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Multicomponent quantum gases are ideal platforms to study fundamental phenomena arising from the mutual
interaction between different constituents. Particularly, due to the repulsive interactions between two species,
the system may exhibit a phase separation. We develop a mean-field-based theory for a two-component Bose
mixture, which is equivalent to the Hartree-Fock-Bogoliubov approximation, and derive analytical expressions
for the phase boundary and miscibility. The majority of existing theories, which are valid only for weakly
interacting Bose gases, predict that the phase boundary is determined by the criterion gab �

√
gaagbb (where

gab is a coupling constant between the components a and b). We show that in the Bose-Einstein condensation
phase (T � Tc) the system may remain in a stable and miscible phase also for larger values of gab, depending on
the gas parameter γ and temperature.
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I. INTRODUCTION

The investigation of mixtures of two-component Bose
gases has been of interest since the experimental realization
nearly 25 years ago in JILA [1,2]. Due to the possibility of
tuning the interspecies scattering length (aab) by using Fesh-
bach resonances, two-component quantum fluids exhibit rich
physics that is not accessible in a single-component fluid. The-
oretical [3,4] and experimental studies [5–13] have revealed
that the nature of this physics dramatically depends on the sign
of the intercomponent coupling constant of the s-wave contact
interaction gab: for gab < 0 (gaa > 0, gbb > 0), quantum liquid
droplets may arise [3,12], while for gab > 0, a phase transition
between miscible and immiscible states can occur. In some
sense, the situation is similar to two-body physics: when the
interparticle interaction is negative, one is mainly interested in
the properties of bound states; otherwise one studies scattering
angles and cross sections.

In the present work we concentrate only on the case with
repulsive interactions (gaa > 0, gbb > 0, gab > 0) and theoret-
ically study the properties of a two-component homogeneous
Bose system, such as stability, miscibility, and a possible
phase transition at finite temperature at equilibrium.

Although recent experiments [9,11] do not clearly iden-
tify evident signatures of miscible-immiscible transition, the
existence of the transition with spatial separation, includ-
ing zero temperature, has been theoretically proven [14–23].
Particularly, a long time ago, Timmermans [4] proposed to
distinguish two types of spatial separation: (1) potential sepa-
ration, caused by the external trapping potentials in much the
same way as gravity can separate fluids of different specific

weight, and (2) phase separation, which persists in the absence
of external potentials and is similar to separation of immisci-
ble fluids, such as oil and water. In the present work we discuss
the system without a trap and study only the phase separation
which takes place after crossing the border of instability. We
show that the onset of the instability in the system lowers
its free energy by the segregation of the components into a
phase-separated state.

The origin of this instability is the following. In contrast to
a single-component Bose system, a binary mixture of bosons
with Bose-Einstein condensation (BEC) has two branches of
collective excitations, ωd and ωs, corresponding to density
cd and pseudospin sound cs modes, respectively. The former
describes the oscillations of both components in phase, while
the latter is responsible for out-of-phase oscillations of the
components with respect to each other. For some values of
physical parameters (gab, T ) for one of the modes c2

s < 0, so
that this mode grows initially at a rate |ωs|, which is the indica-
tor of instability [4]. Particularly, at zero temperature, this may
happen when the interspecies coupling constant gab exceeds
a critical value gc = √

gaagbb, i.e., gab > gc. Nowadays this
criterion is so widely accepted that some authors consider it
even as a definition of miscible (gab <

√
gaagbb) or immiscible

(gab >
√

gaagbb) states [10,24] despite the fact that it was
obtained in the rather crude Bogoliubov approximation, which
is valid only for very dilute gases, with the gas parameter
γ = ρa3 ∼ 10−5 [25].

As to the works where some corrections to the Bo-
goliubov or semiclassical approximations were considered
[16,17,22–24], they have mainly two drawbacks: the
Hugenholtz-Pines (HP) theorem [26,27] for multicomponent
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BECs is not satisfied and/or the anomalous densities, espe-
cially intercomponent anomalous pair density, are neglected.
As a result, the majority of theoretical approximations lack
self-consistency, being valid only for γ � 1. The principal
necessity of taking into account anomalous averages for the
Bose-condensed phase has been emphasized in Refs. [28–37].

Atomic interactions in gases are modeled by contact po-
tentials expressed through effective scattering lengths, which
can be made rather large by means of the Feshbach reso-
nance technique, so that the gas parameter can become quite
large [5,38,39]. The aim of the present work is to develop
a mean-field-based approximation, without any restriction to
the value of γ > 0, by taking into account the HP theorem,
derived for multicomponent BECs in Refs. [27,40], as well as
anomalous densities, σa, σb, and σab. For this purpose we start
with the standard Hamiltonian of a binary Bose mixture with
contact interactions. We use the variational method, similar
to that employed in Refs. [35,41–43], which is a variant of
the general approach called optimized perturbation theory
[44,45]. In the present case, this approach is equivalent to the
Hartree-Fock-Bogoliubov (HFB) approximation [46].

It is well known that the usage of the HFB approximation
has its own problem, which is called in the literature the
Hohenberg-Martin dilemma [47], which is summarized as
follows: In the theory based on the standard grand canonical
ensemble with spontaneous symmetry breaking, depending
on the way of calculation, one obtains either a gap in the
spectrum of collective excitations, or local conservation laws
together with general thermodynamic relations becoming in-
valid. Recall that the excitation spectrum, according to the HP
theorem, must be gapless. A self-consistent way of solving
this dilemma has been advanced in Refs. [28–30] by intro-
ducing additional Lagrange multipliers for each component,
namely, μ0a, μ1a, μ0b, and μ1b. This choice is directly re-
lated to the inclusion of anomalous density. So, when one
neglects the anomalous density, μ0 equals μ1, while when
the anomalous density is taken into account, μ0 and μ1

can be fixed from the conditions of minimization of the
thermodynamic potential with respect to condensed frac-
tions and from the validity of the generalized HP theorem,
respectively [29,46].

Since there is no restriction to the magnitude of the gas pa-
rameter in the present approach, our criterion for the stability
of a binary Bose system will be more general than the sim-
ple inequality gab �

√
gaagbb. Particularly, for a symmetric

system with equal masses (ma = mb) and coupling constants
(gaa = gbb = g, gab = gabg) at zero temperature we have ob-
tained the phase diagram on the (gab, γ ) plane which displays
that, for moderate values of γ (γ ≈ 0.001), the system may
remain stable even at gab = 1.1, in contrast to the predictions
of the previous studies. At finite temperatures this criterion
clearly involves at least three parameters (gab, γ , T ), which
gives us the opportunity to derive a three-dimensional phase
diagram for a Bose-condensed two-component homogeneous
mixture.

The paper is structured as follows. In Sec. II, we derive
general expressions for the free energy, collective excitation
spectrum, and the densities. Then, in Sec. III, we discuss
the BEC system in more detail. The theory is applied to
the symmetric Bose mixture in Sec. IV in order to obtain

quantitative results. In the last section, we present discussions
and conclusions.

II. THERMODYNAMIC POTENTIAL
AND MAIN EQUATIONS

The Lagrangian density for two-species complex scalar
fields ψ and φ, with contact self-couplings ga and gb and
interspecies coupling gab, is given as

L = ψ†

(
i∂t + ��2

2ma
+ μa

)
ψ − ga

2
(ψ†ψ )2

+ φ†

(
i∂t+

��2

2mb
+ μb

)
φ−gb

2
(φ†φ)2−gab(ψ†ψ )(φ†φ),

(1)

where the associated chemical potentials are represented by
μa,b while ma,b represent the masses. In terms of the corre-
sponding s-wave scattering lengths as, the coupling constants
can be written as ga,b = 4πaa,b/ma,b, while the cross coupling
is gab = 2πaab/mab, where mab = mamb/(ma + mb) repre-
sents reduced mass. Here and below we set h̄ = 1, kB = 1.

Note that in the present work only repulsive interactions
will be considered, ga,b � 0, gab � 0. The grand canonical
thermodynamic potential 
 can be calculated in the path
integral formalism as


 = −T ln Z, (2)

Z =
∫

Dψ†DψDφ†Dφe−S(ψ†,ψ,φ†,φ), (3)

where the equivalent finite-temperature Euclidean (τ = it )
space time action to (1) is given by

S =
∫ β

0
dτ

∫
d�r
{
ψ†K̂aψ + φ†K̂bφ + ga

2
(ψ†ψ )2

+ gb

2
(φ†φ)2 + gab(ψ†ψ )(φ†φ)

}
,

K̂a,b = ∂

∂τ
− Ôa,b, Ôa,b = �∇2

2ma,b
+ μa,b. (4)

In Eq. (4) the fields ψ (�r, τ ) and φ(�r, τ ) are periodic in
τ with period β = 1/T . Clearly, this path integral cannot be
evaluated exactly due to the terms of fourth order in fields,
so an approximation is needed. In the present work, we use
the approach sometimes called variational perturbation theory
[41,48–50], which is a particular case of optimized perturba-
tion theory [44,45]. For a two-component system, this method
involves the following steps.

Step 1. Introduce fluctuating fields ψ̃ and φ̃ by the
Bogoliubov shift:

ψ (�r, τ ) = √
ρ0a + ψ̃ (�r, τ ),

φ(�r, τ ) = √
ρ0b + φ̃(�r, τ ), (5)

where the order parameters ρ0a and ρ0b correspond to the
condensate fractions of the components a and b, respectively.
Note that the Bogoliubov shift is an exact canonical trans-
formation [51], and not an approximation, as sometimes it is
stated. For a uniform system at equilibrium, ρ0a and ρ0b are
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real variational constants, which are fixed by the minimum of
the free energy 
 as ∂
/∂ρ0,a,b = 0, ∂2
/∂2ρ0,a,b � 0 [35].
As to the numbers of uncondensed particles N1a and N1b, they
are related to the fields ψ̃ and φ̃:

N1a = V ρ1a =
∫

d�r〈ψ̃†(r)ψ̃ (r)〉, (6)

N1b = V ρ1b =
∫

d�r〈φ̃†(r)φ̃(r)〉, (7)

so that

Na =
∫

d�r〈ψ†(r)ψ (r)〉, (8)

Nb =
∫

d�r〈φ†(r)φ(r)〉, (9)

with the normalization conditions N = Na + Nb, Na = V ρa =
V (ρ0a + ρ1a), and Nb = V ρb = V (ρ0b + ρ1b), where Na(b) is
the number of particles in the component a (b) and N is the
particle number in the whole two-component system and V
is the total volume of the system. Since we are considering a
homogeneous system, the densities ρa and ρb are uniform.

Step 2. Make the following replacement in the action:
ga → δ̃ga, gb → δ̃gb, gab → δ̃gab.

Step 3. Add to the action the term

S� = (1 − δ̃)
∫

dτd�r
{
�(a)

n (ψ̃†ψ̃ ) + �(b)
n (φ̃†φ̃)

+ 1

2
�(a)

an (ψ̃ψ̃ + ψ̃†ψ̃†) + 1

2
�(b)

an (φ̃φ̃ + φ̃†φ̃†)

+ �(ab)
n (ψ̃†φ̃ + φ̃†ψ̃ ) + �(ab)

an (ψ̃φ̃ + φ̃†ψ̃†)

}
, (10)

where the variational parameters �n and �an can be naturally
interpreted as normal and anomalous self-energies, respec-
tively.

Step 4. Now in the Cartesian representation

ψ̃ = 1√
2

(ψ1 + iψ2), φ̃ = 1√
2

(ψ3 + iψ4), (11)

such that ∫
Dψ̃†Dψ̃Dφ̃†Dφ̃ →

∫ 4∏
i=1

Dψi, (12)

the action (4) can be written as

S = S0 + Sfree + δ̃Sint, (13)

Sint = S(1)
int + S(2)

int + S(3)
int + S(4)

int , (14)

S0 =
∫ β

0
dτ

∫
d�r
{
−μ0aρ0a − μ0bρ0b + gaρ

2
0a

2

+gbρ
2
0b

2
+ gabρ0aρ0b

}
, (15)

Sfree = 1

2

∫ β

0
dτ

∫
d�r{ψ1[X1 + K̂a]ψ1 + ψ2[X2 + K̂a]ψ2

+ ψ3[X3 + K̂b]ψ3 + ψ4[X4 + K̂b]ψ4 + X5[ψ1ψ3

+ ψ3ψ1] + X6[ψ2ψ4 + ψ4ψ2]}, (16)

S(2)
int = 1

2

∫
dτd�r

{
4∑

i=1

�iψ
2
i + �5(ψ1ψ3 + ψ3ψ1)

+ �6(ψ2ψ4 + ψ4ψ2)

}
, (17)

S(4)
int = 1

8

∫
dτd�r

{
ga
(
ψ2

1 + ψ2
2

)2 + gb
(
ψ2

3 + ψ2
4

)2
+ 2gab

(
ψ2

1 + ψ2
2

)(
ψ2

3 + ψ2
4

)}
, (18)

where we have introduced the following notations:

X1 = �(a)
n + �(a)

an − μ1a, X3 = �(b)
n + �(b)

an − μ1b, (19)

X2 = �(a)
n − �(a)

an − μ1a, X4 = �(b)
n − �(b)

an − μ1b, (20)

X5 = �(ab)
n + �(ab)

an , X6 = �(ab)
n − �(ab)

an , (21)

�1 = −μ1a − X1 + 3gaρ0a + gabρ0b, (22)

�2 = −μ1a − X2 + gaρ0a + gabρ0b, (23)

�3 = −μ1b − X3 + 3gbρ0b + gabρ0a, (24)

�4 = −μ1b − X4 + gbρ0b + gabρ0a, (25)

�5 = −X5 + 2gab
√

ρ0aρ0b, (26)

�6 = −X6. (27)

Equations (13)–(27) need some comments:
(a) We omit the explicit expressions for S(1) and S(3) since

the path integrals including odd powers of fields are zero, e.g.,∫
[
∏4

i=1 Dψi]ψ1ψ
2
2 e−S = 0.

(b) Two kinds of chemical potentials, μ0 and μ1, are
introduced instead of a unique chemical potential μ, such
that μ0aN0a + μ1aN1a = μaNa. The reason is the follow-
ing. Actually, the mean-field-based theories of BEC have a
long-standing puzzle referred to as the Hohenberg-Martin
dilemma [47], which can be explained for a one-component
system rather simply. The chemical potential should satisfy
the Goldstone theorem and correspond to the minimum of
the thermodynamic potential. It has been shown that, when
anomalous density, σ ∼ 〈ψ̃ψ̃〉1 is accurately taken into ac-
count, these two conditions cannot be satisfied simultaneously
[29–31]. The solution to this problem has been advanced in
Refs. [28–30]. It was shown that, in a system with spon-
taneous gauge symmetry breaking, the introduction of two
chemical potentials makes the theory self-consistent. Natu-
rally, in the normal phase, when ρ0 = 0, σ = 0, both chemical
potentials coincide: μ = μ0 = μ1.

(c) The six variational parameters X1, . . . , X6 should be
fixed by the minimization of 
, e.g., ∂
/(∂Xi) = 0 (i = 1–6).

Step 5. Now, passing to the momentum space,

ψi(�r, τ ) = 1√
V β

∞∑
n=−∞

∑
k

ψi(ωn, �k)eiωnτ+i�k�r, (28)

1See Eq. (46) below.
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where
∑

k = V
∫

d�k/(2π )3 and ωn = 2πnT is a Matsubara
frequency, one may present Eq. (16) as

Sfree = (2π )4

2V β

∑
�k, �p,m,n

4∑
i, j=1

ψi(ωn, �k)G−1
i j (ωn, �k; ωm, �p)

× ψ j (ωm, �p)δ(�k + �p)δ(ωn + ωm) (29)

with the inverse propagator

G−1(ωn, �k)

=

⎛⎜⎝εa(k) + X1 ωn X5 0
−ωn εa(k) + X2 0 X6

X5 0 εb(k) + X3 ωn

0 X6 −ωn εb(k) + X4

⎞⎟⎠,

(30)

where εa,b(k) = �k2/2ma,b.
Evaluating the determinant of this matrix, we obtain two

branches of dispersion:

ω1,2(k) =
√

E2
a + E2

b

2
+ X5X6 ±

√
D

2
, (31)

D = (E2
a − E2

b

)2 + 4E2
13X 2

6 + 4E2
24X 2

5

+ 4X5X6
(
E2

a + E2
b

)
, (32)

where

E2
a = (εa(k) + X1)(εa(k) + X2), (33)

E2
b = (εb(k) + X3)(εb(k) + X4), (34)

E2
13 = (εa(k) + X1)(εb(k) + X3), (35)

E2
24 = (εa(k) + X2)(εb(k) + X4). (36)

Step 6. The perturbation scheme is considered as an ex-
pansion in powers of δ̃ by using the propagators

Gi j (r, τ ; r′, τ ′) = 1

V β

∑
n,�k

ei�k(r−r′ )eiωn (τ−τ ′ )Gi j (ωn, �k), (37)

which are presented explicitly in the Appendix. The expansion
parameter δ̃ will be set to δ̃ = 1 at the end of the calculations.

Step 7. The detailed calculation of the generating func-
tional and hence 
 in the first order of δ̃ can be performed
in the similar way as it has been done in Ref. [35] for the one-
component model. Therefore, using the following formulas,
where (x = (τ, �r)),

〈ψi(x)ψ j (x)〉 = Gi j (x, x) = 1

V β

∑
ωn,�k

Gi j (ωn, �k), (38)

〈
ψ2

i (x)ψ2
j (x)
〉 = Gii(x, x)Gj j (x, x) + 2G2

i j (x, x), (39)〈
ψ4

i (x)
〉 = 3G2

ii(x, x), Gi j (x, x) = Gji(x, x), (40)

G12(x, x) = G14(x, x) = 0, (41)

G23(x, x) = G34(x, x) = 0, (42)

one obtains


 = 
0 + 
ln + 
2 + 
4,


0 = V

{
−μ0aρ0a − μ0bρ0b+gaρ

2
0a

2
+ gbρ

2
0b

2
+ gabρ0aρ0b

}
,


ln = T

2

∑
k,ωn

ln
[(

ω2
n + ω2

1

)(
ω2

n + ω2
2

)]
= 1

2

∑
k

(ω1(k) + ω2(k))

+ T
∑

k

ln(1 − e−βω1(k) ) + T
∑

k

ln(1 − e−βω2(k) ),


2 = 1

2

6∑
i=1

Ai�i,


4 = 1

8V

{
ga
[
3A2

1+3A2
2+2A1A2

]+gb
[
3A2

3+3A2
4+2A3A4

]
+ 2gab

[
(A1 + A2)(A3 + A4) + A2

5 + A2
6

2

]}
, (43)

where Ai = V Gii(x, x) (i = 1–4), A5 = 2V G13(x, x), A6 =
2V G24(x, x), �i are given by Eqs. (22)–(27), and Gi j (x, x) are
presented in the Appendix. Feynman diagrams contributing to

 in the present optimized perturbation theory are illustrated
in Refs. [25,52].2

The variational parameters are determined by the mini-
mization of the thermodynamic potential 
(X1, . . . , X6) as
∂
(X1, . . . , X6)/∂Xi = 0 (i = 1–6). These equations can be
rewritten in the following compact form:

X1 = ga[3ρ0a + 2ρ1a + σa] + gabρb − μ1a,

X2 = ga[ρ0a + 2ρ1a − σa] + gabρb − μ1a,

X3 = gb[3ρ0b + 2ρ1b + σb] + gabρa − μ1b,

X4 = gb[ρ0b + 2ρ1b − σb] + gabρa − μ1b,

X5 = 2gab
√

ρ0aρ0b + gab
ρab + σab

2
,

X6 = gab

2
(ρab − σab), (44)

where the densities ρ1 and σ are given in the next section.
Note that, in the derivation of Eqs. (44), we used the relation
∂
ln/∂Xi = Ai/2, i = 1–6, which can be checked by using
Mathematica or MAPLE. In general, the system of Eqs. (44)
with the given set of input parameters, such as coupling
parameters, and the total densities of atoms is the system
of nonlinear algebraic equations with respect to unknown
variational parameters (X1, . . . , X6). As it is seen from their
definition in Eqs. (19)–(27) the latter can be clearly considered
self-energies in the Cartesian representation (11).

2The next order corrections to the present approximation can be
found in the similar way as has been developed by Stancu and
Stevenson [52] for the simple λφ4 theory.
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A. Normal and anomalous densities

Fluctuating fields ψ̃ (r) and φ̃(r) define the density of un-
condensed particles in accordance with Eqs. (7). When the
Green’s functions are known, these densities may be calcu-
lated as

ρ1a = 1

V

∫
d�r〈ψ̃†(�r)ψ̃ (�r)〉 = 1

2V

∫
d�r[G11(�r, �r)

+ G22(�r, �r)] = 1

2V
(A1 + A2),

ρ1b = 1

V

∫
d�r〈φ̃†(�r)φ̃(�r)〉 = 1

2V

∫
d�r[G33(�r, �r)

+ G44(�r, �r)] = 1

2V
(A3 + A4). (45)

In general, one may introduce the anomalous

σa = 1

2V

∫
d�r[〈ψ̃†(�r)ψ̃†(�r)〉 + 〈ψ̃ (�r)ψ̃ (�r)〉]

= 1

2V
(A1 − A2),

σb = 1

2V

∫
d�r[〈φ̃†(�r)φ̃†(�r)〉 + 〈φ̃(�r)φ̃(�r)〉]

= 1

2V
(A3 − A4), (46)

and “mixed” densities:

ρab = 1

V

∫
d�r[〈ψ̃†(�r)φ̃(�r)〉 + 〈φ̃†(�r)ψ̃ (�r)〉]

= 1

V

∫
d�r[G13(�r, �r) + G24(�r, �r)] = 1

2V
(A5 + A6),

σab = 1

V

∫
d�r[〈ψ̃ (�r)φ̃(�r)〉 + 〈φ̃†(�r)ψ̃†(�r)〉]

= 1

2V
(A5 − A6). (47)

Clearly, these densities, which are explicitly given in the
Appendix, do not depend on the coordinate variables; i.e.,
they are constants for a uniform system. Physically, the pair
densities ρab and σab describe the processes where, due to the
presence of the reservoir, particles are exchanged or pairing
correlations emerge between the two components.

From their definition, it is clear that the mixed densities
characterize the correlations between the components of a
two-component system. To quantify these correlations, one
may introduce the overlap parameter η,

η = 1

2
√

NaNb

∫
d�r{〈ψ†(�r)φ(�r)〉 + 〈φ†(�r)ψ (�r)〉}, (48)

where ψ (�r) and φ(�r) are the field operators of the components
a and b, respectively.

Using Eqs. (5), (11), and (44)–(48), one may present η as
follows:

η = 1√
NaNb

∫
d�r√ρ0aρ0b + 1

2
√

NaNb

∫
d�r{〈ψ̃†(�r)φ̃(�r)〉

+ 〈φ̃†(�r)ψ̃ (�r)〉} = √
n0an0b + ρab

2
√

ρaρb
= X5 + X6

2gab
√

ρaρb
,

(49)

where n0a and n0b are the normalized condensed fractions,
n0a = ρ0a/ρa, n0b = ρ0b/ρb. Note that, when the fluctuations
are neglected, i.e., ψ̃ = φ̃ = 0, η in Eq. (49) coincides with
the miscibility parameter of Refs. [53,54], introduced for
nonuniform coupled systems. Particularly, when at least one
of the components is in the normal phase, the parameter η is
completely defined by the normal pair density, η(T > Tc) =
ρab/2

√
ρaρb = X5/gab

√
ρaρb.

B. Particular cases of HFB approximation

The presented HFB-type theory is general, so that some
well-known approximations to this general theory can be eas-
ily derived as particular cases.

(i) Sometimes, one uses the trick (first suggested by
Shohno [55]) of omitting anomalous averages, which corre-
sponds to the case when in Eqs. (43) and (44) σa, σb, and σab

are omitted by setting μ0a,b = μ1a,b = μa,b. However, as has
been shown in a number of publications [28–37], this trick
results in a not-self-consistent approach containing paradoxes.

(ii) Bogoliubov and quadratic approximations correspond
to the case when, after the shift (5) only quadratic terms of
fluctuating fields are kept in the action (4): S ≈ S0 + Sfree +
S(2)

int , with δ̃ = 1. The formal difference is that in the quadratic
approximation one has


Bil = 
0 + 
ln, (50)

where 
0 and 
ln have the same expressions as in Eqs. (43)
with the self-energies given by

X1 ≈ X Bil
1 = 3gaρ0a + gabρ0b − μa,

X2 ≈ X Bil
2 = gaρ0a + gabρ0b − μa,

X3 ≈ X Bil
3 = 3gbρ0b + gabρ0a − μb,

X4 ≈ X Bil
4 = gbρ0b + gabρ0a − μb,

X5 ≈ X Bil
5 = 2gab

√
ρ0aρ0b,

X6 ≈ X Bil
6 = 0. (51)

In the Bogoliubov approximation, the thermodynamic po-
tential is formally given by Eq. (50), and the self-energies
by Eqs. (51), with setting there ρ0a,b ≈ ρa,b, i.e., X Bog

i =
X Bil

i (ρ0a = ρa, ρ0b = ρb). In this case, the equations are un-
coupled and the solutions are simple. Actually, both these
variants enjoy the same level of accuracy and are valid only
for small gas parameters γ � 10−5.

Note that, for all above cases the expressions for the energy
dispersions as well as for the densities are formally the same
as given by Eqs. (31) and (A11)–(A16), respectively.

C. Intermediate summary

Now we are in a position of summarizing the present
section. In practical calculations, in the framework of our
self-consistent theory, one has to solve the system of, in
general, six nonlinear algebraic equations (44) with respect
to the variational parameters [X1, . . . , X6] and then evaluate
all thermodynamic equilibrium characteristics of the uniform
two-component Bose system from 
(X1, . . . , X6) given in
Eqs. (43). Stability and miscibility properties can be studied
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by analyzing the spectrum of collective excitations (31). At a
first glance, this procedure, especially solving the system of
six nonlinear algebraic equations, seems rather cumbersome.
However, in reality the number of the unknown variational
parameters [X1, . . . , X6] may be reduced depending on the
considered state (BEC or normal phase) and on the existing
symmetries in the system. In the next sections we discuss
these cases in detail.

III. CONDENSED AND NORMAL PHASES

A. Condensed phase

In this phase, the number of variational parameters is re-
duced due to the Hugenholtz-Pines theorem [26], which has
been extended for multicomponent Bose-Einstein condensates
in Refs. [27,40]. For a two-component Bose system, in our
notation, it reads

�(a)
n − �(a)

an = μ1a, �(b)
n − �(b)

an = μ1b,

�(ab)
n = �(ab)

an , (52)

and hence

X2 = 0, X4 = 0, X6 = 0, σab = ρab. (53)

Therefore, in the BEC phase, instead of six equations, we are
left with a system of three equations:

�a ≡ X1/2 = ga(ρ0a + σa) = ga[ρa − ρ1a + σa]

�b ≡ X3/2 = gb(ρ0b + σb) = gb[ρb − ρ1b + σb]

�ab ≡ X5/2 = gab
√

ρ0aρ0b + gab

2
ρab. (54)

Note that, for the Bose systems with fixed chemical potentials
[34], these equations may be rewritten as

�a = μ1a + 2ga(σa − ρ1a) − gabρb

�b = μ1b + 2gb(σb − ρ1b) − gabρa

�ab = gab(
√

ρ0aρ0b + ρab/2). (55)

On the other hand, if the densities are fixed, as in atomic gases,
one may determine the chemical potentials from Eqs. (44) and
(52) as

μ1a = ga[ρa + ρ1a − σa] + gabρb,

μ1b = gb[ρb + ρ1b − σb] + gabρa. (56)

The total chemical potentials defined as μa = (∂F/∂Na)
and μb = (∂F/∂Nb) (where F is the total free energy of the
system) can be calculated as

μaρa = μ1aρ1a + μ0aρ0a, μbρb = μ1bρ1b + μ0bρ0b, (57)

where

μ0a = ga[ρa + ρ1a + σa] + gab

[
ρb + ρ0bσab√

ρ0aρ0b

]
,

μ0b = gb[ρb + ρ1b + σb] + gab

[
ρa + ρ0aσab√

ρ0aρ0b

]
. (58)

The last two equations are derived from ∂
/∂ρ0a = 0 and
∂
/∂ρ0b = 0, where 
 is given by Eq. (43). As is expected,

when one neglects anomalous densities by setting σa = σb =
σab = 0, then μ0a = μ1a = μa, μ0b = μ1b = μb.

With the constraints (53), the dispersions in Eqs. (31) can
be rewritten as

ω1,2 =
√

ε(k)2

2

(
ν2

1 + ν2
2

)+ 2ε(k)�1,2,

�1,2 = 1

2
(�aν1 + �bν2) ±

√
Ds

4
,

Ds = 16ν1ν2�
2
ab + (ν2

1ε(k) − ν2
2ε(k) + 2�aν1 − 2�bν2

)2
,

ω2
1 − ω2

2 = ε(k)
√

Ds, (59)

where we introduce the reduced mass mR = mab = mamb/

(ma + mb), and ν1 = mb/(ma + mb), ν2 = ma/(ma + mb), and
ε(k) = �k2/2mR. Decomposing ωi in powers of momenta gives
the sound velocities through the equations

ω1 = c1|�k| + O(k3), ω2 = c2|�k| + O(k3), (60)

c2
1 =

�amb + �bma +
√

4mamb�
2
ab + (�bma − �amb)2

2mamb
,

c2
2 =

�amb + �bma −
√

4mamb�
2
ab + (�bma − �amb)2

2mamb
.

(61)

The velocities c1 (c2) are referred in the literature as den-
sity (pseudospin) sound velocities. In a binary superfluid, the
density sound corresponds to oscillation of two superfluid
components in phase, while the pseudospin sound corre-
sponds to the out-of-phase oscillations [8].

From the last equation it is seen that, when �a�b < �2
ab,

c2
2 becomes negative, signaling the instability of the system.

In particular, applying the Bogoliubov approximation, i.e.,
setting ρ0a ≈ ρa, ρ0b ≈ ρb, and σa = σb = ρab ≈ 0, then from
Eqs. (54) one obtains

�a ≈ gaρa, �b ≈ gbρb, �ab ≈ gab
√

ρaρb, (62)

thus arriving at the well-known stability condition
gagb/g2

ab � 1.
Explicit expressions for the densities may be obtained

from Eqs. (45)–(47) by setting there X2 = X4 = X6 = 0. As
is expected, when the intercoupling constant goes to zero, we
arrive at the well-known formulas of the single-component
case:

ρ1a(gab → 0) = 1

V

∑
k

[
�a + εa(�k)

ωa(k)
W1(k) − 1

2

]
,

ρ1b(gab → 0) = 1

V

∑
k

[
�b + εb(�k)

ωb(k)
W2(k) − 1

2

]
,

σa(gab → 0) = −�a

V

∑
k

W1(k)

ωa(k)
,

σb(gab → 0) = −�b

V

∑
k

W2(k)

ωb(k)
,

ρab(gab → 0) = σab(gab → 0) = 0,

c2
1 = �b/mb, c2

2 = �a/ma, (63)
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where Wa,b(k) = 1/2 + 1/(eωa,b(k)β − 1), ωa,b =√
εa,b(k)(εa,b(k) + 2�a,b).
In the above discussion, we have assumed that both com-

ponents are in the BEC state. In the next section, we consider
the case where the whole system is in the normal phase; hence
there is no the HP theorem.

B. Normal phase

The general criterion of miscibility or immiscibility is
prescribed by the behavior of the spectrum of collective exci-
tations. To be miscible, a binary Bose mixture has to possess
all real branches of the collective spectrum positive (non-
negative). In the case of a Bose-condensed system, the global
gauge symmetry is broken and the spectra of single-particle
and collective excitations coincide [56]. However, for a nor-
mal (uncondensed) system, these spectra are different. The
positiveness of the single-particle spectrum, defined by the
poles of the single-particle Green’s function, tells us that, on
the level of single-particle properties, the system is stable, but
this tells us nothing about whether it is mixed or separated.
The spectrum of collective excitations of a normal system is
defined by the poles of the second-order Green’s function or
the poles of dynamic susceptibility (response function). The
mixture separates when the lowest branch of the collective
spectrum crosses zero.

First, let us prove that the binary normal Bose mixture
at T > Tc enjoys a stable single-particle spectrum that is
positive at any temperature and the values of local interaction
parameters, independently of whether the system is mixed or
separated.

By definition, in the normal phase ρ0a = ρ0b = σa = σb =
σab = 0, and hence ρ1a = ρa, ρ1b = ρb, μ0a = μ1a = μa,
μ0b = μ1b = μb, X6 = X5, X2 = X1, and X4 = X3. Thus, the
main Eqs. (44) are simplified as

X1 = 2ρaga + ρbgab − μa ≡ −μ
(a)
eff ,

X3 = 2ρbgb + ρagab − μb ≡ −μ
(b)
eff , (64)

X5 = 1
2ρabgab,

where the densities are given by the equations

ρ1a = ρa = 1

V

∑
k

{(
X 2

5 Eb + Eaω
2
1 − EaE2

b

)
f (ω1)√

Dω1

+
(
X 2

5 Eb + Eaω
2
2 − EaE2

b

)
f (ω2)√

Dω2

}
,

ρ1b = ρb = 1

V

∑
k

{(
X 2

5 Ea + Ebω
2
1 − E2

a Eb
)

f (ω1)√
Dω1

+
(
X 2

5 Ea + Ebω
2
2 − E2

a Eb
)

f (ω2)√
Dω2

}
,

ρab = 2X5

V

∑
k

{(−X 2
5 + EaEb + ω2

1

)
f (ω1)√

Dω1

−
(−X 2

5 + EaEb + ω2
2

)
f (ω2)√

Dω2

}
,

η = ρab

2
√

ρaρb
, f (x) = 1/(eβx − 1). (65)

Then the dispersion relations (31) reduce to the form

ω1,2 =
√

E2
a + E2

b

2
+ X 2

5 ±
√

D

2
,

D = (Ea + Eb)2
[
4X 2

5 + (Ea − Eb)2
]
, (66)

with

Ea = εa(k) − μ
(a)
eff , Ea = εb(k) − μ

(b)
eff . (67)

This spectrum is real and positive, provided the expression
under the square root does not become negative. It is conve-
nient to test the positiveness of the expression ω2

1ω
2
2. Then

from Eq. (66) one easily obtains the condition

ω2
1ω

2
2 = (EaEb − X 2

5

)2 � 0. (68)

Since ω1 is positive, both ω2
1 and ω2

2 are positive simultane-
ously for any gab and temperature T � Tc; hence the spectra
are real and positive.

Note that, when gab = 0, Eqs. (65) turn into the well-
known expressions

ρ1a = ρa = 1

V

∑
k

1

eβ(εa (k)−μ
(a)
eff ) − 1

,

ρ1b = ρb = 1

V

∑
k

1

eβ(εb(k)−μ
(b)
eff ) − 1

, (69)

where μ
(a)
eff = μa − 2ρaga.

The spectrum of collective excitations of a binary mixture
of normal components has been studied in the random-phase
approximation in Ref. [57]. In that approximation, for the
case of contact interactions, the dynamic condition for mixture
stability is found to coincide with the inequality g2

ab < gagb,
being practically independent of temperature.

C. Near critical temperature

Let T a
c and T b

c be the BEC transition temperatures for
the corresponding components. For concreteness, we assume
that T a

c � T b
c . In fact, T a

c corresponds to the point where the
effective chemical potential vanishes, μ

(a)
eff = −X1 = 0. From

the stability condition �a�b > �2
ab, that is, X 2

5 � X1X3, it is
understood that the system can be stable only for X5 = 0, with
the sound velocities

c2
1 = �b

mb
� 0, c2

2 = 0. (70)

This temperature can be evaluated from Eqs. (69) as

ρ1a = ρa = 1

V

∑
k

1

eεa (k)/T a
c − 1

. (71)

From this equation it is seen that in the present approxima-
tion, like in many versions of mean-field approximations [25],
there is no shift of critical temperature due to intercomponent
coupling constant gab, i.e., Tc(gab) = Tc(gab = 0).

For completeness, at the end of this section we present
explicit expressions for the free energy F = 
 + μN = 
 +
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μaNa + μbNb, which has the form

F (T < Tc) = F0 + FZM + FT ,

F0 = V ρ2
a ga

2

(
1 + n2

1a − m̃2
a − 2n1am̃a

)+ V ρ2
b gb

2

× (1+n2
1b−m̃2

b−2n1bm̃b
)+V

2
ρaρb(2 − m̃2

ab),

FZM = 1

2

∑
k

{
ω1 + ω2 − εk − �a − �b

+ ν2
2�2

a + ν2
1�2

b + 4�2
abν1ν2

2ν1ν2ε(k)

}
,

FT = T
∑

k

[ln(1 − e−ω1β ) + ln(1 − e−ω2β )],

F (T > Tc) = V gaρ
2
a + V gbρ

2
b + gabV ρaρb + FT , (72)

where n1a = ρ1a/ρa, m̃a = σa/ρa, m̃ab = σab/ρa, and the dis-
persions ω1 and ω2 for the BEC and normal phases are given
in Eqs. (59) and (66), respectively. The explicit expressions
for FZM, referred in the literature as zero mode energy, can
be found, e.g., in Refs. [3,58]. Note that the present approach
includes by itself not only the Lee-Huang-Yang (LHY) term
[59], but also the corrections beyond the LHY approximation
due to taking account of anomalous densities. Particularly, the
LHY term can be obtained expanding FZM in powers of the
coupling parameters.

Concluding the present section, let us summarize the
conditions of stability for a two-component uniform Bose
system:

(i) At temperatures below the critical one, when the sys-
tem is in the condensed phase, the mixture is stable, provided
the general condition

�a(γ , T )�b(γ , T )

�2
ab(γ , T )

� 1 (73)

holds. Here the self-energies �a(γ , T ), �b(γ , T ), and
�ab(γ , T ) are the solutions to Eqs. (54).

(ii) The inequality (73) may be replaced by
gagb

g2
ab

� 1 (74)

for very dilute gases, where the Bogoliubov approximation is
valid.

In the next section it will be shown that, for a balanced
symmetric Bose mixture, the inequality (73) may be repre-
sented as an expansion in powers of γ .

IV. BALANCED SYMMETRIC BOSE MIXTURES

The case of a binary superfluid gas with two symmetric
components consisting of 23Na in an equal mixture of two
hyperfine ground states has been recently realized experi-
mentally by Kim et al. [8]. So we assume that ga = gb = g,
gab = gabga, ma = mb = m, εa(k) = εb(k) = ε(k) = k2/2m,
and ρa = ρb = ρ/2, where N = ρV is the total number of
atoms in the mixture. Note that, treating the anomalous av-
erages, we resort to the standard way of regularization by
employing the method of counterterms that is equivalent to
the dimensional regularization [25,46].

A. Zero temperature

At zero temperature, the densities are simplified to

n1a = ρ1a(T = 0)

ρa
= ρ1b(T = 0)

ρa
= 1

2V ρa

∑
k

{
�a + ε(k) + �ab

2ω1
+ �a + ε(k) − �ab

2ω2
− 1

}
= m3

(
c3

1 + c3
2

)
6π2ρa

= n1b,

m̃a = σa(T = 0)

ρa
= σb(T = 0)

ρb
= − 1

2V ρa

∑
k

{
�a + �ab

2ω1
+ �a − �ab

2ω2
− �a

ε(k)

}
= 3n1a(T = 0), (75)

nab = ρab(T = 0)√
ρaρb

= 1

2V ρa

∑
k

{
ε(k) + �a + �ab

ω1
− ε(k) + �a − �ab

ω2

}
= m3

(
c3

1 − c3
2

)
3π2ρa

, m̃ab = σab(T = 0)√
ρaρb

= nab,

where we have introduced the sound velocities

c2
1,2 = (�a ± �ab)/m, (76)

which satisfy the following equations, derived from Eqs. (55)
and (61):

c3
1 − c3

2(gab − 1) − 3π2c2
1

gm2
+ 3π2ρa(gab + 1)

m3
= 0,

c3
1 + c3

2(gab + 1) − 3π2c2
2

gm2
− 3π2ρa(gab − 1)

m3
= 0. (77)

These equations can be rewritten in the dimensionless form as

s3
1 + (1 − gab)s3

2 − 3πs2
1

4
+ 3π2γ (gab + 1)

2
= 0,

s3
1 + (1 + gab)s3

2 − 3πs2
2

4
− 3π2γ (gab − 1)

2
= 0, (78)

where γ = ρa3
s , ρ = 2ρa is the total density of the whole

binary system, as = mg/4π , and s1,2 = c1,2mas. From the Bo-
goliubov approximation, it is known that the system becomes
unstable for gab > 1. Here we study the problem of possible
corrections to this criterion due to quantum fluctuations.
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FIG. 1. (a) The phase diagram of a symmetric binary Bose system with repulsive interactions at zero temperature. The shaded region cor-
responds to the stable, miscible phase. (b) Overlap parameter η vs gab = gab/g for three different values of the gas parameter: γ = 0.15×10−3

(solid line), γ = 0.75×10−2 (dotted line), and γ = 0.15×10−1 (dashed line).

To find the answer to this question one has to consider the
dispersions:

ω2
1 = ε(k)[ε(k) + 2(�a + �ab)],

ω2
2 = ε(k)[ε(k) + 2(�a − �ab)]. (79)

It is seen that the boundary of stability is defined by the con-
dition �a = �ab, since for �a < �ab the sound velocity c2

becomes negative. This is also seen from the general condition
�a�b � �2

ab, with �a = �b. In other words, the boundary of
stability in the phase diagram (gab, γ ) lies on the line c2 = 0,
i.e., s2(g∗

ab, γ
∗) ≡ 0. From Eqs. (78), one obtains

(s∗
1 )3 − 3π

8
(s∗

1 )2 + 3π2γ ∗

2
= 0,

g∗
ab = (s∗

1 )2

4πγ ∗ , (80)

where the asterisk indicates the threshold values of the pa-
rameters, corresponding to the boundary of stability for the
symmetric binary mixture. In Fig. 1(a), we present the phase
diagram on the (gab, γ ) plane (solid line). It is seen that, due
to quantum fluctuations, the system at T = 0 remains stable
even, for example, at g∗

ab(γ ≈ 0.013) ≈ 1.9. This is one of the
main results of the present work.

For small γ , one may use the following expansion for g∗
ab:

g∗
ab = 1 + 16

√
γ

3
√

π
+ 128γ

3π
+ 3584γ 3/2

9π3/2
+ O(γ 5/2), (81)

in order to obtain the stability condition in the form

gab � ga

[
1 + 16

√
γ

3
√

π
+ O(γ )

]
, (82)

which is valid for γ � 0.005.

The overlap parameter for the symmetric case at T = 0 has
the form

η = n0a + nab

2
= 1 − n1a + nab

2
= 1 − 2s3

2

3π2γ
, (83)

where we use Eqs. (75) and (76). On the boundary of sta-
bility, s2 = s∗

2 = 0, and η reaches its maximum value η = 1
[see Fig. 1(b)].

Close to the phase transition point, the condensed fraction
can be presented as

n∗
0(T = 0)=1−ρ1a

ρa

∣∣∣∣
gab→g∗

ab

= 1−8
√

γ

3
√

π
−64γ

3π
+ O(γ 3/2).

(84)
In Fig. 2(a), we present the condensed fraction vs gab. It is
seen that intercomponent repulsion gab tends to destroy BEC,
repelling the condensed particles.

The present work would not be complete without a com-
parison with the experiment performed by Kim et al. [8].
The authors studied the mixture of atoms with two hyper-
fine ground states of 23Na and measured the sound velocities
c1 = 3.23 mm/s and c2 = 0.70 mm/s by fixing the rela-
tive coupling constant gab = 0.93 and the gas parameter γ ≈
1.4×10−6. For this set of parameters from Eqs. (77), we
get the following values for the sound velocities: c1 = 3.91
mm/s, c2 = 0.75 mm/s, which are rather close to the exper-
imental data. To make further prediction, we have calculated
the relative sound velocity c2/c1 vs gab for three different val-
ues of γ . The results are presented in Fig. 2(b). It is seen that
c2/c1 reduces with increasing gab and vanishes at gab = g∗

ab,
where the phase separation occurs.

B. Finite temperature BEC in a balanced
symmetric binary mixture

Setting ma = mb = m, ρa = ρb = ρ/2, ga = gb = g, and
gab = gabg in Eqs. (A11)– (A16), we can obtain the following
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FIG. 2. (a) The condensed fraction [n0 = ρ0/(ρ/2)] at zero temperature vs gab = gab/g in the interval 0 < gab < g∗
ab(γ ) for different values

of γ . (b) The relative sound velocity c2/c1 vs gab for different values of γ at T = 0.

expressions for the densities at finite temperatures,

n1a = ρ1a

ρa
= m3

(
c3

1 + c3
2

)
6π2ρa

+ 1

2V ρa

∑
k

[
mc2

1 + ε(k)

ω1
f (ω1)

+ mc2
2 + ε(k)

ω2
f (ω2)

]
,

m̃a = σa

ρa
= m3

(
c3

1 + c3
2

)
2π2ρa

− m

2V ρa

∑
k

[
c2

1 f (ω1) + c2
2 f (ω2)

]
,

nab = ρab

ρa
= m3

(
c3

1 − c3
2

)
3π2ρa

+ 1

V ρa

∑
k

[
c2

1m + ε(k)

ω1
f (ω1)

+ c2
2m + ε(k)

ω2
f (ω2)

]
, (85)

as well as for the overlap parameter η,

η = 1 − m3c3
2

3π2ρa
− 1

V ρa

∑
k

mc2
2 + ε(k)

ω2
f (ω2), (86)

where the dispersions, given in terms of the sound velocities,
are

ω1,2 =
√

ε(k)
(
ε(k) + 2mc2

1,2

)
. (87)

Note that close to the critical temperature, where c2 = 0 and
ω2 = ε(k), the overlap parameter η tends to zero:

η(T → Tc) = 1 − 1

ρaV

∑
k

1

eε(k)/Tc − 1
= 1 − 1 = 0, (88)

as is shown for the general case in Sec. III. As to the main
equations (54) they are simplified as

�a = �b = m

2

(
c2

1 + c2
2

) = gρa[1 − n1a + m̃a],

�ab = m

2

(
c2

1 − c2
2

) = ggabρa

[
1 − n1a + nab

2

]
. (89)

For practical calculations, it is convenient to solve the
system of the following dimensionless equations:

s3
1 + s3

2 − 3π

8

(
s2

1 + s2
2

)+ 3π2γ

2
− 3π2as

2mV

×
∑

k

[
a2

s mε(k) + 2s2
1

ω1
f (ω1)

+ a2
s mε(k) + 2s2

2

ω2
f (ω2)

]
= 0,

s2
1 − s2

2 + 8gabs3
2

3π
− 4πgabγ + 8πgabas

mV

×
∑

k

s2
2 + a2

s mε(k)

ω2
f (ω2) = 0, (90)

where ω1,2 = ε2(k) + 2ε(k)s2
1,2/ma2

s , with respect to the di-
mensionless sound velocities si = cimas, and then evaluate the
densities from Eqs. (85) and (86).

In the previous section we studied the boundary of stability
[Fig. 1(a)] at zero temperature. As is clear, at finite temper-
ature the stability condition �a(gab, γ , T ) � �ab(gab, γ , T )
can also be violated. Now the stability becomes lost at a
certain point with gab = g∗

ab for a given gas parameter γ and
temperature T . At this point, according to Eqs. (89), we have
c2 = 0 and hence g∗

ab satisfies the following equation:

g∗
ab = v2

1

2(1 − t3/2)
, (91)

where we use the identity

1

V

∑
k

f (ω2) = 1

V

∑
k

1

eε(k)β − 1
= ρat3/2, (92)

with t = T/Tc and Tc = 2ρ2/3
a π/mη(3/2)2/3 ≈ 2.08γ 2/3/

a2
s m. Along the line of the stability boundary, the reduced

sound velocity in Eq. (91) is v1 = masc1/
√

2πγ , and the
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FIG. 3. Phase diagram of the balanced symmetric two-component Bose mixture on the (gab = gab/g, t = T/Tc ) plane for different gas
parameters: (a) γ = 0.000001, (b) γ = 0.005, (c) γ = 0.01, and (d) γ = 0.015. The shaded region corresponds to a stable miscible state.

densities are given by the following equations:

1 − v2
1

2
+ 4v3

1

3

√
2γ

π
− t3/2

2

− as

V mγ

∑
k

(
a2

s ε(k)m + 4πv2
1γ
)

ω1
f (ω1) = 0, (93)

n∗
1a = t3/2

2
+ 2

3

√
2γ

π
v3

1

+ as

πγV

∑
k

(
2πγ v2

1 + ε(k)ma2
s

)
ω1

f (ω1) = 0, (94)

m̃∗
a = 2v3

1

√
2γ√

π
− 2asπv2

1

mV

∑
k

1

ω1
f (ω1), (95)

n∗
ab = −t3/2 + 4v3

1

3

√
2γ

π

+ 2as

mγV

∑
k

(
2πγ v2

1 + ε(k)ma2
s

)
ω1

f (ω1). (96)

The equation for η∗ is simplified as

η∗ = η(c2 = 0) = 1 − t3/2 �= 0, (97)

where we use Eqs. (86) and (92).

In Fig. 3, we present the phase diagram of a symmetric
two-component BEC on the (gab, t) plane for four values of γ .
It is seen that instability can occur at any temperature below
the critical one depending on gab = gabg. For example, at
t = 0.5 the system remains in a miscible, stable phase before
gab reaches the value g∗

ab = 1.625 for γ = 0.01. Increasing
further gab at this temperature leads to the phase transition to
an immiscible but stable phase which has lower energy. It is
seen from Fig. 3(a) that for small γ the threshold value of gab
is close to unity in agreement with the Bogoliubov prediction,
and it increases with increasing γ due to the quantum correc-
tions. Below gab < g∗

ab, the system is miscible and stable.
In Fig. 4, we plot the overlap parameter η(t ) for different

values of gab and γ . As is seen, η is close to unity near zero
temperature, and rapidly decreases by increasing the temper-
ature, to vanish at T = Tc.

In Fig. 5 we present the chemical potential on the whole
range of temperatures (t = T/Tc) for different values of gab. It
is seen that the modification of μ due to gab is rather large both
in Bose-condensed (T < Tc) and normal (T > Tc) phases.

V. DISCUSSION AND CONCLUSIONS

We have developed a self-consistent mean-field theory
for a binary homogeneous mixture of two-component Bose
systems. This theory, being conserving and gapless, imposes
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FIG. 4. The overlap parameter vs temperature for (a) γ = 7.5×10−3 and (b) γ = 0.015.

no restriction on the gas parameter γ , and hence it is valid
for arbitrary strong interactions gab. The theory satisfies the
generalized HP theorem and takes into account anomalous
densities σa, σb, and σab. The presented approach is a kind
of a self-consistent Hartree-Fock-Bogoliubov approximation;
hence it is the most general mean-field approximation. There-
fore, as particular cases it includes other known mean-field

approximations, such as the Shohno model, quadratic, and
Bogoliubov approximations. For numerical analysis, we have
considered the balanced symmetric configuration of a two-
component mixture of Bose gases. We have obtained the
phase diagram for this system at zero as well as at finite
temperatures for arbitrary gas parameters. The phase diagram
at zero temperature on the (gab, γ ) plane shows that the system

FIG. 5. Reduced chemical potential, μ/gρ, in the whole range of the dimensionless temperatures t = T/Tc for different values of gab and γ .
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may remain stable and miscible even at gab/gaa > 1, provided
the anomalous densities are properly taken into account. Com-
paring this phase diagram with that at finite temperature (gab,
γ , T ), we see that the finite temperature can transform the
phase-separated two-component BECs at T = 0 to a miscible
state. This conclusion is in good agreement with the works
by Roy et al. [17], Ota et al. [23], and Shi et al. [15]. Our
numerical results are also in good agreement with experimen-
tal works [8,9], although new experimental measurements for
larger values of the interspecies coupling and γ are required.

The increase of the region of miscibility, due to the proper
taking account of anomalous averages and temperature, can
be understood remembering that these characteristics take
into consideration the existence of quantum and temperature
fluctuations. In the system, there are different competing fac-
tors. From one side, the repulsive interspecies interactions
intend to separate the mixture. From the other side, larger
interactions induce larger anomalous averages, and the larger
amount of uncondensed particles, which characterizes the
increasing quantum fluctuations. Both quantum as well as
thermal fluctuations are favorable for mixing. Under the given
interactions, fluctuations facilitate the process of mixing. This
is why the system may be immiscible when fluctuations are
absent but becomes miscible in the presence of fluctuations.
As an example of the influence of thermal fluctuations, it is
possible to consider the role of temperature in the thermody-
namic miscibility conditions at weak interactions, when the
free energies of mixed and separated states are compared.
Taking into account that the difference in the entropy between
the mixed and separated states is due to the mixing entropy,
one obtains [51] the miscibility condition

gab − √
gaa gbb < −2T

ρ

∑
i

ni ln ni

(
ni ≡ Ni

N

)
,

where ρ is the average density of the mixed system. As is
evident, finite temperatures do facilitate the mixing, so that at
zero temperature the system can be immiscible, while at finite
temperature it can become miscible.

The definition of the energy dispersion as well as the iden-
tification of points of instability, introduced in Secs. II and III,
requires some clarification. Actually, for this purpose we have
exploited first-order Green’s functions (30). However, strictly
speaking, these parameters should be related to the poles
of the full interacting Green’s function, given by the Dyson
equation Ĝ−1 = Ĝ−1

0 − �̂, where Ĝ0 is the “noninteracting”
Green’s function and �̂ is the self-energy operator [60]. In the
present approach Ĝ0 does not coincide with that of an ideal
gas, but effectively takes into account two-body interactions
via variational parameters [X1, . . . , X6].

It will be quite interesting to study a nonsymmetric, e.g.,
imbalanced two-component Bose mixture, where quasimag-
netic transitions may also take place [23]. Moreover, as has
been recently claimed by Naidon and Petrov [61], for un-

equal interspecies interaction or unequal masses the mixed
phase can form bubbles with a tunable population. This will
be the next task for the application of our theory, since the
ground-state physics can be qualitatively understood from
the arguments valid for a homogeneous system. However,
in the case of real systems in a trap phase separation can
be suppressed in the inhomogeneous system due to quantum
pressure effects [62].
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APPENDIX A: THE GREEN’S FUNCTIONS
AND THE DENSITIES

Here we present the explicit expressions for the Green’s
function Gi j (ωn, �k) (i, j = 1–4) and the related densities. By
inversion of G−1

i j (ωn, �k) given in Eq. (30) one obtains

G11(ωn, �k) = W2W3W4 + W2ω
2
n − X 2

6 W3

D̃
, (A1)

G12(ωn, �k) = −
(
W3W4 + ω2

n + X5X6
)
ωn

D̃
, (A2)

G13(ωn, �k) = −W2X5W4 − X 2
6 X5 − ω2

nX6

D̃
, (A3)

G14(ωn, �k) = − (X5W2 + W3X6)ωn

D̃
, (A4)

G22(ωn, �k) = W1W3W4 + W1ω
2
n − W4X 2

5

D̃
, (A5)

G23(ωn, �k) = − (X6W1 + X5W4)ωn

D̃
, (A6)

G24(ωn, �k) = −W3X6W1 − X6X 2
5 − ω2

nX5

D̃
, (A7)

G33(ωn, �k) = W4W1W2 + W4ω
2 − X 2

6 W1

D̃
, (A8)

G34(ωn, �k) = −
(
W1W2 + ω2

n + X5X6
)
ωn

D̃
, (A9)

G44(ωn, �k) = W3W1W2 + W3ω
2
n − X 2

5 W2

D̃
, (A10)

where D̃ = (ω2
n + ω2

1 )(ω2
n + ω2

2 ), ωn = 2πnT , ω1,2 are given
in the main text, and W1 = εa(k) + X1, W2 = εa(k) + X2,
W3 = εb(k) + X3, W4 = εb(k) + X4, X5 = X13, and X6 = X24.

Below we present explicit expressions for the densities
defined in Eqs. (45)–(47):

ρ1a = 1

2
√

Dω1(k)ω2(k)V

∑
k

([
X 2

6 W3 + W2ω
2
1(k) − W2W3W4 − W1W3W4 + X 2

5 W4 + W1ω
2
1(k)
]
ω2(k)W̃1(k)

+ [−X 2
6 W3 − W2ω

2
2(k) + W2W3W4 +W1W3W4 − X 2

5 W4 − W1ω
2
2(k)
]
ω1(k)W̃2(k)

)
, (A11)
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ρ1b = 1

2
√

Dω1(k)ω2(k)V

∑
k

([
X 2

6 W1 + W4ω
2
1(k) − W1W2W3 − W1W2W4+X 2

5 W2 + W3ω
2
1(k)
]
ω2(k)W̃1(k)

+ [−X 2
6 W1 − W4ω

2
2(k) + W1W2W3 + W1W2W4 − X 2

5 W2 − W3ω
2
2(k)
]
ω1(k)W̃2(k)

)
, (A12)

σa = 1

2
√

Dω1(k)ω2(k)V

∑
k

([
X 2

6 W3 + W2ω
2
1(k) − W2W3W4 + W1W3W4−X 2

5 W4 − W1ω
2
1(k)
]
ω2(k)W̃1(k)

+ [−X 2
6 W3 − W2ω

2
2(k) − W1W3W4 − W2W3W4 − W2ω

2
2(k) + X 2

5 W4 + W1ω
2
2(k)
]
ω1(k)W̃2(k)

)
, (A13)

σb = 1

2
√

Dω1(k)ω2(k)V

∑
k

([
X 2

6 W1 + W4ω
2
1(k) + W1W2W3 − W1W2W4− − X 2

5 W2 − W3ω
2
1(k)
]
ω2(k)W̃1(k)

+ [−X 2
6 W1 − W4ω

2
2(k) − W1W2W3 +W1W2W4 + X 2

5 W2 + W3ω
2
2(k)
]
ω1(k)W̃2(k)

)
, (A14)

ρab = 1√
Dω1(k)ω2(k)V

∑
k

([−X 2
6 X5 + W1W3X6 + W2W4X5 + ω2

1(k)X6+X5ω
2
1(k) − X 2

5 X6
]
ω2(k)W̃1(k)

+ [X 2
6 X5 − W1W3X6 − W2W4X5 − ω2

2(k)X6 − X5ω
2
2(k) + X 2

5 X6
]
ω1(k)W̃2(k)

)
, (A15)

σab = 1√
Dω1(k)ω2(k)V

∑
k

([−X 2
6 X5 − W1W3X6 + W2W4X5 + ω2

1(k)X6−X5ω
2
1(k) + X 2

5 X6
]
ω2(k)W̃1(k)

+ [X 2
6 X5 + W1W3X6 − W2W4X5 − xω2

2(k)X6 − X5ω
2
2(k) + X 2

5 X6
]
ω1(k)W̃2(k)

)
, (A16)

where W̃1,2(k) = 1/2 + f (ω1,2(k)), and D, ω1,2(k) are given in Eqs. (31)–(36).
Note that, in practical calculation of momentum integrals, adequate counterterms should be included similar to cρ = −1/2

(for ρ1), and cσ = �/2εk (for σ ) used in the one-component case.
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