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An impurity in a Bose gas is commonly referred to as a Bose polaron. For a dilute Bose gas, its properties are
expected to be universal, i.e., dependent only on a few parameters characterizing the boson-impurity interactions.
It has been known for some time that when boson-impurity interactions are weak, the properties of the polaron
depend only on the scattering length of these interactions. In this paper, which accompanies Phys. Rev. Lett. 126,
123403 (2021) (where some of these results have already been reported), we examine stronger boson-impurity
interactions, keeping their range finite. We demonstrate that for attractive interactions between impurity and
the bosons up to and including the unitary point, all static properties of a Bose polaron in a dilute Bose gas
can be calculated in terms of the scattering length and an additional parameter that characterizes the range of the
impurity-boson interactions. Our approach is valid if this parameter does not deviate too much from the scattering
length of intraboson interactions, with the precise criterion given in the text. We produce explicit expressions for
the energy and other properties of a polaron for the case when the impurity-boson scattering length is tuned to
unitarity, and we also provide the first correction away from it.
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I. INTRODUCTION

The study of impurities in Bose and Fermi gases has a
long history [1–6]. An impurity, i.e., an atom distinguishable
from those forming the gas, binds with the atoms of the gas
to form a quasiparticle often called a polaron. Polarons in
ultracold Fermi gases, both weakly and strongly interacting,
have been studied for quite some time [7–16]. Polarons in
Bose gases have been getting significant attention over the
past decade [17–20]. Somewhat surprisingly, the problem of
Bose polarons proved much harder to solve than its fermionic
counterpart. The main reason behind the relative simplicity of
the Fermi polaron problem is that a Fermi bath is stiff due
to the large Pauli repulsion between identical fermions, and a
perturbative expansion in particle-hole excitations converges
very rapidly to the exact answer. On the other hand, a dilute
bosonic bath is highly compressible, and as a consequence
even a single impurity can cause major modifications of the
surrounding medium. The absence of Pauli pressure in a
bosonic bath also leads to much more prominent few-body
effects in Bose polarons. For recent developments in the field,
we refer the reader to extensive dedicated reviews [21–23].

We would like to apply an expansion in powers of the gas
parameter of the Bose gas to the problem of a dilute Bose gas
interacting attractively and arbitrarily strongly with a single
impurity. We argue that this expansion is valid no matter how
strong the boson-impurity interactions are, up to the unitary
point, as long as the typical spatial extent of impurity-boson
interactions is not too short.

The interactions among the bosons in the gas are taken
to be repulsive, with the range roughly of the order of the
scattering length of the intraboson interactions, as always the

case for weak repulsive interactions. We further argue that for
the purpose of calculations this range can be taken to zero
without a qualitative change in the properties of the polaron.

This approach allows us to produce a method to calculate
the energy of the Bose polaron at arbitrary negative scattering
length characterizing impurity-boson interactions, including
when it is infinite. At infinite and close to infinite scattering
length, we derive explicit expressions for the energy and other
properties of the polaron.

To demonstrate the validity of our approach, we estimate
the first subleading term in the expansion in powers of gas pa-
rameter. We show that this term is indeed small regardless of
the strength of the boson-impurity interactions, under reason-
able assumptions on their range. This offers strong support to
the claim that the leading term correctly captures the behavior
of the impurity when the gas is weakly interacting and the
range of the impurity-boson interactions is not too short.

We consider a weakly interacting Bose gas with density
n. Suppose a number of impurity atoms are introduced in
this gas with density nI � n. Let us first briefly consider the
thermodynamics of this gas with impurities, following earlier
work [24].

The free energy per unit volume of this gas will depend
on both densities F (n, nI ). It is advantageous to introduce a
“mixed” thermodynamic potential

G(μ, nI ) = F (n, nI ) − μn. (1)

Here μ is the chemical potential of the gas, μ = ∂F/∂n. To
maintain constant the density of the gas far away from the
impurities, we work in the regime where μ is fixed and is
independent of nI .
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At small impurity density we expect that G(μ, nI ) will have
a regular Taylor expansion in powers of nI ,

G(μ, nI ) ≈ G(μ, 0) + E (μ) nI + E2(μ) n2
I + · · · .

Here E (μ) is clearly the energy cost of adding a single impu-
rity, while E2(μ) and higher-order terms describe interactions
among the impurities.

Let us work at a very low density where interactions among
the impurities can be neglected. The density of the gas kept at
chemical potential μ with the impurity density nI can now be
found according to

n = −∂G

∂μ
= n0 − nI

∂E

∂μ
, (2)

where

n0 = −∂G(μ, 0)

∂μ

is the density of the gas before impurities were introduced.
Multiplying (2) by the volume V on both sides, and noting

that V nI is the total number of introduced impurities, we find
that the number of bosons trapped in the potential created by
a single impurity is

N (μ) = −∂E

∂μ
. (3)

This is a powerful relationship that allows us to concentrate
on calculating E while simultaneously also determining the
number of trapped bosons N .

The goal of this paper is to calculate E (μ) and N (μ). While
these quantities can be expected to depend on the the details of
the interactions among the bosons as well as boson-impurity
interactions, and while from the point of view of matching the
calculation with experiment it may be important to analyze
this problem with the range of parameters relevant for exper-
iment, we expect that the behavior of these functions will be
universal to some degree in the limit where the strength of
intraboson interactions is taken to zero.

We would like, therefore, to analyze the functions E (μ)
and N (μ) in the limit of very weak interactions among bosons,
while the interaction between the impurity and the bosons
remains arbitrary. In particular, the interaction can be allowed
to be taken to the unitarity limit where it is effectively the
strongest.

As could be expected, we find that in this regime the prop-
erties of the polaron do not show any substantial dependence
on the range of the boson-boson interactions. However, they
do show substantial dependence on the range of the boson-
impurity interactions. The results reported here are valid if the
range R of the boson-impurity interaction satisfies

(
n0a3

B

)1/4 � R

aB
� 1√

n0a3
B

. (4)

Here aB is the scattering length of the boson-boson interac-
tions, and n0 is the density of the Bose gas. Weak interactions
among bosons of course imply n0a3

B � 1. The first of these
two inequalities is obtained by demanding that the gas remains
weakly interacting everywhere including at the position of the
impurity, while the second of these inequalities asks that the

range of the potential remains smaller than the healing length
of the gas.

Note that this excludes the direct comparison of our results
to those obtained in the zero range regime where R → 0
such as Ref. [25]. However, we expect that the conditions
(4) are satisfied in experiment, since for realistic interactions
R/aB ∼ 1.

One of our main results is that in the regime of weak
boson-boson interactions, with the range of boson-impurity
interaction satisfying the conditions (4), E (μ) and N (μ) can
be calculated as a function of the boson-impurity scattering
length a. In Ref. [26] we showed that in the unitary limit where
a is taken to infinity, they take the analytic form asymptoti-
cally valid under the conditions (4),

E (μ) = −3(πn0)2/3

2m

( R

aB

)1/3

, (5)

N (μ) = R1/3

4
(
πn0a4

B

)1/3 . (6)

Here m is the reduced mass of bosons and impurity defined
below in Eq. (9). For the purpose of Eqs. (5) and (6), R needs
to be defined quantitatively. A precise definition of R is given
below in Eq. (51). We note in passing that our treatment shows
that both E and N remain finite even at resonance, due to the
presence of repulsion between bath bosons, in agreement with
recent work by Schmidt and Enss [27].

Both of these results are asymptotically exact when ei-
ther aB or n0 is taken to zero, as in this limit Eq. (4) is
automatically satisfied. The low-density regime is especially
interesting, because E/n2/3

0 goes to a constant in that limit, a
result that may be directly checked in current experiments. In
the theory presented in Ref. [25], instead, E/n2/3

0 decreased
logarithmically at low density.

We also calculate E and N when a deviates from the
unitary limit. While in principle our methods allow us to find
these quantities for arbitrary a < 0, in practice expressions for
those quickly become cumbersome, so we discuss only the
expansion of E and N in powers of 1/a, given in Eq. (57), as
well as the behavior of these quantities for small a.

Some of the results reported here already appeared in the
earlier work of the authors, Ref. [26]. Specifically, the proper-
ties of the polaron at unitarity given by Eqs. (5), (6), as well
as the more detailed Eqs. (49) and (50) have already been
derived in that work. In the present paper, we go beyond the
previously reported results by calculating the properties of the
polaron not only exactly at unitarity but also in the vicinity of
unitarity as given in Eq. (57), as well as perturbing away from
the weak polaron potential limit, as given in Eq. (62). We also
discuss the effects of finite-range intraboson interactions, cal-
culate corrections to the results reported here due to quantum
fluctuations, and present a number of other results that were
not part of the previously reported work.

The rest of this paper in organized as follows. In Sec. II we
set up the problem and the techniques we will use to analyze
it. Section III describes the solution of the problem both at
weak and strong (close to unitarity) impurity-boson attractive
interaction, with the simplifying assumption of the intraboson
interaction range taken to zero. The first half of this section re-
lies on the results previously reported in Ref. [26]. Section IV
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studies fluctuational corrections to the saddle point approxi-
mation employed in Sec. III and derives the conditions (4).
Section V discusses the implication of finite range intraboson
interactions, with the conclusion that the finite range does not
strongly affect the behavior of the polaron, unlike the range of
the boson-impurity interaction. Section VI discusses a partic-
ular technique, expansion about the unperturbed condensate,
which, while appealing at first glance, can be shown to fail
as one approaches the unitary limit of impurity-boson inter-
actions (see also the discussions in the Appendix, described
below). Section VII discusses Bose-impurity interactions that
support a bound state, with the conclusion that the polaron be-
havior in this regime depends on the detailed functional form
of these interactions. Section VIII presents our conclusions.
Finally, in the Appendix we demonstrate that the technique of
Sec. VI, if its range of applicability is ignored, produces the
expression (98), which appeared before in the literature [28],
but which our analysis indicates is not applicable at strong
boson-impurity interactions.

II. SETTING UP THE PROBLEM

We begin with a number of bosons of mass mb which
interact among themselves via a short-range weak interaction
Vbb, as well as interacting with a single impurity of mass M
via another potential U . The problem can be set up according
to

H =
∑

j

p2
j

2mb
+ P2

2M
+

∑
jk

Vbb(x j − xk ) +
∑

j

U (x j − X).

Here x j and p j are the coordinates and the momenta of the
bosons, while X and P are the coordinate and the momentum
of the impurity.

Before proceeding further, we would like to state explicitly
that everywhere in this paper in accordance with conventions
common in quantum many-body literature, we set h̄ = 1,
kB = 1.

As was already exploited in the literature in this context
[29,30], it is convenient to get rid of the impurity coordinate
by performing the Lee-Low-Pines unitary transformation [31]
of the Hamiltonian. Define

W = X ·
∑

j

p j .

Straightforward algebra shows that

eiW He−iW =
∑

j

p2
j

2mb
+ (p0 − ∑

j p j )2

2M
+

∑
jk

Vbb(x j − xk )

+
∑

j

U (x j ).

Here p0 is the conserved total momentum of the system. In
this representation, the position of the impurity has effectively
been set at the origin of the reference frame.

We are now going to choose the interactions among bosons
to be zero-ranged,

Vbb(x) = λ δ(x). (7)

This is a largely technical step that will simplify further anal-
ysis of this problem. A very natural question then is whether
a similar simplification can be used with the boson-impurity
interaction potential U . We will see later that shrinking the
range of U to zero is a singular limit as the properties
of the boson-impurity cloud crucially depend on the range
of the potential U . At the same time, the dependence on the
range of Vbb is weak and can be neglected. Below we will also
explore how the finite range of Vbb modifies our conclusions
to confirm that the dependence on this range is indeed weak.

We are now in a good position to rewrite the Hamiltonian
in the second quantized notation. It is natural to choose U to
depend on the distance r to the impurity only, to find

H =
∫

d3x

(∇ψ̄∇ψ

2m
[U (r) − μ]ψ̄ψ + λ

2
(ψ̄ψ )2

)

+ (p0 + i
∫

d3x ψ̄∇ψ )2

2M
. (8)

Here μ is the chemical potential of the gas, and m is the
reduced mass of the boson and impurity,

m = mbM

mb + M
. (9)

The coupling constant λ is related to the scattering length
aB > 0 characterizing interactions among bosons by

λ = 4πaB

m
.

Throughout this paper, we concentrate on the very heavy
impurity where M is very large. In this limit, the term on the
second line of Eq. (8) can be entirely neglected. We also note
that in this limit mb = m. We plan to discuss the effects of the
finite impurity mass in a different publication.

We arrive at a very concrete formulation of the problem we
would like to solve. A single heavy impurity can be effectively
represented by a potential U (r) it induces on the gas, which
can be thought of as centered in the origin of the reference
frame. Thus Hamiltonian H of the gas with an infinitely heavy
impurity is simply given by Eq. (8) with M taken to infinity,
or

H =
∫

d3x

(∇ψ̄∇ψ

2m
+ [U (r) − μ]ψ̄ψ + λ

2
(ψ̄ψ )2

)
.

(10)

To study the problem given by Eq. (10), we rely on the func-
tional integration formalism. To set up the functional integral,
we construct the coherent state imaginary time action

S =
∫ 1/T

0
dτ

(∫
d3x ψ̄

∂ψ

∂τ
+ H

)
, (11)

where T is temperature. We will eventually take it to zero in
most of the calculations, but it is convenient to keep it finite in
some of the intermediate steps. With the help of this action
we write down the functional integral, which allows us to
calculate G defined in Eq. (1),

e− V G
T =

∫
Dψ e−S. (12)
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Here V is the volume of the system. The gas we consider here
is weakly interacting, which is well known to imply that

n−1/3
0 � aB. (13)

Note that n−1/3
0 is the mean interparticle spacing in the gas.

The chemical potential μ can be used to define the healing
length ξ of the gas according to

μ = 1/(2mξ 2). (14)

In a weakly interacting Bose gas μ = λn0, thus the condition
for weak interactions can also be written as

ξ � n−1/3
0 . (15)

III. SOLUTION VIA SADDLE POINT APPROXIMATION

Starting with the functional integral defined by Eqs. (10),
(11), and (12), we apply the saddle point approximation to
find the Gross-Pitaevskii (GP) equation describing this Bose
condensate, which reads

−	ψ

2m
+ Uψ + λ|ψ |2ψ = μψ. (16)

Given the solution of this equation ψ , the energy of the po-
laron can be deduced by the substitution of it into Eq. (10) and
subtracting the energy of the condensate without impurity, to
give

E = −λ

2

∫
d3x

(|ψ |4 − n2
0

)
. (17)

At the same time, the number of particles trapped in the
polaron can be found by evaluating

N =
∫

d3x[|ψ |2 − n0]. (18)

We note that if the potential does not vary much on the scale of
ξ , then the GP equation can be solved using the local density
approximation, as is often done in the case in which U rep-
resents the smooth potential of a trap holding the condensate.
However, we are interested in the opposite limit where the
range of the potential is much smaller than ξ .

It is natural to ask whether fluctuations about the GP equa-
tion are needed to study the polaron. We will argue in Sec. IV
that as long as the gas is weakly interacting and the range of
the impurity-boson potential satisfies the conditions (4), the
GP equation gives a good approximation to the behavior of
the polaron.

Equation (16) is nonlinear and at a first glance looks in-
tractable. Nevertheless, we now demonstrate that its analytic
solution is possible as long as R � ξ .

A. Analytic solution to the Gross-Pitaevskii equation
in an external potential

We would first like to work with a potential that is strictly
zero beyond some length rc, U (r) = 0 for r > rc (we will later
be able to also consider potentials extending all the way to
infinity). We introduce

φ = ψ√
n0

.

In terms of this dimensionless condensate density function,
the GP equation becomes

−	φ

2m
+ Uφ = μφ(1 − |φ|2). (19)

Since we are looking for the lowest energy solution, those will
be real-valued and spherically symmetric.

We analyze Eq. (19) by introducing a small parameter

ε = rc

ξ
(20)

and constructing its solution as an expansion in powers of this
parameter. As a first step, it is convenient to split the range
of r into 0 � r � rc and rc � r < ∞. In the first interval, we
introduce

y = r

rc
, φ = χ (y)

y
.

χ (y) satisfies

−d2χ

dy2
+ 2mr2

cUχ = ε2

(
χ − χ3

y2

)
(21)

on the interval y ∈ [0, 1], as well as χ (0) = 0. In the second
interval, we introduce

z = r

ξ
, φ = 1 + u(z)

z
,

to find

d2u

dz2
− 2u = 3

u2

z
+ u3

z2
(22)

on the interval z ∈ [ε,∞], where u → 0 when z → ∞. We
need to solve Eqs. (21) and (22), matching the behavior of
their solutions at the boundary r = rc.

1. Weak potential

Let us first examine the case of a weak attractive potential
with a small scattering length a < 0. We solve Eq. (21) in the
interval 0 � y � 1 neglecting its right-hand side as it contains
a small parameter ε. Then Eq. (21) reduces to a Schrödinger
equation in the potential U at zero energy,

−d2χ

dy2
+ 2mr2

cUχ = 0, (23)

whose solution χ0 must satisfy χ0(0) = 0. At y > 1 the po-
tential U is zero, so χ must be a linear function. Bethe-Peierls
boundary conditions fix the form of this function to be

χ0(y) = α

1 − rc
a

(
1 − rc

a
y
)
, y > 1, (24)

where a is the scattering length in the potential U , and α is the
normalization of the solution chosen in such a way that

χ0(1) = α. (25)

We can rewrite Bethe-Peierls boundary conditions in a conve-
nient way by observing that they are equivalent to

χ ′
0(1) = α

1 − a
rc

. (26)
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Now we solve Eq. (22) neglecting its right-hand side to find

u = Ae−√
2z. (27)

We can construct corrections to it by means of successive
approximations. Those will be small as long as A is small, and
as will be shown below, this is the case here. So for now we ne-
glect those corrections. Matching amplitudes and derivatives
of χ (y) and u(z) at z = ε, or correspondingly y = 1, produces

A = ε(α − 1), −
√

2A = α

1 − a
rc

− 1. (28)

Taking into account that ε � 1, we find

A = −a

ξ
, α = 1 − a

rc
. (29)

Let us now examine if the terms neglected to arrive at this
solution are indeed small. We solve (21) by successive ap-
proximations, plugging χ0 into the right-hand side of Eq. (21)
and producing a correction χ1. This correction satisfies

−d2χ1

dy2
+ 2mr2

cUχ1 = ε2

(
χ0 − χ3

0

y2

)
. (30)

χ1 could be a small correction to χ0 since ε � 1. Looking
at it more carefully, we see that if |a| < rc, then both χ0(1)
and χ ′

0(1) are of the order of 1 while χ1 will be of the order
of ε2 � 1 and can be neglected. It gets more interesting if
|a| > rc. Then χ0(1) = α ∼ a/rc, while χ ′

0(1) ∼ 1. At the
same time, χ1 ∼ ε2(a/rc)3. The magnitude of this had bet-
ter be smaller than 1, so that the contribution of χ ′

1(1) to
the derivative of χ could be neglected. This condition gives
ε2|a|3/r3

c � 1, or equivalently

|a|3 � ξ 2rc. (31)

This is the condition to neglect the right-hand side of Eq. (21)
or equivalently to neglect χ1 relative to χ0. We will see later
that this condition signifies the transition from the weak impu-
rity potential, where Eq. (31) holds true, to the strong potential
including the unitary point a → ∞, where it is violated.

Under the condition (31) A � 1, so obviously we can in-
deed neglect the right-hand side of (22) as we did above.

To compute the energy of the polaron, we can now plug
our solution into Eq. (17). The integral in this formula needs
to be split into two parts, 0 < r < rc and rc < r. It is easy to
see that the contribution of the interval 0 < r < rc, under the
condition (31), is negligible, so we only need to integrate over
r > rc with u = A exp(−√

2z). Performing the integration and
again taking into account Eq. (31) to get rid of some terms
suppressed relative to the main contribution, we find

E = 2πn0a

m
. (32)

This is the well known result for the energy of the polaron at
weak scattering length |a| � ξ . We now see that the validity
condition for this to hold true is Eq. (31).

We can now take advantage of the relationship (3) to find

N = −∂E

∂μ
= −2πa

m

∂n0

∂μ
= − a

2aB
, (33)

where n0 = μm/(4πaB) was used. Alternatively, we could
substitute our solution into Eq. (18) to find the same result

for the number of trapped particles N . This analysis also tells
us that only the negligible number of bosons trapped in the
polaron reside within the potential radius rc. Most of the
bosons reside within the cloud whose size is the coherence
length r � ξ .

2. Strong potential

Suppose now that the potential U is made more attractive
so that its scattering length increases, violating the condition
(31) and eventually reaching infinity at the unitary point. We
can follow the same strategy to obtain the solution in this
case. The new element is that Bethe-Peierls boundary con-
ditions now imply χ ′

0(1) = 0, so we need to solve Eq. (21)
perturbatively, using its right-hand side as a perturbation, to
find nonzero χ ′

1(1) contributing to χ ′(1). The same is true for
Eq. (22).

In the case when a was small, we found earlier that the
amplitude χ0(1) = α, α = 1 − a/rc. This is of the order of 1
when a is very small, but it starts growing as |a| is increased.
When |a|3 ∼ ξ 2rc, α ∼ ε−2/3. We will see that χ (1) remains
of the order of ε−2/3 even as a is taken all the way to infinity,
so it is convenient to introduce the notation

β = αε2/3,

so that

χ0(y) = β

ε2/3
v(y). (34)

Here v is the solution of the Schrödinger equation

−d2v

dy2
+ 2mr2

cUv = 0 (35)

normalized so that v(1) = 1. v′(1) = 0 since U is tuned to
unitarity. β is thus a yet unknown ε-independent normaliza-
tion coefficient.

We will need a correction to this that satisfies

−d2χ1

dy2
+ 2mr2

cUχ1 = −ε2 χ3
0

y2
. (36)

The term ε2χ0 from the right-hand side of Eq. (30) goes as
ε4/3 and can be neglected. At the same time, we see that χ1 is
of the order of ε0. Solving Eq. (36) gives

χ1 = β3v(y)
∫ y

0

ds

v2(s)

∫ s

0

dt v4(t )

t2
.

Putting it together produces

χ = β

ε2/3
v(y) + β3v(y)

∫ y

0

ds

v2(s)

∫ s

0

dt v4(t )

t2
+ · · · . (37)

The next term χ2 which can be obtained by continuing succes-
sive approximations goes as ε2/3. We will not need it here, but
note that it will have an even more complicated dependence
on v and by extension on features of the potential U (r) than
the already obtained term χ1.

From this solution, we find that

χ (1) = β

ε2/3
+ O(1), χ ′(1) = β3c + O(ε2/3), (38)
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where the dimensionless coefficient c is defined via

c =
∫ 1

0

dy v4(y)

y2
. (39)

Now we turn our attention to Eq. (22). Its solution u(z) needs
to be matched with the boundary conditions (38). It is easy to
verify that these boundary conditions imply

u(ε) = βε1/3 + O(ε), u′(ε) = −1 + β3c + O(ε2/3). (40)

Equation (22) differs from Eq. (21) in that its nonlinear terms
do not have an explicit factor of ε in front of them. We will
nonetheless solve Eq. (22) by means of successive approx-
imations, and verify later that this is a legitimate approach.
Without its right-hand side, the solution to Eq. (22) reads as
before,

u0(z) = A e−√
2z. (41)

We can plug it into the right-hand side of Eq. (22), however
we will follow a slightly different procedure. We use Eq. (41)
to rewrite Eq. (22) as an integral equation via a standard
procedure. This involves solving the auxiliary equation

d2u

dz2
− 2u = g(z)

with arbitrary given g(z), then substituting the actual right-
hand side of Eq. (22). We find

u(z) = A e−√
2z + e−√

2z

2
√

2

∫ ∞

z

ds e
√

2s

s
(3u2(1 + u′) +

√
2u3)

− e
√

2z

2
√

2

∫ ∞

z

ds e−√
2s

s
(3u2(1 + u′) −

√
2u3). (42)

We now use this equation to calculate u(ε) and u′(ε) in
perturbative expansion in powers of ε. Anticipating that the
leading behavior A ∼ ε1/3, as should be clear from comparing
Eqs. (41) and (40), we iterate Eq. (42) by plugging u0(z) into
the right-hand side of Eq. (42). The resulting integrals can be
computed in terms of � functions and expanded in powers of
ε. We omit rather lengthy algebra involved, and just state that
this allows us to evaluate u(ε) to find

u(ε) = A + 3 ln 3

2
√

2
A2 − A3 ln ε + O(ε). (43)

We also evaluate u′(ε). Differentiating Eq. (42) gives

u′(z) = −
√

2Ae−√
2z − u3

z

− e−√
2z

2

∫ ∞

z

ds e
√

2s

s
(3u2(1 + u′) +

√
2u3)

− e
√

2z

2

∫ ∞

z

ds e−√
2s

s
(3u2(1 + u′) −

√
2u3). (44)

We can again substitute u0(z) into the integrals on the right-
hand side of Eq. (44) to find

u′(ε) = −
√

2A − β3 + 3A2 ln ε + O(ε2/3). (45)

Here we took advantage of the boundary conditions (40),
which tell us that u(ε) = βε1/3 within the accuracy with
which we work.

Combining Eqs. (43) and (45) with Eq. (40) gives

A + 3 ln 3

2
√

2
A2 − A3 ln ε = βε1/3,

−
√

2A − β3 + 3A2 ln ε = −1 + β3c.

(46)

We now need to solve these equations for A and β perturba-
tively, in powers of ε. Introduce

δ = ε

1 + c
.

The solution to Eq. (46) reads

A = δ1/3 −
(

3 ln 3

2
√

2
+

√
2

3

)
δ2/3 + 2δ ln δ + O(δ),

βε1/3 = δ1/3 −
√

2

3
δ2/3 + δ ln δ + O(δ). (47)

We can now use the parameters we obtained in this way to
calculate the energy and the particle number of the polaron.
It turns out to be technically easier to calculate the particle
number first and then use Eq. (3) to find the energy, which is
the strategy we will follow here.

The excess number of particles due to the polaron is given
by Eq. (18) or

N =
∫

d3x[|ψ |2 − n0] = 4πn0ξ
3
∫ ∞

0
z2dz[φ2 − 1].

It is natural to split the integral over z into two intervals, from
0 to ε and from ε to infinity. Now the contribution of the first
interval can be safely neglected. Indeed, it gives∫ ε

0
z2dz[φ2 − 1] = ε3

∫ 1

0
dy

(
χ2

y2
− 1

)
∼ ε5/3.

Here we used that χ (y) ∼ 1/ε2/3. This contribution is very
small and exceeds the accuracy in ε with which we were
doing our calculations. This also indicates that the bulk of
the particles bound by the impurity are located farther than
distance rc away from the impurity. The contribution of the
second interval gives∫ ∞

ε

z2dz
((

1 + u

z

)2
− 1

)
. (48)

To evaluate this integral, we again iterate Eq. (42) once to find
u up to the terms of the order of A2, and we substitute that into
Eq. (48). The result of this evaluation is

N = 4πn0ξ
3

(
δ1/3 − 5

3
√

2
δ2/3 + 2δ ln δ + · · ·

)
. (49)

It should be clear that all these excess particles reside roughly
within the cloud whose size is given by the coherence length
of the condensate ξ , similarly to the polaron at weak impurity
potential, Eq. (33). Only a negligible number of bosons reside
within the impurity potential at distances r � rc.

Thus we evaluated the number of particles trapped in the
polaron up to terms of the order of δ ln δ. To go beyond this
order, starting from terms of the order of δ and beyond rep-
resented by the dots above, we would need to go beyond the
terms presented in Eq. (37). We expect that this will produce
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terms that depend on the features of the potential other than
the coefficient c.

To construct the energy of the polaron, it is easiest at this
stage to take advantage of Eq. (3). The subtlety in evaluating
the derivative there is that the particle number n0 as well as
ξ have to be traded for μ before differentiating. Doing the
algebra, we arrive at

E = −πn0ξ

m
(3δ

1
3 − 2

√
2δ

2
3 + 4δ ln δ + · · · ). (50)

This constitutes the answer that we seek, namely the energy of
the polaron at unitarity as an expansion in powers of δ ∼ rc/ξ .
Finally, let us examine δ = ε/(1 + c) in a little more detail.
From the definition of c given in Eq. (39), we can write

1 + c = 1 + rc

∫ r0

0

dr v4

r2
= rc

(∫ ∞

rc

dr

r2
+

∫ rc

0

dr v4

r2

)
.

v is the solution of the Schrödinger equation with the potential
tuned to unitarity, so that v′(rc) = 0. Since it is normalized
such that v(rc) = 1, it will naturally satisfy v(r) = 1 for all
r � rc.

Therefore, we can rewrite this as

1 + c = rc

∫ ∞

0

dr v4

r2
.

Now

δ = ε

1 + c
= 1

ξ
∫ ∞

0
dr v4

r2

.

It is now convenient to define

R−1 =
∫ ∞

0

dr v4

r2
=

∫
d3x

4π
|ψ0|4, (51)

where ψ0 = v/r is the solution of the Schrödinger equation

− 	

2m
ψ0 + Uψ0 = 0.

R constitutes a properly defined range of the potential, finite
even for potentials that extend all the way to infinity, which
correctly captures its extent for the purposes of solving the
polaron problem.

This gives us a definition

δ = R

ξ
. (52)

At this stage, rc drops from the equations and no longer needs
to be finite. It can be taken to infinity if desired, with the an-
swer for the energy of the polaron (50) as well as the number
of particles trapped in the polaron (49) expressed entirely in
terms of δ = R/ξ .

Finally, we remark that for small δ, only the first terms in
the expressions (49) and (50) should be retained. Then these
two expressions can be rewritten in the form (6) and (5) given
earlier by expressing ξ in terms of aB.

3. Perturbing away from unitary point

We can go further and generalize the above analysis to ac-
count for the small deviations away from unitarity using a 1/a

expansion. To accomplish this, it is convenient to parametrize
a by a new variable η according to

η = r1/3
c ξ 2/3

a
. (53)

Declaring η � 1 is equivalent to saying that we are in the
strongly interacting regime [compare with the condition (31),
which is violated once we cross over from weak to strong
potentials, as explained earlier]. We then proceed to work
out the expansion in powers of η. The advantage of this
reparametrization is due to the form that Bethe-Peierls bound-
ary conditions take. Indeed, Eq. (26) at large a, where close to
unitarity we should write α = β/ε2/3, implies

β

ε2/3
(
1 − a

rc

) ≈ − βrc

ε2/3a
= −βη. (54)

Because rc/a ∼ ε2/3, the correction to the nonlinear term and
that to the right-hand side of the top equation in (46), which
arise from the correction to v(y) in Eq. (37), are of higher
order in powers of ε and thus can be neglected. Thus slightly
away from unitarity, the only modification to the formalism
presented in the previous section is the addition of the −βη

term to the right-hand side of the second equation in (46):

A + 3 ln 3

2
√

2
A2 − A3 ln ε = βε1/3,

−
√

2A − β3 + 3A2 ln ε = −1 − βη + β3c.

(55)

Notice that now in order to find the leading term in the
expansion of β in powers of ε, we have to solve the cubic
equation:

β3
0 (1 + c) − β0η − 1 = 0.

The number of real roots of this equation depends on the value
of the discriminant 	 = 4( η

1+c )3 − 27
(1+c)2 . If 	 > 0, there are

three real roots, and if 	 < 0, there is only a single real root.
The critical value of η is obtained by setting 	 = 0, and it
gives ηc = ( 27(1+c)

4 )1/3 > 0. A positive value of η corresponds
to a positive value of the scattering length, which means that
we are in the regime where the potential has a single bound
state. It is known that when a potential admits ν number of
bounds states, then the GP equation can have up to 2ν + 1
solutions [24]. This means that the approach outlined above
can in principle be used to construct other solutions for the GP
equation, but since we are interested only in the ground-state
physics, we do not consider them here. Instead, just as already
elaborated on earlier, we are going to assume that |η| � 1, so
that we are in the regime where there is only a single solution
and we can do an expansion in η on top of the expansion
in ε. The first-order correction in 1/a corresponds to the
first-order correction in η. Note that the case of a large and
positive scattering length corresponds to the presence of the
bound state with energy Ebinding = − 1

2ma2 . Since rc/a = ηε2/3,
in order to capture 1/a2 effects we would need to construct
further corrections to the matching equations that would in-
clude higher powers of ε and therefore depend on other details
of the potential. Therefore, in the lowest-order approximation
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in η that we are going to employ, we are not sensitive to the
presence of the bound state even if a is positive.

Section VII further elaborates on what we expect to hap-
pen in the regime where a > 0 and a bound state is present
once we move away from the unitary point. In particular, we

expect that in this regime the behavior of the polaron strongly
depends on the details of the impurity-boson potential U .

Let us go back to staying in the vicinity of the unitary point
by demanding |η| � 1. Since η

(1+c)1/3 = δ1/3ξ

a , the solution to
the system (55) reads

A = δ1/3

(
1 + δ1/3ξ

3a

)
−

(
3 ln 3

2
√

2
+

√
2

3

)
δ2/3 − ξδ√

2a
ln 3 + 2

(
1 + 2δ1/3ξ

3a

)
δ ln δ + O(δ),

βε1/3 = δ1/3

(
1 + δ1/3ξ

3a

)
−

√
2

3
δ2/3 +

(
1 + δ1/3ξ

3a

)
δ ln δ + O(δ). (56)

Note that at this step rc dropped out just like it did in the previous subsection of this paper, getting replaced by R via the
definition (52). R is defined even with potentials that extend all the way to infinity, so the results obtained here, just as elsewhere
in this paper, are valid as long as R can be defined via Eq. (51) and is finite.

Repeating the same steps that lead to (49) and (50), we finally obtain the expression for the number of trapped bosons and the
energy of the polaron:

N = 4πn0ξ
3

[
δ

1
3 − 5

3
√

2
δ

2
3 + 2δ ln δ + · · · + ξδ

1
3

3a
(δ

1
3 −

√
2δ

2
3 + 4δ ln δ + · · · )

]
,

E = −πn0ξ

m

[
3δ

1
3 − 2

√
2δ

2
3 + 4δ ln δ + · · · + ξδ

1
3

a

(
2δ

1
3 − 4

√
2

3
δ

2
3 + 4δ ln δ + · · ·

)]
. (57)

We verify the above expressions by numerically solving the
GP equation (16), where we choose U to be the square-well
potential. The analytic expression for the scattering length in
this potential is well known, so it is easy to tune the strength
of the potential to get the desired value of a. Far away from
impurity, one can use the asymptotic solution φ = 1 + u

z ,
where u is given by Eq. (27). With two values of parameter
A, namely Amin and Amax, our algorithm performs the Newton
bisection until we find the value of A such that the derivative
of the solution at the origin is zero. The graphs of the polaron
energy and the number of trapped bosons slightly away from
unitarity are presented in Figs. 1 and 2.

FIG. 1. Polaron energy E away from unitarity for the square-well
impurity-bath potential computed at two different values of δ. The
two solid lines correspond, from top to bottom, to δ1/3 = 0.02 and
0.04. The dashed black lines correspond to the analytical expression
given by Eq. (57). The energy is plotted in units of Eξ = ξn0/(2m).

4. a/ξ corrections for weak potentials

Now that we have established the machinery for solving
the GP equation in both regions, let us revisit the case of
the weak potential and find the next-order correction to the
energy (32) in powers of the scattering length a. Note that
the contribution to the energy from the first interval goes in
powers of a/rc, while in the second interval it is in powers
of a/ξ = aε/rc, so in principle the energy expansion should
be in powers of ( a

rc
)iε j . Moreover, from the equation one

can show that the contribution of the region z ∈ [0, ε] to the
energy goes as ∼ n0a

m (ε + a
ξ
ε), while the region z ∈ [ε,∞]

FIG. 2. Number of trapped bosons N (in units of Nξ = ξ 3n0)
away from unitarity for the square-well impurity-bath potential com-
puted at two different values of δ. The two solid lines correspond,
from bottom to top, to δ1/3 = 0.02 and 0.04. The dashed black lines
correspond to the analytical expression given by Eq. (57).
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contributes ∼ n0a
m (1 + a

ξ
), so in the limit ε → 0, only the sec-

ond region is important. The ∼a2 contribution to the energy
comes from the a2

r2
c
ε2 term, so in order to find the energy up

to order a2, one needs to find the expression for the ampli-
tude A in the second region up to order ε2. The structure
of equations in (28) tells us that the matching of amplitudes
determines A, while the matching of derivatives determines
α. Since we need to know only A up to order ε2, we need to
correct the first equation by the terms of order ε2, while the
second only by the terms of order ε. Notice that iteration of
the right-hand side of Eq. (22) will produce terms of higher
order than we need, so this tells us that the result should be
independent of the further details of the potential. Having in
mind that A ∼ ε, in the second interval we expand Eq. (42) up
to ε2 terms to produce

A + 3 ln 3

2
√

2
A2 −

√
2εA = ε(α − 1),

−
√

2A = α

1 − a
rc

− 1.

(58)

Looking for the solution of this system in the form α =
α0 + εα1 and A = εA0 + ε2A1, we get

α = 1 − a

rc
+

√
2

a

rc

(
1 − a

rc

)
+ O(ε3 ln ε),

A = − a

rc
ε − (4 + 3 ln 3)

2
√

2

( a

rc
ε
)2

+ O(ε3 ln ε). (59)

The energy of the polaron is given by

E= − λ

2

∫
d3x

(|ψ |4 − n2
0

) = −2πλn2
0ξ

3
∫ ∞

0
dz z2(φ4 − 1).

(60)

The region from 0 to ε does not contribute, while the
second interval produces∫ ∞

ε

dzz2
((

1 + u

z

)4
− 1

)
. (61)

Once again, we use Eq. (42) with A given by Eq. (59) to
compute the integral in Eq. (61) and expand the result up to ε2

terms. Plugging this into Eq. (60), we finally produce

E = 2πn0a

m

(
1 +

√
2a

ξ
+ · · ·

)
. (62)

The second term in the parentheses was obtained before in
Ref. [32]. This shows that the GP approach discussed above
is well suited for studying both weak potentials and potentials
tuned to unitarity.

5. Quasiparticle properties of the Bose polaron

Having established the expressions for the solution of the
GP equation, now we can compute other key quasiparticle
properties such as quasiparticle residue Z and Tan’s contact
C. This was already reported in Ref. [26]. Let us reproduce it
here for completeness.

The residue Z quantifies the overlap between the solutions
in the presence and absence of the impurity. Within the GP

treatment, this is given by [33]

ln Z = −
∫

d3x |ψ (x) − √
n0|2.

At unitarity, the above analysis shows that to leading order,

ln Z = −
√

2πn0ξ
3δ2/3 + · · · .

Another key quasiparticle property is the impurity-bath Tan
contact, which quantifies the change in the polaron energy in
response to a small change of the inverse scattering length,

C = −8πm
∂E

∂ (a−1)
.

Using the expression (57) for energy of the polaron slightly
away from unitarity, we obtain

C = 16π2n0ξ
2

(
δ2/3 − 2

√
2

3
δ + 2δ4/3 ln δ + · · ·

)
. (63)

We note that an alternative definition of the contact is based on
the impurity-bath density-density correlator evaluated at the
core radius, C̃ = 16π2r2

c |ψ (rc)|2. Using the expression (47)
for the amplitude β of the GP equation at the core radius,
it is easy to show that both expressions for contact agree
in the universal regime, where the effects of impurity-boson
potentials are captured by a single parameter δ.

B. Summary: The solution of the Gross-Pitaevskii equation

We collect here the main features of the solutions worked
out above. In the previous subsection, we obtained the solution
to the GP equation (16) both when the scattering length in the
potential U was small and when the potential U was tuned
to unitarity. In the latter case, we could obtain the analytic
solution when the range of the potential R was much smaller
than the scattering length ξ , as an expansion in powers of R/ξ

which corresponded to the asymptotic behavior of the polaron
in a very weakly interacting condensate.

The method discussed above allows us in principle to find
the solution for any negative scattering length, from small a
to infinite a. However, the general expression is cumbersome.
Here we only give the answer in the limiting cases of small a
and large a.

Let us summarize how the solution looks. In all cases, the
normalized solution φ = ψ/

√
n0 to the GP equation

−	φ

2m
+ Uφ = μφ(1 − |φ|2)

is constructed out of a reference function v(y), which is the
solution of the zero-energy Schrödinger equation

−d2v

dy2
+ 2mr2

cU (y) v = 0. (64)

Here y = r/rc, where rc is the radius of the potential, so that
U (r) = 0 for all r > rc or y > 1. v(0) = 0, while v(1) = 1.

When a is small so that

|a|3 � ξ 2rc, (65)
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the solution is

φ(r) ≈
{

rc
r

(
1 − a

rc

)
v
(

r
rc

)
, r < rc,

1 − a
r e−

√
2r
ξ , r > rc.

(66)

This can be extracted from Eqs. (24), (27), and (29). Note that
Eq. (66) is valid even if a/rc > 1, as long as Eq. (65) is valid.

On the other hand, if

|a|3 � ξ 2rc, (67)

then the solution is

φ(r) ≈
{

ξ 2/3R1/3

r v
(

r
rc

)
, r < rc,

1 + ξ 2/3R1/3

r e−
√

2r
ξ , r > rc.

(68)

This in turn can be extracted from Eqs. (34), (41), and (47).
Clearly the solution behaves as if when |a| is increased past

ξ 2/3R1/3, a needs to be simply replaced by −ξ 2/3R1/3 in the
solution.

The energy and the particle number corresponding to this
solution have been worked out above in Eqs. (49) and (50),
and summarized in Eqs. (5) and (6). We also worked out
perturbative corrections to the solution for small a and for
large a in Secs. III A 4 and III A 3, respectively, with the
results for the energy in particular summarized in Eqs. (62)
and (57).

IV. FLUCTUATIONAL CORRECTIONS TO THE
GROSS-PITAEVSKII EQUATION

Let us look at the condensate density at and nearby the
point where impurity is located. This can be extracted from the
solution of the GP equation found above. The density grows
as one approaches the center of the polaron. At r < rc, the
solution is given by Eq. (34). Here v is the solution of the
Schrödinger equation (35), so it takes values of the order of 1
for all 0 < r < rc. The magnitude of the solution is controlled
by the coefficient in front of v(y), which is of the order of
1/ε2/3. Therefore, the density of the condensate at the origin
is roughly

n(0) ∼ n0

ε4/3
.

We can now estimate the gas parameter at the position of the
impurity,

n(0)a3
B = n0ξ

4/3a3
B

R4/3
∼ n(0)1/3 a7/3

B

R4/3
.

The condition that this parameter is small, or
n0

ε4/3
a3

B � 1, (69)

is equivalent, upon expressing ε in terms of n0, aB, and R, to

R � aB
(
n0a3

B

)1/4
. (70)

Under this condition, the gas remains weakly interacting ev-
erywhere, including at the position of the impurity. We expect
that the fluctuational corrections remain small under these
conditions, and the results obtained from GP equation remain
valid.

Let us briefly note that the criterion (70) puts a lower
bound on R. But at the same time, our solution of the GP

equation relied on R being much smaller than ξ . This criterion
can be rewritten as

δ = R

ξ
∼ R

aB

√
n0a3

B � 1.

Combining this with Eq. (70), we find the window of R where
our approach works, given by

(
n0a3

B

)1/4 � R

aB
� 1√

n0a3
B

,

as was advertised earlier in Eq. (4). Let us now present the
formalism where we formally derive this criterion. We follow
the standard approach to fluctuations in a weakly interacting
Bose gas. Denote the solution to the GP equation (16) as ψ0

and write

ψ = ψ0 + ϕ. (71)

We now substitute this into the action (11) and expand the
action up to the quadratic terms in ϕ. These steps are standard
in the theory of weakly interacting Bose gas. The only new
aspect of this problem here is the impurity potential U present
in our theory. The result of the expansion reads

Sq =
∫

d3x dτ

[
ϕ̄

(
∂τ − μ − 	

2m
+ U + 2λψ2

0

)
ϕ

+ λ

2
ψ2

0 (ϕ2 + ϕ̄2)

]
. (72)

Here Sq denotes the part of the action quadratic in the field ϕ.
This action can now be used to calculate the density of

particles that are expelled from the condensate by interactions
and are not contained within the solution to the GP equation.
This density must be much smaller than the density contained
within the solution to the GP equation in order for the mean-
field approximation which led to the GP equation to remain
valid. In the absence of the potential U , this calculation is
standard and the answer is given in textbooks, leading to the
criterion n0a3

B � 1 as the condition for the applicability of
the GP equation. Our aim is to repeat this calculation in the
presence of the impurity potential U .

The density of particles can be accessed via calculating
the Green’s functions of the field ϕ. As is standard in this
approach, we define the matrix of Green’s functions G which
include both normal and anomalous Green’s functions, ac-
cording to

G(x1, x2, τ ) = −
(〈ϕ(x1, τ )ϕ̄(x2, 0) 〉〈ϕ(x1, τ )ϕ(x2, 0) 〉

〈 ϕ̄(x1, τ )ϕ̄(x2, 0) 〉〈 ϕ̄(x1, τ )ϕ(x2, 0) 〉
)

.

It is convenient to work with G in the frequency domain, by
Fourier transforming it over τ resulting in G(x1, x2, ω). Note
that it is not as straightforward to Fourier transform G in space,
because the presence of the impurity makes G dependent on
both x1 and x2 and not just on their difference, as would have
been the case in the Bose-Einstein condensate without the
external potential U .

G satisfies the following matrix equation:

X (x1)G(x1, x2, ω) = −δ(x1 − x2), (73)
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where X is the operator-valued matrix

X =
(−iω − 	

2m − μ + U + 2λψ2
0 λψ2

0
λψ2

0 iω− 	
2m − μ + U + 2λψ2

0

)
. (74)

In the definition of X , the Laplacian 	 implies differentiation
over x1, while ψ0 and U depend on x1. These equations are
difficult to solve exactly given this explicit x1 dependence.

Instead of trying to solve these exactly, we employ the local
density approximation. That includes working with a Wigner
transform of G defined as

G(x, p, ω) =
∫

d3y G(x + y/2, x − y/2, ω) e−iy·p.

This object can be calculated approximately by replacing 	

[Eq. (74)] by −p2 and working with it as if V and ψ0 are
constants, despite their explicit dependence on x1. Within this
approximation, G(x, p, ω) is given simply by the inverse of
this matrix derived from X ,(−iω+ p2

2m − μ + U + 2λψ2
0 λψ2

0

λψ2
0 iω+ p2

2m − μ + U + 2λψ2
0

)
.

In particular, the upper left corner of that inverse defines the
usual normal Green’s function and gives

G(x, p, ω) = − iω + p2

2m − μ + U (x) + 2λψ2
0 (x)

ω2 + ( p2

2m + U (x) + λψ2
0 (x)

)2 − λ2ψ4
0

.

(75)
Equation (75) is by no means exact. It is the result of the

local density approximation, which relies on ψ0(x) and U (x)
being slowly varying on the scale of the coherence length
ξ , which itself defines the values of the typical momenta p.
Because of this, it is sometimes also referred to as the gradient
expansion, with Eq. (75) being the first term in it. An explicit
procedure allowing to compute further terms in this expansion
is available, but it will not be needed here.

Now in practice ψ0(x) varies roughly on the scale of ξ ,
so it is at the limit of the applicability of the local den-
sity approximation. U (x) varies on the scale of r0 � ξ so it
definitely breaks the conditions of applicability of Eq. (75).
Nonetheless, in the absence of a better and equally accessible
technique, and mindful that our goal is not to calculate the
fluctuational particle density but just to estimate it, we will
continue the calculation using Eq. (75).

To calculate the density of particles due to fluctuations, we
need to calculate δn = 〈 ϕ̄(x, 0)ϕ(x, 0) 〉. This can be found by
the following succession of steps. First we evaluate

− lim
τ→0−

∫
dω

2π
G(x, p, ω) e−iωτ ,

with the result

δn(x, p) =
p2

2m − μ + U (x) + 2λψ2
0 (x) − E (p, x)

2E (p, x)
,

where

E (p, x) =
√(

p2

2m
− μ + U (x) + 2λψ2

0 (x)

)2

− λ2ψ4
0 (76)

can be interpreted as a local in space dispersion of the
Bogoliubov quasiparticles. The density of particles due to
fluctuations can be evaluated using

δn(x) =
∫

d3 p

(2π )3
δn(x, p). (77)

To evaluate the remaining integral over the momentum, we
need the explicit form of ψ0. Let us do it at U tuned to
unitarity. We can then use Eq. (68) for ψ0. In particular, with
r representing the distance of the point x to the origin, for
r � rc we use that

λψ2
0 ≈ μ

(
1 + 2ξ 2/3R1/3

r
e−

√
2r
ξ + · · ·

)
. (78)

At the same time, at these values of r beyond the range of the
potential, U = 0. This can be substituted into the integral in
Eq. (77), and the integral can be evaluated perturbatively in
powers of the second term in Eq. (78), which is small when
r � rc. Denoting this term as

ζ = 2
ξ 1/3R2/3

r
e−

√
2r
ξ ,

we find

δn(x) = δn0 + (mμ)3/2

32
ζ ln ζ .

Here δn0(x) is the standard answer for the density of particles
expelled from the condensate in the absence of any external
potential, given by δn0 = −4(mμ)3/2/(3π2).

Let us compare the density of particles expelled from the
condensate to the excess density of particles in the GP solution
compared to the density in the absence of impurity. The latter
is extracted from Eq. (78) and is simply n0ζ . Thus the condi-
tion that the density of particles expelled from the condensate
is much smaller than the density in the solution to GP solution
is

(mμ)3/2ζ ln ζ � n0ζ . (79)

Recalling that μm ∼ n0aB and neglecting the logarithm in
(79), this is equivalent to

n0a3
B � 1.

Thus we arrive at the conclusion that at r � rc the fluctua-
tional corrections to the solution of the GP equation are small
simply if the interactions in the Bose gas are weak.

Now suppose we bring r close to rc. At this point U is
still zero, but the estimate for λψ0 again taken from Eq. (68)
produces

λψ2
0 ∼ μ

ε4/3
.

Evaluating Eq. (77) again produces

δn(x) ∼ (mμ)3/2

ε2
.
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The condition that this is much smaller than the density from
the GP solution gives

(mμ)3/2

ε2
� n0

ε4/3
.

Again using mμ ∼ n0aB, we rewrite this as

n0a3
B

ε4/3
� 1,

equivalent to Eq. (69). Note that this is stronger than just re-
quiring the gas to be weakly interacting. Thus we reproduced
the condition (70) introduced earlier by qualitative reasoning.

In Ref. [25] it was stated that a GP approach should be valid
only when the number of bosons trapped within the radius of
the potential is large, i.e., when n(0)r3

c � 1. However, this
criterion does not appear within our approach. For the GP
approach to be valid, one simply needs to ensure that quantum
fluctuations are negligible everywhere, including within the
potential range. As demonstrated in detail throughout this
section [see the discussion around Eq. (70)], this leads to the
first of the two inequalities in Eq. (4).

Finally, we note that if r < rc, the energy spectrum (76)
becomes poorly defined for small enough p � 1/r0 due to
U ∼ −1/(mr2

0 ). This is to be expected as the local density
approximation should break down for such small r. One way
to get around it is to restrict the momenta in the integral in
Eq. (77) to be larger than 1/r0. However, this would consti-
tute an uncontrolled approximation and would in any case
be beyond what we need to obtain the rough estimate of the
fluctuations, the task that we already accomplished by limiting
r to r > rc.

V. FINITE-RANGE BOSON-BOSON POTENTIAL

Here we would like to discuss the effects of a finite-ranged
Vbb on the solution to the GP equation when the impurity
potential U is close to the unitary limit. We will see that,
as promised earlier, these effects are mild and mostly quan-
titative, without changing the main qualitative aspects of the
solution.

A finite-ranged Vbb changes the GP equation (16) to read(
− 	

2m
+ U (x) − μ +

∫
d3y Vbb(x − y)|ψ (y)|2

)
ψ (x) = 0.

(80)
We note here that understood literally, this is only true if
Vbb satisfies the conditions of applicability of the Born ap-
proximation. For example, if V represents the scale of this
potential, and rb is its range, we would need to require that
V � 1/(mr2

b ). Equivalently, we could require that the scatter-
ing length aB in this potential is much shorter than its range,
aB � rb. If we would like to work with potentials that do not
obey the conditions of applicability of the Born approxima-
tion, the potential Vbb in Eq. (80) should be replaced by the
T -matrix of this potential, as is well known [34]. Conversely,
for potentials that do obey Born approximation conditions, the
T -matrix reduces back to the potential itself. In what follows,
we will assume that the potentials we work with satisfy the
Born approximation conditions.

Remember that in the local theory we described above,
the expansion was constructed by matching the asymptotic

solution far away from the impurity with the solution in the
region r < rc. For the theory at hand, the asymptotic behavior
of the solution in the regime r � rc is expected to be roughly
the same as in the local case, provided that ε � 1 and rb � rc.
The leading-order solution in the region r < rc is independent
of rb, and since the structure of the higher-order perturbative
terms depends on the structure of the solutions discussed
above, we expect that the effect of the nonlocal interaction is
to modify the perturbative terms without changing the scaling
in ε. More formally, the structure of the system of Eqs. (46) is
such that all numeric coefficients are of the order of unity,
and this allows us to solve the system in powers of ε1/3.
The nonlocal generalization would introduce more terms that
should depend on rb/rc. Provided that rb/rc ∼ 1, we can still
solve the resultant system of equation in powers of ε1/3, so the
expansion for energy and the number of the trapped bosons
would have a similar form to that in the local scenario, but the
values of the coefficient cannot be determined analytically. As
such, we performed extensive numerical evaluations of this
equation.

First, the energy of the polaron is given by

E = −1

2

∫
d3x d3y Vbb(x − y)

[|ψ (x)|2|ψ (y)|2 − n2
0

]
. (81)

Here n0 is the uniform density of the gas in the absence of
the impurity. The number of trapped bosons is given by the
same expression as in the local GP theory, Eq. (18), or

N =
∫

d3x[|ψ |2 − n0]. (82)

To make contact with our previous discussion of the zero-
ranged boson-boson potentials, it is convenient to define Vbb in
such a way that we formally retrieve the expression given by
(7) once the range rb of the boson-boson interaction is taken
to zero. This also implies that n0 = μ

λ
as for the local case. In

our numerical study, we will use a purely repulsive Gaussian
boson-boson potential of the form

Vbb = λ

π3/2r3
b

e
− (x−y)2

r2
b . (83)

An advantage of using this potential is that for spherically
symmetric solutions, one can explicitly perform the angular
integration on the right-hand side of Eq. (80), so the resultant
equation becomes one-dimensional. For the potential given in
(83), this gives

∫
d3yVbb(x − y)|ψ (y)|2

→ λ√
πrbx

∫ ∞

0
y dy e

− (x−y)2

r2
b (1 − e

− 4xy

r2
b )|ψ (y)|2. (84)

Since the GP theory treats the boson-boson potential in
the Born approximation, the relation between the coupling
constant λ and the boson-boson scattering length aB is the
same as in the local theory: λ = 4πaB/m.
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FIG. 3. Solution of the nonlocal GP equation for various values
of γ (increasing, from bottom to top) at fixed ε = 0.05. Figures 3–6
correspond to the case when boson-impurity potential is tuned to
unitarity. The radial coordinate is in units of rc, and the plot is
obtained with radial step size 	r = rc/25.

To find the ground state of Eq. (80), we perform evolution
in imaginary time τ :

−∂τψ = − 1

2m

(
∂2ψ

∂x2
+ 2

x

∂ψ

∂x

)
+ [U (x) − μ]ψ (x)

+ λψ (x)√
πrbx

∫ ∞

0
y dy e

− (x−y)2

r2
b

(
1 − e

− 4xy

r2
b

)
|ψ (y)|2.

(85)

Here the initial state at τ = 0 is taken to be the solution
of the GP equation (16) given by Ref. (68). As τ → ∞, this
produces the solution to Eq. (80). We discretize the spatial
part of the above equation, so that (85) becomes a system of
coupled nonlinear equations. The continuum limit is retrieved
by extrapolating numerical results to zero step-size.

It is convenient to introduce a new dimensionless parame-
ter γ = rb

rc
, so that in the limit γ → 0 we retrieve the original

GP equation. Carrying out the numerical procedure, we find
that for the fixed value of ε, as we increase γ from zero to
some finite value such that γ ∼ 1, the solutions to Eq. (80)
evolve in such a way that the amplitude of the solution at
the origin is an increasing function of γ , and all solutions ap-
proach the same asymptotic value far away from the impurity
as indicated in Fig. 3. Equation (82) tells us that for a fixed rc

and ξ , increasing rb increases the number of trapped particles,
which in turn lowers the energy of the polaron.

We test this assertion numerically by studying the scaling
of the amplitude at the origin, and we show that it indeed
scales as ∼ε−2/3, as is shown in Fig. 4.

The discussion above shows that introducing a finite-
ranged boson-boson interaction introduces quantitative but
nonqualitative changes to the problem. It is interesting now
to study what happens if one tries to shrink the other range
in the problem, the one between the bosons and the impurity.
To do so, we decrease rc at fixed rb and ξ . In the language
of ε and γ , this corresponds to the limit ε → 0, γ → ∞
with εγ kept fixed, which is the limit of a contact boson-

FIG. 4. Scaling of the amplitude of the nonlocal GP equation at
the origin for various values of γ (increasing, from bottom to top).
Plot obtained extrapolating simulations to zero radial step size 	r.
All lines are parallel to the γ = 0 line, which has ∼ε−2/3 scaling
predicted by local theory, indicating that this scaling survives when
γ is small.

impurity interaction. Figure 5 shows that making the range of
the impurity potential smaller, while keeping the range of the
boson interaction and the healing length fixed, significantly
increases the density at the origin. This is consistent with
the expectation that making the potential softer will decrease
the effective repulsion between bosons, and as a result more
bosons will be attracted to the impurity. We would like to note
that, as emphasized earlier in Sec. IV, at a very high density
of the condensate at the origin we should treat the solution to
the GP equation with care. Indeed, once n(0)a3

B � 1 the entire
approach of the GP equation breaks down.

In the intermediate regime, where rb � rc at fixed rb/ξ , we
studied the scaling of the amplitude at the origin and found
that it follows the ∼ε−2/3 scaling as is shown in Fig. 6. Thus
in the limit rb � rc and even rb ∼ rc, we expect that solutions
to the GP equation will look qualitatively similar to the rb = 0

FIG. 5. Amplitude of the wave function close to the impurity
for various values of ε (increasing, from bottom to top). Solid
lines show the result of the nonlocal theory with boson-boson range
rb = rc/(4ε) (equivalently εγ = rb/ξ = 1/4), while dashed lines are
obtained setting rb = 0 (i.e., they are obtained from the usual local
GP equation). The radial coordinate is in units of rc.
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FIG. 6. Amplitude of the wave function obtained in the case
rb � rc. The dashed line shows the result for γ = 0.0025/ε, while
the solid line shows the result of the local GP equation (γ = 0).

case explored analytically. Numerics shows that when γ = 1,
the energy of the polaron is about 10% lower than when γ

equals 0.

VI. EXPANDING ABOUT THE UNPERTURBED
CONDENSATE

An alternative method of evaluating the functional integral
(12) exists. Instead of calculating it by the saddle point ap-
proximation, that is, by minimizing the action and expanding
it about the minimum, we expand about a flat unperturbed
condensate

ψ = √
n0 =

√
μ

λ
, (86)

ignoring at first the polaron potential U . Unlike the approach
discussed in the previous section, this method is an uncon-
trolled approximation. It turns out that it produces the correct
answer only if the scattering length a of the potential U
describing impurity-boson interactions is sufficiently small.
However, in principle this method produces an answer [given
below in Eq. (98), first appearing in Ref. [28]] that one could
attempt to use for arbitrary values of a. In fact, this expres-
sion for the polaron energy already appeared in the literature
before, obtained using a variety of different techniques. Here
we argue that this answer breaks down as a becomes larger,
and is entirely incorrect as the potential is tuned to unitarity
where a is infinity, despite some claims in the literature to the
contrary.

To apply this method to our problem, it is convenient to
begin by introducing a Hubbard-Stratonovich field. To do that
consistently, we will focus only on the case when the attractive
potential U is negative everywhere, U (r) < 0. We can then
write

e
∫

dτd3x U ψ̄ψ =
∫

Dd e
∫

dτd3x (d̄ψ+ψ̄d+U −1d̄d ). (87)

With this done, we apply the expansion about the unperturbed
condensate into the functional integral defined in Eq. (12). We
write

ψ = √
n0 + ϕ. (88)

Then we expand the action in powers of ϕ, keeping
only quadratic terms, which corresponds to the Bogoliubov
approximation to the weakly interacting Bose gas. We em-
phasize that it is this step that is approximate, and as we will
discuss later, this step breaks down if the potential is strongly
attractive.

This produces the following functional integral:

∫
Dϕ Dd exp

(
−

∫
d3x dτ

[
ϕ̄

(
∂

∂τ
− μ − ∇

2m

)
ϕ + μ

2
(ϕ2 + ϕ̄2) + μϕ̄ϕ − √

n0(d + d̄ ) − d̄ϕ − ϕ̄d − U −1d̄d

])
. (89)

Crucially, this integral is Gaussian, so it can be calculated
exactly. This is what we are going to do now. We first integrate
out bosonic fluctuations ϕ. With the standard definition of the
Fourier transform

d (τ, r) = T
∑
p,ω

d (ω, p) e−iωτ+ip·r, (90)

we work in the frequency-momentum domain and find the
effective action

S

V
= −√

ρ(d (0) + d̄ (0)) + T
∑
ω,p

Gnd̄ (ω, p)d (ω, p)

+ T

2

∑
ω,p

Ga(d (ω, p)d (−ω,−p) + d̄ (ω, p)d̄ (−ω,−p))

+ T
∑
pq

U −1(p − q)d̄ (ω, p)d (ω, q). (91)

Here ω = 2πnT are the usual bosonic Matsubara frequen-
cies, d (0) above implies d calculated at both zero frequency
and momentum, and Gn and Ga are normal and anomalous
Green’s functions of the Bose gas in the Bogoliubov approxi-
mation,

Gn = − iω + p2

2m + μ

ω2 + ( p2

2m + μ
)2 − μ2

, (92)

Ga = μ

ω2 + ( p2

2m + μ
)2 − μ2

. (93)

We note that at nonzero frequencies, S is quadratic in fields,
while at zero frequency it includes a linear term. Therefore,
the most important contribution will come from the zero-
frequency terms. To integrate over zero-frequency terms, we
minimize the action, solve the resulting equation, and sub-
stitute back into the action. Minimizing gives the following
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equation:

−
√

ρ

T
U (p) + d (p) +

∑
q

U (p − q)[Gn(q)d (q)

+ Ga(q)d̄ (−q)] = 0, (94)

where everything is now at zero frequency. Look for a solution
in terms of a real function d (r), or in other words d (p) =
d̄ (−p), and denote

f (p) = T
d (p)

2μ + p2

2m

. (95)

Then Eq. (94) can be rewritten in the position space as

√
n0 U +

(
− 	

2m
+ 2μ + U

)
f = 0. (96)

We now note that this is simply the expansion of the GP
equation (16) about the flat solution. In other words, Eq. (96)
can be obtained from Eq. (16) by substituting ψ ≈ √

n0 + f
and expanding in powers of f . This should already tell us that
the applicability of the method we are using is limited, since
f is not always small.

Ignoring this issue for now, we note that once Eq. (96) is
solved, the solution needs to be substituted back into Eq, (91)
to find the action

S = −V
√

n0 d (0), (97)

which constitutes the answer obtained in this calculation.
We now know enough about the solution to the full GP

equation to easily solve Eq. (96). For 0 < r < rc we can
neglect μ. The solution is then simply

f√
n0

= −1 + B
v

r
,

where v, as defined earlier, is the solution of the zero-energy
Schrödinger equation (64), normalized as explained after
Eq. (64), and B is yet some unknown constant.

At r > rc the potential vanishes and the solution to Eq. (96)
reads

f√
n0

= A

r
e−√

2r/ξ .

We now match these by taking advantage of the Bethe-Peierls
boundary conditions satisfied by v,

−rc + B = A, −A
√

2/ξ = −1 + B/(rc − a).

Solving these in the limit rc � ξ , we find

A = ξ√
2 − ξ/a

, B = ξ√
2 − ξ/a

.

We now calculate the action according to Eq. (97),

S = −2μ
√

n0

T

∫
d3x f (x).

The leading contribution to the integral produces

S = 2πan0V

T m(1 − a
√

2/ξ )
.

From here we finally deduce that, since S = EV/T ,

E = 2πan0

m(1 − √
2 a/ξ )

. (98)

This is a very appealing expression, and not surprisingly it ap-
peared previously in the literature [see Ref. [28], in particular
their Eq. (4) as well as their supplemental material]. The first
two terms of its expansion in powers of a/ξ are given by

E ≈ 2πan0

m

(
1 +

√
2 a

ξ

)
+ · · · . (99)

The first of these is the standard well-known weak potential
answer, which we obtained before in Eq. (32). The second
term is the correction to that in the expansion in powers of
a/ξ , which we already obtained earlier in Eq. (62) and which
goes back to the work in Ref. [32]. Both of these are definitely
correct.

It is very tempting to use the expression for the energy (98)
at larger |a| as well, all the way to a going to infinity where
it produces E = −√

2πn0ξ/m. However, there is no reason to
expect that this would be correct, despite Eq. (98) featuring in
the earlier work such as Ref. [28]. See the Appendix below for
a toy problem, which illustrates why only the first two terms of
Eq. (98) as given in Eq. (99) can be trusted [see also Ref. [25]
for further discussions of Eq. (98)].

VII. IMPURITY-BOSON INTERACTIONS SUPPORTING
A BOUND STATE

Let us now briefly explore the regime where the potential
U is so strongly attractive that it now supports a bound state,
further elaborating on the results reported in our earlier publi-
cation [26].

As the potential U increases in strengths beyond the unitary
limit, the scattering length a in such a potential is now posi-
tive. This implies that it now has a bound state with binding
energy

Ebinding = −ν < 0. (100)

For a sufficiently bound state [roughly speaking, so that the
relationship (31) holds again], we can give simple balance of
energy arguments to estimate the energy and the number of
particles trapped within the range R of the potential.

Indeed, supposing N bosons get trapped within the range
of the potential rc, then their energy is

E = −Nν + g
N2

2
,

where the self-repulsion constant g can be estimated as

g ∼ λ

r3
c

.

Minimizing with respect to N and calculating E at this min-
imum gives the energy and the number of trapped particles
within the range of the potential as

E ∼ −mr3
c ν

2

aB
, N ∼ mr3

c ν

aB
, (101)

where the potential U vanishes for r > rc. Here we used that
λ ∼ aB/m.
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This solution can also be obtained from the GP equa-
tion (16) if one notes that it corresponds to the density of
bosons being |ψ |2 = n ∼ N/r3

c ∼ ν/λ, and that results in the
nonlinear term in the GP equation λ|ψ |2ψ ∼ νψ , thus turning
the GP equation approximately into the Schrödinger equa-
tion at energy −ν, whose solution will roughly follow the
bound state solution of the Schrödinger equation.

It is instructive to understand the behavior of this solution
at r > rc, where the potential vanishes. To do that, we rely on
the same construction that allowed us to find the solution for
the GP equation for the potential close to unitarity. We take
Eq. (22) describing the GP equation for r > rc. Note that the
function u in that equation is constructed from φ, which in
turn is ψ/

√
n0. Since we expect that ψ (rc) ∼ √

ν/λ, we find
φ(rc) ∼ √

mν/n0aB. Yet another convenient relationship ξ 2 ∼
1/(n0aB) allows us to estimate φ(rc) ∼ ξ

√
mν. Now u(z) is

defined via φ(z) = 1 + u(z)/z, where z = r/ξ . At the point
where r = rc, z = rc/ξ , therefore

u(ε) ≈ rc
√

mν. (102)

At z > ε, u satisfies Eq. (22). At some large enough z, u
becomes smaller than z. At even larger z, u then satisfies
d2u/dz2 = 2u with the solution

u ≈ Crc
√

mν e−√
2z = Crc

√
mν e−

√
2r
ξ . (103)

Here C is some dimensionless number that can be found if one
solves Eq. (22) from z = ε to z ∼ u. Importantly, it is of the
order of 1.

Equation (103) can now be used to estimate the number
of particles trapped in the tail of the polaron that extends to
r ∼ ξ , as well as their contribution to the energy, by using
Eqs. (18) and (17).

The number of particles can be estimated as

Ntail ∼ rc
√

mν√
n0a3

B

, (104)

while the energy is

Etail ∼ − rc
√

n0ν√
maB

. (105)

Remarkably, while the number of particles in the tail diverges
in the limit when the unperturbed density n0 is very small and
thus dominates over N found in Eq. (101), in accordance with
the prediction of Ref. [35], their contribution to the polaron
energy goes to zero and does not affect the analysis that led to
Eq. (101).

Such a solution of the GP equation, described qualitatively
above, can only be found numerically, and the answer, which
will fix the numerical coefficients in Eq. (101), will be highly
dependent on the details of the potential U .

It is straightforward to estimate na3
B ∼ mνa2

B for r < rc,
justifying the use of the GP equation as long as aB is suffi-
ciently small.

VIII. CONCLUSIONS

We presented here a theory of impurities in weakly
interacting Bose condensates, attractively interacting with
bosons that formed the condensate. Our theory is based

on the GP equation in external potential. We demonstrate
that the approximation of the GP equation is valid as long
as the range of the potential is not too small and not too large,
as described by the criteria (4). The theory remains valid for
arbitrary impurity-boson scattering length, including in the
unitary limit where the scattering length goes to infinity.

We demonstrate that for weakly interacting Bose gases, it is
possible to solve the corresponding GP equation (16) analyti-
cally. Therefore, the weakness of intraboson interactions plays
a dual role in our theory: it allows for the analytic solution of
the GP equation, and it suppresses quantum fluctuations about
the GP solution, if the properly defined range of the potential
is finite and lies within the interval (4). Within this theory,
we found the binding energy of the polaron and the number
of bosons that become trapped in the vicinity of the impurity.
In the regime of impurity-boson interactions at unitarity, they
are given by Eqs. (5) and (6). Perturbing away from unitarity
slightly, we find Eq. (57). For generic attractive potential with
negative scattering length that is neither small nor large, the
answer can be found analytically via the formalism developed
here, but we found its analytic expression too cumbersome to
present here.

We work with intraboson interactions of zero range. We
explore the effects of a finite range of intraboson interactions
and demonstrate that taking it into account does not apprecia-
bly change our results.

The questions that we have not yet addressed include the
behavior of the polaron at finite momentum, including the
determination of its effective mass. We leave these questions
for future work.
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APPENDIX: FAILURE OF THE EXPANSION ABOUT THE
UNPERTURBED CONDENSATE: A TOY PROBLEM

To illustrate the method used in this paper, we study the
following toy problem. First we would like to evaluate the
integral

I =
∫ ∞

0
dx eax2−bx4

(A1)

in the case in which b is small and a is positive. We will
evaluate it by the saddle point method. The saddle point is

x0 =
√

a

2b
. (A2)
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Writing x = x0 + y and ax2 − bx4 = a2/(4b) − 2a(x − x0),
we find

I ≈
√

π

2a
exp

(
a2

4b

)
. (A3)

This is the standard answer to I , produced as an exponential
of the power series in b.

Now suppose we would like to evaluate the following inte-
gral (a > 0, c > 0, b is small):

f =
∫ ∞

0 dx eax2−bx4
ecx2∫ ∞

0 dx eax2−bx4
. (A4)

On the one hand, from Eqs (A1) and (A3), the answer is

f ≈ e
2ac+c2

4b

√
a

a + c
. (A5)

On the other hand, we attempt to evaluate f by taking the
following steps, mimicking the approach employed in Sec. VI.
We introduce a Hubbard-Stratonovich variable y,

f = 1∫ ∞
0 dx eax2−bx4

∫ ∞

0
dx

∫ ∞

−∞

dy√
4πc

eax2−bx4+xy− y2

4c .

(A6)
To evaluate the integral over x in the numerator of the expres-
sion above, we use

x =
√

a

2b
+ z, (A7)

and we expand in powers of z. Note that this is not a legitimate
way to approach this problem; however, this is what was done
in Sec. VI when the functional integral was expanded about

an unperturbed condensate. We find

f ≈ 1∫ ∞
0 dx eax2−bx4

∫ ∞

−∞

dz dy√
4πc

e
a2

4b −2az2+(
√

a
2b +z)y− y2

4c

=
√

a

2π2c

∫ ∞

−∞
dz dy e−2az2+(

√
a
2b +z)y− y2

4c . (A8)

Evaluating the integral over z gives

f ≈ 1√
4πc

∫ ∞

−∞
dy e

√
a
2b y+ y2

8a − y2

4c

=
√

2a

2a − c
e

a2c
b(2a−c) . (A9)

Compare this with the correct answer (A5). Expanding the
leading asymptotic of the answer in the exponential in powers
of c if c is small,

a2c

b(2a − c)
≈ ac

2b
+ c2

4b
+ c3

8ab
+ · · · , (A10)

so the first two terms do indeed coincide with the correct
expression in the exponential

2ac + c2

4b
. (A11)

However, the rest of the terms have nothing to do with the
correct answer.

This is an indication that in Eq. (98) only the first two terms
in the expansion in powers of a, as given in Eq. (99), could be
trusted.
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