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Several fermions strongly interacting with a heavy mobile impurity
in a one-dimensional harmonic trap
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We propose a numerically exact method for a mixture with a single impurity immersed in several majority
fermions, confined in a harmonic potential. We separate one of the degrees of freedom through an appropriately
tailored canonical transformation and perform exact diagonalization on the simplified Hamiltonian. This method
is especially effective for a heavy impurity, where it outmatches the typical exact diagonalization approach. We
used our method to calculate energy and density profiles of the first few eigenstates for a mixture with up to ten
majority fermions.
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I. INTRODUCTION

Recent progress in experiments with ultracold atoms has
allowed for physical realizations of seemingly purely the-
oretical models. Notable examples are few-body fermionic
mixtures produced in Heidelberg [1–3]. In these experi-
ments, 6Li atoms, in two different hyperfine states, have
been trapped in a quasi-one-dimensional harmonic potential.
Atomic species interact by contact interactions, which can be
tuned using Feshbach resonance. The number of atoms in the
mixture has also been precisely controlled. These experiments
are the motivation for the further theoretical studies of few-
body ultracold mixtures in one dimension (see Ref. [4] for a
review).

In the present work, we analyze a special case of a
fermionic mixture with a single particle immersed in N major-
ity fermions. In the many-body limit (an impurity in a Fermi
sea), this is known as a Fermi polaron problem [5]. In the few-
body case, this problem has been extensively studied for equal
masses of components. For a mixture in a uniform potential,
the eigenproblem has been solved analytically, both for repul-
sive [6] and attractive interactions [7]. For trapped systems,
especially important are mixtures in harmonic confinement
since they were obtained experimentally [3]. In the simplest
two-body case (N = 1), there exists an analytical solution [8].
For larger mixtures, the problem has been analyzed numeri-
cally [9–14]. Other studied confinements include double-well
potentials [15], optical lattices [16], and a combined harmonic
and periodic potential [17]. Moreover, the mixture has been
analyzed for an arbitrary confining potential in the regime of
strong interactions [18–20]. In the case of mass imbalance,
the problem has been addressed for a uniform potential [21],
mainly for a light impurity [22,23].

In our analysis, we focus on a strongly interacting mixture
in harmonic confinement with a heavy impurity [24,25]. We
use a numerical method specifically designed to handle this
problem. We perform a dedicated canonical transformation
on the Hamiltonian. The resulting Hamiltonian is split into
a center-of-mass part, which has an analytical solution, and
the relative part described as a system of weakly interacting

fermions. The latter is solved using the exact diagonalization
method.

This paper is organized as follows. The analyzed model is
described in Sec. II. In Sec. III, we introduce the coordinate
transformation used to simplify the problem. In Sec. IV we
present the numerical method used to solve the problem and
compare it to the typical approach. The results for the first few
stationary states of the system are presented in Sec. V. Finally,
Sec. VI contains our conclusions.

II. THE SYSTEM STUDIED

In this paper, we consider a system of N spinless fermions
with mass m, interacting with a single impurity through con-
tact interactions. The mixture is trapped in a one-dimensional
harmonic trap with the same frequency � for both com-
ponents. The analysis is performed in natural units of the
harmonic oscillator for the majority fermions. Therefore units

of energy, length, and interaction strength are h̄�,
√

h̄
m�

, and√
m

h̄3�
, respectively. The Hamiltonian of the system has a form

Ĥ = − 1

2M

∂2

∂y2
+ M

2
y2 +

∫
dx ψ̂†(x)

×
[
−1

2

∂2

∂x2
+ 1

2
x2 + gδ(x − y)

]
ψ̂ (x), (1)

where M is the mass of the impurity expressed as a ratio to
the mass of the other component. The Hamiltonian is partially
written in the second quantization. The majority fermions
are described with fermionic field operators ψ̂†(x) and ψ̂ (x),
which obey an anticommutation relation {ψ̂†(x), ψ̂ (x′)} =
δ(x − x′). Therefore their fermionic statistic is incorporated
into the Hamiltonian. For the impurity, we use the first quan-
tization because it simplifies the coordinate transformation
presented in the next section. The Hamiltonian in this mixed
formalism acts on a tensor product of a single-particle Hilbert
space in the position representation and a Fock space in the
occupation number representation. In the analysis, we focus
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on the case of strong but finite repulsive interactions (g � 1)
and a heavy impurity (M > 1).

Calculating the properties of this system is a numerical
challenge due to the strong interactions. One can approach
this problem using the exact diagonalization method [26].
It allows for high accuracy but requires large amounts of
computational resources. Therefore it is limited to few-body
systems. On the other hand, this approach has a wide range
of applications—it can be used for any mass ratio M, any
trapping potential, as well as for the systems with more than
one impurity. In this paper, we propose an alternative solution,
designed specifically for systems with a single heavy impurity
in a uniform or quadratic potential.

III. THE TRANSFORMATION

In the proposed method, we start by changing the coor-
dinate system. Instead of the particle positions, we use the
center-of-mass coordinate and the relative distances between
the fermions and the impurity:

y → ŜyŜ−1 = M

M + N
y + 1

M + N
x̂, (2)

x → Ŝ x̂Ŝ−1 = x̂ − Ny. (3)

New coordinates are obtained through the canonical transfor-
mation governed by the operator,

Ŝ (y, ∂y) = exp (−iyp̂) exp

(
x̂∂y

M + N

)
, (4)

where x̂ = ∫
dxψ̂†(x)xψ̂ (x) and p̂ = −i

∫
dxψ̂†(x)∂xψ̂ (x)

are single-particle position and momentum operators for the
majority fermions, respectively. By using this transformation,
we separate the Hamiltonian (1) into two parts,

Ĥ → Ŝ−1ĤŜ = Ĥy + Ĥx, (5)

where

Ĥy = − 1

2(M + N )

∂2

∂y2
+ M + N

2
y2 (6)

describes a harmonic oscillator with eigenstates

�n(y) ∝ Hn(
√

M + Ny)e− (M+N )y2

2 (7)

[Hn( ) is the nth Hermite polynomial] and eigenenergies En =
n + 1

2 . The second term describes a system of N interacting
fermions,

Ĥx =
∫

dx ψ̂†(x)h(x)ψ̂ (x)

+
∫

dx
∫

dx′ ψ̂†(x)ψ̂†(x′)V (x, x′)ψ̂ (x′)ψ̂ (x), (8)

with a single-particle part,

h(x) = −1

2

M + 1

M

∂2

∂x2
+ 1

2

M + N − 1

M + N
x2 + gδ(x), (9)

and an effective interaction,

V (x, x′) = − 1

2M

∂2

∂x∂x′ − 1

2(M + N )
xx′. (10)

This transformation can be viewed as an extension of
the so-called Lee-Low-Pines (LLP) transformation [27,28],
which also can be applied to the Fermi polaron problem [29].
The LLP transformation separates relative motion, but the
applicability is limited to a uniform potential. Our transfor-
mation generalizes this idea to any potential with a separable
center of mass.

IV. THE EXACT DIAGONALIZATION

After the transformation is performed, the problem is re-
duced to a system of N fermions described by the Hamiltonian
Ĥx. The effective interaction between these fermions depends
both on their positions and momenta. Moreover, the inter-
action term is inversely proportional to the mass ratio M.
Therefore, in the case of heavy impurity, it is a weakly in-
teracting system. In order to solve this problem, we use the
exact diagonalization method. In this approach, we want to
represent the Hamiltonian (8) as a matrix in the Fock basis of
the noninteracting system. We begin by decomposing the field
operator in a single-particle basis,

ψ̂ (x) =
∑

m

âmφm(x), (11)

where âm are annihilation operators, and φm(x) are eigenfunc-
tions of the single-particle part of the Hamiltonian Ĥx,

h(x)φm(x) = εmφm(x). (12)

Fortunately, this eigenproblem can be solved analytically [8].

Using an effective mass μ =
√

M(M+N−1)
(M+1)(M+N ) , the eigenfunc-

tions can be written as

φm(x) ∝
⎧⎨
⎩Hm(

√
μx)e− μx2

2 if m is odd,

U
( 1−2εm

4 , 1
2 , μx2

)
e− μx2

2 if m is even,

(13)

where U ( ) is the confluent hypergeometric function of
the second kind. The eigenvalues are equal to εm =√

(M+1)(M+N−1)
M(M+N ) νm, where νm = m + 1

2 for odd m, while for

even m, they are solutions of the equation



( 3−2νm

4

)



( 1−2νm
4

) = −
√

M(M + N )

(M + 1)(M + N − 1)

√
μg

2
. (14)

After applying decomposition (11), we rewrite the Hamil-
tonian (8) to the form

Ĥx =
∑

m

εmâ†
mâm +

∑
i jkl

Vi jkl â
†
i â†

j âk âl , (15)

where Vi jkl = ∫
dx

∫
dx′ ψ̂†(x)ψ̂†(x′)V (x, x′)ψ̂ (x′)ψ̂ (x). In

this matrix representation of the Hamiltonian Ĥx, every
element corresponds to the Slater determinant of N single-
particle states. The matrix has an infinite number of elements,
but high-energy states are numerically irrelevant when we
calculate the low-energy many-body eigenstates. Therefore
we cut the sum in (11) on some index K . It is clear that, for
a big enough cutoff K , the problem can be solved with any
desired accuracy. As a result, the Hamiltonian Ĥx is reduced to
a finite matrix that can be diagonalized. The overall spectrum
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of Hamiltonian Ĥ is obtained by combining the eigenvalues
of this matrix with the center-of-mass energies En.

To evaluate how effective this method is, we compare
its predictions with the exact diagonalization used directly
on the original Hamiltonian (1). In this standard approach,
both components of the mixture are described in the sec-
ond quantization with the field operators. The operators are
decomposed in a single-particle basis (with the same cutoff
K) and used to rewrite the Hamiltonian into a matrix which
is then diagonalized. We check how accurately these two
methods obtain the ground state of the system depending on
the value of the cutoff. The results are presented in Fig. 1.
The top figures show the ground state energy as a function of
the cutoff K . A comparison is made for a system with N = 3
fermions and four different sets of parameters M and g. As
expected, the results tend to decrease with increasing cutoff,
as they approach the actual ground state energy. It is also clear
that, for all considered cases, the proposed method is much
more accurate. That is the case both for heavy impurity and
for the mass-balanced system. The reason is that the accuracy
of this method is less affected by the strength of the contact
interactions since they are included directly in single-particle
functions and not in the interaction term. For a system with a
very light impurity, the effective interaction term (10) would
be large and, therefore, the proposed method would be less
effective.

For further comparison, we also calculate the fidelity

FK = |〈�K |�K+1〉|, (16)

where |�K〉 is the eigenvector of the system with the cutoff K .
This quantity describes how much the resulting state changes
when the cutoff increases. It is clear that as the eigenvector ap-
proaches the actual ground state, the fidelity should approach
unity. For convenience, the results in Fig. 1(b) are presented
as 1 − FK such that they can be displayed in the logarithmic
scale. The plot shows that the fidelity (as a function of the
cutoff) approaches unity much faster in the proposed method.
This again shows the advantage of this method. Moreover,
the results become even better for a larger impurity mass,
which is not the case for conventional exact diagonalization.
On the other hand, stronger contact interactions decrease the
accuracy of both methods. It should also be recalled that, in
the proposed approach, one degree of freedom is calculated
analytically. Therefore even for the same cutoff, this method
requires less computational resources than the typical exact
diagonalization method.

Fidelity can be used to determine whether the cutoff is
large enough for accurate numerical calculations. Here, we as-
sume that cutoff K is sufficiently large when for every k � K ,
fidelity Fk is larger than 0.999. Such sufficient cutoffs are
plotted in Fig. 2 for a system with heavy impurity and strong
interactions (M = 5 and g = 5). Results were calculated for
the ground state and the first few excitations of the relative
motion. As one can see from the graph, both the ground state
and the lowest excited state require a relatively low cutoff for
accurate calculations (owing to a significant mass imbalance).
It should be noted that choosing higher center-of-mass excita-
tions does not influence the accuracy of the method, since this
part of the Hamiltonian is always solved analytically.

FIG. 1. (a) Ground state energy in the 1 + 3 system as a function
of the state cutoff, for different values of mass ratio M and interaction
strength g. Results of exact diagonalization with and without the
transformation are presented with dashed red and solid green lines,
respectively. The energies are expressed in units of h̄�. (b) The
fidelity for the same parameters. The top and bottom panels present
the results for this method and the default exact diagonalization,
respectively.

V. STATIONARY PROPERTIES

Using our method, we calculate some stationary properties
of the few-body Fermi gas interacting with the impurity. We
start with the ground state energy for mass-balanced systems
(M = 1). In this case, there are available experimental data
[3], which can be compared to the numerical results. In the
experiment, the researchers measured the interaction energy
instead of the ground state energy. Interaction energy is de-
fined as the difference between the energy of a system with
and without the intercomponent interactions. The ground state
energy of a noninteracting system is known analytically to
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FIG. 2. Sufficient cutoff (defined in the text) as a function of a
particle’s number. Four curves show results for the ground state and
the first three excitations of the relative part of the Hamiltonian (8).
The black line corresponds to the lowest possible value for cutoffs
(K = N).

be equal to N2+1
2 . Therefore the interaction energy is directly

related to the ground state energy of the interacting system.
A comparison of numerical results with experimental data is
presented in the left panel of Fig. 3. Three lines correspond to
weak (g = 0.36), medium (g = 1.14), and strong (g = 2.80)
interactions. As one can see from the graph, our results are
in good agreement with the experimental data. It may seem
that there is a significant relative error for N = 5 and strong
interactions. That is because we are comparing the interaction
energy, which, in this case, is only a small part of the ground
state energy that we calculate. For the ground state energy, the
relative error is smaller than 1% for all compared data.

In the right panel of Fig. 3, the interaction energy is cal-
culated for mass-imbalanced systems in a strong interaction
regime (g = 2.80). As can be seen from the graph, the inter-
action energy, as a function of the particle’s number, changes
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FIG. 3. Interaction energy as a function of the particle’s number.
Left panel: Different interaction strengths in a mass-balanced system
(M = 1). Experimental data from Ref. [3] (red dots) and numerical
results (blue line). Right panel: Different mass ratios M for strong
interactions (g = 2.80). The energies are expressed in units of h̄�.

qualitatively for a strong mass imbalance, from a smooth
curve to a step function. Increasing the number of fermions
by one to the even values affects the interaction energy sig-
nificantly less than with the odd values. This behavior can be
understood using our transformation. In the limit of infinitely
heavy impurity, the effective interaction term (10) disappears.
Therefore, the relative part of the Hamiltonian reduces to

Ĥx →
∫

dx ψ̂†(x)

(
−1

2

∂2

∂x2
+ 1

2
x2 + gδ(x)

)
ψ̂ (x), (17)

which describes noninteracting fermions in a harmonic trap
with an additional delta potential in the center. In the ground
state, the fermions occupy the first N single-particle eigen-
states. Every second such state is an odd function with respect
to the spatial inverse x → −x. Thus it is not affected by the
Dirac potential in the middle. These single-particle states do
not depend on the interaction strength g. Adding a new particle
to the system with an even number of fermions increases the
ground state energy in the same way regardless of whether
there are interactions. Therefore the interaction energy does
not increase. In this limit, steps are ideally horizontal.

Besides energies, one can also calculate density profiles.
For the coordinates after the transformation, the density pro-
files of the eigenstate |�n〉 ⊗ |�m〉 (center of mass and relative
part, respectively) are equal,

nCM(y) = |�n(y)|2, (18)

nr (x) = ∣∣∣∣ψ̂ (x)|�m〉∣∣∣∣2
, (19)

where �n(y) are functions from Eq. (7). Finding this quantity
for the original Hamiltonian is not as simple as for the energy.
The eigenstate has to be transformed back using the operator
Ŝ ,

〈y|Ŝ|�n〉|�m〉 = e−iyp̂e
x̂∂y

M+N �n(y)|�m〉

= e−iyp̂�̄n

(
y + x̂

M + N

)
|�m〉, (20)

where �̄n( ) is an extension of the scalar function �n( ) to the
function acting on matrices. Since �n( ) is an analytical func-
tion, this extension can be obtained rigorously by replacing
scalars with matrices in the Taylor series. For the eigenstate in
the original coordinates (20), the density profiles are equal,

ny(y) =
∣∣∣∣
∣∣∣∣�̄n

(
y + x̂

M + N

)
|�m〉

∣∣∣∣
∣∣∣∣
2

, (21)

nx(x) =
∫

dy

∣∣∣∣
∣∣∣∣ψ̂ (x − y)�̄n

(
y + x̂

M + N

)
|�m〉

∣∣∣∣
∣∣∣∣
2

, (22)

where ψ̂ (x − y) = eiyp̂ψ̂ (x)e−iyp̂. This can be generalized fur-
ther to many-body density profiles:

n(x1, . . . , xk, y)

=
∣∣∣∣
∣∣∣∣ψ̂ (x1 − y) · · · ψ̂ (xk − y)�̄n

(
y + x̂

M + N

)
|�m〉

∣∣∣∣
∣∣∣∣
2

.

(23)
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FIG. 4. Single-particle density profiles for the impurity and N =
10 fermions (thin red and thick blue lines, respectively). Three
columns correspond to the ground state, the first excitation in relative
motion, and the first excitation in the center-of-mass motion. Results
are presented for different mass ratios (M = 5, 10, 20, 50, and 100).
All for strong intercomponent interactions (g = 5). The densities and
the positions are expressed in the units of

√
m�/h̄ and

√
h̄/(m�),

respectively.

From a numerical standpoint, one can calculate these quan-
tities through diagonalization of the operator x̂ in the Fock
basis.

The single-particle density profiles for the system with
N = 10, interaction strength g = 5, and for gradually increas-
ing mass ratio M are presented in Fig. 4. In the ground state
(first column), the density profile for fermions does not change
significantly as mass imbalance increases. Even for M = 5,
it is qualitatively the same as for M = 100. Quantitatively,
the most noticeable difference is that the local minimum at
the center decreases as the mass imbalance increases. This is
expected since the impurity becomes more and more localized
in the middle of the trap and repulses the fermions from there.
Surprisingly, the results for the excited states (second and third
column) change qualitatively as the mass imbalance increases.
For M = 10 there is still a local maximum in the middle of the
trap, which is not the case in the heavy impurity limit. Even
for M = 20 the shape of the density profile is significantly dif-
ferent than for M = 100. Therefore finite-mass corrections are
important even for a system with a relatively heavy impurity,
at least for the excited states.

VI. CONCLUSION

In this paper, we have presented a method to calculate the
properties of a system of a few fermions interacting with a
heavy impurity and confined in a harmonic trap. By com-
paring it to the standard approach of exact diagonalization,
we have shown that this method allows for high accuracy of
the results with smaller restrictions on the size of the system.
Next, the method has been used to calculate the basic station-
ary properties for systems with up to ten fermions, namely the
energies and the density profiles of the eigenstates.

It is worth noticing that this method can also be used
to calculate the dynamic properties of the analyzed system.
Once the initial state is transformed to the new coordi-
nates, it can be decomposed into the Fock basis and evolves
using any standard numerical method (for example, the
Runge-Kutta algorithm). For the evolved state, the energy
and density profiles can be calculated analogously to the
eigenstates.
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