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Normal state of attractive Fermi gases from coupled-cluster theory
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We apply coupled-cluster (CC) theory to numerically study the normal state of two-component dilute Fermi
gases with attractive short-range interactions at zero temperature. We focus on CC theory with double excitations
(CCD) and discuss its close relationship with—and improvement upon—the t-matrix approximation, i.e., the
resummation of ladder diagrams via a random-phase approximation. We further discuss its relationship with
Chevy’s variational wave-function ansatz for the Fermi polaron and argue that CCD is its natural extension to
nonzero minority species concentrations. Studying normal-state energetics for a range of interaction strengths
below and above unitarity, we find that CCD yields good agreement with fixed-node diffusion Monte Carlo. We
find that CCD does not converge for small polarizations and large interaction strengths, which we speculatively
attribute to the nascent instability to a superfluid state.
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I. INTRODUCTION

Two-component Fermi gases with tunable attractive in-
teractions exhibit a rich phase diagram [1–4]. Experimental
realizations via ultracold atoms have enabled precision stud-
ies of their quantum many-body physics, including fermionic
superfluidity [5–19] and the smooth crossover from the
Bardeen-Cooper-Schrieffer (BCS) limit at weak attraction to
the Bose-Einstein condensate (BEC) limit at strong attraction
[20–37]. An ongoing investigation concerns the fate of the
paired superfluid in the presence of a spin polarization with
implications for superconductivity in solids. Specifically, at
large polarizations, the superfluid is expected to exhibit an
instability to a partially polarized or fully polarized normal
state [38–49].

Despite the dilute nature of these systems, their precise
phase boundaries and related properties can only be deter-
mined by accurate quantum many-body calculations. Near
unitarity, the strength of the interaction precludes simple
perturbative treatments [50,51]. This motivates the search
for affordable but accurate nonperturbative techniques, the
most successful of which have been quantum Monte Carlo
methods, including diffusion Monte Carlo (DMC) [40,52–
57], auxiliary field quantum Monte Carlo (AFQMC) [58–63],
diagrammatic Monte Carlo [64–71], and others [72–74]. Each
of these methods has its own limitations due to the fermion
sign problem, e.g., necessitating the fixed-node approxima-
tion in DMC or the phaseless approximation in AFQMC
for nonzero polarizations. Moreover, calculating dynamical
response functions via QMC is an open challenge.
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Here, we apply coupled-cluster (CC) theory [75], which
has been successfully used in nuclear physics [76,77] and
quantum chemistry [78–80]. We argue that CC theory is a
promising numerical technique for the simulation of Fermi
gases and related systems of cold atoms as was previ-
ously shown by Grining and co-workers [81,82] in one
dimension. CC techniques are nonperturbative, systemati-
cally improvable, nonstochastic, and sign-problem free. Their
computational cost scales polynomially with the number of
particles and orbitals. In this paper, we focus on CC the-
ory with double excitations as applied to the normal state at
zero temperature. This version of CC theory has a number
of important physical properties that support its application
to dilute Fermi gases: It is exact for interacting two-particle
problems, it is exact for noninteracting ensembles of interact-
ing two-particle problems (so-called size consistency) [83],
and it fully includes all ladder diagrams, which are known to
dominate the physics of dilute systems with strong short-range
interactions [84–86].

The layout of this article is as follows. In Sec. II, we
introduce the theory underlying our study, including the
Hamiltonian, variational wave functions, CC theory, and the
random-phase approximation. In Sec. III, we present our re-
sults for the energies, Tan’s contact, and phase boundaries, as
functions of polarization and interaction strength. Finally, in
Sec. IV, we conclude by summarizing our paper and identify-
ing many avenues for future studies.

II. THEORY

In the low-density limit where the average interparticle
separation is much larger than the interaction range, the low-
energy properties of Fermi gases are determined by s-wave
scattering and the interaction is completely specified by the
scattering length a. We perform our study at zero temperature
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in three dimensions with periodic boundary conditions in a
cubic box of volume V according to the Hamiltonian [87],

Ĥ =
∑
k,σ

εkâ†
k,σ

âk,σ + g

V

∑
k,k′,q

â†
k,↑â†

k′,↓âk′+q,↓âk−q,↑, (1)

where εk = k2/(2m), âk,σ (â†
k,σ

) annihilates (creates) a
fermion with spin σ and wave-vector k, and we restrict our
paper to the case of equal masses m (and set h̄ = 1). We
discretize space into unit cells of volume b3 and sample the
Brillouin zone using a uniform mesh of Nk k points, where
Nk = V/b3. The two-body interaction strength g < 0 is chosen
to have the scattering length a on the lattice,

g−1 = m

4πa
−

∫
BZ

d3k

(2π )3

1

2εk
= m

4πa
− mK

4πb
, (2)

where K = 2.442 749 for the quadratic dispersion used here
[88–91]. Continuum results are obtained in the limit Nk → ∞
with the particle number fixed.

We consider a partially polarized Fermi gas containing N↑
majority particles and N↓ minority particles in the box of
volume V . In the above limits, the properties of the Fermi
gas are universal and defined only by the dimensionless in-
teraction strength 1/kF↑a [2,50], where kF↑ is the Fermi wave
vector of the majority particles. On the basis of the behavior at
low minority spin concentrations x = N↓/N↑, the ground-state
energy of the normal state has been parametrized by the form
[40,52,92]

E = 3

5
N↑εF↑

(
1 − Ax + m

m∗ x5/3 + Fx2
)
, (3)

where εF↑ is the Fermi energy of the majority particles and the
parameters A, m∗, and F depend on the interaction strength
1/kF↑a. Specifically, A and m∗ are the polaron binding energy
and effective mass, respectively, whereas F quantifies the
interactions between polaron quasiparticles.

Using a single determinant corresponding to a filled Fermi
sea |0〉 yields the energy,

E0 = 〈0|Ĥ |0〉 = 3

5
N↑εF↑(1 + x5/3) + g

V
N↑N↓, (4)

which is the sum of the noninteracting energy and the mean-
field interaction energy; the latter vanishes in the continuum
limit Nk → ∞. Thus, the noninteracting and mean-field theo-
ries predict A = F = 0 and m∗ = m.

Interaction effects can be accounted for by using a linear
combination of determinants that are defined with respect to
the filled Fermi sea. Such variational wave functions have
been extensively used in the study of Fermi gases [93–96].
Here we will consider the method of configuration interaction
with double excitations (CID) with the ground-state wave-
function |�0〉 = (c0 + Ĉ2)|0〉, where

Ĉ2 =
∑

k↑,k↓q

′ck↑k↓qÂ†
k↑k↓q, (5a)

Â†
k↑k↓q = â†

k↑+q,↑â†
k↓−q,↓âk↓,↓âk↑,↑, (5b)

and the primed summation requires that kσ < kFσ , |k↑ + q| >

kF↑, and |k↓ − q| > kF↓. The Ĉ2 operator, thus, creates all pos-
sible momentum-conserving double excitations (two particles

and two holes), with one excitation for each spin type. Al-
though CID [and CC theory with double excitations (CCD) as
we discuss below] can also include same-spin double excita-
tions, our numerical testing showed no significant difference,
and so we exclude them in all results that follow. For a nor-
malized wave function, the variational CID energy is

E = 〈�0|Ĥ |�0〉 = E0 + g

V

∑
k↑k↓q

′ck↑k↓q. (6)

In the limit of a single minority atom interacting with a sea
of majority atoms (i.e., the Fermi polaron problem), the CID
wave function above is the same as Chevy’s ansatz [87,97],
which provides remarkably accurate energetics even in the
limit of strong interactions. For example, at unitarity, Chevy’s
ansatz gives a polaron energy of Ep ≈ −0.6066εF↑, which is
extremely close to the diagrammatic Monte Carlo energy of
Ep ≈ −0.6157εF↑ [66,71]. Configuration interaction calcula-
tions are systematically improvable by considering additional
particle-hole excitations as was performed in Ref. [98]. In
quantum chemistry, such calculations would be described as
configuration interaction with double, triple, quadruple, etc.,
excitations.

In principle, such variational wave functions can be
straightforwardly applied to partially polarized Fermi gases
with nonzero minority spin concentrations x as studied here.
However, as is well known in the quantum chemistry com-
munity, such variational wave functions lack the important
property of size extensivity E (N ) ∝ N or the closely related
property of size consistency, which can be traced to the in-
clusion of unlinked diagrams in a diagrammatic expansion
of their total energies [79,80,99,100]. Therefore, energies
obtained from truncated CI expansions are expected to de-
teriorate for systems with increasing numbers of particles.
Unfortunately, this behavior makes it inappropriate to ex-
tend Chevy’s simple but successful wave-function ansatz to
partially polarized Fermi gases, which we demonstrate numer-
ically in this paper (vide infra).

One of the most successful size-extensive theories of quan-
tum many-body systems is coupled-cluster theory, which can
be truncated after any number of particle-hole excitations,
analogous to the variational CI wave functions discussed
above. For example, the (right-hand) wave function used
in coupled-cluster theory with double excitations (CCD) is
|�0〉 = eT̂2 |0〉, where

T̂2 =
∑

k↑,k↓q

′tk↑k↓qÂ†
k↑k↓q. (7)

Variational minimization with this ansatz would have a com-
putational cost that scales combinatorially with the number of
particles and basis functions. Therefore, the amplitudes tk↑k↓q

are determined by projection to satisfy the nonlinear CCD
equations [75,79,80],

0 = 〈0|Âk↑k↓qe−T̂2 ĤeT̂2 |0〉, (8)

from which the energy is evaluated as

E = 〈0|e−T̂2 ĤeT̂2 |0〉 = E0 + g

V

∑
k↑k↓q

′tk↑k↓q. (9)
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Equations (8) and (9) can be derived by assuming that the
CCD wave-function |�0〉 is an exact eigenstate, although, in
general, it is not. Alternatively, Eqs. (8) and (9) can be derived
by demanding that the Fermi sea state |0〉 is an eigenstate of
the similarity-transformed Hamiltonian e−T̂2 ĤeT̂2 when pro-
jected into the Hilbert space spanned by the Fermi sea |0〉
and all momentum-conserving doubly excited determinants
Â†

k↑k↓q|0〉. For the uniform systems studied here, the memory
cost of CCD is O(N↑N↓Nk ) and the computational cost of
iteratively solving Eq. (8) is O(N↑N↓N2

k ). The iterative solu-
tion of Eq. (8) is achieved with a nonlinear generalization of
Jacobi iteration with convergence acceleration via the direct
inversion in the iterative subspace algorithm.

The CCD energy (9) is nonvariational because T̂ †
2 �= −T̂2.

Rather, CCD is an infinite order perturbation theory. To lowest
order in g, the t amplitudes are given by

tk↑k↓q = g

V
(εk↑+q + εk↓−q − εk↓ − εk↑ )−1, (10)

which, together with Eq. (9), just gives the second-order per-
turbation theory energy. This perturbative energy expression
was used to provide a picture of interacting Fermi polarons in
Ref. [92].

The full CCD energy contains all ring diagrams, ladder
diagrams, and mixtures of rings and ladders—all with their
exchange counterparts, resulting in a properly fermionic the-
ory [86]. Ladder diagrams are known to be important at
low densities and such a restricted theory is equivalent to
a non-self-consistent t-matrix approximation, also known as
the particle-particle random-phase approximation (ppRPA)
[84,85,101–103]. This ppRPA energy can be obtained as an
approximation to CCD by only including a subset of the
terms in Eq. (8). Such t-matrix or ppRPA approaches have
been extensively used in the study of dilute Fermi gases
[104–111], but their quantitative accuracy is largely confined
to the regime of very weak attractions. In the next section, we
show that the richer diagrammatic content of CCD leads to
results with significantly greater quantitative accuracy.

III. RESULTS

A. Ground-state energy

We have applied CCD, CID, and ppRPA to the Hamilto-
nian (1) for several values of x = N↓/N↑. To avoid breaking
spatial symmetries in the Fermi sea determinant, we limit
our calculations to closed shell configurations with Nσ =
1, 7, 19, 27, 33, 57. To obtain continuum predictions, we per-
formed calculations using two different mesh sizes Nk and
extrapolated the energies to Nk → ∞, assuming N−1/3

k con-
vergence [91,112]. For CID, we used Nk = 83, 103; whereas
for CCD and ppRPA, we used Nk = 103, 123. In principle,
the thermodynamic limit also requires Nσ → ∞ while main-
taining the zero-density limit of Nσ /Nk → 0. This is nearly
impossible within the additional constraint imposed by closed
shell configurations, and so we limit ourselves to fixed particle
numbers. This is the same approach taken by other studies
of polarized Fermi gases [40,52]. Based on QMC results of

unpolarized Fermi gases [53,55,58,113] where finite-size ef-
fects are simpler to study, we estimate that the finite-size
errors in our energies are on the order of a few percent or less.

The Fermi polaron problem is defined by the choice N↓ =
1 and N↑ → ∞, i.e., x → 0. For this problem, with all values
of N↑ and Nk , we find that CCD and CID give numerically
identical results, which are, therefore, identical to those of
Chevy’s ansatz [87,97] in the appropriate limits. Despite their
different physical content, CID and CCD are equivalent for
the polaron problem: neither include triple excitations in-
volving one spin-down and two spin-up particles, which are
responsible for the majority of the energy difference between
Chevy’s ansatz and diagrammatic Monte Carlo results [98].
At polarizations away from the polaron limit, the equivalence
between CID and CCD no longer holds, which will be the
main focus of our paper.

In Figs. 1(a)–1(d), we show the total energies as a function
of x for four values of the interaction strength, 1/kF↑a =
−0.5, 0, 0.2, 0.4, where 1/kF↑a = 0 corresponds to unitarity.
For the latter three values of the interaction strength, we also
compared to fixed-node DMC (FN-DMC) from Ref. [40].
Although the CCD procedure does not always converge at
large g or x (see below), our CCD results agree very well
with FN-DMC results. In contrast, the CID results do not, and
overall they show a significantly smaller correlation energy,
consistent with the method’s lack of size extensivity.

We fit our CCD results to the Landau-Pomeranchuk equa-
tion of state (3). Because A and m∗ can be extracted from
the polaron problem, for which CCD gives results identical
to Chevy’s ansatz, we use the latter’s parameters [66,97] and
have only the interaction parameter F as a free parameter to be
fit. In Fig. 1(e), we show the extracted value of F over the full
range of interaction strengths we studied. Since the overall
fit is relatively insensitive to F especially for lower values
of x where CCD can converge more easily, we include error
bars indicating two standard deviations from the fit value.
The resulting range of fitted energy curves are plotted in
Figs. 1(a)–1(d) as shaded regions along with the raw data. We
have also carried out an identical fitting procedure to the FN-
DMC results from Ref. [40] with x < 1 using the same values
of A and m∗ for consistency. Within error bars, we find very
good agreement between CCD and FN-DMC, indicating that
both provide an accurate description of quasiparticle interac-
tions. Finally, in Fig. 1(e), we include results from Ref. [92],
which argued that the interaction parameter F can be obtained
from polaron properties via F = (5/9)(dμ/dεF↑)2, where μ

is the chemical potential of a single polaron. The agreement is
good especially in the weakly interacting BCS limit 1/kF↑ →
−∞ that is accurately described by lowest-order perturbation
theory.

B. Tan’s contact density

From our ground-state energy results, we can extract a sys-
tem property called the contact density C, which has units of
[length]4 and roughly measures how many pairs of opposite-
spin fermions are close together [2,114]. In the universal
limits of the Fermi gas, C can be determined via several differ-
ent approaches via relations derived by Tan and, subsequently,
expanded upon by others [114–120]. For example, the contact
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FIG. 1. Energetics of the normal state of attractive Fermi gases over a range of spin polarizations and interaction strengths. (a)–(d) Total
energy (scaled by the noninteracting energy of the spin-up particles) as a function of the concentration of minority spin-down particles at
respective interaction strengths of 1/kF↑a = −0.5, 0, 0.2, 0.4. Our continuum predictions from CID (crosses), CCD (circles), and ppRPA
(plusses) are compared with FN-DMC results (squares) from Ref. [40]. As a guide, solid black lines give the total energy in the absence of
two-body interactions. The green shaded region indicates the range of one-parameter fits for the interaction parameter F using Eq. (3) as
detailed in the text. (e) Comparison between F calculated for CCD and FN-DMC results, compared to the analytic result of Ref. [92]. Error
bars indicate two standard deviations of the F parameter fit.

density determines the tail of the momentum distribution via
n(k) ∼ C/k4, and it can also be understood as the conjugate
variable to the interaction strength and, thus, calculated by the
derivative of the ground-state energy [41,114,121,122],

C

k4
F↑

= −(5π )−1 ∂
(
E/ 3

5 N↑εF↑
)

∂ (1/kF↑a)
. (11)

We calculated the derivative by fitting our data to the func-
tional form E = A − B/C1/kF↑a. In Fig. 2, we show our results
for the dimensionless contact density as a function of the
interaction parameter 1/kF↑a at a representative set of mi-
nority spin concentrations x. We compare CCD to FN-DMC
with the latter being calculated from the parametrization in
Ref. [42] based off of the FN-DMC data from Ref. [40]. We
find overall good agreement between the two methods with
CCD predicting a slightly smaller contact at large interaction
strengths. For reference, we also include, at each minority
spin concentration, the contact density in the BEC (1/kF↑a →
+∞) limit to leading order in kF↑a [41,114,121].

C. Phase boundary

As can be seen in Figs. 1(a)–1(d), we cannot obtain CCD
results beyond a critical interaction-dependent concentration

xc(1/kF↑a). In practice, this occurs when the iterative method
used to solve Eq. (8) does not converge. This behavior

FIG. 2. Universal contact as a function of the interaction pa-
rameter 1/kF↑a at x = 27/57, 19/57, 7/57 (top to bottom). Gray
(solid, dashed, and dashed-dot, top-to-bottom) lines on the right give,
to leading order in kF↑a, the BEC limit (at a → 0+). Pink (solid,
dashed, and dashed-dot, top-to-bottom) lines come from the analytic,
parametrized formulas of Ref. [42] that were constructed to match
FN-DMC results. Green circles, crosses, and plusses (top to bottom)
are calculated from our CCD data as described in the main text.
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FIG. 3. Phase diagram of CCD convergencewhere the green cir-
cles give the maximum value of 1/kF↑a for which CCD converged
at each polarization. The pink dotted lines indicate the boundaries
for the coexistence region of the partially polarized normal state with
several superfluid states as determined in Ref. [40] on the basis of
FN-DMC data. The closed and open squares indicate the experimen-
tally determined normal state boundary from Refs. [125,126].

suggests (but does not guarantee) that Eq. (8) has no so-
lution. Similar to the use of the Thouless criterion for the
vertex function [104,123,124] or to the presence of multiple
solutions in other nonlinear numerical techniques, we can use
this behavior to speculatively identify a phase boundary for
the partially polarized normal state. In Fig. 3, we plot the
critical polarization, Pc = (1 − xc)/(1 + xc), below which the
CCD iteration does not converge for a system of fixed size
Nk = 1000. It is known from previous works [9,10,40,44,49]
that with increasing interaction strength, the partially polar-
ized normal state undergoes a first-order phase transition to a
region of coexistence with a superfluid state. At a subsequent
second-order phase transition, the coexisting partially polar-
ized normal state evolves into a coexisting fully polarized
normal state. These two phase boundaries as determined in
previous theoretical work are also plotted in Fig. 3 along with
experimentally determined normal-state boundaries from Shin
and co-workers [125] and from Olsen and co-workers [126].
For large polarizations, the CCD convergence boundary is
in good agreement with these phase boundaries. At smaller
polarizations, we see that the CCD iterations fail to converge
in the region of coexistence of normal and superfluid states.
Fuller insight into the phase diagram would require a CCD
study of the partially and fully polarized superfluid phases as
performed via FN-DMC in Ref. [40].

IV. CONCLUSION

To summarize, we have described coupled-cluster theory
as a promising computational method for the study of dilute
Fermi gases. We have established the performance of CCD
for the normal state of polarized three-dimensional gases at a
range of interaction strengths.

Our promising findings motivate a large number of future
studies enabled by the power and generality of the CC frame-
work. In particular, CC theory can be systematically improved
by increasing the number of excitations considered. It can
be used to calculate one- and two-particle Green’s functions
directly on the real frequency axis [127–134] as performed
recently for the uniform electron gas with long-range re-
pulsive Coulomb interactions [135,136]. This straightforward
access to dynamical response functions should be contrasted
with that of most QMC methods, which require analytic con-
tinuation. CC methods can also be applied to nonuniform
systems [81,82], precluding the local-density approximation
for trapped gases as well as at nonzero temperature [137–142]
and in nonequilibrium settings [143–145]. Lastly and perhaps
most importantly, CC theory can be formulated with respect
to a BCS reference wave function as opposed to the normal
Fermi sea wave function used here, allowing a more accurate
study of pairing and superfluidity [146–151]. Work along all
of these lines is currently in progress.
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