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Synthetic gauge field in two interacting ultracold atomic gases without an optical lattice
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A two-dimensional Fock-state lattice (FSL) is constructed from the many-body states of two interacting two-
mode quantum gases. By periodically driving the interspecies interactions and pulsing the tunneling between
the two modes of each gas, a synthetic gauge field is generated. We derive an effective Hamiltonian in the
short pulse limit which resembles the Harper-Hofstadter Hamiltonian where the magnetic flux per plaquette is
controlled by the ratio of the interaction energy and the driving frequency. The quasispectrum of the Floquet
operator of the driving sequence shows the celebrated Hofstadter’s butterfly pattern as well as the existence of
edge states. From the calculation of the local Chern marker, we establish that the FSL has nontrivial topology
and by simulating the dynamics of the edge states, show that they exhibit chirality. Finally, the inclusion of
intraspecies interactions creates an overall harmonic trap in the lattice and introduces the nonlinear effect of
macroscopic quantum self-trapping, which is shown to hinder movement along the edges of the lattice. This
work introduces an avenue to explore synthetic gauge fields and the link between condensed matter systems and

quantum gases.
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I. INTRODUCTION

Ultracold atomic gases captured in optical lattices have
become a versatile testbed for simulating condensed matter
systems [1]. One of the main methods behind these sim-
ulations, called Floquet engineering, involves periodically
driving external fields of the gas and lattice to create synthetic
gauge fields [2—7]. The driving can be finely tuned to generate
an effective Hamiltonian that has the desired properties of
a static one. This is especially useful when simulating the
interactions between electrons and applied magnetic fields in
materials. Since ultracold gases are kept in clean, highly con-
trolled environments, the synthetic magnetic fields produced
in these systems are also highly controlled. Depending on the
specific driving schemes used, the parameters of the system
can be tuned to generate magnetic field strengths that are
difficult to approach otherwise. An early success in simulat-
ing a magnetic field involved the Coriolis force in a rotating
atomic gas [8,9]. Later, synthetic staggered magnetic fields
were created with laser-induced tunneling [10] and shaking
of the lattice [11]. This lead to the creation of topological
many-body phases in two-dimensional (2D) optical lattices
through the experimental simulation of the Harper-Hofstadter
(HH) [12,13] and Haldane [14] models.

An additional aid in the engineering of condensed mat-
ter systems is the concept of synthetic dimensions [15,16].
A synthetic dimension is a degree of freedom, from either
internal or external states of particles, which can imitate real-
space dimensions. Experimentalists have been able to create
synthetic dimensions using internal spin [17-20], momen-
tum [21-23], clock [24-26], harmonic oscillator [27], and
rotational [28] states of atoms and molecules. It is common
practice to prepare a one-dimensional (1D) lattice in real space
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and pair it with a synthetic dimension to create a 2D lattice.
The inclusion of a synthetic gauge field in such systems has
lead to the observation of chiral edge states [18,19] and Hall
drift, as well as the construction of the local Chern marker
[29].

Another avenue taken to generate topological effects is
through photonic systems [30,31]. Usually waveguides and
resonators are used as lattice sites arranged in the desired ge-
ometry. In these systems, topological edge states [32,33], band
structures [34], and transport properties [35] were observed. A
relatively newer approach is to use a few photonic modes in
the form of optical cavities. The range of photon occupations
of these modes form a Fock-state basis, which is used as a
synthetic dimension and can be generalized to show that d
cavities form a d — 1-dimensional Fock-state lattice (FSL)
[36,37]. There is some restriction to this approach, however,
as the geometry of the FSL is ingrained in the Hilbert space
making it difficult to manipulate. Nevertheless, theoretical
treatments of various lattice models with gauge fields were
proposed using FSLs [38].

Fock states also form the basis of few-mode matter-based
systems such as a two-component Bose-Einstein condensate
(BEC) [39] or a BEC in a double well potential, alternatively
called a bosonic Josephson junction (BJJ) [40,41]. There are
three main ways in which these systems are periodically
driven: the chemical potential, the tunneling between modes,
and the interactions between particles of the gas. For instance,
periodically driving the tilt between two wells of a BJJ has
been proposed to enhance tunneling [42] and periodically
driving the tunneling between two modes of a Bose-Hubbard
(BH) dimer was used to explore the emergence of chaos in the
system [43]. Recently, periodically driven interactions were
proposed to control the quantum collapse in a BJJ [44], to
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generate quantum phase transitions in the Lipkin-Meshkov-
Glick model [45], and to control the tunneling of ultracold
atoms in the BH dimer [46].

In this work, we show a 2D FSL lattice can be formed
by the states of two interacting two-mode quantum gases. By
incorporating a periodic driving sequence used on a real-space
lattice to generate synthetic gauge fields [47], we show the
same can be done for the FSL. The common thread throughout
this paper is the adoption of real-space measures of topology
and their conversion to equivalent measures of the FSL. Con-
sequently, we establish that the FSL is HH-like with nontrivial
topology giving rise to nonzero Chern numbers and chiral
edge states. Nonlinearities from the repulsive intraspecies in-
teractions of the gases play an important role in the static
and dynamic properties of the system. They act as an over-
all harmonic potential in the FSL causing some merging of
bulk bands and they manifest in the dynamics in the form of
self-trapping, hindering the movement around the edge of the
lattice.

II. MODEL

The system we will be investigating consists of two inter-
acting bosonic quantum gases. Each gas contains N identical
particles and each particle has access to two states labeled 1
and 2. The states can be internal spin states or external states
such as the ground states in each well of a double well poten-
tial. The basis we will be using is the Fock basis defined in
terms of half the particle number difference between states 1
and 2, |n, m), where n = (N; — N,)/2 and m = (M| — M3)/2.
In the Schwinger representation, n and m are interpreted as z
components of spin-m, / 2 partlcles s0 |n, m) is an eigenstate of
the operators J = 2(a a; — azaz) and S = 2(le9| — bsz)
where Jh|n, m) = n|n, m) and Sv|n,m) = m|n, m). The cre-
ation and annihilation operators for the two states of the
two gases follow the usual commutation relation [a;, &T] =

[b,, bt ] = §;; where i, j = 1,2. Here, we will interpret the
Fock states as locations on a (N 4+ 1) x (N + 1) FSL with
lattice spacing @ =1 where n and m are the coordinates
along the x and y axes, respectively. The origin located at
|0, 0) corresponds to an equal number of particles of each
gas occupying each of the two modes and J. (S.) becomes
the displacement operator X (§) on the FSL.

Our goal in this paper is to investigate the effects of a
synthetic magnetic field through the FSL. To generate the
magnetic field, we are motivated by past efforts which gener-
ated one in real space. For instance, in [47] it was shown that
a magnetic flux through a real-space lattice could be gener-
ated from a combination of periodically driving a quadrupolar
potential term Vq, sin(w?)X9, where w is the driving frequency
and periodically flashing on tunneling in the x and y directions
for a short period of time, 7 < 1. One period of the driving
sequence produces the Floquet operator

U’<t _ 2_7T> — p—ith/2 2iVepi9/w y=it T, ,=2iVip RS/
w

xe Th/2, (1)

where T, and YA‘) are the kinetic energy operators in the x and
y directions, respectively. For w >> 1, the evolution operator

can be written in terms of an effective Hamiltonian U’(7) =
e~Hin™ where

Aly ~ Hun = —=J Y [n.m)(n,m — 1|

+e7 M, m)(n—1,m| +He. (2

The effective Hamiltonian takes the form of the celebrated HH
Hamiltonian Ayy (in the Landau gauge), which describes a
uniform magnetic field in the direction perpendicular to the
plane of a 2D lattice. The parameter a = Vyp/mw = @/ Py is
the ratio of the magnetic flux through a unit cell ® = Ba? and
the magnetic flux quantum & = h/e.

Switching the focus back to our model, according to our
previous analogy between J. (.) and % (§), the quadrupolar
potential becomes an interaction term between the two gases
Vopk9 — «8.J. where « is the interaction energy. The kinetic
energy operators in Eq. (1) are responsible for moving a parti-
cle from one lattice site to an adjacent one. The x-component
spin operators accomplish the same thing on the FSL,
so we make the additional transformations T, — —JJ, =
—L(ajay + abay) and Ty, — —JS, = —4(b}by + bby) (keep-
ing in mind that the subscripts on the kinetic energy operators
represent direction and the subscripts on the spin operators do
not) where J is the tunneling energy and is the same for both
gases. The driving sequence in Eq. (1) becomes

U(t _ 2_77) _ eZiKS,_fz/w eirfx e—zix&fz/a) eirﬁt’ 3)
w

where, when comparing it to Eq. (1), we made the small
modification of removing the left-hand factor of ¢/™/? and
multiplying it to the right-hand side. Also, we set the tun-
neling energy to unity J = 1, so that from now on all other
energies will be in units of J. A single species version of
U was used to produce the fractal spectrum of Hofstadter’s
butterfly [48] and study the effects of nonlinearities on it. This
driving sequence is accomplished by periodically modulating
the interspecies interactions « sin(wf)S.J, and flashing on the
hopping between the two single particle states of one gas at
time wt = 0 for a duration of v « 1, then flashing on the
hopping of the other gas at time wt = 7 for the same duration.
Altogether the driving results in the “stirring” of the FSL. The
Floquet operator can again be written in terms of an effective
Hamiltonian (Appendix A)

Her ~ =y Dy(m)ln, m+ 1) (n, m|

+D_(m)|n,m — 1)(n, m|
+ eiZ”“”1D+(n)|n + 1, m){n, m|
+67i2namD_(n)|n _ 1’ m) (n’ m|, (4)

where the new magnetic flux ratio « = x/mw is controlled
by the interaction energy and the driving frequency. The
major difference between the real-space and Fock-space
effective Hamiltonians is the presence of the Dy(x) =
%\/(N/Z Fx)(N/2 £ x4+ 1) factors. This means that even
without the magnetic field, the Fock lattice is not translation-
ally invariant. The factors have the shape of a semicircle as
a function of x, so for N > 1 and x <« N/2, they are rather
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flat Dy (x) & N/4, then as x increases, they transition to a
parabolic shape with a hard wall edge at x = ==N/2 because
D.(£N/2)=0.

The tunneling terms in the driving sequence can be im-
plemented by pulsing lasers at the specified times to induce
tunneling between the two modes of each gas. We assume that
the interspecies interactions take place via s-wave scattering,
so the periodic interaction energy is controlled by alternating
between positive and negative scattering lengths correspond-
ing to repulsive and attractive interactions, respectively. This
is achieved through Feshbach resonance [49] between the two
species and by applying an ac magnetic field. In the region of
a Feshbach resonance, the s-wave scattering length takes the
form

= 1 A 5
as(t)—a0< —m) )

where a, and g are the modified and background s-wave scat-
tering lengths, respectively, A is the width of the resonance
region, B, is the magnetic field strength of the resonance
point, and B(¢) is the ac- magnetic-field strength. If the ac
magnetic field is B(t) = (Bs + A) + dBsin(wt) and 6B K
A, then ay(t) ~ “"T‘SB sin(wt). Time-varying interaction ener-
gies were achieved experimentally not long after the creation
of the first BECs to study the effects of ramping through
a Feshbach resonance point [50-52]. Oscillating interaction
energies were used to study the association of ultracold atoms
of the same species [53] and of different species [54,55] and
also to control the excitations in a BEC [56]. Experiments
also showed that periodically driving onsite interactions of an
optical lattice can lead to complete suppression of the tun-
neling [57]. Furthermore, paired time-dependent interactions
and tunneling were proposed to generate density-dependent
momenta of ultracold atoms in an optical lattice [58]. To avoid
unwanted excitations, the strength of the driving should be
adiabatically ramped up. Heating effects from enhanced in-
elastic collisions around the resonance point [59] are reduced
naturally because we shift the driving away from it by A with
a small amplitude of oscillation. It was also shown that heating
effects can be further reduced with stronger confinement of
the trapping potential [60].

III. RESULTS
A. Quasispectrum

In this section, we explore the hallmarks of magnetic fields
in 2D lattices starting with the comparison of the spectra of the
Hyy Hamiltonian and the Floquet operator in Eq. (3). In the
HH model, the magnetic field breaks translational symmetry,
however, if the flux ratio is a rational number, @ = p/q where
P, q € Z, then the translational symmetry is restored if the
unit cell increases by a factor of ¢g. The increase in size of
the unit cell in real-space results in the reciprocal space being
g times smaller, so a single band will turn into g bands. The
resulting pattern of the spectrum as a function of « is shown in
Fig. 1(a) and is called Hofstadter’s butterfly due to its shape.
Usually the spectrum is depicted as having a fractal structure
and being without states flowing through the gaps, however,
for better visualization we used a small lattice size of 11 x 11,
which smooths out the fractals and applied an edge in the

S

[T

o

A

=

S 1.0

= Y

m LI,

5 08

= Q

W 2

063
©
Q
o
o
0.4

2 §

. i

L 0.2

c

£l

=4 Z\\\ B9

=) N\ 0

5 NN

c

.

7

©

S

o

FIG. 1. The energy or quasienergy is plotted as a function of the
magnetic flux ratio o and the background shows a density plot of the
probability for a state of a given energy to occupy the edge of the lat-
tice. (a) The energy is calculated from the HH Hamiltonian in Eq. (2)
with a lattice size of 11 x 11. (b) The quasienergy is calculated from
the Floquet operator in Eq. (3) for two gases containing ten particles
each, so the Hilbert spaces of the real and Fock spaces are equal. The
pulse time is 7 = 0.01

numerics which produces edge states in the gaps. The latter
point is made clearer with the density plot in the background
of the panel which is a plot of the probability for an energy
eigenstate to occupy the edge of the lattice

Pi= )" ln,mly)l, 6)

n,meedge

where |v;) is the ith energy eigenstate of Hyy. The image
shows that the edge states do indeed occur in the gaps with
the largest edge probability being Pnax ~ 0.9, so the states are
quite localized.

The set of eigenvalues of Eq. (4) are called quasienergies
because they come from the Floquet operator in Eq. (3) whose
set of eigenvalues is {A; = e™'%"} and so lose their unique-
ness when €;7 > 2x. However, when 7 is small enough,
quasienergies play a similar role in periodically driven sys-
tems as energies do in time-independent Hamiltonians. We
plot %ln({)\i}) as a function of « in Fig. 1(b), which shows all
of the qualitative features of Hofstadter’s butterfly were repli-
cated and the lack of translational invariance of the bare FSL
only has an effect on the finer details of the quasispectrum.
The edge states are again found in the gaps with a maximum
probability of P & 0.8. The difference in the ranges along
the y axis between both panels comes from the D (x) factors
whose ranges are proportional to N.
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FIG. 2. Density plots of the probability for a site on the FSL
to have a given quasienergy and the LCM for different fictitious
Fermi energies (Er). (a,b) show P, (n) for « =1/3 and o = 1/5,
respectively, where the colored horizontal lines represent values of
Er. (c,d) show the LCM, C(n), for the values of Er in (a) and (b),
respectively. The density plots show bulk bands, gaps, and edge states
and the number of them corresponds to the value . The LCM agrees
with the Chern number of the HH model with C = &1 foro = 1/3
and C = +£1, £2 for @ = 1/5 for each band. The number of particles
in each gas is N = 30 and the pulse time is 7 = 0.01.

B. Local Chern marker

We now turn our attention to the topological features of the
model. For 2D lattices, the Chern number is a quantity which
can help identify topological properties (trivial or nontrivial).
The Chern number is usually calculated by integrating the
Berry curvature over the first Brillouin zone for all occupied
bands. This calculation requires the quasimomentum to be a
well-defined quantity, which, in turn, requires translational in-
variance. For nonhomogeneous systems, a real-space version
of the Chern number called the local Chern marker (LCM)
was introduced [61], which defines it locally in a unit cell of
the lattice

C= Z—nlm(trceu{ﬁﬁﬁji}), (7)
where A, is the area of the unit cell and P is the projection
operator onto the states of the occupied bands. It is expected
that for large-enough system sizes the average of the LCM
of the bulk bands matches the quasimomentum version of the
Chern number. We neglect the trace over the unit cell because
we will average the LCM over states of the bulk later on, so
A. = 1 and the LCM becomes completely localized

C(n,m) = —4mi(n, m|PS.PJ.|n, m). (8)

What remains is to determine which states P projects onto and
for that we need to know if the model contains any band-like
structures. To this end, we calculate the probability for a po-
sition on the lattice to have a given quasienergy ¢; [calculated
from the Floquet operator in Eq. (3)], P, (n, m) = |(n, m|€;) 12,
and plot an m = 0 slice of it, P, (n) = P, (n, m = 0), for two
values of the flux ratio « in Figs. 2(a) and 2(b). Figure 2(a)
shows three distinct band-like structures for « = 1/3 and
Fig. 2(b) shows five for a = 1/5. Although these are not

energy bands in the strictest sense, they still follow the qual-
itative feature of the HH model that there are ¢ bands when
o = 1/q. Each band is separated by a gap with the exception
of the edges of the lattice at n = +15 (N = 30 for both gases)
where the bands are connected agreeing with the existence of
edge states in the gaps in Fig. 1.

In normal real-space lattices there is a Fermi surface with
an energy Er where states with energy below Ef are occupied
by electrons. It is these states that belong to the projection
operator in Eq. (7). Such a Fermi surface does not exist for
the FSL, however, we can imagine a fictitious one existing in
the gaps between bands to help facilitate the calculation of
the LCM. Different Fermi energies are shown as horizontal
colored lines in Figs. 2(a) and 2(b) and are placed at an
arbitrary position within the gaps. Therefore, we will take P
as the projection operator of states with energies below these
lines. Figures 2(c) and 2(d) show C(n) = C(n, 0) for the Fermi
energies in Figs. 2(a) and 2(b), respectively. One can see that
the LCM varies significantly over the edges, but settles down
to a constant value farther inside the bulk. We take the average
of the LCM in the region |n|, |m| < 8, so that it is taken over a
region comfortably inside the bulk. The average LCMs for in-
creasing Fermi energy are: Cpe = —0.996, 0.996 for o = 1/3
and Cye = —0.998, —1.934, 1.934, 0.998 for o = 1/5. These
values agree well with the Harper model Chern numbers of &1
fora = 1/3 and 1, £2 for « = 1/5 and satisfy the condition
that the sum of the Chern numbers for all of the bands is equal
to zero.

C. Intraspecies interactions

Intraspecies interactions are introduced with the term
U (S‘Z2 + ff). For simplicity we take the interaction energy U
to be the same for both gases and it is controlled by the s-wave
scattering length of the particles. Only repulsive interactions
U > 0 will be considered, so their inclusion results in a har-
monic trap in the FSL. The evolution operator in Eq. (3) gains
the factor e~# 2+ at the first and third positions (left to
right) where © = UN7x /w. Harmonic traps were studied for
real-space lattices [62] because they are needed as an overall
trapping potential in experimental setups involving ultracold
atomic gases. It was found that harmonic confinement creates
a soft-wall boundary for the lattice, which makes edge states
harder to identify due to smearing. However, bulk bands were
still visible, as well as gaps between them for large-enough
lattices and weak-enough confinements, so topological fea-
tures still persisted. We plot P, (n) with pu # 0 for the two
values of « in Figs. 3(a) and 3(b) and find that the soft wall
of the harmonic trap does indeed smear out the bands near
the edges, however, they still connect bands together due to
the hard wall at the very edge. The interactions also decrease
the gap size in the longitudinal direction. This suggests that
there is a critical interaction strength for a finite-sized system
where the bands get so smeared out that the gaps disappear.
Even so, for weak-enough interactions the bands and gaps are
still distinguishable which is what we see for © = 0.02.

In Figs. 3(c) and 3(d) we once again plot the LCM, C(n),
for the fictitious Fermi energies in Figs. 3(a) and 3(b), re-
spectively, however, we only include the lower energy LCMs
since we established that the upper ones are the same, but
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FIG. 3. The same images as in Fig. 2 except with intraspecies
interactions u = 0.02 and the number of particles in each gas is now
N =40 instead of N =30 to make the gaps more visible. When
u # 0 the intraspecies interactions act as a harmonic trap on the
FSL causing the parabolic shape of the bands. The LCM shows that
for weak interactions the bands retain their topological features with
values matching the Chern numbers of the HH model in the bulk.

with a flipped sign. With interactions we find that the aver-
age LCM values are C,e = —0.987 for @ = 1/3 and Cyye =
—0.996, —1.918 for « = 1/5. These values again agree with
the HH model Chern numbers signaling that, although the
interactions change the shape of the bands, their topological
properties remain intact. Away from the center of the lattice
there are some qualitative differences compared to the case
with no interactions. In Fig. 3(c) the low Fermi energy LCM
(red, smooth) quickly goes to zero because, due to the curva-
ture of the bands, Er enters a region where there are no states
as seen in Fig. 3(a). This crossing occurs at n = £12. The
higher Fermi energy LCM in Fig. 3(d) (orange, dot-dashed)
varies significantly away from the center because Ep crosses
the second bulk band and enters the lower gap at n = £10,
so the LCM briefly picks up the lower band LCM value of
—1. Near the edges of the lattice, the LCM goes to zero again
because there are no more states below Er in this area.

D. Transport properties

In condensed matter systems the Chern number is usually
measured through the Hall conductance [63], however, it is
difficult to use the same technique for neutral particles in
an ultracold atomic gas. One proposed method uses hybrid
time-of-flight (HTOF) images [64], which involves in situ
measurements of a gas cloud’s density in one direction of
the lattice and measurements of the free expansion of the gas
in the other direction. The HTOF images are quantified in
the density of particles with a given position and transverse
quasimomentum, p(k,, y). This quantity takes advantage of
the fact that the Chern number is related to adiabatic transport
properties of the lattice and that a 2D lattice can also be
thought of as a 1D charge pump where k, plays the role of
the pumping parameter. When k, is cycled over the Brillouin
zone, k, — k. + 2m, the particles on the lattice are displaced
if there is nontrivial topology present. The displacement is

20y (b) High
100 ——— K
= z
g0 | e -y
: ., — e A E
r I s— .
P P
| I
-20 . Low

10 -1.0 -05 0.0 0.5 1.0

6 (units of m)

FIG. 4. The particle density function p(0,,m) is plotted as a
function of the relative phase of one gas and the number difference
of the other gas. Panels (a) and (b) show p(6,, m) for the lowest
bands for « = 1/3 and « = 1/5, respectively. A peak of the density
is displaced by —3 in (a) and —5 in (b) agreeing with the charge
pump result of §m = Cq in real-space lattices. The other parameter
values match those in Fig. 3.

related to the Chern number by dycom = Cgq where §ycom is
the center-of-mass displacement, C is the Chern number, and
q is the length of the magnetic unit cell in the y direction when
oa=1/q.

In the current system, the relative phases between states 1
and 2 of each BEC, 6, and 6, are the conjugate variables to the
number differences n and m, respectively, so they are anal-
ogous to the quasimomenta in real space. In the Schwinger
representation, the relative phase is also the azimuthal angle
on the surface of a spin-N/2 Bloch sphere. The particle den-
sity takes the form

N
1
m&m=F§@@mw 9)

where the sum is over the A/ states below the Fermi energy
and
N/2
(O m) =N+ 17 Y ™ yi(n,m) (10)

n=—N/2

is the Fourier transform of the ith eigenstate of the Floquet
operator. The relative phase also takes discrete values, 6, =
131’1 where r is an integer in the range —N/2 < r < N/2.
Similarly to the real-space transport, we expect there to be
a displacement of §m = Cq on the FSL when 6, changes by
2.

We will consider the lowest Fermi energy (red) in Fig. 3 for
both values of « which means C = —1. In one cycle of 6, the
expected displacement is §m = —3 fora = 1/3 and 6m = —5
for « = 1/5. Figure 4 shows p(6,, m) and we find agreement
with the predicted result. Following a peak of p(6,, m) (red) as
0, increases by 27 results in the peak being displaced by §m =
—3 for « = 1/3 in Fig. 4(a) and by ém = —5 fora = 1/5in
Fig. 4(b). A helpful guide to identify the displacement in the
figure is to note that m is discrete, so the images are broken
up into horizontal strips. The number of strips going from
one peak to another is three in Fig. 4(a) and five in Fig. 4(b).
The downward slope is attributed to the Chern number being
negative, however, a Chern number of 41 can also be checked
for the lowest band by flipping the sign of the interspecies
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FIG. 5. Initial and final probability distributions in the FSL for different parameter values. (a) An initial Gaussian distribution (spin coherent
state) along the horizontal centered at (n, m) = (0, —N/2). (b) After 50 steps of the Floquet operator in Eq. (3) the Gaussian has moved along
the edge to the right while maintaining its shape for « = 1/6 and p = 0.02. (c) The same as (b) except the flux ratio has been changed to
o = 5/6, which reverses the chirality of the Gaussian, so it has moved along the edge to the left after 50 steps. (d) An initial Fock distribution
located in the bottom left corner at (n, m) = (—N/2, —N/2). (e) After 500 steps of the Floquet operator the distribution remains in its initial
vicinity for & = 1/6 and u = 0.02, which is a qualitative sign of MQST. (f) The interaction energy is reduced to © = 0.005 ceasing MQST
and after 500 steps the distribution has spread along the left and bottom edges. The images were generated using N = 40 for both gases and

with a pulse time of 7 = 0.01.

interactions « in Eq. (3). The intraspecies interactions do not
have an effect on the transport properties of the FSL except to
prevent any displacement near the sides of the lattice where
the sites are energetically inaccessible (white space in the
images).

Like k,, 6, can also be measured from time-of-flight ex-
pansion through the interference fringes of absorption images
[41]. This means that to see the transport effects one must be
able to release one gas from the trap for the 6, measurement
and keep the other gas trapped for the » measurement. One of
the major difficulties in performing these measurements is the
requirement that the gases be separate, however, in general,
they will end up mixing. One way to aid in the measurements
is if the two modes of each gas are spatially separated like
the two wells of a BJJ where the tunneling is through a
central potential barrier. On the FSL, quadrants two and four
represent immiscible states of the BJJ, so measurements taken
in these regions will have some separation between the gases.

Staying with the BJJ system, the edge-state chirality can
be measured by preparing the initial state as a spin coherent
state in the x direction and a Fock state at m = —N/2 in the
y direction. This results in a Gaussian state in the x direction
centered at (n, m) = (0, —N/2) on the lattice. Such a state can
be prepared by having relatively strong tunneling between the
two wells of the x-direction gas and loading all of the particles
of the y-direction gas into one well (well 2 in this case) before
the driving starts. This initial state is shown at the bottom
edge of Fig. 5(a). Figure 5(b) shows the wave function has
moved to the right along the edge after 50 steps of U for
parameter values « = 1/6 and ;v = 0.02. The chirality can be
flipped by flipping the sign of ¥ (&), as previously mentioned.
Equivalently, due to the symmetry of the quasispectrum in
Fig. 1, the chirality can be flipped by setting @ = 5/6 which
is shown in Fig. 5(c) where the wave function has now moved
to the left. The bottom right and left corners of the Fock
lattice represent complete separation and complete overlap of
the two gases in the BJJ, so the chirality can be inferred by the

miscibility of the final state. Tunable miscibility experiments
were conducted by controlling the Feshbach resonances of
both the interspecies and intraspecies interactions of quantum
gases [65,66].

A distinguishing feature of the single species BJJ is a
dynamical process called macroscopic quantum self-trapping
(MQST). This process comes from the intraspecies interac-
tions and leads to n having a nonzero long time average. In
extreme cases when the interactions are large enough, the
number difference does not evolve much at all. This is a rather
counterintuitive result because one would think that for larger
u (more repulsive) the gas would tend toward a state that is
maximally spread between the two wells, not prefer one well
over the other. Clarification of MQST can be gained by con-
sidering the classical rigid pendulum. If given a large-enough
kinetic energy, the pendulum will swing over the top and make
full loops as it evolves. For a very large kinetic energy, the
pendulum swings around rapidly maintaining a near constant
angular momentum. This happens because there is no angu-
lar displacement state that makes the gravitational potential
energy comparable to the kinetic energy, so the kinetic en-
ergy and therefore the angular momentum are locked. In the
BJJ, the intraspecies interaction energy and the boson number
difference n (m) are analogous to the kinetic energy and the
angular momentum of the pendulum, respectively. Therefore,
small oscillations of the BEC moving back and forth between
the two wells is similar to small oscillations of the pendu-
lum. Likewise, the pendulum having enough kinetic energy to
make full loops to maintain a nonzero angular momentum is
the same as the BEC having enough intraspecies interaction
energy to maintain a nonzero boson number difference and
some of the BEC ends up trapped in one well over the other.

To show MQST in the current system we change the initial
state to the Fock state | —N/2, —N/2), which corresponds to
both gases being loaded into the same well before the driving
starts. This state can be seen in the bottom left corner of
Fig. 5(d). Figure 5(e) shows the wave function after 500 steps
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of U for parameter values of @ = 1/6 and 1 = 0.02. We can
see that MQST prevented the wave function from leaving the
corner (confirmed for all intermediate steps) resulting in a lo-
calized state on the FSL. By reducing u we reduce the amount
of energy stored in the intraspcecies interactions and the wave
function will be able to explore more of the lattice. This is
what we see in Fig. 5(f) where we keep the same «, but now
@ = 0.005. The localization can also be explained through the
examination of the high-energy eigenstates of U as was done
for the HH model in a harmonic trap [67]. It was found that as
W (strength of the harmonic trap) increases, the higher-energy
states form a near four-fold degenerate group and the initial
state |—N/2, —N/2) can be approximately constructed from
a superposition of these states. The result is that the initial
state is close to being an eigenstate of U, so it does not evolve
much.

To find the critical value of u where the onset of MQST
occurs we derive the mean-field Hamiltonian of H.; with
interactions giving (Appendix B)

n
e = 2 457 - [V eos)
++v/1 —x2cos(8, + naNy)], an

where x = 2n/N and y = 2m/N. If we imagine both x and
y as angular momentum variables (6, and 6, as angular
displacement variables), then Hyr resembles the Hamilto-
nian of a system of coupled pendula, albeit a strange one
due to the angular momentum-dependent potential energy.
Nevertheless, we can use the pendulum analogy discussed
earlier to say that MQST should take effect when the cou-
pled pendula in Eq. (11) have enough energy to make a full
loop, or in other words, when the total energy is greater
than the maximum potential energy. The initial state is lo-
cated at (n, m) = (—=N/2, —N/2) or (x,y) = (—1, —1), so its
energy is 2u/t. The maximum potential energy occurs at
(x,,0x,6,) = (0,0, 7, ) and is equal to 2, so MQST hap-
pens when 2/t > 2 giving a critical value of

(ﬁ)c =1 (12)

T

We stress that the critical value depends on the initial state
as different initial states have different total energies. In fact,
the dependence of the critical value on 1 and o can be quite
complicated in some systems as seen in the periodically driven

BEC in a quadruple well [68]. Figure 6 shows %(SZ + L)),
which is the the long-time average (denoted by the line) of the
expectation value of the sum of the number difference opera-
tors, for different values of the ratio p/t. The expectation is
taken with respect to the Fock state |—N/2, —N/2) shown in
the bottom left corner of Fig. 5(d). The image shows that for
small values of 1/t the long-time average is zero because the
state spreads along the edges of the entire lattice as it evolves.
Around the critical ratio of unity the long-time average jumps
signifying the onset of MQST and asymptotically approaches
—N/2. This analysis has highlighted the key difference be-
tween the Fock-space and real-space lattices, which is that
the sites on the FSL are fundamentally many-body states and
the real-space sites are not. Thus, many-body phenomena like
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— -57 ..‘ ]
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FIG. 6. The long-time average of %(S’z + J.)(r) (denoted by the
overline in the image) for different values of the ratio between the
intraspecies interaction energy and the pulse time /7. The brackets
(...) denote the expectation value with respect to the Fock state
|—=N/2, —N/2) shown in Fig. 5(d). For small values of the ratio the
state spreads along the edges of the lattice and the long-time average
is zero. Around the critical ratio of (/7). = 1 MQST begins to take
effect stopping the wave function from spreading, so the long-time
average is close to its initial value of —N/2. The parameter values
are N = 40 for both gases, T = 0.01 and the time average was taken
over 10 000 steps of U.

MQST can appear on the FSL and in this case disrupt edge
states.

IV. CONCLUSION

In this work we showed that two interacting bosonic quan-
tum gases can be periodically driven to simulate a particle on
a 2D lattice in the presence of a magnetic field. The quasis-
pectrum of the driving sequence Floquet operator reproduces
the celebrated Hofstadter’s butterfly pattern found in the HH
model. Through the calculation of the LCM we found that the
driven gases retain the topological features of the HH model
with the Chern numbers agreeing between the two systems.
A method to measure the topological properties of the driven
gases is proposed involving a combination of measuring the
relative phase of one gas and the number difference of the
other gas. This method is akin to hybrid time-of-flight images
and measures the transport properties of the lattice associ-
ated with the Chern number. Finally, we showed that when
intraspecies interactions are included, the nonlinear effect of
MQST can hinder the movement of edge states.

The implementation of the driving sequence raises some
interesting possibilities for the types of synthetic lattices one
can build. For instance, instead of coupling two many-particle
two-mode gases together, only the addition of a single two-
mode particle to one N particle gas is enough for a second
dimension. The FSL then takes the shape of a ladder with the
rungs made of the two-mode single particle and the legs made
of the two-mode N particle gas. Also, a single three-mode
gas has a hexagonal-shaped Hilbert space with a triangular
hard wall, so this may open up possibilities to explore other
important systems like the Haldane model. Further study
of simulating lattices with ultracold atomic gases will pro-
vide opportunities to explore the relation between seemingly
disparate phenomena in the condensed matter, optical, and
atomic fields.
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APPENDIX A: DERIVATION OF H

To derive Eq. (4) we start with the unitary Floquet op-
erator in Eq. (3) and using the fact that e/®* f(J,)e~#/: =
f(J, cos(¢) — f) sin(¢)) where f(x) is a general function of
X gives

0 — eir[fx cos(ZnaSZ)fj} sin(27ra$‘z)]eir$} . (Al)

where the substitution @ = k /wm has been made. Using the
Baker-Campbell-Hausdorff formula

A GiTB eiz(A+B)+%[A,B]+---’ (A2)
and taking T < 1, so that terms of O(z?) and higher can be
neglected gives

U~ eir[fx cos(2mas,)—J, sin@rwas,)+3,] (A3)

—iHef T

Writing the Floquet operator as U = e
effective Hamiltonian as

, we identify the

Her = —[J; cosra8,) — Jysinral,) + 51, (Ad)

In terms of the spin raising and lowering operators, the Hamil-
tonian becomes

N 1 . 5 PO A A
Heff — _E[J_’_ezerozSZ + J_e—IZJT(XSZ + S+ + S_] (AS)

and expressing the spin operators explicitly in terms of the J,
(8,) eigenstates produces the effective Hamiltonian in Eq. (4).

APPENDIX B: DERIVATION OF Hyy

We start the derivation of Hypr by adding intraspecies
interactions to the effective Hamiltonian. With intraspecies
interactions the unitary operator in Eq. (A1) becomes

U= e—i%(ﬁf-k]?)eir[fx cos (28, )—J, sin (27as. )]
x ¢ RGeS (B1)
In this paper we are using small values of u of O(t), so we

can neglect terms of O(ut) in the Baker-Campbell-Hausdorff
formula and simply combine all of the exponentials into one

U — eir {- % (82472)+J; cos (2maS, )—Jy sin (2w 8. )48, } (B2)

so the effective Hamiltonian with interactions is

N _2,u

Her = - (82 + %) — Ji cos(2mas.)

+J, sin2ras;) — S.. (B3)

The mean-field effective Hamiltonian is derived by replacing
the creation (annihilation) operators with complex numbers

d12 — /Ni2e™2, b1y — /M2, (B4)

which transforms the spin operators into
Jo—> AN =N =n, S.— JMi—My)=m,
Jo = N2/4 —n2cos(6,), S, — /N2/4 —m?cos(b,),
Jy — /N2/4 —n2sin(6,), S, — /N2/4 —m?sin(6,),
(BS)

where 0, = 0, — 6, and 6, = ¢; — ¢,. We take the mean-field
Hamiltonian to be Hyp = limy_, oo Hefr /(N/2), so it becomes

Hyr = %()c2 +y%) — V1 —x2cos (6, + maNy)

—y/1 —y?cos (6)), (B6)

where x = 2n/N and y = 2m/N and we used the trigonomet-
ric identity cos(a + b) = cos(a) cos(b) — sin(a) sin(b).
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