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Ultracold spinor atoms in the weak and strong interaction regimes have been extensively investigated, while
the behavior in the intermediate regime is less understood. We numerically investigate one-dimensional ultracold
spinor atomic ensembles of finite size in the intermediate interaction regime and reveal the evolution of the
eigenstates from the strong to the intermediate regime. In the strong interaction regime, it is well known that
the eigenstates can be categorized into different manifolds, and the categorization is protected by the energy
gaps between manifolds. In the intermediate interaction regime, it is found that the eigenenergy spectrum
becomes gapless, while categorization of the eigenstates is still preserved even without the protection from
the intermanifold gaps. The categorization in the intermediate regime is found due to the minigap induced by
the finite-size effect, which prevents the intermanifold coupling. The gap vanishing in the spectrum induces both
direct and avoided crossings between close-lying manifolds, of which the combined symmetries determine the
type of the crossings. A modified t-J model is derived to describe the low-lying eigenstates in the intermediate
regime, which can capture the formation and crossings of the manifolds. State preparation through avoided
crossings is also investigated.
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I. INTRODUCTION

Spinor quantum gases normally refer to ultracold atoms,
the internal states of which are taken as the spin degree of free-
dom [1,2]. Ultracold spinor gases have become an important
platform in various fields, such as quantum magnetism, the
quantum phase transition, and topological excitations. Mag-
netic phases [3–6] and associated phase transitions [7–15]
have been investigated on the spinor atomic platform, and
various topological excitations such as vortices [16–18] and
monopoles [19–21] have also been theoretically proposed
and experimentally realized with spinor atoms. Besides the
fundamental interests, spinor atoms also provide a promis-
ing platform for quantum simulations [22–29] and quantum
metrology [30–34]. Simulations of, e.g., topological systems
[27–29] and high-energy physics [22–25] have been realized
with lattice spinor atoms. Entangled and/or squeezed spinor
atoms [35–37] are well recognized as important sources in
quantum measurements.

The interaction between spinor atoms plays a key role
in the above-mentioned studies and applications. Theoreti-
cal tools have been developed for spinor atoms in the weak
and strong interaction regimes and have provided deep in-
sights into the stationary and dynamical behaviors in the
corresponding interaction regimes. In the weak interaction
regime, the spinor atoms are in the condensate state and are
well described by the single-mode approximation (SMA), in
which the condensate state is assumed to take the same spatial
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wave function for all spin states. The ground state [38–50],
excitation [42–44,51], and dynamical properties [45,52–54]
of the spinor condensate have been revealed using the SMA,
and the validity of the SMA has also been investigated
[42,54]. In the Tonks-Girardeau (TG) regime [55–58], Bose-
Fermi mapping is a good analytical tool for spinor atoms.
In the strong interaction regime, an analytical ansatz based
on perturbation treatment with Bose-Fermi mapping has been
developed and provided good understanding of the half-spin
[59–69] and integer-spin [70–72] systems, which revealed
the multimanifold structure in the eigenenergy spectrum and
the effective Heisenberg model for each manifold. Strongly
interacting spinor atoms have become a promising test bed
for the strong-correlation-induced phase [61–63,72] transition
and dynamical processes [59,67].

Between the weak and strong interaction regimes, there
lies a wide intermediate regime, in which the behavior of
the spinor atoms is less well understood. Concerning the
lattice spinor atoms, the transition between the three inter-
action regimes can be indicated by two criteria, namely, the
appearance of gaps in the eigenenergy spectrum and the local-
density fluctuation in the lattice. The weak interaction regime
is characterized by the gapless spectrum and large occupa-
tion fluctuation, whereas in the strong interaction regime the
spectrum becomes well gapped and the occupation fluctua-
tion is strongly suppressed in the low-lying eigenstates. The
intermediate regime behaves as a hybrid of the weak and
strong interaction regimes, with the gapless spectrum and the
suppressed local occupation fluctuation. This hybridization
suggests that the intermediate regime could provide novel
phenomena different from those in the weak and strong in-
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FIG. 1. Sketch of the transition between the weak, intermediate,
and strong interaction regimes in terms of the appearance of the en-
ergy gap (red) and the total probability of the single-occupation basis
states (blue). The results are calculated with the finite (3 ↑ 3 ↓ 1h)
system.

teraction regimes. In the intermediate and strong interaction
regimes, the suppression of the local occupation fluctuation
in the low-lying eigenstates is attributed to the dominance of
the single-occupation basis states in these eigenstates, which
refers to states with local occupation of each site no bigger
than one. Figure 1 sketches the transition between the three
interaction regimes, in which the energy gaps and the density
fluctuation are illustrated by the maximum energy difference
between close-lying eigenstates max(�E ) and the probabil-
ity of single-occupation states ρsingle, respectively. The total
probability of the single-occupation basis in the intermediate
and strong interaction regimes grows more than one half,
indicating the dominant role of the basis in these regimes
and the suppression of local-density fluctuation due to the
higher-occupation basis states. Here max(�E ) presents a fluc-
tuating and monotonic increasing behavior below and within
the strong interaction regime, respectively. The monotonic in-
crease indicates the arising of the energy gap in the spectrum,
which increases with the interaction strength. The fluctua-
tion in the weak and intermediate regimes is actually due
to the finite-size effect, which introduces minigaps between
close-lying eigenstates. In the limit of infinite long lattice, the
minigaps will vanish, and the spectrum will become exactly
gapless.

In this work, we perform numerical simulations on finite
ultracold spinor atoms confined in a one-dimensional optical
lattice, and our numerical simulation reveals the transition
from the strong to the intermediate regime. It is been known
that in the strong interaction regime, the eigenenergy spec-
trum presents a well-gapped multimanifold structure, and the
eigenstates can be correspondingly categorized into different
manifolds [60,65], which are protected by the energy gaps
against intermanifold coupling. In the intermediate regime,
the energy spectrum becomes gapless, implying that the cate-
gorization would fail in this regime. However, our simulation
reveals that the eigenstates can still be categorized into dif-
ferent manifolds, even without the protection of the energy
gap between different manifolds. It turns out that the cate-
gorizability of the eigenstates in the intermediate regime is
attributed to the minigaps induced by the finite-size effect,
which refers to the finite energy spacing between close-lying

eigenstates. The minigaps dominate over the intermanifold
coupling and maintain the categorization of the eigenstates.
The gapless energy spectrum gives rise to the overlapping
and rich energy-level crossings between different manifolds,
including direct and avoided crossings. The avoided crossings
can be explored for state preparation and manipulation. We
derived a modified t-J model to describe the lattice spinor
atoms in the intermediate regime, and the t-J model well
explains the manifold structure preservation in the interme-
diate regime and reveals the influence of the spin and spatially
related symmetries on determining whether the energy-level
crossing is a direct or avoided one. The dynamical magnetiza-
tion through the interaction quench between avoided crossing
points is also numerically demonstrated.

This paper is organized as follows: In Sec. II we present
the setup under consideration and present the derivation of
our low-energy effective Hamiltonians. In Sec. III we show
the energy spectrum obtained from the numerical method and
energy-level crossings between different manifolds. Finally, a
brief discussion and conclusion are given in Sec. IV.

II. SETUP AND EFFECTIVE HAMILTONIANS

We consider bosonic spinor atoms confined in one-
dimensional optical lattices. The effective spin degree of
freedom is spanned by the internal states of the atoms, e.g., the
hyperfine ground states |F = 2, mF = 0〉 and |F = 3, mF =
0〉 for 87Rb atoms, and are denoted as |↑〉 and |↓〉; that is
to say, we focus on the effective spin-1/2 atomic systems in
this work. The lattice spinor atomic system is subjected to the
Bose-Hubbard Hamiltonian:

H = −t
2N+1∑
〈i, j〉=1

∑
σ=↑,↓

â†
i,σ â j,σ + U

2N+1∑
i=1

∑
σ,σ ′=↑,↓

â†
i,σ â†

i,σ ′ âi,σ ′ âi,σ ,

(1)
where âi,σ (â†

i,σ ) indicates the annihilation (creation) operators
of an atom of spin state σ in the ith site. 〈i, j〉 denotes the
summation over the nearest neighbors in the lattice. We con-
sider the optical lattice with the open boundary condition, and
the first and second terms of H refer to the nearest-neighbor
hopping and the on-site interaction of the atoms, respectively,
where t and U are the spin-independent tunneling strength and
contact interaction strength.

The numerical simulations are performed on finite spin-
balanced atomic ensembles with N spin-up and N spin-down
atoms confined in a lattice with 2N + 1 sites, i.e., the
case of single-hole filling. The eigenstates of the system
are obtained by exact diagonalization using the multilayer
multiconfiguration time-dependent Hartree method for mix-
tures of arbitrary species (ML-MCTDHX) [73–75], in which
no truncation to the Hilbert space is applied, and the full
configuration-interaction calculations are performed. Given
that the low-lying eigenstates we are concerned with in this
work are dominated by the single-occupation basis states,
our analysis of the numerical results focuses on the trun-
cated Hilbert space spanned by the single-occupation states,
which manifest as the direct product of the charge sector
and spin sector. The charge sector is spanned by the config-
uration space of a single hole hopping in the (2N + 1)-site
lattice, and the spin sector corresponds to a spin chain of
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FIG. 2. Illustration of spin-charge separation in the (3 ↑ 3 ↓ 1h) system: (a) basis transformation from the original to the spin-charge
basis, (b) the configuration space of the spin and charge sectors, and (c) the high-order tunneling process of the simultaneous spin flipping and
next-nearest-neighbor hopping of the hole via the intermediate double-occupation states.

2N spins in the squeezed space, with the hole removed from
the lattice [76,77]. This leads to the transformation of the
single-occupation states to the product form as

â†
i1,σ1

â†
i2,σ2

· · · â†
i2N ,σ2N

|Vac〉 = |i〉H ⊗ |σ1σ2 · · · σ2N 〉S, (2)

with i1 < i2 < · · · < i2N and |Vac〉 referring to the vacuum
state of the lattice. |i〉H is the basis state in the charge
sector and indicates the location of the hole in the lattice.
|σ1σ2 · · · σ2N 〉S denotes the Fock configuration of the spin
chain in the spin sector. Figure 2(a) illustrates the transfor-
mation of the single-occupation states to the direct product
form in the finite system of three spin-up atoms and three
spin-down atoms confined in a lattice of seven sites, denoted
as (3 ↑ 3 ↓ 1h) in the following. Figure 2(b) sketches the
configuration space constituted of the spin and charge sectors
of the (3 ↑ 3 ↓ 1h) system.

Following the decomposition of the truncated Hilbert space
to the spin and charge sectors, the Bose-Hubbard Hamiltonian
is transformed to the modified t-J model [78–81]. The modi-
fied t-J model of single-hole filling systems reads

Ht−J = Hhole + Hspin, (3a)

Hhole = −t
2N∑
i=1

(ĉ†
i ĉi+1 + H.c.), (3b)

Hspin = −J
N−1∑
i=1

(�σi · �σi+1+3)

(
1 − ĉ†

i+1ĉi+1+ ĉ†
i ĉi+2+H.c.

2

)
,

(3c)

where c(†)
i refers to the annihilation (creation) operator of

the hole in the ith site of the lattice and �σ j ≡ (σ x
j , σ

y
j , σ

z
j )

is the Pauli matrices of the jth spin in the squeezed space.
Hhole describes the hopping of the hole in the charge sector,
and Hspin in the spin sector indicates the spinor atoms in the
squeezed space organized to the Heisenberg spin chain. It is
worth noticing that in Hspin the spin-spin interaction strength
in the spin sector is dependent on the local occupation and
next-nearest-neighbor correlations of the hole in the charge
sector, which gives rise to the coupling between the charge
and spin sectors. The coupling between the two sectors is at-
tributed to the second-order tunneling process, with J = t2/U .
Figure 2(c) sketches the action of simultaneous spin flipping
and next-nearest-neighbor hopping of the hole in Hspin, which
is mediated by double-occupation states. A more detailed
demonstration of the derivation and validity of the effective
t-J Hamiltonian is given in Appendix A.

Under the condition of J 
 t , which is valid in the inter-
mediate and strong interaction regimes, Ht−J is dominated by
Hhole, and it is convenient to transform the basis states in the
charge sector from the hole-occupation state to the eigenstates
of Hhole, which will more clearly illustrate the manifold for-
mation and crossings. Under this transformation, Ht−J can be
reformed as Ht−J = Hmanfd + Hscatt , with

Hmanfd =
2N+1∑
α=1

|wα〉H 〈wα|
(

εα − J
N−1∑
i=1

W α
i �σi �σi+1

)
, (4a)

Hscatt = J

2

2N+1∑
α1 �=α2

∣∣wα1

〉
H

〈
wα2

∣∣( N−1∑
i=1

W α1,α2
i �σi �σi+1

)
. (4b)
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In the above equations, |wα〉H refers to the αth
eigenstate of Hhole, with wα (i) and εα denoting the
corresponding eigenwave function and eigenenergy,
respectively. The coefficients W α

i and W α1,α2
i are defined

as W α
i = [1 − |wα (i)|2 + w∗

α (i)wα (i + 2)] and W α1,α2
i =

[2w∗
α1

(i)wα2 (i) − w∗
α1

(i)wα2 (i + 2) − w∗
α2

(i)wα1 (i + 2)].
Hmanfd is the leading term of Ht−J, in which the hole remains
in the same eigenstates of Hhole, and the spin sector turns
to the Heisenberg spin chain, with the spin-spin interaction
dependent on the state of the hole, which is consistent with
the derivation of the site-dependent spin-spin interaction in
[60,65,66]. Hscatt describes the scattering between different
|wα〉H in the charge sector, with the spin sector maintaining
the Heisenberg spin chain.

In the strong interaction regime, the energy difference be-
tween |wα〉H is much stronger than the scattering strength of
Hscatt , which prevents the coupling between different |wα〉H .
The eigenstates of Hmanfd, that is, |α,�〉 ≡ |wα〉H ⊗ |�(α)〉S ,
represent a good approximation of those of Ht−J, in which
|�(α)〉S refers to the eigenstates of the Heisenberg chain in
the spin sector. |α,�〉 can be categorized into different mani-
folds with respect to |wα〉H , and in the eigenenergy spectrum
of Ht−J, eigenstates of the same manifold are well localized
around the corresponding εα , which leads to the well-known
multimanifold structure in the low-lying eigenenergy spec-
trum in the strong interaction regime of Ht−J. In summary, the
categorization of the eigenstates of Ht−J with respect to |wα〉H

in the strong interaction regime is protected by the energy
gaps between different |wα〉H , which prevents the coupling
between different |wα〉H .

In the intermediate interaction regime, however, the cou-
pling between different manifolds due to Hscatt becomes
stronger and cannot be neglected, which affects the catego-
rization of the low-lying eigenstates. Before proceeding to the
details in the intermediate regime, it is worth paying attention
to the symmetries in Hmanfd and Hscatt , which play an important
role in the coupling between different manifolds. In Hmanfd,
the charge sector is subjected to the space-reflection symmetry
T̂rc, and the spin sector is subjected to both the space-reflection
symmetry T̂rs and the spin-flipping symmetry T̂f s. Each |α,�〉
is associated with three parities (Trc, Trs, Tf s), which corre-
spond to the parities of the space-reflection symmetry in the
charge and spin sectors and that of the spin-flipping symmetry,
with Trc, Trs, Tf s ∈ {±}. The Hamiltonian Hscatt , however, is
invariant under the action of T̂f s and T̂rcT̂rs but not the indi-
vidual action of T̂rc or T̂rs. The different symmetries of Hmanfd

and Hscatt lead to Hscatt being able to couple only |α,�〉 with
the same parity (product) for Tf s and TrcTrs.

III. NUMERICAL RESULTS FOR THE MANIFOLD
FORMATION AND CROSSINGS

We present the numerical results for the eigenenergy spec-
trum of the (3 ↑ 3 ↓ 1h) system in Fig. 3(a). The calculations
are carried out based on the Bose-Hubbard Hamiltonian H in
the complete Hilbert space, while only the low-lying eigenen-
ergy spectrum dominated by the single-occupation states is
shown. The eigenenergy spectrum is calculated with the inter-
action strength U scanned over a wide interval from the weak
regime to approaching the TG regime, where the eigenen-

FIG. 3. (a) The eigenenergy spectrum for (3 ↑ 3 ↓ 1h). Eigen-
states of the same manifold are marked with the same color, and the
eigenenergy of uncategorized eigenstates is shown with gray stars.
(b) The probability of the single-occupation basis of the eigenstates
in each manifold;. the lowest probability of all the eigenstates in each
manifold is plotted. (c) The ratio of categorizable eigenstates to the
total low-lying eigenstates in different interaction regimes.

ergy spectrum saturates to the fermionization limit. In the
strong interaction regime with the well-gapped multimanifold
structure, the eigenstates can be categorized into different
manifolds, and eigenstates in the same manifold are well
approximated by |α,�〉 with the same α. The multimani-
fold structure is protected by the energy gaps, which prevent
intermanifold coupling induced by Hscatt . As the interaction
decreases from the strong interaction regime, the gaps vanish
in the spectrum, which marks the transition from the strong
to the intermediate regime. On the other side of the spectrum,
the transition between the intermediate and weak interaction
regimes is captured by the decrease of the total probability
of the single-occupation basis as U decreases, as shown in
Fig. 3(b).

In the intermediate interaction regime, where the energy
gaps vanish between close-lying manifolds in the spectrum,
an immediate question is whether the eigenstates can still
be categorized into different manifolds with no protection
of the energy gaps against the intermanifold coupling. To
directly address this question, we apply the wave-function
categorization to eigenstates in the intermediate regime, and
wave-function categorization is based on the wave-function
identification through supervised machine learning [82–84],
which adapts the procedure in Refs. [85,86]. In the supervised
categorization, the training set is chosen from the eigenstates
in the strong interaction regime, with each eigenstate labeled
by the manifold it belongs to, and the trained network is
used to categorize the eigenstates in the whole interaction
interval in Fig. 3(a). More details on the setting of the machine
learning procedure are given in Appendix B.

The categorization results are illustrated by different colors
in Fig. 3(a): The eigenenergies marked with the same color
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FIG. 4. Eigenenergy spectrum for (a1) U = 1.6, (a2) U = 10,
and (a3) U = 65; the gray stars refer to the uncategorizable eigen-
states, and the blue squares, red triangles, and yellow dots indicate
the eigenstates recognized as belonging to the first, second, and
third manifolds, respectively. The inset of (a2) zooms in on the
area marked by the dashed box in the main panel, in which
the bars located at each categorizable eigenenergy point measure the
intermanifold coupling. (b1)–(b3) The spatial distribution of the hole
for eigenstates in the first, second, and third manifolds, respectively,
at U = 13, U = 20, and U = 100.

indicate the corresponding eigenstates belong to the same
manifold. The eigenenergies marked by gray stars indicate the
supervised categorization failed for the corresponding eigen-
states with a predicted score below 0.95. It is found that in
the weak interaction regime, all eigenenergies are marked
in gray, indicating that the eigenstates in this regime cannot
be categorized into different manifolds. In the intermediate
regime, however, most eigenenergies are well colored, and
this indicates that in the intermediate regime most eigenstates
can still be categorized into different manifolds, even without
the explicit gaps between close-lying manifolds. It is also
noticeable that a few exceptional uncategorizable eigenstates
arise in the intermediate regime, which are marked by the
sparse gray stars immersed in the well-colored spectrum in
this regime. Figure 3(c) quantifies the categorizability in terms
of the ratio of categorizable eigenstates to the total low-lying
eigenstates in different interaction regimes. In the intermedi-
ate regime, the ratio is as high as almost unity, indicating that
most eigenstates can be categorized into different manifolds in
this regime. In the weak interaction regime, the ratio presents
a relatively sharp decrease to zero, and the categorization
completely fails. Figure 3(c) suggests that the categorizability
is consistent with the transition between the weak and inter-
mediate interaction regimes.

Figures 4(a1)–4(a3) provide a close look at the eigenen-
ergy spectra in the weak, intermediate, and strong interaction
regimes, respectively, in which the first 40 eigenenergies
are shown, with the color indicating the categorization as
in Fig. 3(a). In the weak interaction regime, as shown in
Fig. 4(a1), the spectrum is gapless, and the eigenenergies are
marked in gray, indicating that the corresponding eigenstates
cannot be categorized. In contrast, in the strong interaction
regime, the spectrum plotted in Fig. 4(a3) is well gapped,

which protects the categorization and the multimanifold struc-
ture. In Fig. 4(a2), the spectrum in the intermediate regime
becomes gapless, whereas most eigenstates are still categoriz-
able and grouped into different manifolds. The vanishing of
the energy gap leads to the overlap of different manifolds in
the spectrum.

Figures 4(b1)–4(b3) plot the spatial distribution of the
hole for eigenstates in the first three manifolds at different
interaction strengths in the strong and intermediate regimes.
The spatial distribution is defined as ρH

n,k (i) = 〈n, k|ĉ†
i ĉi|n, k〉,

with |n, k〉 indicating the kth eigenstates in the nth manifolds.
It is shown that ρH

n,k of a given manifold remains qualita-
tively the same as the interaction changes from the strong
to the intermediate regime. Moreover, ρH

n,k with n = 1, 2, 3
resemble the density distribution of |wα〉H with α = 1, 2, 3,
respectively, which indicates the projection of the correspond-
ing eigenstates in the charge sector dominated by |wα〉H .
This demonstrates that each categorizable eigenstate can be
approximated by |α,�〉 in both the strong and intermediate
regimes.

In order to illustrate how the categorization is maintained
in the intermediate regime, we zoom in on the area around a
pair of gray eigenenergies in the main panel in Fig. 4(a2) and
compare the categorizable and uncategorizable eigenenergies
in the inset. It can be seen that the categorizable eigenstates
are separated by a nonvanishing energy spacing induced by
the finite-size effect, while the uncategorizable pair is almost
degenerate. For the categorizable eigenstates, which are well
approximated by |α,�〉, the Hscatt-induced intermanifold cou-
pling is calculated and illustrated by the width of the shaded
bar located at the associated eigenenergies. It can be seen that
the energy spacing between the categorizable eigenenergies
is much wider than the width of the shaded bars, which
demonstrates that the nonvanishing energy spacing prevents
the intermanifold coupling and maintains the formation of the
manifold structure.

The major difference between the intermediate and strong
interaction regimes lies in the uncategorizable eigenstates,
which arise from the accidental degeneracy between |α,�〉
with different α. The accidental degeneracy also manifests
as the crossing between different energy levels in the spec-
trum. Figure 5(a1) takes the crossings between |n = 7, k = 6〉
and |n = 6, k = 16, 17, 18, 19〉, for example, where two types
of crossings arise: One type of crossing is associated with
the appearance of uncategorized eigenstates, indicated by
the crossings between |n = 7, k = 6〉 and |n = 6, k = 16, 19〉,
and the other is not, as exemplified by the crossings between
|n = 7, k = 6〉 and |n = 6, k = 17, 18〉. Figure 5(a2) zooms in
on the crossing between |n = 7, k = 6〉 and |n = 6, k = 16〉
and illustrates that the crossing point associated with the
uncategorized eigenstates manifests as the avoided crossing.
The crossings with no uncategorized eigenstates are then
direct crossings. The coexistence of the two types of cross-
ings is attributed to the symmetry constraints on Hscatt as
discussed in the previous section, of which Hscatt can cou-
ple only |n, k〉 with the same parities of T̂f s and T̂rcT̂rs.
In Fig. 5(a2), |n = 6, k = 17〉 and |n = 6, k = 18〉 break
the constraint on T̂f s and T̂rcT̂rs with |n = 7, k = 6〉, re-
spectively, and direct crossing between these eigenstates is
observed.
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FIG. 5. (a1) Eigenenergy as a function of the interaction strength
for |n = 6, k = 16, 17, 18, 19〉 and |n = 7, k = 6〉, around their
crossings. The gray stars mark the uncategorized eigenenergies.
(a2) Zoom of the crossing between |n = 6, k = 16〉 and
|n = 7, k = 6〉. Eigenstate transfer from |n = 6, k = 19〉 to
|n = 6, k = 16〉 through two-step interaction quenches, with (b1) the
probability of the corresponding eigenstates and (b2) the probability
of the AFM state. The top panel in (b1) shows the interaction
quench sequence. Eigenstate transfer from |n = 6, k = 19〉 to
the superposition of |n = 6, k = 16〉 and |n = 6, k = 19〉 through
two-step interaction quenches, with (c1) the probability of the
corresponding eigenstates and (c2) the probability of the AFM state.
The top panel in (c1) shows the interaction quench sequence.

The avoided crossing between a pair of |n, k〉 can
induce the Rabi-like oscillation between the correspond-
ing eigenstates and can be explored for state preparations
through interaction quenches. Initializing the system in
|n = 6, k = 16〉, we demonstrate in Figs. 5(b) and 5(c) that
the system can be transferred to |n = 6, k = 19〉 and the
superposition of |n = 6, k = 16〉 and |n = 6, k = 19〉 as a
function of time, respectively. The state transfer is accom-
plished through a two-step interaction quench, mediated
by |n = 7, k = 6〉. Figure 5(b1) shows that the system is
initially prepared in |n = 6, k = 16〉, and when the interac-
tion is quenched to the bottom avoided-crossing point in
Fig. 5(a1), the system evolves to |n = 7, k = 6〉. Once the
system is completely transferred to |n = 7, k = 6〉, the in-
teraction is quenched to the upper avoided crossing, which
finally transfers the system to |n = 6, k = 19〉. At each
avoided-crossing point, the system undergoes a half-period

Rabi-like oscillation between the corresponding eigenstates.
Given that the projection of |n = 6, k = 19〉 in the spin sector
is dominated by the antiferromagnetic (AFM) state |SAFM〉 =
(|↑↓↑↓↑↓〉 + |↓↑↓↑↓↑〉)/

√
2, this two-step quench can be

used for antiferromagnetic state preparation. Similarly, in
Fig. 5(c1), the system can be prepared in the superposition
of |n = 6, k = 16〉 and |n = 6, k = 19〉 through a two-step
interaction quench, where the first quench induces a quarter-
period oscillation between |n = 7, k = 6〉 and |n = 6, k = 19〉
and transfers the system to the superposition of the two
eigenstates. The second quench further transfers the system
to the superposition of |n = 6, k = 16〉 and |n = 6, k = 19〉
by a half-period oscillation between |n = 6, k = 16〉 and
|n = 7, k = 6〉. This series of quenches leads to a quan-
tum beating between the antiferromagnetic state and the
bispinon state |SBP〉 = (|↑↓↓↑↑↓〉 + |↓↑↑↓↓↑〉)/

√
2, which

dominates in |n = 6, k = 16〉. The manifold overlapping and
crossings in the intermediate regime bring in different state-
preparation schemes in addition to the existing ones, e.g.,
based on adiabatic ramping in the strong interaction regime
[67]. The state-preparation scheme in the intermediate regime
follows the avoided-crossing-based scenario, which has been
widely applied in various setups, such as in Rydberg atoms
[87–89].

The formation and avoided crossings of the manifolds
in the intermediate regime are common properties of finite
spinor lattices and can be generalized to larger systems. Fig-
ure 6 presents the related results in the system of (4 ↑ 4 ↓ 1h).
In Fig. 6(a), the spectrum as a function of the interaction
strength U is shown, where the well-gapped spectrum evolves
to gapless from the strong to intermediate interaction regime.
The supervised eigenstate categorization in the whole inter-
action interval indicates that the multimanifold structure is
maintained in the intermediate regime, which is indicated by
the colors of the eigenenergies in the spectrum. Figure 6(a2)
quantifies the ratio of the categorizable eigenstates to the to-
tal low-lying eigenstates dominated by the single-occupation
states and confirms that most eigenstates in the intermediate
regime are categorizable. The overlapping and crossings of
different manifolds are then plotted in Figs. 6(b) and 6(c), re-
spectively. Figures 6(b) and 6(c) confirm that the formation of
the manifold structure is attributed to the nonvanishing energy
spacing due to the finite-size effect, and both the direct and
avoided crossings show up; the avoided crossing is associated
with the uncategorizable eigenstates.

IV. DISCUSSION AND CONCLUSION

In this work, we numerically investigated the ultracold
spinor atoms confined in one-dimensional optical lattices,
with a focus on the finite lattice systems in the intermedi-
ate interaction regime, which are highly relevant to current
experiments. Our investigation revealed the transition from
the strong to intermediate regime, in which the eigenenergy
spectrum becomes gapless while the eigenstates retain good
categorizability into different manifolds. The formation of the
manifold structure in the intermediate regime can be attributed
to the minigaps between close-lying eigenstates introduced
by the finite-size effect, which prevents the intermanifold
couplings. The vanishing of the intermanifold gaps leads to
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FIG. 6. (a) The eigenenergy spectrum for (4 ↑ 4 ↓ 1h). Eigen-
states of the same manifold are marked with the same color, and the
uncategorized eigenstates are shown with gray stars. (a1) The lowest
occupancy probability of the single-occupation basis of the eigen-
states in each manifold. (a2) The ratio of categorizable eigenstates
to the total low-lying eigenstates in different interaction regimes.
(b) Eigenenergy spectrum at U = 21; gray stars indicate the un-
categorized eigenstates, and the blue squares, red triangles, and
yellow dots show the eigenstates of the first, second, and third
manifolds, respectively. The inset zooms in on the dashed box
regime in the spectrum, around a pair of uncategorized eigenen-
ergies. (c) Eigenenergies as a function of interaction strength for
|n = 9, k = 7, 9, 13, 15〉 and |n = 8, k = 64〉, with the inset zoom-
ing in on the dashed box marked in the main panel

rich direct and avoided crossings between different manifolds.
The combined symmetries determine whether the crossing
is a direct or avoided one, and the avoided crossing can be
explored for state preparations and manipulations, through
interaction quench between different avoided crossings.

Our results based on the single-hole filling can be directly
generalized to broader systems, e.g., with more hole fillings
or under different external potentials. Doping more holes and
engineering the external potentials could give rise to manifold
structures and crossing behaviors, which could find applica-
tions in the state manipulations. Moreover, it also remains an
open question whether the categorization in the intermediate
interaction regime can be maintained in large systems, e.g., in
lattices approaching the thermalization limit, and this could be
resolved by methods such as the Bethe ansatz.

In this work, we have explored the well-developed wave-
function classification based on supervised machine learning
for the categorization of the eigenstates in the intermediate

FIG. 7. Schematic representation of the system’s single-
occupation basis states, double-occupation basis states, and
multiple-occupation basis states.

regime. The wave-function classification has been widely ap-
plied to the identification of the phase transition [82–84],
chaotic behavior [90,91], integrability [92], and so on; our
work extends the applicability of this method to identify and
categorize eigenstates in the gapless spectrum, which could
have applications in a wider range of systems.
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APPENDIX A: DERIVATION AND VALIDITY
OF THE EFFECTIVE HAMILTONIAN

In this work, we derived the t-J like Hamiltonian, which
can capture the low-lying eigenstates in the intermediate
regime. The derivation of the t-J model follows the standard
second-order perturbation theory. The perturbation treatment
is based on the energetic decoupling of the complete Hamilto-
nian to various subspaces. Each subspace is composed of basis
states of the same chemical potential, and different subspaces
are energetically detuned from each other. As sketched in
Fig. 7, the single-occupation basis states form a subspace
with the lowest chemical potential, and the subspace lying
close above constitutes the double-occupation basis states.
Above the single- and double-occupation subspaces, there lie
subspaces formed by basis states of higher occupations, such
as the bidouble-occupation basis and the triple-occupation
states. In this work, we focus on the low-lying eigenstates
in the intermediate interaction regime, which mainly lie in
the single-occupation subspace. Under this condition, we re-
strict ourselves to a single-occupation subspace and derive an
effective Hamiltonian within the single-occupation subspace,
which can well reproduce the eigenstates properties of the
original Hamiltonian.

The effective Hamiltonian is spanned by the single-
occupation basis states, and the higher-occupation states
contribute to the higher-order coupling between the single-
occupation states. In our derivation, we take into account
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FIG. 8. Three typical pathways of the second-order processes in
the perturbation theory. (a) Effective spin-exchange interactions by
second-order processes. (b) Spin-preservation interactions with hole
next-nearest-neighbor tunneling by second-order processes. (c) Spin-
exchange interactions with hole next-nearest-neighbor tunneling by
second-order processes.

only the second-order couplings intermediated by the double-
occupation states and ignore even higher-order processes. The
second-order coupling can be written as

H eff
m,n = −

∑
k

〈m|Ĥs|k〉 1

〈k|Ĥint|k〉 〈k|Ĥs|n〉, (A1)

where |m〉 and |n〉 are single-occupation basis states and |k〉 is
the intermediate double-occupation basis states. In the above
equation, Ĥs refers to the first term of H in Eq. (1), i.e.,
the single-particle tunneling, which couples the single- and
double-occupation basis states, and Ĥint is the on-site interac-
tion term in Eq. (1). The second-order couplings between the
single-occupation basis states are sketched in Fig. 8, where
three representative processes are shown. The processes refer
to the spin-spin exchange interaction with and without the
next-nearest-neighbor hopping of the hole, and the coeffi-
cients are different, which is due to the bosonic statistics.

The validity of the effective Hamiltonian can be verified
by comparing the eigenenergy and eigenstates obtained with
the original and effective Hamiltonians. Figure 9(a) compares
the eigenenergies of various eigenstates obtained by the two
Hamiltonians, in which we pick one eigenstate from each
manifold. It can be shown that in the intermediate and strong
interaction regimes, the eigenenergies obtained from the two
Hamiltonians match each other very well, and deviations

FIG. 9. The comparison between the spectrum in (a) and the
overlap of the eigenstates was obtained using the ML-MCTDHX
method and the effective t-J model. (a) shows a comparison between
the exact spectrum (solid lines) with the effective spectrum (dotted
lines). The eigenenergies of the different manifolds are marked with
different colored lines. In (b), we present the overlap between the
exact and effective eigenstates |1, 11〉 (solid line) and |2, 2〉 (dashed
line). The inset shows the energy of eigenstates |1, 11〉 (blue lines)
and |2, 2〉 (red lines) near avoided-crossing points.

mainly emerge in the weak interaction regime. This demon-
strates that the effective Hamiltonian can very well reproduce
the eigenenergy spectrum in the intermediate regime.

To more strictly ensure the validity of the effective
Hamiltonian, we further compare the wave functions of the
eigenstates obtained from the original and effective Hamil-
tonians, as shown in Fig. 9(b). The comparison is done by
directly overlapping the eigenstates org〈n, k|n, k〉eff, where
|n, k〉eff(org) denotes the kth eigenstate in the nth manifold
obtained with the effective (original) Hamiltonian. Figure 9(b)
shows that the overlap remains close to unity almost every-
where in the intermediate and strong interaction regimes and
decays in the weak interaction regime. This verifies the va-
lidity of the effective Hamiltonian. It is noticeable that two
dips exist on the overlap curve in the intermediate regime,
which illustrates a big mismatch in the related interaction
strength. The inset in Fig. 9(b) shows that at the left and
right dips, an avoided crossing takes place in the original
and effective Hamiltonians, respectively. The mismatch can
then be attributed to the fact that the effective Hamiltonian
can also reproduce the avoided crossing, but with a relatively
small shift in the interaction strength. This could be due to
the fact that the effective Hamiltonian takes into account only
the second-order perturbation, and the mismatch can be cured
by going to even higher-order processes. In general the com-
parison of the eigenenergy spectrum and the eigenstate wave
functions between the effective and the original Hamiltonians
verifies that the effective Hamiltonian can very well reproduce
the manifold formation and crossings predicted in the original
Hamiltonian, with a relatively weak quantitative mismatch.
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FIG. 10. Illustration of a neural network. The inputs are the com-
plete eigenstates of the system under different interactions, and the
outputs are the probability of the eigenstate belonging to one mani-
fold, with each node in the output layer associated to one manifold.

APPENDIX B: MACHINE-LEARNING-BASED APPROACH

We adopt supervised machine learning for the categoriza-
tion of the low-lying eigenstates in the intermediate regime.
The architecture of the neural network employed in our super-
vised learning is shown in Fig. 10. The network constitutes
a single hidden layer of 32 neurons, linking the input and
the output layers. The input layer is associated with the wave
function of the eigenstates, with each neuron representing one
expansion coefficient of the wave function, and the output
layer contains neurons with the same number of possible
manifolds; the output is the probability of the input eigenstate

TABLE I. Training hyperparameters.

Hyperparameters Value

Hidden size 32
Activation [relu, softmax]
Optimizer Adam
Learning rate 0.001
Decay of momenta [0.9, 0.999]

belonging to this manifold. The general task of the neuron
network is to build the mapping between each eigenstate and
the manifold to which the eigenstate should belong.

It is known that the eigenstates in the strong interaction
regime can be categorized into different manifolds, and the
categorization in the strong interaction regime provides the
training samples, in which each eigenstate is labeled with its
associated manifold. In our training, we take the eigenstates
in the interaction interval U ∈ [35, 100], with 200 samples in
total. The loss function minimized in the training is chosen to
be

L( f (x), y) = −
∑

i

yilog2[ f (x)]i, (B1)

where x and y refer to the input wave function and the out-
put manifold, respectively. The additional hyperparameter is
given in Table I.
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