |2/2|β1|), which is exponentially sup-

pressed with parameter |g|2/|β2| and depends linearly on
parameter |γ |2/|β1|. This is one of our key results. This pe-
culiar dependence is shown in the parametric plot in the inset
of Fig. 1(c).

We also observe that the number of atoms in any mode
only depends on |Si j |2. Our model (9) remains solvable even
for the complex values of g and γ when the phase difference
between them is θ = nπ . In addition, the number of atoms
in each model can be obtained from the same matrix n̂ in
Eq. (12), which was obtained using the CPT symmetry for
real values of g and γ . This is possible since we can transform
the evolution equation corresponding to the matrix (9) with
complex g and γ to a new evolution equation corresponding to
a new matrix with real coupling parameters that satisfy CPT
symmetry when the phase difference between g and γ is nπ .
To understand this let us start with parameters of the form
g = |g|eiφ and γ = |γ |eiχ . Now the evolution equation reads

i
d	̂

dt
=

⎛
⎜⎜⎝

b1t + E1 0 |g|e−iφ −|γ |e−iχ

0 −b1t + E1 |γ |e−iχ |g|e−iφ

−|g|eiφ −|γ |eiχ b2t + E2 0
|γ |eiχ −|g|eiφ 0 −b2t + E2

⎞
⎟⎟⎠	̂.

(15)

Next let us use the following transformation: �̂ =
{â↑(t ), â↓(t ), b̂†

↑(t )e−iφ, b̂†
↓(t )e−iφ}. Then �̂ satisfies the
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FIG. 2. The pairwise squeezing of A and B modes is shown from Eqs. (18) and (19) and the constant shift is ignored in both directions.
The parameters are |g| = 0.5 and |β1| = |β2| = 1. The expectation values are obtained from dimensionless operators X̂ .

equation of motion

i
d�̂

dt
=

⎛
⎜⎜⎝

b1t + E1 0 |g| −|γ |e−i(χ−φ)

0 −b1t + E1 |γ |e−i(χ−φ) |g|
−|g| −|γ |ei(χ−φ) b2t + E2 0

|γ |ei(χ−φ) −|g| 0 −b2t + E2

⎞
⎟⎟⎠�̂. (16)

Now if the phase difference χ − φ = nπ , then the coupling
parameters become real. This Eq. (16) is now invariant under
CPT . Since the number of atoms corresponds to 〈b̂†b̂〉, the
phase e−iφ does not matter and the final atomic population
can be given by Eq. (12).

B. Emergence of multimode squeezed states
due to spontaneous emission

The spontaneous dissociation process in the four-mode
model (9) is quantum-correlated. The number of atoms in each
mode is equal due to the CPT symmetry and can be obtained
from Eq. (12),

nα,σ = ñgñγ − 1, (17)

where α refers to A or B and σ refers to the spin orien-
tation. Another key quantum phenomenon emerging in the
spontaneous dissociation process is that atoms are produced
in a multimode squeezed state. The solvability of our model
allows us to evaluate the amount of squeezing, and we calcu-
late pair-wise squeezing of atomic modes. First, we observe
that the modes A↑ and A↓ are not quantum-correlated and are
not in a two-mode squeezed state. The maximum uncertainty
along both X+ and X− is equal, where X is the position
operator of the two-mode squeezed state. The same applies
to modes B↑ and B↓.

Therefore, the atoms produced in the spontaneous process
are always in a three-mode squeezed state [31]. To observe
squeezing between A↑ and B↑ (B↓), we evaluate 〈X 2

±〉 (see Ap-
pendix B) and find the maximum values along each direction
X± is given by

〈X 2
±〉A↑B↑ = cγ + 1

2 |(ñgñγ )1/2 ± [(ñg − 1)ñγ ]1/2|2, (18)

〈X 2
±〉A↑B↓ = cgγ + 1

2 |(ñgñγ )1/2 ± (ñγ − 1)1/2|2, (19)

where cγ = ñγ −1
2 and cgγ = ñγ ñg−1

2 are constant shifts. In
Fig. 2 we plot 〈X 2

±〉 for different values of |γ |. The atoms

produced in the A↑ and B↑ modes are always squeezed along
the X− direction, and this phenomenon has the same origin
as squeezing in a simple two-mode atomic dissociation. The
atoms in A↑ and B↓ modes are squeezed along X+ for small
values of |γ |. This squeezing is suppressed with an increase
in |γ | and eventually changes to the X− direction. Note that
the direction of the squeezing is rotated by the phase φ since
〈X 2〉 includes the correlator 〈âb̂〉. From the symmetry of cou-
plings, we find that the squeezing for up-spin A and B modes
and down-spin A and B modes is equal, while the squeezing
between up-spin A and down-spin B modes is the same as
down-spin A and up-spin B modes.

C. Phase difference between g and γ and broken solvability

Now we discuss the scenario when there is a finite phase
difference between g and γ . This finite phase difference, θ , is
responsible for violation of CPT symmetry, and gaps emerge
near the exact crossing of levels with opposite slopes, see
Fig. 3(a). This violation of exact crossing leads to asymmetric
phase accumulations along the two interfering paths, lead-
ing to a finite interference in the system. Due to the finite
interference, the initial atoms in the A↑ mode can stimulate
the production of atoms in the A↓ mode. However, an exact
analytical solution is impossible, and we turn to a numerical
approach.

In Fig. 3(b), we show the θ dependence of the number of
atoms in each mode stimulated by a single atom in the A↑
mode. For θ = 0 or π we recover the solvability condition
and the CPT symmetry of the evolution equation, which
indeed agrees with formula (14), and the down-spin atoms
are exponentially suppressed. The production of down-spin
atoms increases with increasing θ , which corresponds to the
widening of the gaps and stronger constructive interference,
see Fig. 3(b). Note, the imaginary parts of the eigenval-
ues, however, remain unaffected. At θ = (2m + 1)π/2, the

033318-5



RAJESH K. MALLA PHYSICAL REVIEW A 106, 033318 (2022)

FIG. 3. (a) The instantaneous eigenvalues of Eq. (9) are shown as a function of time for parameters β1 = −1, β2 = 0.5, E1 = 5, E2 =
1, g = 0.5, γ = i. The black curves are real values and the red curves represent imaginary values. (b) The stimulated population of atomic
modes from initially prepared single atom in A↑ is shown as a function of θ . The colors blue, green, red, and black correspond to atomic modes
A↑, B↑, A↓, and B↓, respectively. (c) The Schematic setup to realize the dynamics of our model (9). The red and green circles correspond to
optical waveguides and the nearest coupling between waveguides are imaginary.

interference becomes constructive and stimulates a maximum
down-spin.

Concerning spontaneous dissociation, the total number
atoms in each mode are no longer equal, however, they still
satisfy the condition nA↑ + nA↓ = nB↑ + nB↓ . The condition
that atoms are produced in pairs ensures the quantum corre-
lation between modes and here the atoms will be produced in
four-mode squeezing due to an effective coupling between A↑
and A↓.

IV. DISCUSSION

We solved a mechanism of dissociation of molecular con-
densates when there are competing chemical reactions due to
multiple atomic modes. Our model can distinguish between
the types of atoms produced in comparison to prior studies.
The validity of our results relies on the fact that the molecular
operators can be replaced with their expectation values. This
assumption only describes a strong nonadiabatic conversion
mechanism where only a small fraction of molecules can be
converted to atoms. In our previous work of Ref. [17] we
analytically solved a model describing two atomic modes
where the exact solution allowed us to investigate both the
nonadiabatic as well as the adiabatic regime. This work was
motivated by the experiments in Ref. [4] where Cs atoms were
converted into Cs2 molecules.

We only investigate the molecular dissociation process
in the mean-field approximation and assume that molecules
and atoms do not interact with each other. The experimental
feasibility of such a system will depend on the prepara-
tion of molecular condensates in four modes. To prepare a
simple multicomponent condensate, one approach could be
to prepare the molecules in different quantum states prior
to condensation [32]. This can be further simplified by as-
suming diatomic molecules consisting of the same type of
atoms, which will require us to prepare only three-component
condensates. When the molecules dissociate due to the
time-varying chemical potentials, they will form atomic con-
densates. The number of atoms prepared is small compared to
molecules and therefore the interaction between atoms can be
neglected. A complete understanding requires understanding

the stability of such a complex system, which is beyond the
scope of this article.

Photonic realization of non-Hermitian multi-state
Landau-Zener models

The similarity between the paraxial Helmoltz equation and
the time-dependent Schrödinger equation allows to implement
various quantum mechanical models in photonic waveg-
uides. To test various non-Hermitian dynamics, photonic
waveguides provide a desirable platform due to the abil-
ity to control and manipulate the gain and loss of the
media. The light propagation in a network of N arbitrar-
ily coupled waveguides satisfies coupled-mode equations in
the form of the paraxial Helmholtz equation. When the
modes are orthogonal to each other, the paraxial Helmholtz
equation resembles the time-dependent Schrödinger equation
i∂ψ (z)/∂z = H (z)ψ (z), where the “Hamiltonian” H (z) is
position-dependent. To realize nMLZ models, the refractive
index in each waveguide can be made to be linearly dependent
on the position (z) to design a particular setup of diabatic level
crossings, similar to the one shown in Fig. 3(c). To introduce
the nMLZ dynamics, the coupling between the waveguides
must be anti-Hermitian. The simplest way to satisfy anti-
Hermiticity is to consider the coupling to be imaginary.
Recently, an imaginary coupling was realized in experiment
[33], where the authors achieved the imaginary coupling be-
tween two waveguides by introducing an ancilla waveguide in
between them. This will allow for any possible arrangement to
test a general nMLZ model. In Fig. 3(c), we show a design to
test our model (9). This design allows for imaginary coupling
between two nearest neighbors and forbids coupling between
diagonal waveguides. This design should be able to test the
model (9) for any set of parameters and the interfering paths
are shown by red and blue arrows. For our solvable model, one
should expect the following observations. First, in the staring
light at waveguide 1, one should observe zero intensity in the
waveguide 2 at large distances. Second, in the large coupling
limit one should observe equally strong intense light in 1 and
3. The intensity of light in the fourth waveguide will not be
zero, however, in comparison to 1 and 3, the intensity will be
exponentially suppressed.
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FIG. 4. The (a) eigenenergies of a standard LZ model and (b) the
eigenvalues of a matrix describing the nLZ model [EnLZ(t )] are
schematically shown as a function of time. The blue corresponds to
real part of eigenvalues while the red corresponds to the imaginary
part.
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APPENDIX A: NON-HERMITIAN LANDAU-ZENER
MODEL

The non-Hermitian Landau-Zener (nLZ) model can be de-
scribed by the matrix

ĤnLZ =
(

βt g
−g∗ −βt

)
, (A1)

where ±β are the two slopes corresponding to two levels and g
is the level coupling, which, in general, is complex. Unlike the
Hermitian model, the level couplings g and −g∗ are negative
complex conjugate of each other. The eigenvalues of ĤnLZ are
given by

EnLZ(t ) = ±
√

β2t2 − |g|2. (A2)

In standard LZ model the eigenvalues are given by ELZ =
±

√
β2t2 + |g|2. The eigenvalues EnLZ(t ) are shown as a func-

tion of time in Fig. 4(b) together with the eigenenergies for a
standard LZ model with parameters β and g.

The solution of the evolution equation for matrix (A1) has
the form of a 2 × 1 column vector

|φ(t )〉 =
(

a(t )
b(t )

)
,

where a(t ) satisfies a second-order differential equation

ä(t ) + (β2t2 − |g|2 + iβ )a(t ) = 0, (A3)

whose solutions are given by parabolic cylinder functions
[34].

The solution can now be expressed as follows [35]:

|φ(t )〉 = φ1

(
Dν (z)

−i
√

νDν−1(z)

)
+ φ2

(
Dν (−z)

−i
√

νDν−1(−z)

)
,

(A4)

where Dν (z) is the parabolic cylinder function, with ν =
i|g|2/2β and z = √

2βeiπ/4t . Since we are only interested in
the dynamics at large times t → ±∞, the asymptotic behav-
ior of the parabolic cylinder functions is good enough for
our analysis. The critical difference between the Hermitian
and the non-Hermitian dynamics comes from the phase of
ν, which is −π/2 for the Hermitian case and π/2 for the
non-Hermitian case. This crucial difference leads to the fol-
lowing distinction between LZ and nLZ dynamics. Assuming
the system starts with the upper state |a(t → −∞)|2 = 1,
the asymptotic solution of a(t ) at large positive times is
given by |a(t → ∞)|2 = e−π |g|2/β for the Hermitian model
and |a(t → ∞)|2 = eπ |g|2/β for the non-Hermitian model.
Similarly, the solution b(t ) at large positive times is given
by |b(t → ∞)|2 = 1 − e−π |g|2/β for the Hermitian model and
|b(t → ∞)|2 = eπ |g|2/β − 1 for the non-Hermitian model.

This exponential dependence in the non-Hermitian model
appears due to the anti-Hermitian complex couplings. The
conservation law in the Hermitian model describes the com-
mon probability law

|a(t )|2 + |b(t )|2 = 1.

The probability of survival is given by |a(t → ∞)|2 while the
probability of adiabatic transition is given by |b(t → ∞)|2. In
the non-Hermitian model, however, there are no such terms
and the exponentially growing nature makes it difficult to call
it probability. Nevertheless, in our model, |a(t → ∞)|2 and
|b(t → ∞)|2 correspond to the number of atoms produced
in the respective atomic modes. The conservation law here
results from the asymptotic expansion of parabolic cylinder
functions

|a(t )|2 − |b(t )|2 = 1,

and agrees with our dissociation mechanism in which atoms
are produced in pairs.

APPENDIX B: PAIRWISE SQUEEZING
OF ATOMIC MODES

The spontaneous dissociation process is quantum-
correlated and the atoms are produced in multimode quantum
squeezed states. To quantify squeezing, we define position
operators for the two modes corresponding to different types
of atoms A and B. The position operator reads

X̂ (φ)
Aσ Bσ ′ = 1

2 [e−iφ (âσ + b̂σ ′ ) + eiφ (â†
σ + b̂†

σ ′ )], (B1)

where σ , σ ′ refer to the spins while φ is the angle that defines
the measured quadrature. It is straightforward to see that the
expectation value of operator X is zero, while the expectation
value of X 2 can be nonzero. We expand the expression for the
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X 2 operator from Eq. (B1)

X̂ (θ )2

±,Aσ Bσ ′ = 1
4

[
e−2iφ

(
â2

σ + b̂2
σ ′ + âσ b̂σ ′ + b̂σ ′ âσ

)
+ â†

σ âσ + â†
σ b̂σ ′ + b̂†

σ ′ âσ + b̂†
σ ′ b̂σ ′

] + H.c. (B2)

At large times t → ∞, the operators satisfy

â↑(t ) = S11â↑(t0) + S12â↓(t0) + S13b̂†
↑(t0) + S14b̂†

↓(t0),

â↓(t ) = S21â↑(t0) + S22â↓(t0) + S23b̂†
↑(t0) + S24b̂†

↓(t0),

b̂†
↑(t ) = S31â↑(t0) + S32â↓(t0) + S33b̂†

↑(t0) + S34b̂†
↓(t0),

b̂†
↓(t ) = S41â↑(t0) + S42â↓(t0) + S43b̂†

↑(t0) + S44b̂†
↓(t0).

(B3)

Here, t0 corresponds to initial time. The nonzero contribution
to 〈X 2〉 comes from terms proportional to 〈â(t0)â†(t0)〉 and
〈b̂(t0)b̂†(t0)〉. The term 〈â(t0)â†(t0)〉 = 1 + 〈â†(t0)â(t0)〉 and
the second term vanishes since the initial atomic population
is zero.

Now we can express the expectation value of X 2 with only
nonzero terms〈

X̂ (θ )2

Aσ Bσ ′

〉 = 1
4 [e−2iφ (âσ b̂σ ′ + b̂σ ′ âσ ) + â†

σ âσ + b̂†
σ ′ b̂σ ′] + H.c.

(B4)

Let us first consider the expectation value of X 2 for A↑ and
B↑ modes. Substituting Eq. (B3) in Eq. (B2) we find

〈
X̂ (θ )2

±,A↑B↑

〉 = 1
2

{
Re[S11S13e2iφ] + |S11|2 + |S13|2 + |S14|2

}
,

(B5)

where

−2|S11||S13| � Re[S11S13e2iφ] � 2|S11||S13|.

We can obtain the maximum and the minimum value of
〈X̂ (θ )2

±,A↑B↑〉, which are given by

〈
X̂ (θ )2

±,A↑B↑

〉 = (ñγ − 1)

2
+ 1

2
|(ñgñγ )1/2 ± [(ñg − 1)ñγ ]1/2|2,

(B6)

and we obtain our Eq. (20) from the main text. For γ = 0
we recover the two-mode squeezing in the spin-independent
atomic dissociation in Ref. [7].

Similarly we can obtain Eq. (21) in our main text by
switching S13 and S14 in Eq. (B5).
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