
PHYSICAL REVIEW A 106, 033313 (2022)

Curved and expanding spacetime geometries in Bose-Einstein condensates
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Phonons have the characteristic linear dispersion relation of massless relativistic particles. They arise as
low-energy excitations of Bose-Einstein condensates and, in nonhomogeneous situations, are governed by a
space- and time-dependent acoustic metric. We discuss how this metric can be experimentally designed to realize
curved spacetime geometries, in particular, expanding Friedmann-Lemaître-Robertson-Walker cosmologies,
with negative, vanishing, or positive spatial curvature. A nonvanishing Hubble rate can be obtained through
a time-dependent scattering length of the background condensate. For relativistic quantum fields, this leads to
the phenomenon of particle production, which we describe in detail. We explain how particle production and
other interesting features of quantum field theory in curved spacetime can be tested in terms of experimentally
accessible correlation functions.
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I. INTRODUCTION

When studying quantum field theory in curved spacetime,
many interesting phenomena and peculiarities arise. Most
prominently, allowing for a time-dependence in the met-
ric, which is naturally the case in cosmology, leads to the
phenomenon of particle production [1–4]. Although indirect
signatures of this effect can be observed, for example, in
the cosmic microwave background, any direct detection is an
open challenge.

In recent years, an analogy of this phenomenon has been
studied in the context of Bose-Einstein condensates (BECs) as
an integral part of the analog gravity program (see Refs. [5–7]
for introductions). More precisely, the linear phononic excita-
tions on top of the ground state of a BEC obey a Klein-Gordon
equation for a scalar quantum field in curved spacetime
in the acoustic approximation (that is neglecting quantum
pressure) [8]. The corresponding metric is the so-called acous-
tic metric (see also Refs. [9,10] for early developments in
the context of fluids) and is fully determined by the back-
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ground parameters of the BEC, such as the background
density or the speed of sound. In this manner, the condensate
shapes the spacetime geometry experienced by the acoustic
excitations.

It has been shown that introducing suitable time depen-
dencies of either the scattering length or the external trapping
potential allow for a one-to-one mapping of the acoustic met-
ric onto spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) metrics [11–21]. In this sense, all phononic modes
propagate in a spacetime geometry set by the acoustic metric
with the same speed of sound. In this way, modern cold atom
experiments allow for a direct analysis of quantum effects in
the context of cosmological models.

Further theoretical studies in this direction have included
quantum pressure leading to a quadratic dispersion rela-
tion in the ultraviolet momentum regime and so-called
rainbow FLRW metrics [19,22]. Two-component BECs al-
lowing for an additional massive phononic mode have also
been investigated [23,24]. Recent experimental efforts for
simulating an expanding universe in d = 1 + 1 effective
spacetime dimensions [25] in the laboratory can be found in
Refs. [26,27].

Other interesting phenomena that have been studied within
the acoustic metric approach (also experimentally) comprise
sonic black holes [9,10,28–31], the Unruh effect [32–34],
Hawking radiation [35–38], or the dynamical Casimir effect
[39]. For an overview over current experimental approaches,
see Ref. [40].
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In this paper, we focus on the analogy between the acoustic
metric and the FLRW metric for an effectively d = 2 + 1 di-
mensional isotropic trap, which is a common setup of modern
BEC experiments. In contrast to previous works, we derive
the acoustic metric by parametrizing the quantum fluctuations
on top of the ground state in terms of the real and imaginary
parts of the complex nonrelativistic scalar field, instead of
magnitude and complex phase (see, e.g., Refs. [41,42] for a
detailed discussion regarding this parametrization).

We generalize previous studies from spatially flat to spa-
tially curved spacetimes. To this end, we explicitly consider
radial dependencies of the background density profile. We find
mappings between FLRW universes of positive and negative
spatial curvature and the acoustic metric.

After allowing, additionally, for a time-dependent scatter-
ing length, we analyze particle production in different types
of expanding cosmologies. In this sense, we extend on ear-
lier considerations by providing an exact mapping to a more
general class of cosmologies and by showing how the effect
of particle production is accessible experimentally. Note that
some technical details on the cosmology side are provided in
our companion paper [43].

The remainder of this paper is organized as follows.
In Sec. II, we introduce isotropic traps in a quasi-two-
dimensional geometry and make an ansatz for the quantum
effective action. We derive conditions on the background pa-
rameters such that the background density remains static. We
also compute the acoustic metric from the effective action for
the fluctuations and discuss the external potentials required
for a one-to-one mapping between the acoustic metric and
FLRW metrics of positive and negative curvature. Thereupon,
we investigate the properties of the arising FLRW universes
by comparing the dynamics of radially outmoving phonons.
In Sec. III, we derive a formalism for the spectrum of fluc-
tuations and the two-point correlation function of a rescaled
density contrast for different types of (spatially curved) cos-
mologies. We study both quantities in Sec. IV for various
experimentally accessible scenarios and point out robust fea-
tures. Finally, we give a résumé and formulate an outlook in
Sec. V.

Notation. In this paper, we work in SI units. For conve-
nience, we use operator hats for creation and annihilation
operators and drop them otherwise. Greek indices μ, ν run
from 0 to 2, while latin indices i, j only run from 1 to 2. Also,
vectors are denoted by bold symbols.

II. ACOUSTIC METRIC IN 2D ISOTROPIC TRAPS

In the first part of this paper, we discuss the acoustic
metric and how it can be mapped to curved FLRW met-
rics for a quasi-two-dimensional BEC that is confined in an
isotropic trap.

A. Quasi-two-dimensional geometry
and quantum effective action

Let us begin our analysis with the quantum effective action
of a nonrelativistic complex scalar field equipped with a quar-
tic contact interaction term. This is an accurate description
for the dynamics of a BEC, i.e., a weakly coupled Bose gas,

where most atoms occupy the ground state. We denote the
bosonic field expectation value (in general in the presence of
sources) in d = 3 + 1 spacetime dimensions by ψ (t, r). We
consider a pancake-type geometry in cylindrical coordinates
(r, ϕ, z) and a condensate that is tightly confined in the z direc-
tion. Then the extension of the condensate in z direction lz is
much smaller than in the longitudinal direction lr , i.e., lz � lr ,
leading to a quasi-d = 2 + 1 − dimensional geometry. Due to
the strong confinement in the z direction, the motional degrees
of freedom in this direction are frozen in, such that the mean
field ψ (t, r) separates according to ψ (t, r) = �(t, r, ϕ)ζ (z),
where ζ (z) is typically of Gaussian form.

We study the dynamics of the field �(t, r) in effectively
d = 2 + 1 spacetime dimensions. Then, the ansatz for the
action reads [41]

�[�] =
∫

dt d2r

{
ih̄�∗(∂t + iA0)�

− h̄2

2m (∇ − iA)�∗(∇ + iA)� − λ
2 (�∗�)2

}
. (1)

Here, m denotes the mass of the atoms and λ = λ(t )
is a time-dependent coupling, which can be expressed in
terms of the s-wave scattering length as(t ) within Born’s
approximation [44],

λ(t ) =
√

8πωz h̄3

m
as(t ), (2)

where ωz is the trapping frequency in the z direction.
Furthermore, we introduced an external U(1) gauge field

A = (A0, A) such that there is a symmetry of the action �[�]
under the local U(1) transformation

�(t, r) → e−iα(t,r)�(t, r),

A0(t, r) → A0(t, r) + ∂tα(t, r),

A(t, r) → A(t, r) + ∇α(t, r). (3)

An external trapping potential is then given by A0(t, r) =
V (t, r)/h̄. In our analysis, we restrict to isotropic trapping
potentials of the form

V (t, r) = m
2 ω2(t ) f (r), (4)

where ω(t ) is a time-dependent parameter and f (r) is typ-
ically a polynomial in r. Without loss of generality, we
can assume f (0) = 0. For example, f (r) = r2 corresponds
to the commonly used harmonic trap, in which case ω(t )
plays the role of a trapping frequency. Moreover, in chemical
equilibrium the chemical potential would enter A0 such that
A0(t, r) = (V (t, r) − μ)/h̄.

In the following, we will work with a linear splitting of
the fundamental field � into a background part φ0 and a
fluctuating part parametrized by two real fields φ1 and φ2, such
that

�(t, r) = φ0(t, r) + 1√
2
[φ1(t, r) + iφ2(t, r)]. (5)

Therein, we allowed for general space and time dependencies
for all fields. In the present paper, we do not consider any
explicit backreaction of fluctuations to the form of the action.
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The fluctuations are assumed to be small enough and will
be kept only to linear order in equations of motion corre-
sponding to quadratic order in the action. Conceptually, this
corresponds to a background field which is well described by
mean field equations. We will also not consider any renormal-
ization of the couplings in the action. In this sense, the action
Eq. (1) can actually be identified with (an approximation of)
the quantum effective action, which is renormalized already.

We are particularly interested in evaluating the effective ac-
tion at the point where the field equation of motion is satisfied:

δ

δ�(t, r)
�[�] = 0. (6)

The background field φ0(t, r) corresponds then to an expec-
tation value of the microscopic field or quantum operator in
the absence of sources (up to a wave function renormalization
constant). The normalization implicit in Eq. (1) is such that
ns = |�|2 is the superfluid density, which at vanishing temper-
ature equals the full density n = ns. For A0 = V/h̄ and A = 0,
the classical field φ0(t, r) is a solution of the Gross-Pitaevskii
equation [45,46]

ih̄∂tφ0 =
(

− h̄2

2m
∇2 + V + λ|φ0|2

)
φ0. (7)

The superfluid behavior of the condensate mean field φ0(t, r)
can be highlighted by introducing the Madelung representa-
tion [47],

φ0(t, r) =
√

n0(t, r)eiS0(t,r), (8)

with n0(t, r) = |φ0(t, r)|2 denoting the background particle
number density and S0(t, r) being the background phase of
the condensate’s mean field. Using the parametrization (8) in
Eq. (7) leads to a pair of hydrodynamic equations, namely, one
obtains the local conservation law or continuity equation

0 = ∂t n0 + ∇(n0v), (9)

and the Euler equation [48]

0 = h̄∂t S0 + V + λn0 + h̄2

2m (∇S0)2. (10)

We introduced the superfluid velocity via

v = h̄
m ∇S0, (11)

and neglected the quantum pressure term,

q = − h̄2

2m

∇2√n0√
n0

, (12)

in (10), which is the standard assumption leading to the acous-
tic approximation [5,8]. Note that q in Eq. (12) is of second
order in h̄, as well as in spatial derivatives, such that it is
expected to be subleading for sufficiently smooth density.

The dynamics of the background variables required to
mimic FLRW universes for the fluctuating variables will be
discussed in Secs. II B and II C, respectively.

B. Stationary background density profile

Although we have allowed for general time dependencies
of the trapping potential V (t, r) and the coupling λ(t ), we
are interested in describing situations where the background

density n0 remains static. Therefore, we do not follow the
common scaling ansatz put forward in Ref. [49] but instead
require the background velocity to vanish v = 0. As a conse-
quence, we do not need to distinguish between laboratory and
comoving coordinates as they agree in static situations. The
condition v = 0 renders the continuity equation (9) trivial,
while the Euler equation (10) evaluates to

0 = −μ0(t ) + m
2 ω2(t ) f (r) + λ(t ) n0(r), (13)

where we have introduced the background chemical potential

μ0(t ) = −h̄∂t S0(t ). (14)

Equation (13) yields the background density profile

n0(r) = n̄0

(
1 − f (r)

R2

)
= μ0(t )

λ(t )
− mω2(t )

2λ(t )
f (r). (15)

Oftentimes, f (r) is a monotonously increasing function of
radius r and the condensate extends up to a radius R such that
r ∈ [0, R], at which the density either drops to zero or takes
a constant value. Furthermore, we introduced the constant
background density at the center of the trap n̄0 = n0(r = 0),
which is also the proportionality constant between the time-
dependent chemical potential μ0(t ) and the coupling λ(t ), in
mean-field approximation,

μ0(t ) = n̄0 λ(t ). (16)

The constant n̄0 is also related to the total particle number N
via

N = 2π n̄0

∫ R

0
dr r

(
1 − f (r)

R2

)
. (17)

Moreover, the size parameter R appears in the proportionality
constant between the time-dependent parameter ω(t ) and the
coupling λ(t ):

ω2(t ) = 2n̄0
mR2 λ(t ). (18)

If the coupling λ(t ) is changed over time, the latter condition
has to be fulfilled to guarantee a stationary density profile of
the form (15).

Let us discuss a couple of choices for the radial dependence
of the trap encoded in f (r). For f (r) = r2, we obtain the
well-known Thomas-Fermi density profile in a harmonic trap
and R corresponds to the Thomas-Fermi radius, while f (r) =
Fθ (r − R) with F → ∞ leads to a homogeneous density
profile in the region r < R. The latter allows for a mapping
to a flat FLRW cosmology, which is discussed in detail in
Ref. [18].

As we will show later, spatially curved but homoge-
neous and isotropic FLRW universes follow from radial
dependencies of the trap and density profiles of the form

f (r) = ±2r2 − r4

R2
and n0(r) = n̄0

[
1 ∓ r2

R2

]2

. (19)

The time dependence of all involved quantities in the density
profile of Eq. (19) (with the upper sign) is sketched in Fig. 1.
When reducing the coupling λ(t ) over time, for example, to
half of its initial value, the parameter ω(t ) has to be adjusted
according to (18) [the background chemical potential μ0(t )
follows (16)], such that the density profile remains static. Note

033313-3



MIREIA TOLOSA-SIMEÓN et al. PHYSICAL REVIEW A 106, 033313 (2022)

that decreasing the coupling λ(t ) and adjusting the parameter
ω(t ) accordingly over time never breaks the confinement con-
dition ω(t ) � ωz, provided that it is fulfilled initially.

C. Deriving the acoustic metric

As a next step, we consider the dynamics of the fluctuations
parametrized by the two real fields φ1 and φ2 introduced

in Eq. (5). To that end, we expand the effective action (1)
around the background solution φ0 to quadratic order in the
fluctuating fields φ1 and φ2, which yields

�[�] = �[φ0] + terms linear in φ1, φ2 + �2[φ1, φ2], (20)

with

�2[φ1, φ2] =
∫

dt d2r

{
h̄φ2∂tφ1 − h̄2

4m

[
(∇φ1)2 + (∇φ2)2

] − 1

2

(
h̄A0 + h̄2 A2

2m

)(
φ2

1 + φ2
2

)

− h̄2

2m A(φ1∇φ2 − φ2∇φ1) − λ
2 (φ1, φ2)

(
n0 + 1

2 (φ∗
0 + φ0)2 1

2 (φ∗
0 + φ0)(iφ∗

0 − iφ0)
1
2 (φ∗

0 + φ0)(iφ∗
0 − iφ0) n0 + 1

2 (iφ∗
0 − iφ0)2

)(
φ1

φ2

)}
.

(21)

Terms linear in the fluctuating fields φ1 and φ2 cancel out
at the point where the effective action is stationary [cf.
Eq. (6)], therefore we only have to consider the quadratic part
�2[φ1, φ2].

To relate the linearization for the background field (5) to its
Madelung representation (8), we perform a local U(1) gauge
transformation of the form

φ0 + 1√
2
[φ1 + iφ2] → e−iS0

(
φ0 + 1√

2
[φ1 + iφ2]

)
,

A0 → A0 + ∂t S0,

A → A + ∇S0. (22)

This transformation redefines the fluctuating fields and rotates
the —in general complex— background field φ0 such that it
becomes real. If we again take the values before the transfor-
mation to be A0 = V/h̄ and A = 0, then afterward we get

A0 = V

h̄
+ ∂t S0 and A = ∇S0, (23)

so the effective action for the fluctuations becomes

�2[φ1, φ2] =
∫

dt d2r
{
h̄φ2∂tφ1 − h̄2

4m

[
(∇φ1)2 + (∇φ2)2

]

− 1

2

(
V + h̄∂t S0 + h̄2 (∇S0)2

2m

)(
φ2

1 + φ2
2

)
− h̄2

2m (∇S0)(φ1∇φ2 − φ2∇φ1)

− λn0

2

(
3φ2

1 + φ2
2

)}
. (24)

The latter can be simplified using the Euler equation (10), to
wit

�2[φ1, φ2]

=
∫

dt d2r

{
− h̄2

4m
(∇φ2)2 − 1

2
φ1

(
2λn0 − h̄2 ∇2

2m

)
φ1

+φ1

[
−h̄∂tφ2 − h̄2

m
(∇S0)∇φ2 − h̄2

2m
(∇2S0)φ2

]}
.

(25)

In the soft regime, i.e., for small momenta, one can re-
place 2λn0 − h̄2∇2/2m → 2λn0, which realizes the acoustic

approximation for the fluctuation field [50]. This allows one
to integrate out φ1 by evaluating it on its equation of motion,
leading to a quadratic effective action for φ2 only. Moreover,
we also neglect the term ∇2S0, that is, we assume that the
background velocity is constant v = const, which is indeed
fulfilled for the scenarios described in Sec. II B, and we
rescale the fluctuating field φ ≡ φ2/

√
2m, such that it has

standard mass dimension of a relativistic scalar field. Then
we find

�2[φ] = h̄2

2

∫
dt d2r

{ 1

c2
(∂tφ)2 − (∇φ)2

+ 2

c2
(∂tφ) v · ∇φ + 1

c2
(v · ∇φ)2

}
, (26)

where we introduced the time- and space-dependent speed of
sound

c2(t, r) = λ(t ) n0(t, r)

m
. (27)

Finally, the latter effective action can be rewritten as an ef-
fective action for a free massless scalar field in a curved
spacetime determined by the acoustic metric gμν (x),

�2[φ] = − h̄2

2

∫
dt d2r

√
ggμν∂μφ∂νφ, (28)

where
√

g ≡ √− det(gμν ). Comparing (26) and (28) reveals
that the inverse of the acoustic metric is given by

(gμν ) =
(−1 v j

vi c2δi j − viv j

)
, (29)

while the metric itself reads

(gμν ) = 1

c2

(−(c2 − v2) −v j

−vi δi j

)
. (30)

Furthermore, this yields
√

g = 1/c2.
Also, in the acoustic approximation and for a stationary

background (v = 0), we find a simple relation between the
fluctuating fields

φ1 = − h̄

2λ(t )n0(r)
∂tφ2, (31)

showing that φ1 is proportional to the time derivative of φ2.
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D. From an acoustic metric to curved FLRW universes

Restricting ourselves to the scenarios described in
Sec. II B, i.e., stationary density profiles for the background
density n0(r) corresponding to v = 0, leads to an acoustic line
element of the form

ds2 = gμνdxμdxν

= −dt2 + a2(t )

(
1 − f (r)

R2

)−1

(dr2 + r2dϕ2), (32)

where we defined a time-dependent scale factor

a2(t ) ≡ m

n̄0

1

λ(t )
. (33)

To reshape the former into a curved FLRW line element, we
continue with the particular choice f (r) = ±2r2 − r4/R2 put
forward in Eqs. (19), which yields the line element

ds2 = −dt2 + a2(t )

(
1 ∓ r2

R2

)−2

(dr2 + r2dϕ2). (34)

We then perform a coordinate transformation for the radial
coordinate

u(r) = r

1 ∓ r2

R2

, (35)

with u ∈ [0,∞) if we choose the negative sign, while
u ∈ [0, R/2] for the positive sign. We find the relation

dr2(
1 ∓ r2

R2

)2 = du2

1 ± 4 u2

R2

, (36)

such that the line element becomes

ds2 = −dt2 + a2(t )

(
du2

1 − κu2
+ u2dϕ2

)
, (37)

which corresponds to the line element of curved FLRW uni-
verses with negative/positive spatial curvature κ = ∓4/R2.
Therein, the size of the condensate R determines the value
of the scalar curvature κ , which allows the latter to be en-
gineered in practice. Moreover, as the scale factor a2(t ) is
antiproportional to the coupling λ(t ) [cf. Eq. (33)], decreasing
(increasing) the coupling corresponds to an expanding (con-
tracting) universe.

Interestingly, one can recover a flat FLRW universe with-
out any additional variable transformation when realizing a
homogeneous background density profile n0 = const., such
that the radial dependent prefactor in the spatial line el-
ement (32) is absent. This is typically fulfilled in a box
trap or in a sufficiently small region around the center of a
(harmonic) trap.

Let us mention that for a (possibly inverted) harmonic trap
f (r) = ±r2, the acoustic metric becomes

ds2 = −dt2 + a2(t )

(
1 ∓ r2

R2

)−1

(dr2 + r2dϕ2), (38)

requiring the coordinate transformation to be of the form

u(r) = r(
1 ∓ r2

R2

)1/2 . (39)

FIG. 1. The density profile n0(r) = n̄0(1 − r2/R2)2 (blue solid
curve) is shown together with the corresponding time-dependent
trapping potential V (t, r) (red dashed curve) and chemical potential
μ0(t ) (black dotted line). Note that we have set n̄0 = 1. Decreasing
the coupling λi = 1 → λf = λi/2 = 1/2 and changing the trapping
potential V (t, r) accordingly leads to a stationary background density
profile n0(r). In order to illustrate this we set all SI units to 1.

Expanding the denominator of the radial differential up to
quadratic order in the new radial coordinate u yields

dr2

1 ∓ r2

R2

= du2(
1 ± u2

R2

)2 ≈ du2

1 ± 2 u2

R2

, (40)

which is a reasonable approximation in a large region around
the center of the trap. Then, one can also arrive at (37) for
κ = ∓2/R2, such that the harmonic trap produces curved
FLRW universes in a macroscopic region around the center
of the trap. Typically, the approximation works well up to
r ≈ 0.4R. However, for the mapping to be exact within the
acoustic approximation, the trapping potential has to be of the
form (19).

Let us remark here that different forms of optical trap
profiles can be realized with a digital micromirror device.
This includes inverted trap shapes in some bounded region of
space. For more details on a concrete experimental realization,
we refer to our companion paper [51].

E. Models of spatially curved spacetimes

The relation between the density profiles (19) and the
spatially curved FLRW universes is illustrated in Fig. 2(a).
Thereupon, let us further comment on the different sets of
spatial coordinates and their geometric meaning.

The spatial FLRW line element (37) is written in terms
of reduced-circumference polar coordinates in two spatial
dimensions (u, ϕ), which is a convenient choice also in
cosmology. The radial coordinate transformation in (35) cor-
responds (up to a factor of 2) to the transformation between
reduced-circumference polar coordinates and polar coordi-
nates in the polar plane (r � R, ϕ) for κ > 0, or in the
Poincaré disk model (r � R, ϕ) for κ < 0. Hence, the labo-
ratory line element (34) describes at every instance of time
t , depending on spatial curvature, a polar disk or a Poincaré
disk.

The arising spatially curved geometries in the laboratory
coordinates (r, ϕ) may be understood from the more intuitive
spherical and hyperboloid models, for which we make a dis-
tinction of cases. For the positively curved universe (κ > 0),
we start from three-dimensional Euclidean space R3 with
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FIG. 2. (a) The one-to-one correspondence between particular
radially symmetric density profiles and geometries of FLRW uni-
verses is shown, with lattices emphasizing spatial curvature. (b) The
blue points on a positively curved universe represented as a half-
sphere embedded in three-dimensional Euclidean space are projected
onto a polar disk via the blue straight lines. The two red points
are connected by a geodesic (red line). (c) Similar setup for a
negatively curved universe shown as a hyperboloid embedded in
three-dimensional Minkowski space, which is projected onto the
Poincaré disk.

cartesian coordinates (X,Y, Z ) and line element

ds2 = dX 2 + dY 2 + dZ2. (41)

A two-sphere of radius R/2 is embedded in this space via the
equation

R2/4 = X 2 + Y 2 + Z2. (42)

Points on the sphere can be represented by two angles
θ ′ ∈ [0, π ], ϕ′ ∈ [0, 2π ), which can be mapped to the global
coordinates via

(X,Y, Z ) = R/2 (sin θ ′ cos ϕ′, sin θ ′ sin ϕ′, cos ϕ′). (43)

The induced metric on the two-sphere reads

ds2 = R2/4
(
dθ ′2 + sin2 θ ′ dϕ′2), (44)

which corresponds to an intuitive representation of a posi-
tively curved space [cf. Fig. 2(b)]. However, the two-sphere
can also be mapped to the laboratory picture, i.e., the polar
disk with coordinates (r, ϕ), via a stereographic projection
from the north pole (0, 0, R/2) onto the disk located at the
south pole (0, 0,−R/2) [illustrated with blue lines connecting
points on the sphere and on the plane in Fig. 2(b)]. Then, the
laboratory coordinates are related to the coordinates in S2 by

(r, ϕ) =
(

R cot
θ ′

2
, ϕ′

)
, (45)

and we obtain the spatial part of the FLRW line element in the
laboratory (34), with positive sign.

In the case of the negatively curved universe (κ < 0), we
have to start from the three-dimensional Minkowski space
M3 instead [52]. Adapting the cartesian coordinates (X,Y, Z )
from before leads to a line element of the form

ds2 = dX 2 + dY 2 − dZ2, (46)

with an additional minus sign compared to (41). Then, the
upper hyperboloid can be embedded in this space through [cf.
Fig. 2(c)]

−R2/4 = X 2 + Y 2 − Z2, (47)

with Z > 0. On the hyperboloid, we choose a pseudoangle
σ ′ ∈ [0,∞) instead of an angle θ ′ ∈ [0, π ], but keep the
azimuthal angle ϕ′ ∈ [0, 2π ). We can express the global co-
ordinates in terms of the latter coordinates as

(X,Y, Z ) = R/2 (sinh σ ′ cos ϕ′, sinh σ ′ sin ϕ′, cosh σ ′),
(48)

leading to an induced metric

ds2 = R2/4
(
dσ ′2 + sinh2 σ ′ dϕ′) (49)

on the hyperboloid. Finally, we recover the laboratory co-
ordinates (r, ϕ) by a projection of the hyperboloid onto the
Poincaré disk located at the south pole of the hyberboloid,
i.e., at (0, 0, R/2), using the apex (0, 0,−R/2) of the lower
hyperboloid [not shown in Fig. 2(c)] as the base point. This
projection is sketched with blue straight lines in Fig. 2(c). We
obtain the relation

(r, ϕ) =
(

R coth
σ ′

2
, ϕ′

)
, (50)

and the spatial part of the FLRW line element (34) with a
minus sign for the metric in the Poincaré disk.

F. Phonon trajectories

To exemplify the influence of spatial curvature on the dy-
namics of acoustic excitations in the BEC, we consider the
motion of a radially outmoving wave packet starting from
the center of the trap. Phonons follow null geodesics in an
acoustic spacetime, so we look for trajectories with ds2 = 0.

We proceed with the general line element (32), which is
expressed in terms of the radial coordinate in the laboratory
r. For radial geodesics we have dϕ = 0; this, together with
ds2 = 0, leads to the simple differential equation

dt

a(t )
= dr√

1 − f (r)/R2
, (51)

with the initial condition r(t = 0) = 0. The three different
types of spatial curvature are generated by

f (r) =
⎧⎨
⎩

−2r2 − r4/R2 for κ > 0
0 for κ = 0
+2r2 − r4/R2 for κ < 0,

(52)

so the equation of motion (51) has general solutions of the
form

r(t ) = R

⎧⎨
⎩

tan z(t ) for κ > 0
z(t ) for κ = 0
tanh z(t ) for κ < 0,

(53)
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FIG. 3. The trajectories of radially outmoving phonons for the trap profiles given in Eq. (52) are shown for a static situation (left panel,
with values Q = 2, t0 = −1, R = 1), a polynomial scale factor a(t ) = Q(t − t0)1/2 (middle panel, with values Q = 2, t0 = −1, R = 1) and a
de Sitter type scale factor (right panel, with values a0 = 1, H = 1.5, R = 1). Clearly, the spatial curvature influences the bending of the curves,
with stronger/weaker bending for open (black dotted line)/closed (red dashed line) universes compared to the flat one (blue solid line). Again,
for convenience, we work with dimensionless parameters.

where the argument z(t ) can be obtained from the scale factor
a(t ) via

z(t ) = 1

R

∫ t

0

dt ′

a(t ′)
. (54)

For a quadratic trap profile, f (r) = ±r2, we would obtain
sin (sinh) instead of tanh (tan) in Eq. (53).

It is of particular interest to consider polynomial scale fac-
tors. To explicitly allow for expanding as well as contracting
scenarios, we write

a(t ) = Q |t − t0|γ , (55)

where Q = a(t = 0) |t0|−γ > 0 and t0 are free parameters to
be tuned in experiments. The latter family of scale factors
comprises the analogs of radiation dominated (γ = 2/3) and
matter dominated (γ = 1) universes. Note that the units of the
parameter Q depend on the power γ .

For the polynomial scale factors with γ 
= 1, we find

z(t ) = 1

QR

sgn(t − t0)|t − t0|1−γ + sgn(t0)|t0|1−γ

1 − γ
, (56)

which is shown in the middle panel of Fig. 3 for γ = 1/2. For
the specific case γ = 0 corresponding to a static situation (cf.
left panel in Fig. 3), we get

z(t ) = t

QR
, (57)

while γ = 1 corresponds to

z(t ) = 1

QR
ln

|t − t0|
|t0| . (58)

Another interesting example is the de Sitter universe,
which is characterized by the scale factor

a(t ) = a0 eHt , (59)

where H denotes the Hubble parameter and a0 = a(t = 0) is
now the initial scale factor. In this case, we find

z(t ) = 1

a0HR

(
1 − e−Ht

)
. (60)

The resulting trajectories are depicted in the right panel of
Fig. 3. The quantitative influence of the spatial curvature
parameter κ is clearly visible.

III. PARTICLE PRODUCTION

We now turn to the phenomenon of particle production,
which arises when the spacetime geometry becomes time
dependent. We develop a formalism to access particle produc-
tion experimentally within the FLRW cosmology paradigm
and consider all three types of spatial curvature engineered
via (52).

A. Klein-Gordon equation and mode functions

Let us start with the action (28) for the fluctuation field
φ. Varying the latter using Eq. (37) leads to a Klein-Gordon
equation

0 = ∂μ(
√

ggμν ∂νφ) = 2a(t )ȧ(t )φ̇ + a2(t )φ̈ − �φ, (61)

where ḟ ≡ ∂t f denotes the partial derivative with respect to
time t . The exact form of the Laplace-Beltrami operator de-
pends on the spatial curvature (see below).

For spatially curved universes with κ > 0, we transform
the radial coordinate u to an angle θ . It is convenient to extend
from the half sphere to the full sphere such that θ ∈ [0, π ).
Similarly, for κ < 0 we can introduce the pseudoangle σ ∈
[0,∞) and for κ = 0 we work with an infinitely extended
disk, u ∈ [0,∞). In summary, we work with a radial coor-
dinate θ, u or σ defined by

u =
⎧⎨
⎩

sin θ√|κ| for κ > 0
u for κ = 0
sinh σ√|κ| for κ < 0.

(62)

In these coordinates, one has

√
g = a2(t ) ×

⎧⎨
⎩

sin θ
|κ| for κ > 0

u for κ = 0
sinh σ

|κ| for κ < 0,

(63)

and the isotropic Laplace-Beltrami operator in Eq. (61) takes
the simple form [53–55]

� =

⎧⎪⎪⎨
⎪⎪⎩

|κ|
[

1
sin θ

∂θ (sin θ ∂θ ) + 1
sin2 θ

∂2
ϕ

]
for κ > 0

∂2
u + 1

u∂u + 1
u2 ∂

2
ϕ for κ = 0

|κ|
[

1
sinh σ

∂σ (sinh σ ∂σ ) + 1
sinh2 σ

∂2
ϕ

]
for κ < 0.

(64)
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The Laplace-Beltrami operator can be diagonalized through
an eigenvalue equation

�Hkm(u, ϕ) = h(k)Hkm(u, ϕ), (65)

where we have introduced the radial wave numbers k and
l , which are related by k = √|κ|l , and the azimuthal wave
number m, with the ranges

l ∈ N0, m ∈ {−l, ..., l} for κ > 0

k ∈ R+
0 , m ∈ Z for κ = 0

l ∈ R+
0 , m ∈ Z for κ < 0, (66)

along with sets of complete and orthonormal eigenfunctions

Hkm(u, ϕ) =
⎧⎨
⎩

Ylm(θ, ϕ) for κ > 0
Xkm(u, ϕ) for κ = 0
Wlm(σ, ϕ) for κ < 0.

(67)

Here, Ylm(θ, ϕ) are an adapted version of the spherical har-
monics,

Ylm(θ, ϕ) =
√

(l − m)!

(l + m)!
eimϕ Plm(cos θ ), (68)

with Plm(cos θ ) = (−1)mPm
l (cos θ ) denoting the associated

Legendre polynomials. Besides this sign, the choice in (68)
differs by a factor

√
4π/

√
2l + 1 from the standard defini-

tion of the spherical harmonics. For the flat two-dimensional
space, one may use polar waves defined in terms of Bessel
functions of the first kind:

Xkm(u, ϕ) = eimϕ Jm(ku). (69)

Finally, Wlm(σ, ϕ) are the eigenfunctions for κ < 0, which are
given by

Wlm(σ, ϕ) = (−i)m �(il + 1/2)

�(il + m + 1/2)
eimϕPm

il−1/2(cosh σ ),

(70)

wherein Pm
il−1/2(cosh σ ) are conical functions corresponding

to analytically continued Legendre functions. The functions in
Eqs. (68)–(70) are normalized with respect to a scalar product
as discussed in detail in Ref. [43].

With these conventions, the eigenvalues h(k) of the
Laplace-Beltrami operator � defined in Eq. (64) read

h(k) =
⎧⎨
⎩

−k(k + √|κ|) for κ > 0
−k2 for κ = 0
−(

k2 + 1
4 |κ|) for κ < 0,

(71)

with the relation k = √|κ|l understood in the two spatially
curved cases. Note that h(k = 0) is only nonvanishing for the
open universe, κ < 0, and

√|κ|/2 acts there like an effective
mass gap.

The fluctuation field φ is quantized as usual such that it
obeys the (equal time) bosonic commutation relations,

[φ(t, u, ϕ), π (t, u′, ϕ′)]

= ih̄δ(ϕ − ϕ′) ×
⎧⎨
⎩

δ(θ − θ ′) for κ > 0
δ(u − u′) for κ = 0
δ(σ − σ ′) for κ < 0,

(72)

where

π (t, u, ϕ) = δ�2[φ]

δφ̇
= h̄2√gφ̇ (73)

denotes the conjugate momentum field.
To solve the linearized equation of motion (61) for the

different classes of universes, we expand the quantum field φ

in terms of the corresponding eigenfunctions of the Laplace-
Beltrami operator (67),

φ(t, u, ϕ) =
∫

k,m

[
âkmHkm(u, ϕ)vk (t ) + â†

kmH
∗
km(u, ϕ)v∗

k (t )
]
,

(74)

and similar for the conjugate momentum field π (t, u, ϕ).
Therein, we used the abbreviation

∫
k,m

=

⎧⎪⎪⎨
⎪⎪⎩

∑∞
l=0 |κ| l+1/2

2π

∑l
m=−l for κ > 0∫

dk
2π

k
∑∞

m=−∞ for κ = 0∫
dl
2π

|κ|l tanh(π l )
∑∞

m=−∞ for κ < 0

(75)

for the two-dimensional momentum integral. Also, we have
introduced creation and annihilation operators â†

km and âkm,
respectively, which fulfill the bosonic commutation relations

[â†
km, â†

k′m′ ] = [âkm, âk′m′ ] = 0,

[âkm, â†
k′m′ ] = 2πδmm′

⎧⎪⎪⎨
⎪⎪⎩

δll′
|κ|(l+1/2) for κ > 0
δ(k−k′ )

k for κ = 0
δ(l−l ′ )

|κ|l tanh(π l ) for κ < 0,

(76)

together with the time-dependent mode functions vk (t ) and
v∗

k (t ).
Combining the latter statements, we find from the Klein-

Gordon equation (61) the so-called mode equation

v̈k (t ) + 2
ȧ(t )

a(t )
v̇k (t ) − h(k)

a2(t )
vk (t ) = 0. (77)

For given initial conditions at some point in time, one can
determine vk (t ) by solving Eq. (77). Note that the influence of
the spatial curvature κ is fully encoded in h(k). On the scales
relevant for typical experiments, i.e., for R ∼ 10−5 m, h(k)
turns out to be practically independent of the spatial curvature
κ for k/

√
n̄0 � 0.1.

The mode functions are further constrained as a result of
the canonical commutation relation (72), the orthonormality
properties of the functions Hkm(u, ϕ) (see Ref. [43]), and
the bosonic commutation relations fulfilled by the creation
and annihilation operators (76), leading to a normalization
condition in terms of the Wronskian,

Wr[vk, v
∗
k ] = a2(t )h̄[vk v̇

∗
k − v̇kv

∗
k ] = i. (78)

By using (77), one can show that (78) is fulfilled at all times
when it is fulfilled at one point in time.

Let us note here that (77) is a second-order differential
equation and (78) is just a single constraint, so the mode
functions vk (t ) are not fixed completely. In fact, different
choices of mode functions correspond to different choices of
creation and annihilation operators, and they are related by
Bogoliubov transformations. Note that the quantum field φ
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FIG. 4. The time dependence of the scale factor a(t ) (blue solid
line) and the coupling λ(t ) (red dashed line) are shown for the three
regions I–III. Up to ti, both are held constant, while they become time
dependent in region II (the plot above correspond to a polynomial
expansion with γ = 1/2, Q = m/n̄0 = 1, and t0 = 0, setting all units
to 1), this time dependence leads to particle production, observed in
the stationary region III for t > tf.

in (74) is independent of this choice. This is important to
understand particle production, and will be discussed next.

B. Bogoliubov transformations

Let us start by considering a situation (in the following
called region I) where the scale factor is constant, a(t ) = ai. In
that case, one has a preferred choice of mode functions vk (t )
given by oscillatory modes,

vI
k (t ) = exp(−iωI

kt )

ai

√
2h̄ωI

k

, (79)

with positive frequency ωI
k = √−h(k)/ai. Associated with

this choice of mode functions are operators âkm and â†
km that

annihilate and create the corresponding phonons, and a vac-
uum state |�〉 that has no such excitations:

âkm |�〉 = 0. (80)

The state |�〉 describes the ground state of a (weakly inter-
acting) BEC with no excitations. More generally, one may
also take some other state as a starting point, for example with
fixed temperature T .

Let us now assume that at some time ti the scale fac-
tor a(t ) becomes time dependent, until it becomes constant
again at time tf. For the intermediate times ti < t < tf (called
region II in the following), the mode functions are deter-
mined as solutions of Eq. (77), with initial conditions at
t = ti set by continuity to the solution (79). We stress that
for a time-dependent scale factor (in region II), the solution
vk (t ) obtained in this way will not be of the oscillatory form
(79). As a consequence, the notions of vacuum states and
(quasi)particles become more involved. Mathematically, this
is related to the absence of a global timelike Killing vector
field in that region, which would allow to define positive
frequency waves.

We concentrate on an experimental procedure sketched in
Fig. 4. Keeping in mind that the scale factor a(t ) is controlled
by the inverse coupling λ(t ) according to (33), one may first
engineer certain initial values ai and λi in a time interval
I up to ti. Then, the coupling λ(t ) is varied over time in
time interval II, which simulates a FLRW universe with time-

dependent scale factor a(t ). Finally, the variation is stopped
at tf = ti + �t , corresponding to a stationary FLRW universe
with scale factor af in time interval III.

Let us then consider times t > tf where we assume that the
scale factor is again constant, a(t ) = af (region III). Here one
can again find solutions of Eq. (77) in terms of modes with
positive frequencies,

uIII
k (t ) = exp(−iωIII

k t )

af

√
2h̄ωIII

k

, (81)

where now ωIII
k = √−h(k)/af. Associated to these modes are

operators b̂km and b̂†
km and a corresponding vacuum state |�〉,

such that

b̂km |�〉 = 0. (82)

It is now important to note that the mode functions vk (t )
obtained from extending the solution in region I to region II
and then into region III will actually be a linear superposition
of positive and negative frequency solutions, so one can write

uk = αkvk + βkv
∗
k , vk = α∗

k uk − βku∗
k , (83)

with the complex-valued and time-independent Bogoliubov
coefficients αk and βk . From the normalization condition (78)
applied to uk (t ) follows that the coefficients need to satisfy
|αk|2 − |βk|2 = 1. In terms of the Wronskian defined in (78),
one has

αk = Wr[uk, v
∗
k ]/i, βk = −Wr[uk, vk]/i. (84)

For completeness, we also mention the relation between
the two sets of creation and annihilation operators:

b̂km = α∗
k âkm − β∗

k (−1)mâ†
k,−m. (85)

In particular it follows that the state |�〉, which is initially a
vacuum state in the sense of Eq. (80), is not an empty state
with respect to the excitations annihilated by the operators
b̂km. This is the essence of particle production due to a time
dependent scale factor a(t ).

The task is then to solve the mode equation [Eq. (77)] in
all three regions I–III and to identify the Bogoliubov coeffi-
cients αk and βk through Eqs. (84), from which all following
quantities can be derived.

C. Rescaled density contrast: Correlation
function and spectrum

To access the phenomenon of particle production experi-
mentally, we introduce a rescaled density contrast

δc(t, u, ϕ) =
√

n0(u)

n̄3
0

[n(t, u, ϕ) − n0(u)], (86)

where n(t, u, ϕ) = |�(t, u, ϕ)|2 denotes the full condensate
density and n̄0 is the density in the center of the trap. In this
way, the rescaled density contrast is dimensionless, and using
Eqs. (5) as well as (31) one has to leading order δc ∼ ∂tφ. Note
here that for a box potential the given prefactor is constant,
while for other trapping potentials, such as those put forward
in Eqs. (19), it has a substantial dependence on u in the outer
regions of the trap.
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In the following, we consider the equal time two-point
correlation function of the rescaled density contrast after the
expansion has ceased, t � tf, i.e.,

Gnn(t ; u, u′, ϕ, ϕ′) = 〈δc(t, u, ϕ)δc(t, u′, ϕ′)〉 , (87)

which is a typical observable in modern ultracold atom ex-
periments. One can show that in leading order in fluctuating
fields, where we can assume 〈n(t, u, ϕ)〉 = n0(u), the latter is
proportional to the connected two-point correlation function

of time derivatives of fields

Gnn(t ; u, u′, ϕ, ϕ′) = h̄2m

λ2
f n̄3

0

Gφ̇φ̇ (t, L), (88)

where

Gφ̇φ̇ (t, L) = 1
2 〈{φ̇(t, u, ϕ), φ̇(t, u′, ϕ′)}〉c . (89)

The relation given in (88) is a result of the normalization
chosen in (86).

Moreover, as a consequence of the spatial homogeneity of
FLRW universes, two-point correlation functions do not de-
pend separately on the two spatial positions (u, ϕ) and (u′, ϕ′),
but only on the comoving distance L between them,

L =

⎧⎪⎨
⎪⎩

1√|κ| cos−1 (cos θ cos θ ′ + sin θ sin θ ′ cos(ϕ − ϕ′)) for κ > 0

[u2 + u′2 − 2uu′ cos(ϕ − ϕ′)]1/2 for κ = 0
1√|κ| cosh−1 (cosh σ cosh σ ′ − sinh σ sinh σ ′ cos(ϕ − ϕ′)) for κ < 0,

(90)

and through (88) the observable defined in (86) acquires the
symmetries of the FLRW universe,

Gnn(t ; u, ϕ, u′, ϕ′) ≡ Gnn(t, L). (91)

We proceed with the evaluation of this correlation function
through (89) within the FLRW universe paradigm using the
Bogoliubov transformations introduced in Sec. III B. This
leads to

Gnn(t, L) = h̄af

n̄0m

∫
k
F (k, L)

√
−h(k)Sk (t ), (92)

where we introduced the spectrum of fluctuations

Sk (t ) = 1

2
+ Nk + �Nk (t ), (93)

as the momentum space representation of the rescaled density
contrast two-point correlation function.

Therein, we have the expected occupation number of
phonon excitations per mode

Nk = 〈�| b̂†
km b̂km |�〉 = |βk|2, (94)

and the time-dependent contribution

�Nk (t ) = Re
[
cke2iωkt

]
, (95)

wherein

ck = −(−1)m 〈�| b̂†
km b̂†

k,−m |�〉 = αkβk . (96)

Furthermore, we used the abbreviation

∫
k

=
⎧⎨
⎩

∑∞
l=0 |κ| l+1/2

2π
for κ > 0∫

dk
2π

k for κ = 0∫
dl
2π

|κ|l tanh(π l ) for κ < 0,

(97)

and the integration kernels

F (k, L) =
⎧⎨
⎩

Pl (cos (L
√|κ|)) for κ > 0

J0(kL) for κ = 0
Pil−1/2(cosh (L

√|κ|)) for κ < 0,

(98)

for the different spatial curvatures specified by κ .

We can rewrite the spectrum of fluctuations (93) using (95)
and Euler’s formula

Sk (t ) = 1
2 + Nk + |ck| cos(2ωkt + θk ), (99)

where

θk = Arg(ck ) (100)

denotes the phase corresponding to the momentum mode k.
It is useful to note at this point that Nk and �Nk de-

fined in (94) and (95) with the relations (84) are invariant
under phase transformations on the mode functions vk (t ) →
eiλk vk (t ), uk (t ) → eiμk uk (t ), if one also takes into account
e2iωt → e−2iμk e2iωt in Eq. (95). These phases should not be
observable.

Also, following Refs. [56,57], one can show that en-
tanglement between modes with opposite wave numbers
can be witnessed in the two-mode squeezed state of rele-
vance whenever �Nk > Nk . The latter was recently observed
experimentally in Ref. [58] within a homogeneous two-
dimensional BEC after quenching the time-dependent cou-
pling λ(t ) to negative values and back. We leave a similar
analysis within the FLRW universe paradigm for future work.

Moreover, it is important to note that a two-point correla-
tion function of fields as defined in (89) shows an ultraviolet
divergence [3]. Consequently, the rescaled density contrast
correlation function (92) has to be regularized. In the context
of a BEC, a regularization arises naturally as the readout of the
density contrast is limited by the precision of the measurement
apparatus. Moreover, the acoustic approximation that we use
here is a low momentum effective description that looses
validity in the ultraviolet regime.

To solve this problem, which is well-known in cosmology,
one may work with smeared-out fields

�(t, r) =
∫

d2r′W (r − r′)φ(t, r′), (101)
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with a window function W (r − r′). The latter can be normal-
ized according to ∫

d2r′W (r′) = 1. (102)

In momentum space, this window function plays the role
of an ultraviolet regulator. We end up with a regular-
ized expression for the rescaled density contrast correlation
function

Gnn(t, L) = h̄af

n̄0m

∫
k
F (k, L)

√
−h(k)Sk (t ) f̃G(k), (103)

where f̃G(k) = W̃ ∗(k)W̃ (k) corresponds to the absolute
square of the Fourier transformed window function.

In the following, we work with a window function of
Gaussian form in position space (as a function of the
comoving distance), such that in the absence of spatial
curvature:

f̃G(k) = W̃ ∗(k)W̃ (k) = e−w2k2
. (104)

D. Stimulated particle production

An initial state at time ti with nonvanishing occupation
number, such as a thermal state, would lead to stimulated
particle production [59]. This leads to a generalization of the
expressions derived above.

Assuming that the expected occupation number of quasi-
particles originally present in the mode k is given by

N in
k = 〈â†

kmâkm〉 , (105)

the total expected number of quasiparticles after expansion
would be given by

Nk = N in
k + |βk|2

(
1 + 2N in

k

)
, (106)

where the last term corresponds to the stimulated production.
Similarly, �Nk (t ) is generalized to

ck = αkβk
(
1 + 2N in

k

)
. (107)

As an example, we will consider a thermal state, characterized
by an initial occupation number of the form

N in
k (T ) = 1

eh̄ωI
k/(kBT ) − 1

, (108)

where T denotes the temperature.
In the following, to set a temperature scale, we use the

critical temperature Tc of an ideal gas in an anisotropic trap.
In particular, we consider a ratio between longitudinal and
radial trapping frequencies that elicit the emergence of a 2D
condensate [60]. This critical temperature is given by

Tc = h̄ω

kB

(
N

ζ (2)

)1/2

, (109)

where N is the total number of atoms.

IV. EFFECTS OF EXPANSION

Let us now focus on particle production as the main trait
of an expanding spacetime, we do this within the developed
formalism for a set of cosmological situations. In particular,

we consider the spectrum of fluctuations together with the
rescaled density contrast correlation function and discuss the
outcome of various experimental scenarios. If not stated dif-
ferently, the experimental values are taken from Appendix B.

A. Polynomial scale factors with various expansion
rates and holding times

We base our analysis on polynomial scale factors of pow-
ers γ according to Eq. (55), which comprise accelerating
(γ = 3/2), uniform (γ = 1), and decelerating (γ = 1/2) ex-
pansions, and look into different expansion rates �t and hold
times after the expansion has ceased.

We study in Fig. 5 the effect of increasing the expansion
duration (at fixed ratio af/ai = √

6) and obtain an analogous
prediction to a cosmological situation: for slower expansion
the characteristic features of the power spectrum appear at
smaller wave numbers. This can be read out from the change
in the shape of the spectrum in the first row of Fig. 5. It can
also be seen that a decelerating expansion leads to slightly
higher contrast in the spectrum compared to accelerating or
uniform expansion. Furthermore, at large momenta, the spec-
trum converges to the ground state or vacuum expression. In
the second row of Fig. 5, we show the manifestation of these
features in position space, through the correlation function
Gnn(t, L) given in (103). On top of a strong (diverging at
L = 0) anticorrelation coming from features of the ground
state or vacuum, we see an anticorrelation-correlation pair at
finite distances. The magnitude of this pair of correlations
decreases with slower expansion rates, and is highest for a
decelerating scenario.

The evolution after expansion is given in the two lower
rows of Fig. 5. After a simulated expansion, done by a
2 ms ramp, has ceased, the spectrum shifts to lower momenta,
and oscillates in time for each k mode around Nk , with a
period corresponding to the frequency of each mode. A node
in the spectrum appears for a particular value of k which is
not excited in the process of particle production (βk = 0).
This precise feature is present only for the case of uniform
expansion, and will be discussed further in Sec. IV D.

Complementary, the position space evolution exhibits a de-
creasing magnitude of correlation-anticorrelation pair through
time, along with a propagation to larger distances. In the short
range, we also see a correlation build up as a reaction to the
expansion dynamics. The group of correlations propagates at
twice the speed of sound [Eq. (27) at the center of the trap],
as phonons travel away from each other. The chosen width
for convolution (here w = 0.5 μm) influences the shape of
Gnn(t, L) but not the position of the peaks, with the only
exception being the vacuum anticorrelation, which goes to
L = 0 in the limit of vanishing width. Robust features with
respect to changes of the width are discussed in Sec. IV E.

B. Initial thermal state

Together with an initial thermal state comes about the
phenomenon of stimulated particle production described in
Sec. III D. Given the divergence of the statistical distribution
(108) at low momenta, there is a large occupation of soft
modes also after the expansion, in contrast with the outcome
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FIG. 5. Spectrum of fluctuations Sk as a function of the radial wave number k together with its corresponding rescaled density contrast
correlation function Gnn(L) [cf. Eq. (103)] as a function of the comoving distance L measured in units of the parameter R. Both are shown
for various types of polynomial expansions (decelerating γ = 1/2, uniform γ = 1, and accelerating γ = 3/2). Left column: Spectrum and
correlation function right at the end of expansion. The dependence on different expansion rates �t is depicted above, and evolution after
expansion is shown below. At the level of the spectra, one can appreciate that a slower expansion moves power to smaller wave numbers,
whereas for faster expansions, more modes with higher momenta get excited. The hold-time dependence shows how this power is evolving
with time, in favor of the lower momentum modes. At the level of the correlation functions, one can see that both faster expansion rates �t
and decelerated expansions (γ < 1) lead to stronger short-range anticorrelations. The propagation of the spatial correlations in time after the
expansion has ceased is governed by the speed of sound in the condensate. In the lower row, we show this: The correlation first builds up to a
maximum, in this case reached at 3 ms holding time, and then it travels through the condensate at twice the speed of sound. In the lower right
panel, we highlight through dotted lines the distance traversed after 5 ms by moving at twice the speed of sound. In all the momentum space
plots, a gray vertical dashed line indicates the low k limit at inverse condensate size. The position space results are obtained after regularization
with a Gaussian window function of width w = 0.5 μm.

for vanishing initial temperature. Since stimulated particle
production is present for any state above the ground state
with T = 0, the study of this phenomenon is crucial when
comparing to realistic experimental situations. On the other
hand, the question arises whether the initial state in a concrete
experiment is actually thermal. In any case, the phenomenon

of particle production can help to investigate the properties of
the initial state in an experimental setting.

In Fig. 6, we investigate stimulated particle production for
three different initial temperatures in fractions of Tc, at the
level of both, the spectrum, and the rescaled density contrast
correlation function as a function of hold time.
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FIG. 6. Effect of initial temperature, leading to stimulated particle production: It can be seen that in this case, the number of excited soft
momenta is large, in contrast to particle production from the vacuum; note also that the spectrum Sk diverges for k → 0 as a consequence
of the bosonic nature of gapless phonons at vanishing spatial curvature. After the expansion has ceased, the power apparently moves toward
lower momentum modes and the spectrum distribution oscillates around Sk = (1/2 + |βk |2)(1 + 2N in

k ). Regarding position space, a finite initial
occupation enhances anticorrelations and suppresses correlations. The short-range correlation that builds up after the expansion has ceased is
also enhanced and the correlations propagate again at twice the speed of sound, indicated through dotted lines in the bottom right panel. The
two-point rescaled density contrast converges at long times to a thermal state, plus a finite contribution from the exited modes, determined
by |βk |2. In all the momentum space plots, a gray vertical dashed line indicates the low k limit at inverse condensate size. The position space
results given here correspond to a Gaussian convolution of w = 0.5 μm standard deviation.

C. Spatial curvature

We showed in Sec. II D that different types of trapping
potentials induce acoustic spacetimes with different emergent
spatial curvatures. In the formalism employed in Sec. III A,
the effects of spatial curvature are carried into the shape of
Laplace-Beltrami’s operator, its eigenfunctions, and its eigen-
values. Regarding time evolution in momentum space [cf.
Eq. (77)], spatial curvature enters in fact only through the
eigenvalue spectrum. Here, the features of spatial curvature
are equivalent to posing different boundary conditions on
the eigenvalue equation, and do not go further than that. A
further dependence on spatial curvature arises in the integral
transform from momentum to position space [cf. Eq. (98)].

As expected, the effect of curvature on the spectrum of
fluctuations is often negligible, but can be tuned to a higher
impact when decreasing the condensate radius. Something
similar happens to the rescaled density contrast, where
differences are unimportant, even at small radii; this is
shown in Fig. 7. In the presence of an initial thermal state,
this situation could change, given that the Bose-Einstein
distribution (108) differs for different dispersion relations. In
particular, for negative curvature, N in

k is bounded at k = 0, as
a consequence of an acquired gap in the dispersion relation.
This was investigated and no particular differences were
found at different curvatures.

D. Time evolution of momentum modes and robust
features in momentum space

As we see overall in Fig. 5, the qualitative differences
related to different exponents γ in the scale factor could be
difficult to appreciate experimentally when looking into the
complete spectrum and rescaled density contrast. Neverthe-
less, one can look into details of the spectrum, and through
them, validate the particle production nature of the experi-
mental outcomes, and its dependence on different expansion
histories.

We consider first the time evolution of the spectra for cer-
tain modes in regions II and III (cf. Fig. 8), that is, during and
after the dynamic change of the scale factor; there we observe
that, independently of the polynomial power of the scale fac-
tor, the phononic modes corresponding to small wave numbers
are suppressed by the expansion, which is consistent with
Fig. 5. Moreover, the time evolution of each momentum mode
shows a slight dependence on the expansion history, which is
most evident for a particular mode, at k = 1.51 μm−1, that
remains in its vacuum value after uniform expansion (γ = 1),
given that this characteristic is not present for any mode in
nonuniform expansions.

This precise feature is also explicit in the phase θk that
each mode acquires after expansion, defined in (100), which
we consider next in Fig. 9. There, we see that the phases of
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FIG. 7. Effect of different trapping potentials (inverted har-
monic, box, harmonic), which convey different spatial curvatures
(positive, flat, negative; respectively). In the upper row, we show
the outcome for a fixed atom number, so the density at the center
of the trap depends on the shape of the trap [cf. (17) and (52)]; this
renders visible differences for both the spectrum Sk and the rescaled
density contrast Gnn (obtained with a Gaussian convolution of width
w = 4 μm). However, if the density at the center is taken to be the
same for all trap shapes, the spatial curvature κ influences the shape
of the spectrum Sk only at low momentum modes and provided that
R is sufficiently small, as depicted in the lower row. The differences
between rescaled density contrast correlations for the closed, flat, and
open universe are barely visible even when R = 3 μm. Additionally,
for the chosen convolution width (w = 0.4 μm), the vacuum sector
dominates in position space. An inset into the correlation function
shows that the results for each curvature fall one above the other: this
is a width-independent feature.

each wave number k strongly depend on whether there is a
decelerated, uniform, or accelerated expansion. In the case
of uniform expansion, there are phase jumps appearing at
each mode where βk turns out to be zero. To emphasize, due
to the shape of expansion, βk is never zero for γ 
= 1. It is
worthwhile to note that phases as a function of k also give an
insight into the expansion duration �t .

FIG. 9. Phases θk [cf. (100)] of each k mode after expansion
for three different scale factors. We see an important qualitative
difference in behavior depending on the choice of γ : for γ = 1 and
γ = 3/2 the phase remains in a range of (0, π ), in particular, in the
γ = 1 case the phase is a linear function of k. Also, for this case
there is a π jump which appears if and only if Nk = 0, that is, when
a particular mode is not excited as a result of expansion. The other
two scale factors do not exhibit this feature. In contrast, for γ = 1/2
the phase increases continuously in the complete range (0, 2π ). In
all cases, a slower expansion rate allows for a greater phase growth.

E. Window function dependence and robust
features in position space

Given that any computation of the rescaled density contrast
correlation function requires an ultraviolet regulator in the
form of a window or test function, we wish to find features
of the latter which are robust against variations in the standard
deviation w of the Gaussian family of window functions we
have chosen in Eq. (104). This is not only an interesting
task by itself but also paves the ground for a quantitative
comparison to experiments.

To that end, we study the positions of the second mini-
mum —the first minimum is just the vacuum contribution—
and the first maximum of the correlation function. More
precisely, we investigate the aforementioned positions as a
function of expansion duration �t for different widths w,
for the particular case of γ = 1/2. The results are shown in
Fig. 10: We find that the influence of the width w is negligible
with regards to the slope of the curves, rendering position
versus expansion duration a robust observable. Also in
Fig. 10, the rescaled density contrast correlation function
Gnn(t, L) is shown for different widths w. The resolution w

FIG. 8. Time evolution of the spectrum Sk for four radial wave numbers k from t = 0 (setting ti = 0) up to t = tf + 10 ms. Emphasized
through a vertical dashed line is the moment the expansion ceases, i.e., t = tf. The low-momentum modes are suppressed by the expansion
and they almost become static when the expansion has ceased. For higher momentum modes, the amplitude at the time of expansion is greater
in the case of a decelerating scenario. Depending on the duration of expansion, there are always certain modes (in this case k = 1.51 μm−1)
which remain in their vacuum state after expansion for the γ = 1 situation. These same modes exhibit the greatest difference in amplitude
between the γ = 1/2 and γ = 3/2 situations.
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FIG. 10. Upper row: Positions of the second minimum Lmin/R
(left) and first maximum Lmax/R (right) of the rescaled density con-
trast correlation function Gnn(t, L) as a function of the expansion
duration �t for various widths w. The linear fits exhibit slopes robust
against w and almost fall on top of each other in the former case.
Lower row: Gnn(t, L) for various widths w at the time the expansion
has ceased (left panel) and two milliseconds after (right panel). Most
sensitive to the choice of w are the position and magnitude of the
vacuum anticorrelation. The position of the group of correlations
coming from particle production is relatively robust against w, but
the peaks tend to disappear as the width grows closer to the healing
length ξ ≈ 1.6 μm. However, the group of correlations moves with
twice the speed of sound, independent of the width w (indicated by
a gray dotted line).

determines the short-length L < 0.1R behavior of the two-
point correlator indicating the need for robust features.

Moreover, let us report that we have also investigated the
amplitudes of the maximum and the minimum and their ratio
but did not find a similar form of robustness.

V. CONCLUSION AND OUTLOOK

In summary, we have derived a correspondence between
phonons in a 2 + 1 dimensional BEC in various radially
symmetric trapping potentials and massless scalar particles
in spatially curved FLRW universes. As opposed to common
literature, this correspondence was established starting from
a nonrelativistic action and describing phononic excitations in
terms of the real and imaginary parts of the fluctuations on top
of the mean field.

Furthermore, we investigated the phenomenon of particle
production in momentum and in position space for vari-
ous experimentally accessible scenarios. We showed that a
suitably rescaled density contrast correlation function is to
leading order proportional to a correlator within the FLRW
universe paradigm. As a consequence of rescaling, spatial
homogeneity and isotropy carried over to the density contrast
correlation function. Looking into experimental feasibility, we

have shown that the phases of momentum modes and the
positions of maxima and minima in the correlation function
serve as robust observables and are distinguishable for differ-
ent dynamics in the scale factor.

In future theoretical work, it would be interesting to extend
our approach from d = 2 + 1 to d = 3 + 1 dimensions, which
should be straightforward. Also, one may want to study more
general excitation fields, involving spin degrees of freedom,
or modes with gapped excitation spectrum. Also a general-
ization to the full Bogoliubov spectrum beyond the acoustic
approximation can be of interest for some questions.

Another interesting direction could be to investigate other
expansions specified by the scale parameter, allowing for a
simulation of various epochs of expanding or contracting uni-
verses. In particular, one may study the de Sitter universe in
the context of inflation or even a cyclic universe, probably
exhibiting additional features such as parametric resonance.

Moreover, one may investigate particle production from a
quantum information theoretic perspective. More precisely,
entanglement between modes of opposite momenta may be
analyzed for spatially curved universes, extending the work of
Refs. [56,57].

Most importantly, it is of great interest to apply our meth-
ods to concrete ultracold atom experiments. In particular,
as the rescaled density contrast correlation function serves
as a typical observable, our work paves the ground to an
extensive experimental investigation of particle production.
We report on the experimental realization of our proposal
in Ref. [51].
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APPENDIX A: FULL BOGOLIUBOV
DISPERSION RELATION

To assess the validity of the acoustic approximation, it is
also interesting to perform calculations in full Bogoliubov
theory for excitations in weakly interacting Bose-Einstein
gases. This is applicable, in particular, for homogeneous
BECs and for static situations such as quantum fluctuations
around the ground state, or in thermal equilibrium. An exten-
sion of this formalism to time-dependent situations and more
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FIG. 11. The influence of the full Bogoliubov dispersion relation (A1) and an initial temperature T = 0.3Tc is discussed at initial time
t = ti for the rescaled density contrast correlation function in momentum space (left panel) and in position space (right panel). For small
momenta k � 1/ξ (indicated by the dashed vertical line), the Bogoliubov dispersion approaches the acoustic result (dashed versus dot-dashed
and solid versus dotted curves), while for large momenta k � 1/ξ the temperature dependence vanishes due to the exponential fall-off of the
Bose-Einstein distribution N in

k (T ) for large k (dashed versus solid and dotted versus dot-dashed curves). Moreover, the correlation function is
clearly influenced by a nonvanishing temperature T = 0.3Tc, while a dependence on whether one includes the full Bogoliubov dispersion is
subleading due to the Gaussian cutoff in momentum space as w ≈ ξ at initial time.

general trapping potentials is possible, but beyond our scope
in the present paper.

The Bogoliubov dispersion relation for quasiparticles reads

ωk = h̄

2m

√
k2(k2 + 2/ξ 2). (A1)

This features a transition at the healing length

ξ = h̄√
2mλn0

, (A2)

such that for small wave numbers k � 1/ξ the dispersion
relation is linear, ωk = ck, with the speed of sound c as defined
in (27), while for large wave numbers k � 1/ξ it becomes
quadratic, ωk → h̄k2/(2m) + λn0/h̄.

For an initial thermal state with temperature T < Tc intro-
duced in (108), the spectrum of fluctuations is given by

Sk (ti ) = 1
2 + N in

k (T ), (A3)

while the rescaled density contrast correlation function evalu-
ates to [61]

Gnn(ti, L) = 2

n̄0

∫
k

kJ0(kL)

√
k2

k2 + 2/ξ 2
Sk (ti ) f̃G(k), (A4)

where the linear dispersion relation
√−h(k) = k has been

replaced by the corresponding expression of the full Bogoli-
ubov dispersion relation (A1). Note that in the acoustic limit
k � 1/ξ , we obtain Eq. (103) with af replaced by ai. The
integrand and its respective correlator are shown in Fig. 11
for the acoustic vacuum and the Bogoliubov vacuum with and
without an initial temperature T = 0.3Tc.

APPENDIX B: EXPERIMENTAL SETUP

The plots shown in Sec. IV are computed for the following
experimental parameters, setting ti = 0, out of convenience.
The condensate consists of N = 15 × 103 potassium atoms
of mass m = 6.47008 × 10−26 kg and extends up to a radius
R = 30 × 10−6 m. The longitudinal trapping frequency is
1.75 × 103 s−1 while the initial and final s-wave scattering
lengths are as(ti ) = 300a0 and as(tf ) = 50a0, respectively,
where a0 denotes the Bohr radius. The 2D critical tempera-
ture for an anisotropic trap is calculated for these values at
initial time, and yields Tc = 82.41 × 10−9 K. Moreover, the
regularization for the correlation functions is carried out with
a Gaussian of inverse standard deviation w = 5 × 10−7 m.
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