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Deterministic preparation of supersinglets with collective spin projections
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We introduce a procedure to generate supersinglets, the multipartite generalization of angular momentum
singlet states. A supersinglet is defined as a total spin zero state consisting of N spin- j particles. They are highly
entangled and have zero spin variance in any direction, and as such are potentially useful for quantum metrology.
Our scheme is based on projective measurements that measure the collective spin of the whole spin ensemble. A
local unitary rotation is applied conditionally on the measurement outcome, such as to maximize the probability
of obtaining spin zero on the subsequent measurement. The sequence is repeated in the z and x basis until
convergence is obtained towards the supersinglet state. Our sequence works regardless of the initial state, and no
postselection is required. Due to the use of strong projective measurements, very fast convergence towards zero
spin variance is obtained. We discuss an example implementation using quantum nondemolition measurements
in atomic ensembles, and perform numerical simulations to demonstrate the procedure.
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I. INTRODUCTION

Entangled states in many-body systems have been of inter-
est in several areas of modern physics, both from a scientific
and application point of view. In condensed-matter physics
and high-energy physics often one is interested in the low-
energy states of a many-body Hamiltonian, which is often
a highly entangled state [1–4]. In quantum information [5],
they are the basis for numerous applications, such as quantum
simulation [6–9], quantum sensing [10,11], magnetometry
[12,13], timekeeping [14,15], quantum networks [16,17], and
tests on the foundational principle of quantum mechanics
[18]. However, the preparation of such correlated quantum
states typically requires an extremely high degree of control of
the individual state of the atoms, which has been the primary
experimental challenge for realizing quantum technologies.
Generally, the roadmap towards realizing large-scale quantum
systems is to first develop the technology to a high level
such that high fidelities are achieved, then use quantum error
correction to overcome the remaining errors [19,20].

*tim.byrnes@nyu.edu

An example of such a many-body entangled state is the
supersinglet state [21]. Supersinglets are defined as states of
total spin zero, consisting of N spin- j particles. Supersinglets
have the property that they are invariant under arbitrary total
spin rotations. The variance of the total spin in any basis is also
zero, hence they are an example of a state with zero quantum
noise, suggesting uses in quantum metrology. The simplest
example of a supersinglet is the N = 2 spin-1/2 case, with
wave function (|0〉|1〉 − |1〉|0〉)/

√
2. They are typically highly

entangled states, and have been proposed for a wide variety
of applications such as cryptography [21], clock synchroniza-
tion [14,15], quantum metrology [22], quantum teleportation
[23–25], quantum computing [26,27], and decoherence free
subspaces [22] and play a fundamental role in performing
entanglement purification [28].

There have been several demonstrations and proposals
to experimentally generate supersinglets. One approach has
been to use quantum nondemolition (QND) measurements of
atomic ensembles containing N ≈ 106 atoms to produce a
macroscopic singlet state of the atoms [22,29–31]. Behbood
et al. used stroboscopic QND measurements along different
spin axes to generate a collective singlet state of the hyperfine
ground states of 87Rb [30]. This approach has been applied
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FIG. 1. The procedure considered in this paper to generate
supersinglets. Starting from an arbitrary initial state |ψ0〉, the repeat-
until-success projection sequence (27) is first applied in the z basis.
Once an m = 0 is obtained, a similar sequence is performed in the
x basis (31). These two sequences are repeated until convergence
is attained. Convergence is defined as repeated m = 0 outcomes for
both the z- and x-basis projections.

to both cold atoms [30] and a hot interacting atomic gas
[31]. In another work, Behbood et al. incorporated a feedback
mechanism between the stroboscopic QND measurements to
provide corrections or adjustments to the quantum state of the
atoms based on information from the previous measurement
outcome [29]. Typically, postselection is used to infer the
the presence of a macroscopic singlet state at the end of
measurements [29–31]. These experiments were based upon
the theoretical proposal of Ref. [22], where it was shown that
QND measurements can produce squeezing towards a supers-
ingletlike state. However, even in this theoretical work, it was
not shown that a perfect supersinglet state could be attained
even in the ideal case, with only squeezing of spin variables
being calculated. For smaller N , several methods have been
proposed to generate supersinglets using approaches such as
cavity quantum electrodynamics [32–35].

In this paper, we present a scheme that deterministically
generates a supersinglet state. In our scheme, a projective
measurement is performed on the collective spin of the parti-
cles in the z basis, recording the total spin projection. A local
rotation is then performed on half the atoms selected at ran-
dom conditional on the measurement result. This increases the
singlet state admixture, thereby building coherence between
the quantum states. This process is repeated until the zero spin
outcome is obtained. Then the process is repeated in the x
basis, again until a zero spin outcome is obtained. Repeating
this sequence of measurements allows for convergence to a
supersinglet state (see Fig. 1 for the sequence). An important
feature of the scheme is that it works for an arbitrary initial
state, and no postselection is required. The key reason for
this is that our sequence has the zero spin state as a unique
fixed point and the system keeps evolving until it reaches this
state. Our main proposal is generic and can be performed in
principle on any physical system. We show an example imple-
mentation based on QND measurements of atomic ensembles.

This paper is organized as follows. In Sec. II we briefly
review the physical system and the required operations to
realize our procedure. In this section we also show how
QND measurements could be used to realize the projective
measurements in an ensemble of atoms. In Sec. III we give
the detailed procedure used for the deterministic preparation
of supersinglets, and the associated mathematical formalism.
In Sec. IV we demonstrate that our procedure works by per-
forming several numerical simulations. Finally the summary
and conclusions are presented in Sec. V.

II. COLLECTIVE SPIN MEASUREMENTS
AND ROTATIONS

A. The physical system

We first describe the types of operations that will be
required in order to realize the supersinglets. Consider a col-
lection of N particles of spin j. We may construct a basis for
the (2 j + 1)N Hilbert space using the vectors

|m1, . . . , mN 〉 =
N⊗

n=1

| j, mn〉. (1)

Spin operators on the nth and mth particle satisfy commuta-
tion relations [

Jα
n , Jβ

m

] = iδnmεαβγ Jγ
n , (2)

where εαβγ is the Levi-Civita antisymmetric tensor and
α, β, γ ∈ {x, y, z}. The states on the nth particle are eigen-
states of the operator

Jz
n | j, mn〉 = mn| j, mn〉. (3)

Here mn ∈ {− j, . . . , j} is the z-projection spin quantum num-
ber for the nth particle.

It is also possible to construct a basis using collective spin
states. Define the collective spin operators

Jα =
N∑

n=1

Jα
n , (4)

again for α ∈ {x, y, z}. The z-projection collective spin has
eigenstates

Jz|J, d, m〉 = m|J, d, m〉, (5)

and the total spin squared operator (Casimir invariant)

J2 = (Jx )2 + (Jy)2 + (Jz )2, (6)

which has the eigenvalue relation

J2|J, d, m〉 = J (J + 1)|J, d, m〉. (7)

Here d is a label for each distinct J multiplet [36]. For exam-
ple, when adding three j = 1/2 spins, there are two ways of
obtaining J = 1/2. The number of orthogonal basis elements
is the same in the collective picture, such that

Jmax∑
J=Jmin

DJ∑
d=1

J∑
m=−J

1 = (2 j + 1)N , (8)

where we denoted the number of distinct J multiplets as DJ .
The minimum and maximum value of the collective spins are
Jmin = (N mod 2) j and Jmax = N j.

033314-2



DETERMINISTIC PREPARATION OF SUPERSINGLETS … PHYSICAL REVIEW A 106, 033314 (2022)

Supersinglet states are then defined as states in the zero
total spin sector:

|SN,d〉 = |J = 0, d, m = 0〉. (9)

Properties and applications of supersinglets may be found in
Ref. [21].

B. Required controls

We now describe the types of quantum operations that will
be required for the procedure that we introduce in Sec. III.

The first capability that we will require is the ability to
perform collective spin projections. Specifically, we assume
that it is possible to perform the projective operator

Pz
m =

Jmax∑
J=Jmin

DJ∑
d=1

|J, d, m〉〈J, d, m|, (10)

where the superscript z denotes the basis of the spin states
involved in the projector. This projection operator can also be
written in the individual spin basis:

Pz
m =

∑
∑N

n=1 mn=m

|m1, . . . , mN 〉〈m1, . . . , mN |. (11)

A second capability that we assume is to perform unitary
rotations on either part or all of the spins. Define the collective
spin operator for a subensemble of the spins as

Jα
S =

∑
n∈S

Jα
n (12)

where S specifies which spins are in the subensemble and α ∈
{x, y, z}. The unitary rotation for the subensemble is then

U α
S (θ ) = e−iJα

Sθ . (13)

For a unitary rotation on the whole ensemble, our notation is
to omit the subensemble label:

U α (θ ) = e−iJαθ . (14)

Using this unitary operator, we may define projections along
other axes. In particular we will also use projections along the
x axis, defined as

Px
m = U y(π/2)Pz

m[U y(π/2)]†. (15)

In this way, combining z-axis measurements with unitary rota-
tions [37–39] allows for the coherence between atomic levels
to be measured.

C. Example implementation: Atomic ensembles

A variety of physical systems could potentially be used to
implement the operations that were introduced in the previous
section. We now give a specific physical implementation of
how the projective operator can be achieved in atomic ensem-
bles with QND measurements.

We consider an atomic ensemble containing N atoms,
where the hyperfine ground states can be used to store
quantum information. A typical example would be 87Rb,
where only the ground-state levels F = 1, mF = −1 and F =
2, mF = 1 are populated [40,41]. The ground states have a
long coherence time due to the lack of spontaneous emission.

In this case, each atom can be considered a j = 1/2 spin, and
the atomic ensemble as a whole forms a collective spin. Either
hot or cold atomic ensembles can be used, but a Bose-Einstein
condensate cannot be used in this case because the atoms
should be distinguishable such that a supersinglet is available.
For degenerate atoms, the atoms form only the maximal total
spin, and a supersinglet state does not exist.

A projective measurement of the form (10) can be realized
using QND measurements. QND measurements have been
used extensively as a means to perform measurements on
atomic systems, and have been used as a way of generating
entangled states [42–49]. In particular, one of the important
applications in atoms is as a method of creating squeezed
states [50–56] in atomic ensembles. In this approach, the light
acquires an atomic state-dependent phase shift, which is then
interfered after passing through the atoms. The technique has
been used to propose a scheme for entangling two spatially
separated atomic condensates [57] and realizing non-Gaussian
correlated states such as macroscopic Schrödinger cat states
[58] in atomic condensates. For atomic ensembles, informa-
tion about the state of the atoms is acquired by the light pulse
nondestructively, and may be used to further manipulate the
state of the atom in situ.

Several works have already provided a theory of QND
measurements, and here we give a brief description of the for-
malism. We use the exact wave-function approach developed
in Refs. [48,49] to describe dispersive imaging measurements.
The basic idea is to interact the atomic ensemble with an
optical coherent state via the QND Hamiltonian [48,59]

Ĥ = h̄gJzn̂, (16)

where g is the atom-light coupling frequency, n̂ = a†a is the
photon number operator of the light, and a is a bosonic annihi-
lation operator for the photons. Such an interaction entangles
the light and the atoms. Performing a measurement on the
light in a suitable basis, this collapses the wave function such
that an indirect measurement of the atoms is made.

Specifically, consider an optical coherent state |γ 〉 that
interacts with some arbitrary initial state of the atoms

|
0〉 =
Jmax∑

J=Jmin

DJ∑
d=1

J∑
m=−J

ψJdm|J, d, m〉 (17)

according to the Hamiltonian (16) for a time t . If the light
then interferes with another coherent state of light |χ〉 via a
beamsplitter and photon detection is performed, then the final
un-normalized state can be calculated to be after a Gaussian
approximation [49,58]

|
nc,nd 〉 = e
nc+nd −|γ |2−|χ |2

2

(4π2ncnd )
1
4

( |γ |2 + |χ |2
nc + nd

) nc+nd
2

× e−i π
2 nd

Jmax∑
J=Jmin

DJ∑
d=1

J∑
m=−J

ei(nc+nd )(φ−gtm)

× ei(ncφc+nd φd )e− 1
2σ2 (m−m0 )2

ψJdm|J, d, m〉, (18)

where nc and nd are the photon counts for the two modes after
interference of the optical modes. The probability of this out-
come is given by Pnc,nd = 〈
nc,nd |
nc,nd 〉 and is the probability
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of obtaining nc and nd photons in the measurement. Here we
defined phases as

φ = gtm

2
+ arg(χ ) − arg(γ )

2
+ π

4
+ φp

2
,

φc = arctan (tan η tan φ),

φd = arctan

(
tan φ

tan η

)
.

(19)

The phase φp is a phase offset. We defined η as the ratio of the
amplitude of the light coherent state:

tan η = |χ | − |γ |
|χ | + |γ | . (20)

The Gaussian factor in (18) makes it clear that the effect
of the QND measurements is to modify the amplitudes of the
coefficients such that they are concentrated near the maximum
value:

m0 = 1

gt

[
arcsin

(
1

cos 2η

nd − nc

nd+ nc

)
− arg(χ ) + arg(γ ) − φp

]
.

(21)

The variance of the Gaussian is meanwhile

σ 2 =
(

g2t2

8

nc + nd

ncnd
[(nc + nd )2 cos2 2η − (nc − nd )2]

)−1

.

(22)
The variance of the Gaussian determines whether the mea-
surement that is made is either a strong projective measure-
ment or a weak measurement. If σ is large, then the original
wave function (17) is only slightly modulated, and produces
number state squeezing. In the strong measurement regime, σ

is small, with only a few states having nonzero amplitude in
the vicinity of m = m0. In the extreme case, characterized by
|χ |, |γ | � 1, only one of the probability amplitudes near m0

is nonzero [60]. This limit of QND measurements acting as a
strong projective measurement can be used to realize (10).

The unitary rotations on half the atoms in the ensemble
can be realized using optical Raman pulses illuminating half
the spatial region of the atomic ensemble. In order to only
rotate half the atoms in the ensemble, the operation should
complete before the atoms move out of the spatial region
that illuminates the ensemble. For a hot atomic ensemble in
a cell of size ≈1 cm, the velocities of the atoms are typically
≈300 m/s. This gives a time window of ≈17 us, easily acces-
sible using current techniques of Raman pulses. Furthermore,
composite pulses [61] could be used to enhance the fidelity
of the rotations in presence of various inhomogeneities in the
atomic ensemble.

III. PROCEDURE FOR DETERMINISTIC PREPARATION
OF SUPERSINGLETS

We now describe the procedure using the projective mea-
surements and unitary rotations of Sec. II B to prepare the
supersinglet states.

A. The basic idea

Given an arbitrary initial state ρ0, we would like to have
a procedure that deterministically gives us the supersinglet

state |SN,d〉, using only the collective operations as given in
Sec. II B. Depending upon the particle number N , there may
be more than one distinct supersinglet state. For our purposes,
any superposition or mixture of such supersinglet states will
suffice. The important aspect will be that the total spin J is
zero. We note that in order to have a supersinglet state, we
require N to be an even number. For the procedure that we
introduce here, we will assume N is even. Later we examine
the effect of odd N in Sec. IV E.

The key insight that yields our procedure is the fact that a
supersinglet state is invariant under rotations. That is,

e−i(θxJx+θyJy+θzJz )|SN,d〉 = |SN,d〉 (23)

up to a global phase and θα are arbitrary coefficients. This
means that it is an eigenstate of both projection operators Pz

0
and Px

0 , such that

Pz
0 |SN,d〉 = |SN,d〉,

Px
0 |SN,d〉 = |SN,d〉. (24)

It follows that if one were to start in the singlet state, the
sequence of 2M projections made alternately in the x and z
basis would be invariant:(

Px
0 Pz

0

)M |SN,d〉 = |SN,d〉. (25)

Regarded as a measurement sequence, the probability of this
outcome is 1, since the state does not lose any amplitude after
the projection. This invariance under projections in different
bases is one of the key ingredients of our procedure. Other
states with J �= 0 become rotated with each change of basis
and do not have the invariance property of (25).

Starting from an arbitrary state |ψ〉, performing a projec-
tion in the z basis gives a probability of getting an outcome m
according to

pm = 〈ψ |Pz
m|ψ〉. (26)

Of course in general there is no guarantee that we will obtain
the m = 0 outcome as in (25). To overcome this, we perform
a conditional unitary rotation after each projection, such as
to maximize the probability of getting the desired m = 0 out-
come [22]. Once the m = 0 outcome is obtained, the next set
of projections in the x basis is performed, where the procedure
is repeated, until the m = 0 outcome is obtained. Repeating
this procedure creates a sequence such that a singlet state is
deterministically produced (Fig. 1).

B. The procedure

We now rephrase the procedure introduced in the previous
section mathematically to make it more precise. We first de-
fine the repeat-until-success projection sequence as

P z
	m =

L∏
l=1

[
U y
S
(
θml

)
Pz

ml

]
= Pz

0U y
S
(
θmL−1

)
Pz

mL−1
. . .U y

S
(
θm1

)
Pz

m1
(27)

where the product symbol multiplies the matrices in reverse
order, i.e., from l = 1 to L from right to left. The unitary
rotation is applied on the set S involving half of the spins.
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The record of all the measurement outcomes is specified by

	m = (m1, m2, . . . , mL ). (28)

In the sequence (27), L is taken large enough that the m = 0
outcome is obtained on the Lth projection. For all l ∈ [1, L −
1], ml �= 0. For this reason, the final projection always takes
the value mL = 0, and the final unitary rotation is simply the
identity matrix.

The angles θm are chosen such as to maximize the probabil-
ity of getting a m = 0 outcome on the subsequent projection.
That is, the state after a projection to spin m is rotated to

U y
S (θm)|J, d, m〉 =

∑
J ′d ′m′

|J ′, d ′, m′〉

× 〈J ′, d ′, m′|U y
S (θm)|J, d, m〉. (29)

The rotation operation repopulates other Dicke states by
putting them in linear superposition. A suitable choice for
the rotation angle is obtained by making the magnitude of the
matrix element for m′ = 0 large, which we take to be

θm = arcsin

(
m√

Jmax(Jmax + 1)

)
. (30)

For m = 0, θm = 0 and the rotation operation is the identity
matrix. It is important that the rotation is performed only on
half the spins as otherwise the rotation (29) is not able to
change J , i.e., only J ′ = J are nonzero in the matrix elements.
Since our aim is to obtain the singlet state J = 0, the ability
to change J is obviously crucial to the operation. Which spins
are chosen do not particularly matter for the procedure, and
they may be chosen at random.

Once the desired m = 0 outcome is obtained, another
repeat-until-success projection sequence is applied, this time
in the x basis:

Px
	m =

L∏
l=1

[
U z
S
(
θml

)
Px

ml

]
= Px

0 U z
S
(
θmL−1

)
Px

mL−1
. . .U z

S
(
θm1

)
Px

m1
. (31)

Again, the unitary operations are designed such that the
probability of obtaining m = 0 on the next measurement is
maximized.

The final sequence that we propose in the pure states for-
malism is (see Fig. 1)

K−1∏
k=1

(
Px

	m2k
P z

	m2k−1

)|ψ0〉 →
∑

d

ψd |SN,d〉. (32)

Here 	ml is the measurement sequence for the lth round of
measurements. The two measurement sequences are repeated
many times until measurement convergence is attained. Once
the singlet state is obtained, no unitary rotation is necessary
and projectors in both the z and x bases give m = 0, as in
(25). We define convergence being attained when the pro-
jection sequence such as in (25) consecutively returns m = 0
for several measurements. Our claim is that such a sequence
always converges to a singlet state, from an arbitrary initial
state |ψ0〉. On the right-hand side of (32) we have written
an arbitrary superposition with coefficients ψd of the distinct
supersinglet states. As we shall see, our procedure is sensitive

only to whether the state is a supersinglet state or not, and
does not distinguish between the distinct supersinglet states.

We may also write (32) for the mixed state case:[
K−1∏
k=1

(
Px

	m2k
P z

	m2k−1

)]
ρ0

[
K−1∏
k=1

(
Px

	m2k
P z

	m2k−1

)]†

= Px
	m2K

P z
	m2K−1

. . .Px
	m2
P z

	m1
ρ0P z

	m1
Px

	m2
. . .P z

	m2K−1
Px

	m2K

→
∑
dd ′

ρdd ′ |SN,d〉〈SN,d ′ |. (33)

Again, our procedure deterministically generates an arbitrary
mixture or superposition of supersinglet states, hence we have
written these coefficients as ρdd ′ .

We note that our procedure can be viewed as an adaptation
of the imaginary time evolution procedure as presented in
Ref. [62]. In Ref. [62], a procedure was introduced to target
the ground state of a given Hamiltonian. The procedure in-
volves a sequence of measurements and conditional unitary
rotations, chosen in such a way that the target state is a fixed
point of the evolution. This same structure is apparent in the
repeat-until-success projection sequence (27) and (31). The
singlet state is a fixed point of the total sequence as given in
(32), where eventually the sequence converges to only m = 0
outcomes as in (25).

IV. NUMERICAL EVOLUTION

We now illustrate the singlet state preparation procedure
given in Sec. III by performing a numerical evolution of
various cases.

A. Simulation details

The initial state that we will use in most of our numerical
evolutions is a completely mixed state:

ρ0 = 1⊗N

2N
. (34)

This state can be viewed equivalently as a thermal state at
infinite temperature. This same initial state was used in works
such as Ref. [30] to experimentally target a singlet state.
Although the supersinglet state can always be generated from
an arbitrary initial state in our procedure, we shall use the
completely mixed state as our initial state since it is a state
that possesses no entanglement or coherence [63,64]. Since a
supersinglet state possesses both entanglement and coherence,
convergence towards the supersinglet state shows that our pro-
cedure is responsible for creating these quantum properties.

The evolution sequence is performed by taking the initial
state (34) in the procedure (33). Each projection operation is
chosen randomly according to Born probabilities. We perform
this with an accept-reject procedure as given in the Appendix.
Due to the randomness of measurements, each run of the
procedure gives a different evolution. The atoms to which
the unitary rotations (13) are performed are chosen randomly
each time the unitary operation is applied, selecting half the
spins at random. The measurement sequence is performed
multiple times, for which we check for the convergence to the
singlet state. We consider convergence to be attained if five
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consecutive measurements in alternating z and x bases give
the m = 0 outcome.

To characterize the state obtained after a measurement in
the sequence, we will evaluate several quantities. The first is
the normalized average value of the total spin squared as given
in (6):

J̄2 ≡ 〈J2〉
Jmax(Jmax + 1)

= 0 (singlet). (35)

The above quantity has an expectation value of zero for a
singlet state since the eigenvalue of the Casimir invariant is
J (J + 1). This quantity lies in the interval 0 � J̄ 2 � 1 due to
the normalization factor. Only the singlet states have a zero
expectation value for this operator and hence it is a good
detector for the supersinglet state. The expectation value of J2

is nonzero for the thermal state since it involves contributions
from total spin sectors J > 0. For the first-order spin expecta-
tion values, both the initial thermal state (34) and the singlet
state have zero expectation values:

〈Jα〉 = 0, (singlet and completely mixed) (36)

for α ∈ {x, y, z}. Hence the variance of the spins for a singlet
state will be zero:

(�Jα )2 ≡ 〈(Jα )2〉 − 〈Jα〉2

= 0 (singlet). (37)

This also shows the squeezed nature of the spin observables
for the singlet state. The other way we will quantify the state
is using fidelity, defined as

F =
∑

d

Fd , (38)

Fd = 〈SN,d |ρ|SN,d〉, (39)

where ρ is the state at a particular point in the projection
sequence. This is a useful measure to show the exact state
that has been reached in the procedure, whereas (35) does
not distinguish between distinct supersinglets. F = 1 indi-
cates that the state ρ is a singlet state, with Fd showing the
decompositions.

B. N = 4 case

We first consider a relatively small system consisting of
N = 4 spins, each with j = 1/2. This example will illustrate
some of the basic properties of the supersinglet state prepara-
tion procedure. For this and the next section we shall only
consider the even N case, and discuss the odd N case in
Sec. IV E.

The N = 4 case is the smallest system that illustrates that
the supersinglet state is not a unique state, due to angular
momentum addition. There are two distinct supersinglet states
[36] for four j = 1/2 spins, given by [21]

|S4,1〉 = 1√
3

[|φ+〉⊗2 − |φ−〉⊗2 − |ψ+〉⊗2], (40)

|S4,2〉 = |ψ−〉⊗2, (41)

FIG. 2. Evolution according to the procedure (33) for N = 4 spin
j = 1/2 particles for an initial state being a completely mixed state
(34). The horizontal axis shows the number of rounds of z- and
x-basis measurement sequences, i.e., the variable k in (32). Two
different trajectories are shown: for each run the (a), (b) fidelity (39),
(c), (d) normalized total spin squared (35), and (e), (f) spin variances
(37) are shown. Lines connecting the markers are to guide the eye.
All plotted quantities are dimensionless.

where we defined the Bell states for two j = 1/2 spins as

|φ±〉 = 1√
2

(|+〉|+〉 ± |−〉|−〉),

|ψ±〉 = 1√
2

(|+〉|−〉 ± |−〉|+〉). (42)

Here the N = 2 singlet state is |ψ−〉 and the remaining three
states form a J = 1 triplet. The first N = 4 supersinglet (40)
is given as a linear combination of the triplet states, while the
second supersinglet (41) is simply two N = 2 singlet states.
Any linear combination or mixture of the two distinct supers-
inglet states is also a supersinglet state. The supersinglet state
is invariant under rotations of the total spin, as given in (23).

Our numerical results are presented in Fig. 2 for two sam-
ple evolutions. We observe from the fidelity and the total
spin squared that the supersinglet state is reached after ap-
proximately four rounds of projections. The two evolutions
that we show are merely examples. We have run our pro-
cedure for over 1000 trajectories and found that in 100%
of the cases the supersinglet state is reached. The number
of projections within each repeat-until-success projection se-
quence decreases with the number of rounds, with the largest
number being in the first round k = 1. A typical number of
measurements in the first round is an order of ten z measure-
ments or x measurements. While a supersinglet state is always
reached with F = 1, Figs. 2(a) and 2(b) reveal that the final
contributions to the two distinct supersinglets are not always
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the same. We observe that each time the fidelity F1 > F2,
eventually the state approaches the state |S4,1〉. On the hand,
whenever F2 > F1, the fidelities converge towards F1 = 0.25
and F2 = 0.75.

All spin variances start out being unity corresponding to
their value for a completely mixed state. After one round of
measurements, the final projection that is made is Px

0 . Hence
the state of the system after one round of measurements is
always an eigenstate of the Jx operator. For this reason, the
error of the state for all k > 0 has zero variance for Jx as
seen in Figs. 2(e) and 2(f). The variances for the other spin
directions are still typically nonzero at this point at k = 1.
For each sequence, the measurement outcomes are random,
hence the evolution of the variance evolves towards zero along
different trajectories. Another source of randomness is the
random selection of the spins to be rotated in the conditional
unitary rotations. As the state settles into a supersinglet state,
the error along the y axis and z axis becomes zero, as seen in
Figs. 2(e) and 2(f), heralding the realization of a supersinglet
state.

C. Spin-polarized initial state

Our procedure to generate the supersinglet state is invariant
to initial conditions. To show this, we now repeat the calcula-
tions for N = 4 and j = 1/2, but starting in a spin coherent
state [65]. We consider in particular the state polarized in the
y direction:

|ψ0〉 = e−iJxπ/2|J, d = 1, m = J〉. (43)

Here |J, d = 1, m = J〉 is the Dicke state polarized in the z
direction. Rotating this around the x axis by an angle π/2
gives a y-polarized state. We choose a y-polarized state since
we perform projections in the x and z basis, and this produces
a large backaction in either case.

Our numerical results are shown in Fig. 3 for two example
evolutions. We see a similar behavior to the results obtained
in Fig. 2. We observe from the fidelity and the total spin
squared that the supersinglet state is reached after approxi-
mately five rounds of projections. While a supersinglet state
is always reached with F = 1, Figs. 3(a) and 3(b) reveal that
the final contributions to the two distinct supersinglets are not
always the same. Again the same pattern of convergence to
either F1 = 0.25, F2 = 0.75 or F1 = 1, F2 = 0 is seen as with
the previous case. For the variances, since the initial state is
polarized along the y axis, the Jy spin variance starts out being
zero, and the variances of Jx and Jz start out being unity. After
one round of measurements, the final projection that is made is
Px

0 . For this reason, the error of the state for all k > 0 has zero
variance for Jx as seen in Figs. 3(e) and 3(f). The variance of
Jy increases after the first measurement to the same value as
the variance of Jz, due to the effect of backaction. As the state
settles into a supersinglet state, the error along the y axis and
z axis becomes zero, as seen in Figs. 2(e) and 2(f).

D. Larger number of spins

We now repeat the calculation for a larger number of
spins. We consider N spin-1/2 particles, where we take N
even. Due to the necessity to simulate the full Hilbert space

FIG. 3. Evolution according to the procedure (33) for N = 4
spin j = 1/2 particles with an initial state being a y-polarized spin
coherent state (43). The horizontal axis shows the number of rounds
of z- and x-basis measurement sequences, i.e., the variable k in (32).
Two different runs are shown: For each run the (a), (b) fidelity (39),
(c), (d) normalized total spin squared (35), and (e), (f) spin variances
(37) are shown. Lines connecting the markers are to guide the eye.
All plotted quantities are dimensionless.

of dimension 2N the largest system that we could simulate
within a reasonable time was N = 10. The major numerical
overhead results in evaluating matrix multiplications due to
the unitary transformations, which have a dimension 2N × 2N .
For this case, we will only calculate the expectation values
and variances of the spin operators, since there are a larger
number of distinct singlet states. In this case there are a total
of 42 distinct singlet states [36]. We follow the procedure as
given in Sec. IV A, again starting from a completely mixed
state.

The results are shown in Fig. 4. As for the smaller sys-
tem size considered before, the state converges towards a
supersinglet state, as can be seen from the total spin squared
operator. Remarkably, the convergence is attained with a sim-
ilar number of rounds of measurement sequences, typically
after about k = 5 full convergence was attained. The number
of projections within a single projection sequence was larger;
the number of measurements in a single sequence (27) and
(31) was typically of the order of 100 z measurements and
x measurements. It is to be expected that a larger number of
projections are necessary for a larger system size, due to the
larger Hilbert space that the state must traverse during the evo-
lution. It is nevertheless remarkable that such fast convergence
is attained for a significantly larger system.

For the variances, we again see fast convergence towards
zero variance for all spin directions. As was the case for
the smaller system, some random fluctuations are seen dur-
ing the evolution, where occasionally the variance increases.
However, within approximately five rounds variances decay
to zero.
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FIG. 4. Evolution according to the procedure (33) for N = 10
spin j = 1/2 particles. The horizontal axis shows the number of
rounds of z- and x-basis measurement sequences, i.e., the variable
k in (32). The initial state is set as the completely mixed state (34).
Two different runs are shown: for each run the (a, b) normalized total
spin squared (35) and (c), (d) spin variances (37) are shown. Lines
connecting the markers are to guide the eye. All plotted quantities
are dimensionless.

E. Odd number of spins

Depending upon the experimental realization, the number
of spins N may not be a precisely controllable quantity. This is
true of the atomic ensemble implementation that is suggested
in Sec. II C, where the number of atoms is typically very
large and not controlled at the single atom level. A potential
problem arises here because for odd N a supersinglet state
does not exist. For example, the smallest total spin that can be
realized for an odd number of j = 1/2 spins is a total spin of
J = 1/2. We show in this section how such a scenario can be
handled, and how convergence can still be attained towards a
small total spin.

To handle this case, we follow the same procedure as given
in Fig. 1, except that we replace the criterion for exiting the
repeat-until-success projection sequence to |m| � mcut. Hence
for targeting a genuine singlet state we have mcut = 0, but
for the odd N case we set mcut = 1/2, since m = 0 does not
exist. This cutoff introduces a wider variety of states that
the sequence can potentially converge to. This makes the
convergence in the repeat-until-success projection sequence
typically faster, since there are more states that are allowable
in the criterion. However, there is a tradeoff as a larger mcut

reduces the fidelity with respect to the desired target state. mcut

can be viewed as an adjustable parameter that can control the
convergence speed, at the expense of a less accurate target
state. Having such a parameter can be useful even in the
context of even N , if N is a very large number. A very large
N may mean that the convergence of the repeat-until-success
sequence is rather slow, but this can be mitigated by reducing
the accuracy by increasing mcut.

Our numerical results are shown in Fig. 5. As with the
even N case considered before, the state converges towards
a minimum J state, as can be seen from the total spin
squared operator. The minimum state occurs for J = 1/2

FIG. 5. Evolution according to the procedure (33) for N = 11
spin j = 1/2 particles. The horizontal axis shows the number of
rounds of z- and x-basis measurement sequences, i.e., the variable
k in (32). The initial state is set as the completely mixed state (34).
Two different runs are shown: for each run the (a, b) normalized total
spin squared (35) and (c), (d) spin variances (37) are shown. Lines
connecting the markers are to guide the eye. All plotted quantities
are dimensionless.

giving the minimum expectation value of the Casimir invari-
ant as 〈J2〉 = 3/4, which in terms of the normalized values
is J̄ 2 = 3/143 ≈ 0.02. The variance of Jx is always zero for
the same reasons given previously. However, the variances of
Jy and Jz settle to a minimum value of 0.25, in a departure
from the even N case. Interestingly, the convergence to the
minimal total spin squared state is attained with a similar
number of rounds of measurement sequences as to the even
N case, typically after about k = 5 rounds.

F. Measurement imperfections

One of the primary limitations of the current scheme is in
the resolution of the measurements. Achieving single atom
resolution has been a challenging task experimentally, al-
though recently some progress towards this has been attained
[66–68]. For QND measurements, the main limitation is the
presence of spontaneous emission of the atoms and photon
loss [69–71]. To produce the QND interaction, a second-order
interaction involving the atomic excited states is necessary,
which inevitably introduces decoherence via spontaneous
emission. It was shown in Ref. [69] that for the QND scheme
photon loss is a less serious problem in comparison to spon-
taneous emission. The basic effect of spontaneous emission is
to introduce an additional dephasing effect, as is well known
to occur through ac Stark shift scattering [72]. There is a
dephasing effect on the light as well, which introduces noise to
the photonic measurement readout. Despite these challenges,
there has been tremendous progress towards measurements
with precision approaching the Heisenberg limit [73,74]. This
allows for the detection of the atomic population with single-
atom precision. In terms of the projection operators that we
consider in this paper, the measurement imperfections corre-
spond to a false readout reading m̃ = m + �m, where �m
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FIG. 6. Evolution according to the procedure (33) for N = 10
spin j = 1/2 particles in the presence of Gaussian noise. The stan-
dard deviation of the noise is taken to be σ = 1. The horizontal
axis shows the number of rounds of z- and x-basis measurement
sequences, i.e., the variable k in (32). (a) The initial state is set
as the completely mixed state (34). (b) The initial state is set to
a state polarized along the y direction (43). (c), (d) Spin variances
corresponding to the initial states (a) and (b), respectively. Lines
connecting the markers are to guide the eye. All plotted quantities
are dimensionless.

is the error in the readout, when in fact a projection m has
occurred.

This noise is included in our model by drawing �m ran-
domly from Gaussian noise with zero mean and standard
deviation equal to σ , m̃ = m + �m. The results are presented
in Fig. 6. The results show that additional noise occurs during
the convergence towards the singlet state. Compared with
Fig. 4, the convergence is slower. Moreover, even if a singlet
state is attained, subsequent measurements do not guarantee
it to remain in the singlet state as shown in Figs. 6(a) and
6(b). Nevertheless, there is an overall reduction of the variance
in comparison to the initial state. In Fig. 6 relatively small
ensembles are simulated with σ = 1, hence the relative noise
appears large. We expect that the limit of the variance is of
the order of σ 2, which is consistent with our numerical results
shown in Figs. 6(c) and 6(d).

G. Spin-1 system

The examples up to this point considered effective spin-1/2
atoms, where only two atomic levels are populated. Here we
show that this is not a necessary assumption, and provide
a final example where the atoms are spin-1 particles. We
consider two initial conditions, one where the spins start in
a completely mixed state

ρ0 = 1⊗N

3N
, (44)

and another where the state is initially polarized along the y
direction (43). The Hilbert space has a dimension 3N giving a
density matrix of size 3N × 3N . We consider N = 6 particles,
which have a total of 15 supersinglet states [36]. The result
of running our protocol for this case is shown in Fig. 7.
The simulations rapidly converge to a supersinglet in a small

FIG. 7. Evolution according to the procedure (33) for N = 6 spin
j = 1 particles. The horizontal axis shows the number of rounds of
z- and x-basis measurement sequences, i.e., the variable k in (32).
(a) The initial state is set as the completely mixed state (34). (b) The
initial state is set to a state polarized along the y direction (43). (c),
(d) Spin variances corresponding to the initial states (a) and (b),
respectively. Lines connecting the markers are to guide the eye. All
plotted quantities are dimensionless.

number of rounds, in a similar way to the N spin-1/2 particles
as examined previously. The number of projections within
a single projection sequence is similar to that of N = 10
spin-1/2 particles, due to the similar Hilbert-space size of this
example. The number of measurements in a single sequence
(27) and (31) was typically of the order of 100 z measurements
and x measurements.

V. SUMMARY AND CONCLUSIONS

We have proposed a scheme based on a sequence of projec-
tive measurements in the collective spin basis and conditional
unitary rotations to prepare a supersinglet state. The main pro-
cedure is given in (32) and summarized in Fig. 1. The scheme
deterministically produces the supersinglet state from an arbi-
trary initial state without postselection. Within a measurement
sequence, the quantum state of the atoms collapses randomly
to a state given by the projection operator. Convergence of the
state towards the supersinglet is ensured by unitary rotations
that repopulate the spin zero population. Using the property
that a supersinglet state is invariant under total spin rotations,
repeated projections in the z and x bases result in convergence
to the spin zero state. The procedure is compatible for an
arbitrary number of particles N and spin j.

We have found that the procedure is remarkably efficient in
converging to the supersinglet state, with little difference seen
in terms of the rounds of measurements required for various
N . Within each measurement sequence (27) and (31) we note
that it does take longer to find the m = 0 outcome, which is
to be expected due to the larger Hilbert space. In an atomic
ensemble implementation where the atom numbers can be
far larger than that simulated here (e.g., N = 106) one may
worry that this will make the convergence excessively long.
The number of iterations can however be alleviated by intro-
ducing tolerances to the target state. As seen in Sec. IV E it
is also possible to adjust the procedure such that convergence
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is towards a range of spins, and not only m = 0 exactly. By
setting the tolerance to the target spin sector to a larger value,
one may reduce the convergence time, at the expense of a
lower fidelity of the spin zero sector. In this way, the procedure
should be applicable also to macroscopic systems.

We note that in contrast to existing schemes, our procedure
produces the exact supersinglet state, as opposed to producing
squeezing as in Ref. [22]. This can be seen in our results in
Figs. 2–4 and 7, where the spin variances reduce to zero for all
directions. The main reason for this is that our measurements
are projective, which induces a much more dramatic effect
on the state of the atoms, due to the strong measurements
that affect the state. This results in a much faster convergence
to the supersinglet state. Another attractive feature of our
procedure is that it allows for a deterministic way of preparing
the supersinglet state without involving postselection of the
final state. There is also no need to prepare a special ini-
tial state. The experimental requirements only involve QND
measurements which are routinely performed, and rotations
on subensembles of the spins, which should be within current
experimental capabilities.

We finally comment on potential applications of supers-
inglet states. Several applications of supersinglets have been
proposed such as the liar detection test [75], secret sharing
problem [32], N stranger problems [32], and encoding infor-
mation in a decoherence-free subspace [21]. One issue with
the supersinglet states that are generated according to our
protocol is that it is insensitive to the degeneracy label d ,
hence one is not able to target a specific supersinglet state.
Furthermore, depending on the implementation, such as with
atomic ensembles where N may be extremely large, there
may not be precise control with N . One potential application
where such control may not be precisely necessary is quantum
metrology. Here, the aim of the measurement is to detect
the effect on a probe quantum state while minimizing the
error. The supersinglets are invariant under rotations of the
total spin, regardless of the label d . Additionally, the state
of spin J2 = 0 has zero variance. Any slight deviations of
the variance from zero can give information about the field.
This feature may be used to sense local fields (fields that
do not act on the whole ensemble or collections of atomic
samples) [12]. Another potential application is in quantum
clock synchronization, where the aim is to transfer timing
information between distant parties. In Ref. [14], a macro-
scopic singlet state was used to perform this task, and it was
shown in Ref. [15] that entanglement purification involving

singlet state preparation forms a crucial part to eliminate the
necessity of a common phase reference. We finally mention
that our protocol can be viewed as a specific implementation
of measurement-based imaginary time evolution [62], where
a target measurement outcome is deterministically prepared.
By suitably detecting additional quantum numbers, it may be
possible to further target specific states, such that particular
supersinglet states are prepared.
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APPENDIX: CHOOSING MEASUREMENT
BY BORN PROBABILITIES

Each projective measurement performed in (27) and (31)
must be chosen randomly according to Born probability out-
comes. Here we show how we choose the measurement
outcomes using an accept-reject procedure.

Suppose we wish to perform a projective measurement
Pm|φ〉 where Pm are projectors and |φ〉 is an arbitrary initial
state. The probability of the mth outcome is given by

pm = 〈φ|Pm|φ〉 (A1)

using the idempotency of projection operators. Then we may
select measurement outcomes according to Born probabilities
using the following algorithm.

(1) Choose a proposed outcome m randomly from a uni-
form distribution.

(2) Calculate the probability pm according to (A1).
(3) Choose a random real number r in the interval [0, 1]

from a uniform distribution.
(4) If r < pm then reject and go to step 1. Otherwise accept

m as the measurement outcome.
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