
PHYSICAL REVIEW A 106, 033310 (2022)

Multiparticle tunneling transport at strongly correlated interfaces
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We elucidate the multiparticle transport of pair tunneling and spin tunneling in strongly correlated interfaces.
Not only usual single-particle tunneling but also interaction-induced multiparticle tunneling processes naturally
arise from a conventional microscopic model without any empirical parameters, through the overlap of the many-
body wave functions around the interface. We demonstrate how anomalous tunneling currents occur in a strongly
interacting system due to the pair-tunneling process which we derived microscopically. Our formulation is useful
for junction systems in various disciplines, including atomtronics, spintronics, and nuclear reactions.
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I. INTRODUCTION

Transport phenomena are of tremendous interest as a probe
of the state of matter in modern physics. In the last century,
various quantum many-body phenomena such as supercon-
ductivity [1] and the Kondo effect [2] have been observed
via transport measurements. Recently, it is the most important
problem to understand how transport phenomena reflect phys-
ical properties in strongly correlated systems such as high-Tc

superconductors [3] and dense quark matter [4].
To understand an interplay between strong correlations and

nonequilibrium properties, it is crucial to develop a versatile
framework for tunneling transport via an interface from mi-
croscopic arguments. In particular, a spin-exchange tunneling
has been discussed widely in the context of spintronics [5–20],
instead of a usual single-particle tunneling process. Moreover,
multiparticle tunnelings such as pair transfer are known to
play a significant role in nuclear systems [21–24]. However,
the microscopic origin and mechanism of these nontrivial
tunneling processes are not well understood despite their im-
portance across research fields, because of the complexities in
the systems.

On the other hand, ultracold atomic gases provide favor-
able opportunities to study quantum many-body phenomena
in a systematic way thanks to their cleanness, as called atom-
tronics [25]. Various transport phenomena have been observed
in state-of-the-art experiments in such systems [26–34]. One
of the hottest recent topics in cold atoms is anomalous trans-
port in strongly interacting Fermi gases where nonequilibrium
many-body physics plays a crucial role [35–37].

Considerable theoretical effort has been made to under-
stand the anomalous tunneling transport observed in these ex-
periments [38–48]. In particular, the pairing fluctuation effects

have been discussed extensively for the Bardeen-Cooper-
Schrieffer (BCS) to Bose-Einstein-condensation (BEC)
crossover [49–52]. However, the detailed structure of the
interface prevents the understanding of a microscopic tun-
neling process. Accordingly, while a single-particle tunneling
Hamiltonian with empirical parameters has been introduced in
previous theoretical studies [38–45], it is difficult to determine
how many-body effects appear in the tunneling transport.
Furthermore, it is unclear how to realize the spin-exchange
tunneling [5–20] in atomtronic systems.

In this study, we derive the tunneling Hamiltonian from
a generic model. Not only the usual one-body tunneling
term but also the interaction-induced pair- and spin-exchange
tunneling terms, which were overlooked in cold-atom com-
munities, naturally arise from the overlap of wave functions
(see Fig. 1). While the system consisting of a potential barrier
with an arbitrary form [e.g. a soft wall, as shown in Fig. 1(c)]
and a two-body interaction is relevant directly for cold atoms,
it is also useful to understand fundamental aspects of trans-
port at interfaces between strongly correlated systems. Our
formulation reveals a clear connection between cold atoms
and other junction systems in the context of spintronics as well
as nuclear reactions. For example, our derivation of the spin-
tunneling process from the bulk Hamiltonian can be applied
to the study of magnonic spin transport in normal-metal-
ferromagnet junctions, where particles are immobile in each
lattice site [10]. Moreover, multineutron transfer in nuclei can
be described by the pair-tunneling Hamiltonian derived in
this study [21]. Our formalism can easily be extended to the
case with long-range interactions and three-body ones, which
are of interdisciplinary interest in condensed-matter [53] and
nuclear systems [54].
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FIG. 1. (a) Pair tunneling and (b) spin tunneling at the in-
terface between strongly correlated systems. Panel (c) shows the
two-terminal setup with a potential barrier V (where we omit the
spin dependence for simplicity). We assume that local equilibrium
is achieved in each terminal far from the potential barrier [i.e.,
(μL, TL ) �= (μR, TR )] and is described by asymptotic mode functions.
Conversely, the many-body wave functions �L,R of the two reservoirs
overlap around the potential barrier (e.g., the proximity effect), which
induces tunneling processes based on the usual Hamiltonian with a
two-body interaction shown in Eq. (1).

Using the momentum-space effective Hamiltonian com-
bined with the Schwinger-Keldysh formalism [55], we
demonstrate the conduction properties in strongly interact-
ing spin-1/2 Fermi gases with a two-terminal setup and
show that a nontrivial pair-tunneling current occurs even in
the linear-response regime. In particular, we demonstrate the
temperature dependence of the ratio between the mass con-
ductance and the Seebeck coefficient in the strong-coupling
regime. In the following, we take h̄ = kB = 1.

II. REAL-SPACE HAMILTONIAN

We start from nonrelativistic spin-1/2 fermions (i.e., the
pseudospin is given by σ =↑,↓) with the contact-type inter-
action described by [50]

Ĥ =
∫

d3r
∑

σ

ψ̂†
σ (r)ĥσ (r)ψ̂σ (r)

+ g
∫

d3rψ̂†
↑(r)ψ̂†

↓(r)ψ̂↓(r)ψ̂↑(r), (1)

where

ĥσ (r) = − ∇2

2mσ

+ V̂σ (r) (2)

is the one-body local Hamiltonian with the external potential
barrier V̂σ (r). In Eq. (1), g is the two-body coupling constant.
One can rewrite ψ̂σ (r) as

ψ̂σ (r) = ψ̂σ,L(r) + ψ̂σ,R(r). (3)

Because we are interested in the low-energy tunneling current
between two reservoirs, L and R, in thermal equilibrium, we
assume that ψ̂σ,i(r) denotes the field operator for wave func-
tions with biased probability distributions to the i ∈ {L, R}
reservoirs (noting that these wave functions have an overlap
around the potential barrier). We specify ψ̂L,R when moving to
the level (momentum) space, based on one-particle scattering
theory as described later. Using ψ̂σ,L,R(r), we rewrite Ĥ as

Ĥ = ĤL + ĤR + Ĥ1r + Ĥ1t + Ĥ2t + Ĥind., (4)

where the reservoir Hamiltonian is

Ĥi=L,R =
∫

d3r
∑

σ

ψ̂
†
σ,i(r)

(
− ∇2

2mσ

)
ψ̂σ,i(r)

+ g
∫

d3rψ̂†
↑,i(r)ψ̂†

↓,i(r)ψ̂↓,i(r)ψ̂↑,i(r), (5)

the one-body reflection term is

Ĥ1r =
∫

d3r
∑
σ,i

ψ̂
†
σ,i(r)V̂σ (r)ψ̂σ,i(r), (6)

and the one-body tunneling term is

Ĥ1t =
∫

d3r
∑

σ

[ψ̂†
σ,L(r)τ̂σ (r)ψ̂σ,R(r) + H.c.]. (7)

In Eq. (7), we introduced τ̂σ (r) = ĥσ (r) + g
∑

i N̂σ̄ ,i(r) with
the density operator N̂σ,i(r) = ψ̂

†
σ,i(r)ψ̂σ,i(r) (σ̄ denotes the

opposite spin of σ ). Note that Eq. (7) indicates the tunnel-
ing and reflection processes occur locally. This fact reflects
that the two wave functions in the L and R states are not
completely separated but overlap as a result of the proxim-
ity effect. Therefore, tunneling occurs via the overlap of the
many-body wave functions �L and �R near the potential
barrier in our model (see Fig. 1).

Similarly, we obtain the interaction-induced tunneling term
Ĥ2t = Ĥpair + Ĥspin consisting of the pair tunneling

Ĥpair = g
∫

d3r[P̂†
L (r)P̂R(r) + H.c.], (8)

with the pair creation operator P̂†
i (r) = ψ̂

†
↑,i(r)ψ̂†

↓,i(r) and the
spin-exchange tunneling

Ĥspin = g
∫

d3r[Ŝ+
L (r)Ŝ−

R (r) + Ŝ+
R (r)Ŝ−

L (r)], (9)

with the spin ladder operators Ŝ+
i (r) = ψ̂

†
↑,i(r)ψ̂↓,i(r) and

Ŝ−
i (r) = ψ̂

†
↓,i(r)ψ̂↑,i(r). Note that a similar two-body tun-

neling has been discussed in the numerical simulation of a
few-body system with a double-well trap potential [56]. Also,
the induced interface interaction Ĥind. between two systems
reads

Ĥind. = g
∫

d3r
∑

σ

N̂σ,L(r)N̂σ̄ ,R(r). (10)

We emphasize that the derivation starting from the model
with the contact-type interaction does not involve any approx-
imations.
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III. MOMENTUM-SPACE EFFECTIVE HAMILTONIAN

Because the potential barrier peaks around the center of
the system (x = 0) and vanishes at x → ±∞, there are free
particles in the far region. Here, we approximately evaluate
Eqs. (5)–(10) by substituting the asymptotic form of the wave
functions given by

ψσ,L(r) =
∑

k

c̃k,σ,L ×
{

eik·r + Ak,σ e−ik·r (x < 0),
Bk,σ eik·r (x > 0),

(11)

ψσ,R(r) =
∑

k

c̃k,σ,R ×
{

Bk,σ e−ik·r (x < 0),
e−ik·r + Ak,σ eik·r (x > 0),

(12)

where c̃k,σ,i is the amplitude of the asymptotic wave function
(see Appendix A). Note that Ak,σ and Bk,σ are c-numbers
corresponding to the reflection and transmission coefficients.
Assuming that the tunneling effect thorough the one-body
potential is weak, we substitute Eqs. (11) and (12) into Eq. (5)
to obtain the effective reservoir Hamiltonian:

Hi=L,R =
∑
k,σ,i

εk,σ c†
k,σ,ick,σ,i

+ g
∑
k,k′q

c†
k+q,↑,ic

†
−k,↓,ic−k′,↓,ick′+q,↑,i, (13)

where the amplitude c̃k,σ,i is replaced with a fermionic an-
nihilation operator ck,σ,i and the kinetic energy is defined as
εp,σ = p2/(2mσ ). Similarly, substituting Eqs. (11) and (12)
into Eqs. (6) and (7), we obtain the reflection and tunneling
Hamiltonians in the momentum space:

H1r =
∑

p,k,σ,i

Rk,p,σ,ic
†
k,σ,icp,σ,i, (14)

H1t =
∑
p,k,σ

Tk,p,σ [c†
k,σ,Lcp,σ,R + c†

k,σ,Rcp,σ,L], (15)

where terms up to the first-order have been retained in
the transmission coefficient. The one-body tunneling am-
plitude is defined as Tk,p,σ = Zk,p,σ,L,R[δk,pεp,σ + Vσ (k −
p) + g

∑
i Nk−p,σ̄ ,i] and the reflection amplitude is defined

as Rk,p,σ,i = Zk,p,σ,i,iVσ (k − p). Note that we have defined
the overlap integral between the two reservoirs Zk,p,σ,i,j =∫

dr f ∗
k,σ,i(r) fp,σ,j(r), symbolically writing Eqs. (11) and

(12) as ψσ,i(r) = ∑
k c̃k,σ,i fk,σ,i(r). For the two-body term,

we use the relationship
∫

drgψ̂†
Q1

(r)ψ̂†
Q2

(r)ψ̂Q3 (r)ψ̂Q4 (r) =:∑
Q1···4 g̃Q1···4 c†

Q1
c†

Q2
cQ3 cQ4 , where Q� denotes the state label

of each ψ̂ . At the leading order with respect to Ak,σ and
Bk,σ , one can obtain the pair-tunneling coupling g̃(pair)

Q1···4 �
g(B∗

k1,σ1
B∗

k2,σ2
+ Bk3,σ3 Bk4,σ4 ) and the spin-tunneling coupling

g̃(spin)
Q1···4 � g(B∗

k1,σ1
Bk2,σ2 + B∗

k3,σ3
Bk4,σ4 ). Assuming the long-

wavelength limit for the transmitted waves, namely, Bk,σ →
B0,σ , we obtain the interaction-induced tunneling terms as

Hpair =
∑

q

T2,pair[P
†
q,LP−q,R + H.c.], (16)

Hspin =
∑

q

T2,spin[S+
q,LS−

q,R + S+
q,RS−

q,L], (17)

Hind. =
∑
q,σ

T2,ind.Nq,σ,LNq,σ̄ ,R, (18)

where we keep only the leading-order terms and de-
fine T2,pair = 2gRe[B0,↑B0,↓], T2,spin = 2gRe[B∗

0,↑B0,↓], and
T2,ind. = g[B∗

0,↑B0,↑ + B∗
0,↓B0,↓]. In Eqs. (16)–(18), Xq =∫

drX̂ (r)eiq·r is the usual Fourier component of X̂ (r). We em-
phasize that our formulation covers the tunneling properties of
not only one-body and pair transfers in the entire BCS-BEC
crossover regime but also the spin-tunneling process widely
discussed in spintronics [5–20]. Note that Hspin is absent in the
case with only interactions between identical fermions such as
p-wave Feshbach resonance (see Appendix B).

IV. TUNNELING CURRENTS

Let us derive the tunneling current formulas based on
the momentum-space effective Hamiltonian. The mass cur-
rent operator is defined by IM = i[Ntot.,L, H], where Ntot.,L =∑

σ N0,σ,L ≡ ∑
k,σ c†

k,σ,Lck,σ,L. Its explicit form is

IM = i
∑
p,k,σ

Tk,p,σ [c†
k,σ,Lcp,σ,R − c†

k,σ,Rcp,σ,L]

+ 2i
∑

q

T2,pair[P
†
q,LP−q,R − P†

−q,RPq,L]. (19)

We are interested in the statistical average 〈IM〉 = Tr[ρIM],
where ρ is the density matrix. Using the Langreth rule with
the truncation with respect to the tunnel couplings up to the
second order [57], we obtain

〈IM〉 = 〈IM〉1t + 〈IM〉pair,

:= 4
∑
k,p,σ

∫
dω

2π
T 2

k,p,σ ImGret.
k,σ,L,ωImGret.

p,σ,R,ωδ f neq.

k,p,σ,ω

+ 8
∑

q

∫
dω

2π
T 2

2,pairIm�ret.
q,L,ωIm�ret.

q,R,ωδbneq.
q,ω , (20)

where Gret.
k,σ,i,ω and �ret.

q,i,ω are the retarded components of
the single-particle Green’s function and pair susceptibil-
ity, respectively. The biases between the two reservoirs
are incorporated into the nonequilibrium distribution dif-
ferences δ f neq.

k,p,σ,ω
= fk,σ,L,ω − fp,σ,R,ω and δbneq.

q,ω = bq,L,ω −
bq,R,ω with respect to the one- and two-particle states. Note
that these distribution functions involving the local chemi-
cal potentials μi and temperatures Ti can be obtained from
the lesser propagators as fk,σ,i,ω = −G<

k,σ,i,ω/[2iImGret.
k,σ,i,ω]

and bq,i,ω = �<
q,i,ω/[2iIm�q,i,ω], respectively. In the strong-

attraction limit (g < 0) of the normal phase (a−1 → +∞),
one can assume an approximate form of the pair suscep-
tibility as �ret.

q,i,ω ∝ (ω + iδ − q2

4m − q,i,ω )−1 [58], which is
nothing more than the retarded Green’s function of a tightly
bound molecule (where q,i,ω is the bosonic self-energy).
This fact combined with Eq. (20) indicates that the pair-
tunneling current naturally appears in the strong-coupling
regime within the linear response approach; meanwhile, such
a pair transport proportional to g2 does not appear in the
noninteracting case as expected. This is in sharp contrast
with the previous studies, where nonlinear tunneling currents
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FIG. 2. Ratio between the pair-tunneling-induced mass conduc-
tance G and Seebeck coefficient S as a function of temperature T
in the strong-coupling limit (a−1 → ∞) above the superfluid critical
temperature Tc.

[38,41,43] and additional tunneling amplitudes with respect
to closed-channel molecules [39] are considered to explain
the anomalous transport induced by strong pairing fluctu-
ations. To see the importance of Hpair, in Fig. 2, we plot
the ratio between the pair-tunneling mass conductance G =
lim�μ→0

〈IM 〉pair

�μ
and Seebeck coefficient S = lim�T →0

〈IM 〉pair

�T

in the strong-coupling limit (a−1 → ∞) at low temperatures
[59,60] (see also Appendix C), where we defined �μ =
μL − μR and �T = TL − TR; however, we eventually take
TL = TR ≡ T and μL = μR ≡ μ, leading to Ntot.L = Ntot.R ≡
Ntot.. One can find a dramatic enhancement of G/S near
the molecular BEC temperature Tc � 0.218TF [50], where

TF = k2
F

2m is the Fermi energy of an ideal Fermi gas at zero
temperature. This result indicates that G is remarkably sensi-
tive to changes in the molecular distribution δbneq.

q,ω . Indeed,
near T = Tc, the bosonic distribution function exhibits an
infrared divergence as a result of the gapless excitation [61].
Because the shift of μ is directly relevant to the emergence of
the gapless excitation, G tends to be larger than S . On the
other hand, S becomes larger than G at high temperatures
because the change of T involves a large number of ther-
mal excitations. Even though we consider the strong-coupling
BEC limit, the enhancement of pair-induced conduction can
manifest anomalous transport in a unitary Fermi gas [31,33].
A quantitative comparison with existing experiments is left
for future work. Note that the single-particle tunneling cur-
rent 〈IM〉1t is strongly suppressed in the strong-coupling BEC
regime at low temperatures, where most fermions in the
system form tightly bound molecules (i.e., δ f neq.

k,p,σ,ω
→ 0).

Because the system can be described by molecular bosons
with one-boson tunneling, our approach below Tc would be
consistent with the bosonic superfluid transport discussed
in Ref. [45]. In such a case, the conduction of the con-
densed pair would also play an important role [46–48,62].
At high temperature, 〈IM〉1t becomes large as a result of
the enhancement of Tk,p,σ associated with thermally excited
fermions.

Moreover, Hspin induces the spin current operator IS =
i[N0,↑,L − N0,↓,L, H], such that

IS = i
∑
p,k,σ

ησTk,p,σ [c†
k,σ,Lcp,σ,R − c†

k,σ,Rcp,σ,L]

+ 2i
∑

q

T2,spin[S+
q,LS−

−q,R − S−
qLS+

−q,R], (21)

where we define ησ = δσ,↑ − δσ,↓. In the presence of a spin-
dependent bias, we obtain the statistical average of the spin
current,

〈IS〉 = 〈IS〉1t + 〈IS〉spin,

:= 4
∑
k,p,σ

∫
dω

2π
T 2

k,p,σ ImGret.
k,σ,L,ωImGret.

p,σ,R,ωησ δ f neq.

k,p,σ,ω

+ 8
∑

q

∫
dω

2π
T 2

2,spinImχ ret.
q,L,ωImχ ret.

q,R,ωδb̄neq.
q,ω , (22)

where χ ret.
q,i,ω is the retarded component of the dynamical

spin susceptibility, and δb̄neq.
q,ω = b̄q,L,ω − b̄q,R,ω is the nonequi-

librium distribution difference of magnonlike excitations.
Using the lesser spin susceptibility χ<

q,i,ω, we define b̄q,i,ω =
χ<

q,i,ω/[2iImχ ret.
q,i,ω]. While 〈IS〉1t has been discussed in the

context of cold atoms [42], 〈IS〉spin is a crucial term for
spin transport extensively discussed in the field of spintronics
[5–20]. In particular, if we consider the case with Tk,p,σ → 0
where the single-particle state is localized (e.g., spin model),
〈IS〉spin driven by magnon excitations becomes dominant.
Even in the itinerant (delocalized) case, the spin current in
the repulsive Fermi gas (g > 0) would also be dominated by
〈IS〉spin because of the divergent spin susceptibility [63,64],
which is known as Stoner ferromagnetism [65] and has been
observed in recent experiments [66]. In this regard, the effec-
tive tunneling Hamiltonian is common for both attractive and
repulsive cases and the response functions uniquely determine
the value of the current.

V. CONCLUSION

In this study, we derived the microscopic tunneling
Hamiltonian at a strongly correlated interface. The one-
body tunneling and reflection, and the pair- and spin-tunneling
terms naturally arise from a microscopic model when taking
the appropriate separation of the wave functions. We demon-
strated that the anomalous current induced by pair tunneling
and spin tunneling arises even in the linear-response regime.
This result is natural in the sense that the strong-coupling
BEC limit should be dominated by the tunneling processes
of molecular bosons. We discussed how the pair-tunneling-
induced mass conductance G and Seebeck coefficient S
behave under the strong-coupling ansatz and demonstrated
the anomalous enhancement of G/S as a result of the Bose-
Einstein statics of molecules. In addition, we derived the spin
current formula for repulsive Fermi gases in terms of the spin
susceptibility. Our systematic framework will be useful for
understanding transport phenomena in ultracold atoms and
will be applicable to other systems such as condensed-matter
and nuclear systems.
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APPENDIX A: DECOMPOSITION
OF THE WAVE FUNCTION

Let us consider scattering by one of the simple potentials,

V =
{

V0 (|x| < xv),
0 (|x| > xv), (A1)

where we omit the spin index for simplicity. Since our po-
tential is a simple function, we can write the wave function
in a piecewise manner. When we input a particle from the
left-hand side, the resultant wave function is

ψL = ψ in
L [θ (−xv − x)(e+ikx + Ake−ikx )

+ θ (−x − xv)Bke+ikx + · · · ] := ψ in
L fkL. (A2)

As for the input from the right-hand side, we have

ψR = ψ in
R [θ (xv − x)Bke−ikx + θ (x − xv)(e−ikx

+ Ake+ikx ) + · · · ] := ψ in
R fkR. (A3)

Here, we have defined the reflection and transmission coef-
ficients, Ak and Bk . We have also defined mode functions
fkL and fkR. They are mutually independent solutions to the
Schrödinger equation with the potential V and obtained by
fixing the input amplitudes, ψ in

L and ψ in
R , at x → ±∞. Note

that we have omitted the expression in the potential region
(|x| < xv).

After solving the scattering problem to find the reflec-
tion and transmission coefficients, we can explicitly write
the mode functions and can write the general solition to the
Schrödinger equation in terms of the mode functions. In other
words, we can expand the wave function as the linear combi-
nation of the mode functions,

ψ = ψ in
L fkL + ψ in

R fkR. (A4)

We replace the coefficients with fermionic operators to quan-
tize the field, e.g., ψ in

L fkL �→ ck,L fkL =: ψ̂L. Note that, for any
integrable potential which is represented in terms of simple
functions, we can formally decompose the wave function as
done in Eq. (A4). Thus, the formal decomposition employed
in the main text is justified even in the presence of soft walls.

APPENDIX B: TUNNELING HAMILTONIAN IN SPINLESS
FERMIONS WITH A ONE-BODY BARRIER

Here, we consider a spinless Fermi gas as another example.
It is relevant for polarized electron gases as well as for single-

component Fermi gas near the p-wave Feshbach resonance.
The total Hamiltonian in the real space reads

Ĥ =
∫

d3rψ̂†(r)ĥ(r)ψ̂ (r)

+ 1

2

∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)Û (r − r′)ψ̂ (r′)ψ̂ (r),

(B1)

where

ĥ(r) = −∇2

2m
+ V̂ (r) (B2)

is the kinetic energy of a fermion with mass m and V̂ (r) is the
one-body potential barrier. In the spinless case, the two-body
interaction Û (r − r′) is nonlocal because the contact-type
coupling is prohibited by the Pauli’s exclusion principle. In-
troducing the decomposed operators

ψ̂ (r) = ψ̂L(r) + ψ̂R(r), (B3)

we rewrite Ĥ as

Ĥ = ĤL + ĤR + Ĥ1r + Ĥ1t + Ĥpair + Ĥind., (B4)

where the reservoir Hamiltonian

Ĥi=L,R =
∫

d3rψ̂†
i (r)

(
− ∇2

2m

)
ψ̂i(r)

+ 1

2

∫
d3r

∫
d3r′ψ̂†

i (r)ψ̂†
i (r′)Û (r − r′)ψ̂i(r′)ψ̂i(r),

(B5)

the one-body reflection term

Ĥ1r =
∫

d3r
∑

i

ψ̂
†
i (r)V̂ (r)ψ̂i(r), (B6)

and the local one-body tunneling term

Ĥ1t =
∫

d3r[ψ̂†
L(r)τ̂ (r)ψ̂R(r) + H.c.] (B7)

are essentially same with the spin-1/2 case shown in the main
text. The one-body tunneling amplitude τ̂ (r), given by

τ̂ (r) = ĥ(r) − Û (0) +
∫

d3r′ ∑
i

Û (r − r′)N̂i(r′), (B8)

reflects the nonlocal aspect of Û (r − r′). Note that we have
used Û (r − r′) = Û (r′ − r).

The two-body tunneling term is given by the pair-tunneling
Hamiltonian

Ĥpair = 1

2

∫
d3rd3r′P̂†

L (r, r′)Û (r − r′)P̂R(r, r′) + H.c.,

(B9)

where we define the triplet-pair operator P̂i(r, r′) =
ψi(r′)ψi(r). In this way, one can expect the triplet-pair
transport in strongly interacting spinless fermionic systems.
Finally, we get two kinds of the induced interactions between
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reservoirs as Hind. = Hdir. + Hexc.. The direct term Hdir. and
the exchange term Hexc. are given by

Ĥdir. =
∫

d3rd3r′ĈL(r, r)Û (r − r′)ĈR(r′, r′), (B10)

Ĥexc. = −1

2

∫
d3rd3r′ĈL(r, r′)Û (r − r′)ĈR(r′, r) + H.c.,

(B11)

respectively, where we define the generalized density operator
Ĉi(r, r′) = ψ̂

†
i (r)ψ̂i(r′). The appearance of Hexc. is in contrast

to the case with the contact-type interaction between differ-
ent spins. These inter-reservoir interactions can be important
when considering inhomogenous reservoirs.

Taking the same procedure with the spin-1/2 case, we can
obtain the effective tunneling Hamiltonian in the momentum
space. In particular, the triplet-pair tunneling term is approxi-
mately given by

Hpair � 1

2

∑
k,k′,q

[T2,pair,(k, k′, q)

× c†
k+q/2,Lc†

−k+q/2,Lc−k′−q/2,Rck′−q/2,R + H.c.],
(B12)

where T2,pair,(k, k′, q) = U−k−k′[B∗
k+q/2B∗

−k+q/2 +
B−k′−q/2Bk′−q/2]. Bk is the one-body tunneling amplitude
with respect to V̂ (r).

Furthermore, we briefly mention the three-body tunneling
process induced by the three-body interaction

Ŵ = 1

6

∫
d3r

∫
d3r′

∫
d3r′′ψ̂†(r)ψ̂†(r′)ψ̂†(r′′)

× Û3(r, r′, r′′)ψ̂ (r′′)ψ̂ (r′)ψ̂ (r), (B13)

with the coupling strength Û3(r, r′, r′′). Again, we can use
decomposed operator ψ̂ (r) = ψ̂L(r) + ψ̂R(r) and find the
three-body tunneling Hamiltonian in the momentum space as

Htriple � 1

6

∑
k1,k2,k3,q1,q2

[T3(k1, k2, k3, q1, q2)

× c†
k1,L

c†
k2,L

c†
k3,L

c−k3+q2,Rc−k2+q1−q2,Rc−k1−q1,R+H.c.],
(B14)

where we have defined T3(k1, k2, k3, q1, q2) =
U3(q1, q2)[B∗

k1
B∗

k2
B∗

k3
+ B−k3+q2

B−k2+q1−q2
B−k1−q1

] and
used the Fourier transformation U3(r, r′, r′′) =∑

q1,q2
U3(q1, q2)e−iq1·(r−r′ )−iq2·(r′−r′′ ). In this way, if the

bulk system has the non-negligible three-body interactions,
one may expect a three-particle tunneling process induced
by the three-body force. Our framework can be extended to
cases with more than three-body interactions.

APPENDIX C: PAIR-TUNNELING-INDUCED MASS
CONDUCTANCE AND SEEBECK COEFFICIENT WITHIN

THE STRONG-COUPLING ANSATZ

The molecular number density Nmol. can be estimated from

Nmol. = −2
∑

q

∫ ∞

−∞

dω

π

ImDret.
q,ω

e
ω−2μ

T − 1
, (C1)

where

Dret.
q,ω = 1

ω + iδ − q2

4m + 2μ − Eb − q,ω

(C2)

is the retarded Green’s function of a molecular boson with
the self-energy q,ω. Eb = 1/(ma2) is the two-body binding
energy. Here we suppressed the index i for the reservoirs.
For simplicity, we have employed the phenomenological self-
energy q,ω � 0 − iγ θ (ω), where the damping γ = 0.1EF

is associated with multiple boson-boson scatterings. The con-
stant shift 0 can be absorbed into the shift of Eb as Ẽb =
Eb + 0. While the self-energy in weakly repulsive Bose
gases have been extensively discussed in connection with
density fluctuations [59], these details are out of the scope of
this work. In the practical calculations, μ is obtained by the
strong-coupling ansatz

Ntot. � Nmol. � 2
∑

q

1

e
q2/4m−2μ+Ẽb

T − 1
. (C3)

Note that we approximately obtain �ret.
q,ω � ZDret.

q,ω in the
strong-coupling limit, where the wave-function renormaliza-
tion Z involves the ultraviolet cutoff [60]. The fermion number
density is strongly suppressed by the emergence of wtightly
bound molecules in the strong-coupling regime, 1/(kFa) � 1.

We numerically confirmed that a value of γi does not qual-
itatively change our result. While the value of a−1 modifies
the coefficients of G and S associated with g2 and Z , the
ratio G/S does not explicitly depend on them in the limit of
a−1 → ∞. While we keep γ to be finite for the numerical
calculation, such a treatment is not necessary for the case with
momentum-unconserved tunneling coupling.
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