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Damian Wozniak ,1,2 Johann Kroha ,3 and Anna Posazhennikova1

1Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany
2Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

3Fachbereich Physik, Universität Bonn, 53115 Bonn, Germany

(Received 1 December 2021; accepted 16 August 2022; published 16 September 2022)

We consider large rings of weakly coupled Bose-Einstein condensates, analyzing their transition to chaotic
dynamics and loss of coherence. Initially, a ring is considered to be in an eigenstate, i.e., in a commensurate
configuration with equal site fillings and equal phase differences between neighboring sites. Such a ring should
exhibit a circulating current whose value will depend on the initial, nonzero phase difference. The appearance
of such currents is a signature of an established coherence along the ring. If phase difference falls between π/2
and 3π/2 and interparticle interaction in condensates exceeds a critical interaction value uc, the coherence is
supposed to be quickly destroyed because the system enters a chaotic regime due to inherent instabilities. This
is, however, only part of the story. It turns out that chaotic dynamics and resulting averaging of circular current
to zero are generally offset by a critical timescale tc, which is almost two orders of magnitude larger than the one
expected from the linear stability analysis. We study the critical timescale in detail in a broad parameter range.
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I. INTRODUCTION

Ring-coupled Bose-Einstein condensates with an initially
finite phase difference between neighboring sites constitute
a particularly interesting system. They allow for circulating
currents, which results in the controlled formation of topo-
logical defects such as vortices. Possible applications of such
systems range from interferometry [1,2] to quantum computa-
tion, atomtronics, and superconducting quantum interference
devices [3–7].

A while ago, a ring of three condensates was studied in the
whole range of initial phase differences between neighboring
sites [8,9] with the goal of finding the probability of vortex
generation via the Kibble-Zurek mechanism in nonuniform,
domain-structured superfluids. Experimentally, the idea was
tested by three 87Rb condensates merging, which indeed led
to the formation of vortices, whose number strongly depended
on the merging velocity [10].

Although in a ring of three coupled condensates, circular
current can be nonzero when all three phase differences differ
from each other, the maximum value of the circular current
is reached only for the commensurate case, i.e., when all
three phase differences are the same [8]. This is because
only a commensurate case corresponds to an eigenstate of
the system. Importantly, this circular current depends on the
system parameters, in particular on the interaction between
condensed particles. Linear stability analysis provides a criti-
cal interaction value uc, above which some of the eigenmodes
become unstable and chaotic dynamics sets in for u > uc. The
time-averaged circular current gradually tends to zero as the
interaction increases apart from the remaining sharp peaks
associated with the eigenmodes [8]. It is therefore not clear
why nonzero circular currents are still present for u � uc in
the numerical results of Ref. [8].

Further studies on condensate rings (with number of
sites Ns � 3) investigated different theoretical aspects, in-
cluding dynamical and thermodynamical stability [11,12],
chaos and ergodicity [13–15], symmetry analysis and ef-
fects of quantum many-body dynamics [16], and quantum
quenches [17]. However, in those works, the values of the
circular currents were not investigated in detail in the chaotic
regime, and timescales associated with the currents were not
discussed.

From an experimental point of view, it is rather challenging
to realize circulating currents in large rings and for large
winding numbers due to their quick decay to flows with lower
winding numbers (see, for instance, experiments on 87Rb an-
nular condensates in Ref. [18]). Recently, substantial progress
in the creation of stable superflows has been achieved in six-
and seven-site rings of polaritonic condensates confined in
microcavities [19]. Particularly interesting is that persistent
circular currents with large winding numbers have been ob-
served for nominally unstable initial configurations for Ns = 7
and winding numbers k = 2 and k = 3 [19].

Motivated by these developments and open questions, we
investigate how a stable, noninteracting system turns chaotic
as a nonlinear interaction is turned on. We systematically
study the effect of chaos on circular currents and coherence,
depending on interaction, initial conditions, and system size.
We show that, although chaos obstructs circular flow, it does
not set in immediately even if the system is tuned to an un-
stable eigenmode. We identify a critical timescale associated
with this type of dynamics and demonstrate how the timescale
depends on the system’s various parameters. We show that
the timescale is much larger than the one expected from the
linear stability analysis, which explains the numerical results
of Ref. [8] and can provide insight into the experimental
results of Ref. [19].
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FIG. 1. Schematic setup of the ring system for five wells
(Ns = 5). Circles represent condensate wave functions, K is the
Josephson coupling constant (5), and ni are condensate populations
according to (6).

This paper is organized as follows: In Sec. II we formulate
the model and derive equations of motion and the expression
for circular current. In Sec. III we analyze the circular current
in the noninteracting system for a special case of symmetric
initial conditions and show the current becomes a simple sine
wave in the limit of large Ns. In Sec. IV after a brief discussion
of unstable modes and characteristic interaction, we analyze
the time-dependent circular current at unstable modes and
identify a particular timescale tc associated with the system
transition to a chaotic regime. We show that the slide to
the chaotic regime occurs exponentially and study the time-
averaged circular current, showing how the current at unstable
modes gradually disappears upon increasing interaction. We
conclude in Sec. V.

II. MODEL AND EQUATIONS OF MOTION

We consider a system of N condensed bosons trapped in a
one-dimensional periodic potential consisting of Ns wells with
periodic boundary conditions (see setup shown in Fig. 1). The
average filling factor in the system

ρ = N

Ns
(1)

is assumed to be macroscopic so that the semiclassical
Gross-Pitaevskii approximation is applicable for the system
description (for example, in experiments on long arrays of
87Rb condensates ρ ≈ 1000 according to Ref. [20]). The local
condensates are considered to be weakly linked in order for
Josephson current to be induced between the sites [21]. Note
that in all calculations we keep the number of particles per
site ρ constant when changing the system size Ns. The general
Gross-Pitaevskii equation reads

ih̄
∂

∂t
�(r, t ) =

(
− h̄2

2m
∇2 + Vext (r) + g|�(r, t )|2

)
�(r, t ),

(2)
where �(r, t ) is the mean-field averaged bosonic field opera-
tor 〈�̂(r, t )〉, Vext (r) is the multiwell external potential, and g
is a repulsive contact interaction constant. By expanding the
semiclassical wave function in terms of a set of localized basis

functions [Wannier functions φi(r)],

�(r, t ) =
Ns∑

i=1

φi(r)ψi(t ), (3)

and integrating out the spatial degrees of freedom, we
obtain the standard discrete nonlinear Schrödinger equa-
tions (DNLSEs) for ψi [22]:

ih̄
∂

∂t
ψi(t ) = [Ei + Ui|ψi(t )|2]ψi(t ) − Ki,i−1ψi−1(t )

− Ki,i+1ψi+1(t ), i = 1, 2, . . . , Ns. (4)

The periodic boundary conditions imply Ns + 1 → 1.
DNLSEs adequately capture the dynamics of multiple
coupled condensates, which was verified in experimental
work [20]. The model parameters in Eq. (4), the zero-point
energies Ei, on-site interaction Ui, and Josephson couplings
between neighboring wells Ki,i±1 are given by [21]

Ei =
∫

dr
[

h̄2

2m
|∇φi(r)|2 + |φi(r)|2Vext (r)

]
,

Ui = g
∫

dr|φi(r)|4,

Ki,i±1 = −
∫

dr
[

h̄2

2m
∇φi(r)∇φi±1(r) + φi(r)Vext (r)φi±1(r)

]
.

(5)

We make use of the ansatz

ψi(t ) = √
ni(t )eiθi (t ), (6)

where we introduced the site populations ni normalized by the
filling factor ρ,

ni(t ) = Ni(t )

ρ
, (7)

where Ni(t ) is the number of particles in the condensate on
site i at time t . Thus, an initially homogeneous distribution
of atoms means ni(0) = 1 for all i. With that Eq. (4) can be
rewritten as a set of differential equations for ni and phase
differences θi,i+1 = θi+1 − θi as follows:

ṅi = −2
√

ni(
√

ni+1 sin θi,i+1 − √
ni−1 sin θi−1,i ),

θ̇i,i+1 = u(ni − ni+1) +
(√

ni

ni+1
−

√
ni+1

ni

)
cos θi,i+1

−
√

ni−1

ni
cos θi−1,i +

√
ni+2

ni+1
cos θi+1,i+2. (8)

In deriving these equations we assumed the following simpli-
fications: Ei = 0, Ui ≡ U , and Ki,i+1 ≡ K for all values of i.
We also expressed the time argument t in units of h̄/K and
introduced the dimensionless interaction parameter

u = Uρ

K
. (9)

These equations conserve
∑

i ni = Ns and the total energy

E = ρK

h̄

(
u

2

∑
i

n2
i − 2

∑
i

√
nini+1 cos θi,i+1

)
. (10)
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We define the circular current as the average current in a
clockwise loop around the ring of condensates

I = 1

Ns

Ns∑
i=1

Ii,i+1, (11)

where Ii,i+1 is the particle current from site i to i + 1 defined
as

Ii,i+1 = 2 Im[ψ∗
i (t )ψi+1(t )] = 2

√
nini+1 sin(θi,i+1). (12)

Note that the current defined in this way has units ρK/h̄. In
the next section, we analyze the current analytically for u = 0
and a special case of initial conditions.

III. CIRCULAR CURRENT IN
THE NONINTERACTING CASE

The noninteracting case with Ui = 0 and coupling con-
stants Ki,i+1 ≡ K can be solved exactly for any number of
sites Ns, as shown in Appendix A. However, one does not need
these solutions in order to calculate circular current, as it can
be straightforwardly derived from the current conservation
condition [one can show, for example, that ∂t I = 0 with the
help of Eq. (4)]. We thus get for the circular current

I = I0 = 2

Ns
Im

Ns∑
i=1

ψ∗
i (0)ψi+1(0). (13)

We see that the current is constant and the value of this
constant depends on the initial ni(0) and θi,i+1(0). For the
homogeneous condensate distribution ni(0) = 1, the current
depends on only the initial phase differences.

We chose the following initial conditions for the phase
differences:

θi,i+1 =
{
θ0 for i = 1, . . . , Ns − 1,

−(Ns − 1)θ0 for i = Ns,
(14)

so that

ψ j (0) = ei( j−1)θ0 , j = 1, 2, . . . , Ns. (15)

We now get for the current in Eq. (13) the simple expres-
sion

I0(θ0) = 2

Ns
{(Ns − 1) sin θ0 − sin[(Ns − 1)θ0]}. (16)

Since the current is an odd function of the initial phase dif-
ference I0

av(θ0) = −I0
av(−θ0) and is 2π periodic, it is sufficient

to consider θ0 ∈ [0, π ]. In Fig. 2 we plot I0 normalized by its
maximum value (I0)max = 2 versus θ0 for various ring sizes.
We see that the current has local maxima at discrete values of
θ0 given by

θ k
0 = 2πk

Ns
, (17)

where the integer k = 1, . . . , Ns has the meaning of the wind-
ing number. This result is not surprising since the discrete
values θ k

0 play the role of quantized components of the ef-
fective quasimomentum in Fourier space. Circular current at

FIG. 2. Average current of the noninteracting system I0 (16) di-
vided by its maximum value (=2) versus initial phase difference θ0

for initial conditions (15), plotted for condensate rings of different
sizes (Ns = 3, 4, 5, 8, 15, and 20).

these values corresponds to the group velocity ∂E/∂θ k
0 and is

reduced to I0(θ k
0 ) = 2 sin(θ k

0 ). The ring system is then in an
eigenstate. Curiously, in the noncommensurate case θ0 �= θ k

0
of our initial conditions, the circular current (16) is still time
independent.

IV. CIRCULAR CURRENT FOR RING-COUPLED,
INTERACTING CONDENSATES

A. Chaotic behavior and the critical interaction

Nonzero interaction introduces nonlinearity into our sys-
tem of equations, and since the dimensionality of the system
is larger than three, chaotic dynamics is expected, at least
in certain cases. In order to identify the parameter range
when it happens, we perform the linear stability analysis of
the coupled real equations (8). The stability is decided by
the eigenvalues of the corresponding Jacobian matrix (see
Appendix B for details). These 2Ns eigenvalues can be derived
analytically due to the Jacobian matrix’s special, blockwise
circulant structure. The eigenvalues of the Jacobian matrix at
the fixed points of the system are then

λ j (k) = 2i

{
− sin θ k

0 sin

(
2π j

Ns

)

± sin

(
π j

Ns

)√
2 cos θ k

0

[
2 cos θ k

0 sin2

(
π j

Ns

)
+ u

]}
,

(18)

where j = 1, 2, . . . , Ns. These eigenvalues, when divided by
i, correspond to the eigenvalues of the Hamiltonian linearized
around the fixed points and therefore to discrete Bogoliubov
excitations. The discrete Bogoliubov spectrum was discussed
previously in the context of condensate arrays [23] and the
Bogoliubov–de Gennes description of a circular array of
Bose-Einstein condensates [11].
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The eigenvalues λ j are zero or purely imaginary, and both
equations in (8) are stable unless the expression under the
square root turns negative. Since we consider only repulsive
interactions, u > 0, the condition for at least one eigenvalue
to acquire a real part is

cos θ k
0 < 0, (19)

2 cos θ k
0 sin2

(
π j

Ns

)
+ u > 0. (20)

The analysis of these inequalities provides the expression for
the upper bound of interaction below which the stationary
points of the nonlinear equations are still stable. The first
eigenvalue acquiring a real part turns the system unstable,
which first occurs for j = 1, giving us the critical interaction

uc = −2 cos θ k
0 sin2

(
π

Ns

)
. (21)

This means that our system becomes unstable without any
initial perturbation, but just when the interaction is turned on
and exceeds a critical value uc.

Note that uc > 0 because of condition (19). We see that uc

depends on the initial conditions through the modes θ k
0 , with

the mode selection criterion (19). Accordingly, the range of
unstable modes is defined by the interval

π

2
< θ k

0 <
3π

2
or Ns < 4k < 3Ns. (22)

We will refer to such modes as “unstable discrete modes,”
keeping in mind that they become unstable for u > uc. Con-
ditions similar to Eqs. (21) and (22) were also derived in
Ref. [11] from the Bogoliubov–de Gennes equations. Con-
versely, modes in the complementary range

θ k
0 ∈ [−π/2, π/2]

are stable and will be called “stable discrete modes.”
It follows from Eqs. (21) and (22) that the maximum pos-

sible value of the critical interaction uc = 1, and it is reached
for the π mode of a four-site ring. Since uc is just proportional
to the corresponding cosine of the corresponding discrete
mode, one can plot a universal, mode-independent graph for
normalized characteristic interaction uc/(− cos θ k

0 ), which we
display in Fig. 3. One can see that uc tends to zero relatively
quickly with the increasing number of sites Ns. The inset
shows the stability diagram, where modes denoted by open
circles represent stable solutions independent of the value of
u (given that only non-negative interactions are considered),
whereas solid circles represent modes that become unstable
for u > uc.

The linear stability analysis introduces the instability expo-
nent α0, given by the real part of the Jacobian eigenvalue λ1,

α0 ≡ Re(λ1) = 2 sin

(
π

Ns

)√
2
∣∣ cos θ k

0

∣∣[u − uc]. (23)

This α0 is the rate at which the circular current I (t ) of a given
mode θ k

0 is expected to deviate exponentially in time from
its stationary value I0(θ k

0 ). To be more specific, it should be
2α0 since the current is proportional to the product of two

FIG. 3. Dependence of characteristic interaction uc [divided by
cos(θ k

0 )] on the number of sites Ns, ranging between 3 and 40. Inset:
stability diagram showing discrete modes, i.e., values of the initial
phase difference θ0 from (17) versus Ns. The modes denoted by open
circles represent modes that are stable independent of the interac-
tion u value. Discrete modes denoted by solid red circles showcase
the modes which are stable for 0 < u � uc but become unstable
for u > uc.

condensate wave functions. Equation (23) hence establishes
the deviation timescale ∼1/α0, which would diverge at the
stability boundaries, i.e., for θ0 → π/2 or 3π/2 or u → uc.
We will show in the following section that, interestingly,
chaotic behavior sets in abruptly at a much larger, critical time
tc � 1/α0 due to the nonlinear character of the system, which
is not captured by the linear stability analysis.

B. Temporal onset of chaotic behavior

In this section, we fully characterize the decay of the
unstable, discrete modes by studying the circulating current
numerically beyond the linear stability analysis. Initially, the
circular current has a nonzero value equal to its noninteracting
value I0, derived in Sec. III.

In Figs. 4 and 5 we show examples of the time-dependent
circular current of the interacting system defined in Eqs. (11)
and (12) for rings of Ns = 5 and Ns = 20 condensates, respec-
tively. For N2 = 5, according to Eq. (22), there are only two
unstable modes, k = 2 and k = 3. These modes are symmetric
with respect to inflection at θ0 = π (see the inset in Fig. 3),
and therefore, the critical value of interaction uc is the same
for both of the modes, uc ≈ 0.56. In Fig. 4 we consider three
values of interaction, which are all greater than uc: u = 0.6,
u = 1.2, and u = 2.4, and we therefore expect the current
to behave chaotically in all three cases, which is indeed ob-
served. However, chaos sets in at a certain time tc > 0 which
strongly depends on the interaction u > uc. One can see that
tc decreases as the interaction increases. For example, for
u close to uc (top panel), tc is about 112; for u = 2.4 it is
about 15.

To find out whether tc has a mode dependence, we consider
in Fig. 5 a larger ring of Ns = 20. It has nine discrete, unstable
modes whose critical interaction strengths uc are listed in
Table I. The circular currents are shown for different values
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FIG. 4. Time-dependent circular current (11) for homogeneous
initial conditions: Ns = 5, θ0 = θ k

0 . The black upper line in each
panel is for k = 2, whereas the red lower line is for k = 3. The
current is calculated numerically for three different values of dimen-
sionless interaction u, as shown in the panels. Time t is in units of
h̄/K .

of u, all greater than the respective uc. We observe that tc
depends not only on u but also on the mode. For example, for
u = 3 values of tc of the “outer” modes (k = 6 and k = 14)
are clearly greater than tc for other modes.

In order to quantify the onset of chaos, we show in Fig. 6
the time evolution of the deviation of the circular current
I (t ) from its noninteracting value I0(θ k

0 ) ≡ I0 on a logarith-
mic scale. As expected from the linear stability analysis, this
deviation is initially exponential in time, and thus, initially
the current deviation remains exponentially small, too small
to resolve in the linear plots in Figs. 4 and 5.

FIG. 5. Time-dependent circular current I (θ k
0 ) of the unstable

modes 6 � k � 14 for Ns = 20. The modes are counted from top
to bottom, so that the uppermost black line corresponds to k = 6,
the dashed line corresponds to k = 10, and the lowermost red line
corresponds to k = 14. The current is calculated numerically for
three different values of u, as shown in the panels. Time t is in units
of h̄/K .

TABLE I. Values of characteristic interaction uc for different
modes θ k

0 for the case of Ns = 20.

k

6, 14 7, 13 8, 12 9, 11 10

uc 0.015 0.029 0.040 0.047 0.049

The exponential behavior of the deviation is governed by
two parameters, α and b,

�I (t ) ≡ |I0 − I (t )|/2 = eαt+b, (24)

which can be determined from linear fits to the logarithmic
plot within the exponential time range (see dashed lines in
Fig. 6). The comprehensive analysis for a wide range of sys-
tem parameters u ∈ [0.5, 10] and initial conditions θ k

0 ∈ [0, π ]
shows that the coefficient b has no systematic dependence on
system parameters, with an average value of 〈b〉 ≈ −72.34
and a standard deviation of �b ≈ 1.51. Furthermore, from
Fig. 6 and similar plots for the wide parameter range men-
tioned above (not shown), we find that chaotic behavior, i.e.,
deviation from the exponential time evolution, sets in abruptly
when the normalized current deviation �I (t ) reaches a uni-
versal value of about ln[�I (tc)] ≡ λ = −2. This defines, via
Eq. (24), the critical time for onset of chaos as

tc ≈ λ − b

α
≈ 70

α
. (25)

It shows that both the initial exponential deviation and the
onset of chaotic evolution are controlled by the instability ex-
ponent α alone, where, however, the critical time tc is a factor
of 70 larger than the exponential timescale 1/α. We note that
similar long-time coherent evolution with abrupt chaos onset
was found in single Bose-Josephson junctions [24]. Chaotic
dynamics was induced by a highly nonlinear process of quasi-
particle creation in the initially fully condensed system. A
late chaos onset was also discussed in Ref. [15], where it

FIG. 6. Logarithmic plot of the deviation of the current from its
initial value I0 versus time for Ns = 20, k = 6, and three different
values of u. Time t is in units of h̄/K . Dashed lines are linear fits
of linear parts of the graphs with intercept b and slope α: α ≈ 0.5,
b ≈ −71.62 for u = 0.25; α ≈ 0.98, b ≈ −70.55 for u = 0.5; and
α ≈ 1.98, b ≈ −71.62 for u = 1.
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FIG. 7. The exponent α versus initial θ k
0 for different values of u.

The inset shows the dependence of the maximum value of α, equal
to α(θ k

0 = π ), on u.

was attributed to a web of nonlinear resonances between the
Bogoliubov frequencies.

The observed dependence of tc (see Figs. 4 and 5) on
system parameters enters through the dependence of α, which
we explore next. In Fig. 7 we show the results of the numerical
evaluation of α depending on initial mode θ k

0 and interaction
u. The plot contains data for various Ns, k, and interaction
u. Short vertical lines of data at θ k

0 = 2π/3 ≈ 0.666 π cor-
respond to rings with Ns = 3, 6, 9, . . . because they all have
such a mode. However, the dependence of a particular mode
on Ns is very weak, so we neglect it in the discussion and
analysis. As expected, α tends to zero for θ k

0 → π/2 since
this value of θ k

0 marks the stability boundary (see the stability
diagram in Fig. 3). Away from the stability boundary, i.e.,
close to π modes, α has a weaker dependence on θ k

0 and
is significantly dependent on u. This dependence is approxi-
mately linear, as shown in the inset: α(π ) ≈ 2u on the interval
u ∈ (uc, 5), with uc � 1 in this case. For small u, α tends to
zero; that is, the modes become stable.

At this point, it is interesting to compare the numerically
estimated α with the analytical value from (23). It turns out
that the agreement holds only for small rings (Ns = 3, Ns =
4), whereas for larger rings the agreement with this relation
quickly degrades and holds only in the close vicinity of uc.
This defines the applicability of linear stability analysis in our
systems: essentially only in the vicinity of uc. The numerical
α is generally larger than the approximate, analytically deter-
mined value.

Coming back to the chaos onset time tc, as expected,
it becomes arbitrarily large in two cases: close to stability
boundaries in terms of the initial phase difference, i.e., close
to θ0 = π/2 and θ0 = 3π/2, and for interactions close to uc.
This can be seen in Fig. 8, where we present numerically
calculated tc as a function of u for a broad range of ini-
tial conditions θ k

0 , in particular, for all unstable modes θ k
0 ∈

(π/2, π ] of all rings between Ns = 3 and Ns = 20. To not
overload the graph with information, we color-coded curves
according to their initial conditions split into intervals of θ0:
black corresponds to θ k

0 ∈ [0.8π, π ], closest to the antiphase

FIG. 8. Dependence of the onset of chaotic behavior tc on in-
teraction u measured from uc for all unstable discrete modes in
the interval (π/2, π ] for 3 � Ns � 20. The uppermost curve is for
Ns = 47 and k = 12 (this amounts to θ0 ≈ 0.511π ). Initial conditions
are specified by θ k

0 , and curves are split into groups depending on
whether they are close to π/2 or to π : black curves correspond to the
values of θ k

0 in region 1 close to π , red curves correspond to region 2
and 0.6π < θ k

0 < 0.78π , and the blue curves (the set of upper curves
marked by the double arrow) correspond to region 3 and θ k

0 close
to π/2.

mode and farthest from the stable modes. One can see that
most of them (in particular those with small uc) bunch around
the curve marked by the black arrows. The marked curve
is easily fit with a two-parameter fitting function resulting
in tc ≈ 28/(u − uc)0.69. Red curves represent the next inter-
val θ k

0 ∈ [0.6π, 0.78π ). They start to deviate from the black
curves, especially for large u. This can be better seen in Fig. 9,
where we plot t−1

c versus u − uc. Last, the blue curves span
the interval of θ k

0 ∈ [0, 0.59π ]. One curve is calculated for
Ns = 47 and k = 12, which is an example of a curve rel-
atively close to the π/2 mode with θ k

0 ≈ 0.511 (this is the

FIG. 9. Dependence of the inverse onset of chaotic behavior t−1
c

on interaction u − uc for all unstable modes in the interval (π/2, π ]
for 3 � Ns � 20. The lowest curve is for Ns = 47 and k = 12. The
curves are color-coded according to initial conditions in the same
way as in Fig. 8. The double arrows with numbers mark the widths
of the corresponding regions described in Fig. 8 for u − uc = 10. One
can clearly see the overlap between regions 1 and 2.
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FIG. 10. Current oscillations with time for initial conditions
θ0 = 0.75π and Ns = 20, i.e., for a noneigenmode. The results are
shown for three different values of dimensionless interaction u shown
in the legend. Time t is in units of h̄/K .

uppermost curve in the graph). The fitting of this curve results
in tc ≈ 62/(u − uc)0.53, leading to a sizable tc even for large
values of u.

Note that tc can be determined differently, for example,
from the deviation from its initial value by 0.0001 of any site
occupation. Finding tc from site occupation would lower the
tc of all of Fig. 8 about an average of 10%, which does not
change any conclusions or analysis.

To get an idea of how large tc can be in terms of experi-
mental values, we translate the value tc = 100 to milliseconds
from experimental data on arrays of condensates [20]. For ex-
ample, from experiments on long arrays of cold atoms (Ns =
200), we take the value of Josephson coupling K ∼ 0.07ER,
where ER is the recoil energy of a 87Rb atom of mass m
absorbing one of the lattice photons

ER = h2

2mλ2
∼ 1.5 × 10−11 eV, (26)

with λ = 795×10−9 m [20]. This gives us the value of K ∼
1.05×10−12 eV. From this analysis it follows that the dimen-
sionless tc = 100 will correspond to 62.86 ms. Such values
of tc could be achievable for very weak interactions, which
follows from Fig. 8.

Note that when initial conditions fall in between the eigen-
modes, one expects time-dependent current, as shown in
Fig. 10 for θ0 = 0.75π and Ns = 20. We see that with increas-
ing u and therefore nonlinearity, current oscillations become
larger and more chaotic and eventually average to zero over
time for large u, as we will see in the next section. The notion
of tc does not make sense in this case since no additional
energy scale appears to be associated with real parts of eigen-
values.

C. Time-averaged circular current and coherence

We now evaluate the time-averaged circular current
numerically,

〈I (θ0)〉 = lim
T →∞

1

T

∫
dt I (θ0), (27)

FIG. 11. Time-averaged circular current normalized by its max-
imum value (=2) versus the initial phase difference θ0. The current
is calculated for an Ns = 20 ring and four different values of u, as
indicated in the panels. The red dashed lines correspond to the u = 0
noninteracting case and is used as a reference; the blue solid lines
correspond to the interacting systems. The current is averaged over
the time interval t ∈ [0, 200].

for initial conditions (15) with θ0 ranging from 0 to 2π ,
covering stable and unstable regions of the stability diagram
in full. We chose a ring with Ns = 20 sites and four values
of u greater than the maximum uc listed in Table I. Given
the discussion about tc in the previous section, it is clear that
the resulting time-averaged current for the discrete unstable
modes will depend on the numerically available time interval,
over which we can let our program run, providing reliable
results. In our case t ∈ [0, 200]. The results for the averaged
current are presented in Fig. 11. The four panels in Fig. 11
correspond to four different values of u, as indicated. The
dashed curve is the current for u = 0 and is shown in all
the panels for reference. For small values of the dimension-
less interaction u = 0.1 the deviations of the current from
u = 0 values in the stable part of the plot are hardly visible
(i.e., for θ0 ∈ [0, π/2] and [3π/2, 2π ]). For the unstable part,
θ0 ∈ (π/2, 3π/2), it is striking that tc is, in fact, greater than
200; otherwise, the averaged current at the unstable discrete
modes remains unaffected by the chaotic regime even though
u > (uc)max. Since there are no additional timescales for θ0 in
between the discrete modes, the average current values begin
to deviate from their u = 0 values due to chaotic dynamics
(see Fig. 10).

Upon increasing interaction, tc decreases, so that for u =
0.2 the value of tc becomes of the order of 180, which is
comparable to the maximum value of t in our numerics. As
a result, the current values for discrete unstable modes remain
practically unaffected, whereas the in-between θ0 correspond
to circular currents quickly averaging out to zero. This effect
is also visible around the stability boundaries θ0 = π/2 and
θ0 = 3π/2. Although current values at stable discrete modes
remain constant, the values in between begin to feel the ef-
fect of the increasing interaction. These tendencies become

033316-7



WOZNIAK, KROHA, AND POSAZHENNIKOVA PHYSICAL REVIEW A 106, 033316 (2022)

FIG. 12. The real part of the first-order correlation function
Re g(1)

i j averaged over time in the interval t ∈ [0, 200]. The correlation
function is plotted as a function of distance with respect to the first
site (the distance is normalized by a lattice constant a ≡ 1).

more pronounced as we increase the interaction further. As tc
rapidly decreases (tc ∼ 75 for u = 0.5 and tc ∼ 35 for u = 1),
so does the time-averaged current in the unstable region. For
u = 1, this current is practically zero everywhere in the un-
stable region. The stable region is less affected by interaction,
and the effect is most visible for values of θ0 falling between
the stable discrete modes, close to the stability boundaries.
In the limit of large Ns, the unstable modes fill the interval
(π/2, 3π/2), while the stable modes fill the intervals [0, π/2]
and [3π/2, 2π ]. Large Ns approaches the continuous limit
where all θ0 are eigenmodes (because θ k

0 merge together). The
current in the limit of large Ns is described by 2 sin θ0, but
in the unstable region the current averages to zero above uc,
provided the averaging time period is greater than tc.

The circular current averaging to zero is equivalent to a
loss of coherence in the system. The coherence can also be
quantified by the first-order coherence function

g(1)
i j = 〈ψ∗

i ψ j〉√
〈|ψi|2〉〈|ψi|2〉

. (28)

It can be experimentally measured by interferometry as a
function of the distance from a fixed site. In Fig. 12 we show
the real part of the coherence function versus distance from
site i = 1. We chose two different initial values of the phase
difference: θ

(3)
0 for Ns = 6, i.e., the π mode of a six-site ring,

and a mode θ
(3)
0 close to π of a seven-site ring. Although both

of these modes are unstable, experiments on polariton con-
densates [19] demonstrate nonzero circulating currents and
coherence corresponding to small values of u, e.g., uNs = 1
in Fig. 12. This means that either the interaction was rather
small in the experiment and tc was relatively large or there
were other stabilizing factors in the experimental system. For
example, the experimental system is an open system, whereas
our system is closed.

In Fig. 12 we further demonstrate how the coherence is
destroyed by interaction and averages to zero for increasing u
(see data for uNs = 10 and uNs = 50).

V. CONCLUSIONS AND DISCUSSION

We analyzed circular currents and their stability in rings of
condensates under specific initial conditions of equal filling
and homogeneous phase differences. We found a set of dis-

crete eigenmodes (phase differences) differentiated by their
winding numbers. When such a mode falls into the interval
(π/2, 3π/2), it is stable until the interaction exceeds a certain
value uc. This critical interaction depends on the mode and on
the ring size. When uc is exceeded, the system dynamics and
the circular current become chaotic, with the current quickly
averaging to zero over time. This marks the effective loss
of coherence in the system. We showed that this dephasing
occurs not immediately upon entering the unstable regime but
rather after a chaos onset period tc. This is the time the system
spends in its former stable orbit before exponentially sliding
off into a chaotic trajectory. The timescale tc can be arbitrarily
large when the system is close to the stability boundary, i.e.,
when the unstable mode under consideration is close to π/2 or
3π/2 or when u is close to uc. For modes close to the antiphase
π mode in the instability region, i.e., for modes falling in
the interval [π, π ± 0.2π ], one can even establish a universal
behavior of tc ≈ 28(u − uc)−0.69.

We also established that the critical time for chaos on-
set, that is, the dephasing time, is proportional to but about
two orders of magnitude larger than the timescale of ex-
ponential deviations, 1/α, where α is the current instability
exponent. This may be relevant for technological applications
of quantum coherent dynamics of rings of interacting Bose-
Einstein condensates. The presence of the large chaos onset
period tc explains why in previous works about three-site
condensate rings, the circular current was nonvanishing in the
chaotic regime. It may also shed light on recent experimental
observations of circulating currents in loops of polaritonic
condensates with large winding numbers, although there can
be other stabilizing factors.

In the future, it would be interesting to explore how fluctu-
ations would affect the present description, and extension of
this work to polaritonic condensates would be of interest. An-
other line of research could be to study condensate mixtures
and their mutual coherence [25].
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APPENDIX A: EXACT SOLUTION
OF THE NON-INTERACTING CASE

The noninteracting case when u = 0 in Eq. (4) can be
solved analytically by rewriting these simultaneous equa-
tions in matrix form, although it cannot be written in a
succinct final solution for ψ due to the large number of un-
known coefficients. However, with the simplifications h̄ ≡ 1,
Ei ≡ E0, Ui ≡ U , and Ki,i+1 ≡ K for i = 1, . . . , Ns and ex-
pressing the time argument t in units of 1/K , we get

i
∂

∂t
�ψ (t ) = Ĥ �ψ (t ), (A1)
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where ε = E0/K , the vector �ψ = (ψ0, ψ1, . . . , ψNs−1) con-
tains Ns condensate functions which are numbered from 0 to
Ns − 1 for convenience, and Ĥ is an Ns × Ns matrix,

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε −1 0 0 . . . 0 −1
−1 ε −1 0 . . . 0 0
0 −1 ε −1 . . . 0 0

. . .

0 0 0 0 . . . ε −1
−1 0 0 0 . . . −1 ε

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)

This matrix is circulant and real symmetric with real eigen-
values (in our case, coinciding with energy eigenvalues). The
eigenvectors �v of circulant matrices are well known and do
not depend on circulant matrix entries [26]. The k component
of �v, corresponding to an eigenvalue λ j , reads

vk (λ j ) = exp i
2π jk

Ns
. (A3)

Here indices k, j = 0, 1, . . . , Ns − 1. The eigenvalues of Ĥ
are also readily found, as they are the discrete Fourier trans-
forms of the first row of the matrix Ĥ ,

λ j =
Ns−1∑
k=0

h0k exp i
2π jk

Ns
, (A4)

where h00, h01, . . . , h0,Ns−1 are the entries of the first row of
the circulant matrix (A2). In our case the eigenvalues acquire
the simple form

λ j = ε − 2 cos

(
2π j

Ns

)
. (A5)

This gives us the general solution

ψn(t ) =
Ns−1∑
j=0

c jvn(λ j ) e−iλ j t , (A6)

where the coefficients c j are defined by initial values of the
condensate wave functions �ψ (0),

�ψ (0) = F̂ �c, (A7)

where the discrete Fourier transform matrix F̂ contains eigen-
vectors �v(λ j ) as columns

Fk j = vk (λ j ), (A8)

with k, j = 0, 1, . . . , Ns − 1. �c is hence determined by the
inverse Fourier transform

c j = 1

Ns

Ns−1∑
k=0

e−i 2π
Ns

k· jψk (0). (A9)

Finally,

ψn(t ) = 1

Ns

Ns−1∑
j,k=0

ei 2π
Ns

(n−k) jψk (0)e−iλ j t . (A10)

For the particle number per site Nn = ψnψ
∗
n we get

Nn =
Ns−1∑
j,k=0

cn, j,k e−it (λ j−λk ), (A11)

cn, j,k = 1

N2
s

Ns−1∑
l,m=0

ei 2π
Ns

(n−k−l+m) jψl (0)ψ∗
m(0). (A12)

As an example, we present solutions for Ns = 3. The eigen-
values are λ1 = λ2 = ε + 1 and λ3 = ε − 2, and the three
wave functions have the form

ψi(t ) = S

3
ei(2−ε)t +

(
ψi(0) − S

3

)
e−i(ε+1)t , S =

3∑
i=1

ψi(0).

(A13)
The occupation number per site is then

ni = ni(0) + 2Re

[
S

3

(
ψ∗

i (0) − S∗

3

)
(e3it − 1)

]
. (A14)

For initial conditions (15) and θ0 coinciding with the eigen-
modes (17), S = 0, giving the simple expressions

ψi(t ) = ψi(0)e−i(ε+1)t , ni(t ) = ni(0) = 1. (A15)

APPENDIX B: LINEAR STABILITY ANALYSIS
OF THE INTERACTING SYSTEM

Equations (8) are real equations describing the dynam-
ics of an interacting system. In order to analyze their linear
stability we construct the Jacobian matrix for 2Ns variables
n1, n2, . . . , nNs , ϕ1, ϕ2, . . . , ϕNs ,

J =

⎛
⎜⎝

dṅ1
dn1

. . . dṅ1
dϕNs

...
. . .

...
dϕ̇Ns
dn1

. . .
dϕ̇Ns
dϕNs

⎞
⎟⎠, (B1)

where ϕi = θi,i+1.
Fixed points are determined from the steady-state condi-

tion of Eqs. (8),

x = ni = 1, y = ϕi = 2π

Ns
k, i, k = 1, . . . , Ns. (B2)

The Jacobian matrix J at the fixed points can be written as a
2×2 block matrix,

J =
(

S C
D S

)
. (B3)

Here the matrices S, C, and D are circulant Ns × Ns matrices,
whose elements can be written as

Si j = sin(y)(δi, j−1 − δi, j+1),

Ci j = 2x cos(y)(−δi, j + δi, j−1),

Di j =
(

u + 3 cos(y)

2x

)
(δi, j − δi, j+1)

+ cos(y)

2x
(δi, j+2 − δi, j−1). (B4)

We see that only the D matrix depends on the interaction u.
All circulant matrices of the same size have the same eigen-
vectors; thus, all circular matrices of the same size can be
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diagonalized by JS = U −1SU , where the U matrix columns
are the circulant matrix eigenvectors. Using the rules for in-
verses of block matrices, we perform a simple transformation
to diagonalize the circulant matrices in the Jacobian matrix:(

U −1 0
0 U −1

)(
S C
D S

)(
U 0
0 U

)
=

(
JS JC

JD JS

)
. (B5)

A similar transformation preserves the eigenvalues, and the
JS , JC , and JD matrices are now diagonal matrices. As all of
the new diagonal matrices commute, we can take advantage
of a block-matrix determinant rule to find the eigenvalues of
J:

Det

(
JS − λI JC

JD JS − λI

)
= Det[(JS − λI )2 − JDJC] = 0.

(B6)
This equation can be rewritten as(

λS
j − λ j

)2 − λD
j λ

C
j = 0, j = 1, . . . , Ns, (B7)

where λS
j , λ

C
j , and λD

j are the eigenvalues of S,C, and D,
respectively, and λ j is the eigenvalue of the Jacobian J . We
get

λ j = λS
j ±

√
λD

j λ
C
j , j = 1, . . . , Ns. (B8)

Now we collect the eigenvalues of the circulant matrices
S,C, and D, which can be found following the method ex-

plained in Appendix A:

λS
j = −2i sin(y) sin

(
2π j

Ns

)
,

λC
j = 2x cos y

(
exp −i

2π j

Ns
− 1

)
,

λD
j =

(
u + 3 cos(y)

2x

)(
1 − exp i

2π j

Ns

)

+ cos(y)

2x

(
exp i

4π j

Ns
− exp −i

2π j

Ns

)
. (B9)

As a result we get for λ j = λ j (k)

λ j (k) = 2i

{
− sin θ k

0 sin

(
2π j

Ns

)

± sin

(
π j

Ns

)√
2 cos θ k

0

[
2 cos θ k

0 sin2

(
π j

Ns

)
+ u

]}
,

(B10)

The eigenvalues are purely imaginary if the expression under
the square root is non-negative for all j. This corresponds
to a neutral center and stable system. If at least one of the
eigenvalues acquires a real part, there would be an exponential
instability in the system. We discuss this in more detail in the
main text after Eq. (18).
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