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Optimizing measurement-based cooling by reinforcement learning
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Conditional cooling-by-measurement holds a significant advantage over its unconditional (nonselective)
counterpart in the average-population-reduction rate. However, it has a clear weakness with respect to the
limited success probability of finding the detector in the measured state. In this work, we propose an optimized
architecture to cool down a target resonator, which is initialized as a thermal state, using an interpolation of
conditional and unconditional measurement strategies. An optimal measurement-interval τ u

opt for unconditional
measurement is analytically derived, which is inversely proportional to the collective dominant Rabi frequency
�d as a function of the resonator’s population in the end of the last round. A cooling algorithm under global
optimization by reinforcement learning results in the maximum value for the cooperative cooling performance,
an indicator to measure the comprehensive cooling efficiency for arbitrary cooling-by-measurement architecture.
In particular, the average population of the target resonator under only 16 rounds of measurements can be reduced
by four orders in magnitude with a success probability of about 30%.
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I. INTRODUCTION

Cooling mesoscopic and microscopic resonators down
to their minimum-energy state is fundamental to observing
a classical-quantum transition and exploiting the quantum
advantage in nanoscience [1,2]. The ground-state prepara-
tion is a crucial and implicit step in quantum information
processes, including but not limited to continuous-variable
quantum computations [3–6], ultrahigh precision measure-
ments [7,8], and quantum interface constructions [9]. Various
strategies have been designed to reach an effective tempera-
ture as low as possible in the trapped atom and ion systems
[10–12]. In atomic laser cooling, popular strategies consist of
laser Doppler cooling [9,13,14], resolved-sideband cooling,
and electromagnetically induced transparency (EIT) cooling
[15,16].

Beyond the paradigms extracting system energy through
dissipative channels based on blueshifted (anti-Stokes) side-
bands, a versatile approach to cooling the mechanical states
of motion is provided by the interaction with electromagnetic
radiation or quantum measurement. Back-action-evading
measurement techniques that can surpass the standard quan-
tum limit have attracted enormous interest. Through the
pulsed measurement process in optomechanics [17–21], they
can dramatically change the mechanical thermal occupation
with no initial cooling. A genuine quantum-mechanical cool-
ing engine is proposed [22], whereby the fuel is the energy
exchanged with an apparatus performing invasive quantum
measurements.

Among these measurement-based techniques, quantum
state engineering based on measurements on ancillary sys-
tems has been proposed recently in theory [23,24] and
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demonstrated in experiment [25]. Rather than directly detect-
ing the target system, a net nonunitary propagator is realized
by inserting projective measurements on the ground state of
the detector system in between the joint unitary-evolution
segments of target and detector. The induced postselection of
the ground state of the target system (typically modeled as a
resonator) reduces its high-energy distribution in the ensem-
ble. In other words, the resonator is gradually steered by the
outcomes of the conditional measurement (CM) to its ground
state via dynamically filtering out its vibrational modes. Rang-
ing from cooling the nonlinear mechanical resonators [26],
cooling by one shot measurement [27], and expanding the
cooling range by an external driving [28], to accelerating
the cooling rate by optimized measurement intervals [29], an
unexplored weakness of the CM strategies is their limited
success probability inherited from the projective operation.
The amount of experimental overhead increases unavoidably
with more samples in the ensemble. In sharp contrast to
CM, the unconditional measurement (UM) strategy is used
to perform a nonselective and impulsive measurement in all
the bases of the bare Hamiltonian of the detector at the end
of each round of the joint evolution [30,31]. Using this strat-
egy, we are more likely to realize a unit-success-probability
cooling, but it suffers from a much slower cooling rate than
CM, indicating a much higher number of measurements to-
ward the ground-state cooling. To compromise between the
cooling rate and the success probability, the interpolating
configuration of conditional and unconditional measurements
constitutes an optimization problem.

The integration of a small-scale quantum circuit with
a classical optimizer, e.g., the neural network, provides a
paradigm by designing a sequence of parametrized quan-
tum operations that are well suited to implement robust
and high-fidelity algorithms. Many reinforcement learning
(RL) algorithms constructed by the neural network, which
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demonstrated remarkable capabilities in board games and
video games [32–35], have substantiated a wide and timely
interest in studying several areas of quantum physics [36],
including quantum error correction [37,38], quantum simula-
tion [39,40], and quantum state preparation [41–43], to name
a few. The proximal policy optimization (PPO) algorithm, as
a typical RL algorithm with a significant sample complexity,
scalability, and robustness for hyperparameters, has proven to
be a fruitful tool in quantum optimization control [44–46].

In this work, we propose a measurement-based cooling
architecture as a hybrid sequence of UM and CM strategies.
It involves a double optimization: for each step along the
sequence, either UM or CM can be improved considerably
by using a local optimized measurement interval, and for
the global efficiency of the sequence, its arrangement can
be separably optimized through reinforcement learning. In
particular, in a typical measurement-based cooling model,
i.e., the Jaynes-Cummings (JC) model, where a mechanical
resonator (the target system) is coupled to a qubit (the de-
tector system), conditional and unconditional measurements
are alternatively performed to cool down the resonator to its
ground state. A feedback scheme is triggered upon calling
a CM to determine whether or not to launch the next round
of evolution-and-measurement according to the measurement
outcome. Analogous to the optimized measurement-interval
obtained for CM [29], we derive analytically an optimized
interval for UM. Then the free-evolution intervals between
any neighboring measurements, either UM or CM, can be
optimized for cooling. The global sequence of measurements
or the implementing order of UM and CM can be further
optimized with reinforcement learning. The optimizer is fed
with the cooperative cooling performance, a function of the
average population of the resonator, the success probability of
the detector in the measured subspace, and the fidelity of the
resonator in the ground state. Eventually, we find an optimal
sequence holding an overwhelming advantage over all the
others.

The rest of this work is structured as follows. We briefly
revisit the general framework for the cooling protocols based
on conditional and unconditional measurements in Secs. II A
and II B, respectively. In Sec. II B, an analytical expression
of the optimized measurement interval is obtained for UM. In
Sec. III, we introduce the interpolation diagram for the cooling
architecture based on these two measurements. On the defini-
tion of the cooperative cooling performance to comprehen-
sively quantify various strategies, we present the optimized
result through reinforcement learning. The PPO algorithm and
the optimal-control procedure are provided in Appendixes A
and B, respectively. The whole work is discussed and summa-
rized in Sec. IV.

II. CONDITIONAL AND UNCONDITIONAL
MEASUREMENTS

A. Conditional measurement

Consider a JC model used for cooling-by-measurement
protocols, whose Hamiltonian in the rotating frame with re-
spect to H0 = ωa(|e〉〈e| + a†a) reads

H = �|e〉〈e| + g(a†σ− + aσ+). (1)

Here � ≡ ωe − ωa is the detuning between the level-spacing
of the atomic detector ωe and the frequency of the target
resonator ωa and |�| � ωe, ωa. g is the coupling strength
between the detector (qubit) and the target resonator. Pauli
matrices σ− and σ+ denote the transition operators of the
qubit, and a (a†) represents the annihilation (creation) oper-
ator of the resonator.

The conditional measurement-based cooling is described
by a sequence of piecewise joint evolutions of the resonator
and the detector, which are interrupted by instantaneous
projective measurements on a particular subspace of the de-
tector. Initially, the resonator is in a thermal-equilibrium
state ρ th

a with a finite temperature T , and the detector qubit
starts from the ground state. Then the overall initial state
has the form ρtot (0) = |g〉〈g| ⊗ ρ th

a . To cool down the res-
onator, a conditional or selective measurement Mg = |g〉〈g|
is implemented on the detector after the free evolution with
an interval τ , when the overall state becomes ρtot (τ ) =
exp(−iHτ )ρtot (0) exp(iHτ ). And then conditional measure-
ment yields a probabilistic result:

ρa(τ ) = 〈g|ρtot (τ )|g〉
Tr[〈g|ρtot (τ )|g〉] . (2)

Based on the time dependence of the interval τ , conditional
cooling protocols can be categorized into the equal-time-
spacing and unequal-time-spacing strategies [24,29]. The
unequal-time-spacing strategy has demonstrated a dramatic
cooling efficiency by setting the measurement interval as
the inverse of the time-evolved thermal Rabi frequency
τ c

opt (t ) = 1/�th(t ), where �th(t ) ≡ g
√

n̄(t ) = g
√∑

n npn(t ),
with pn(t ) denoting the current population of the resonator
on the Fock state |n〉. To optimize the cooling performance,
our cooling architecture in this work employs the unequal-
time-spacing strategy. After N rounds of free-evolution and
instantaneous-measurement described by an ordered time se-
quence {τ1(t1), τ2(t2), . . . , τN (tN )} with ti>1 = ∑ j=i−1

j=1 τ j and

τ1 ≡ 1/[g
√

Tr(n̂ρ th
a )], the resonator state becomes

ρa

(
t =

N∑
i=1

τi

)
=

∑
n

∏N
i=1 |αn(τi )|2 pn|n〉〈n|

Pg(N )
, (3)

where

pn = e−nh̄ωa/kBT

Z
, Z ≡ 1

1 − e−h̄ωa/kBT
(4)

is the initial population,

Pg(N ) =
∑

n

N∏
i=1

|αn(τi )|2 pn (5)

is the survival or success probability of CM, and

|αn(τi )|2 = �2
n − g2n sin2(�nτi )

�2
n

(6)

is the cooling coefficient, with �n =
√

g2n + �2/4 denot-
ing the n-photon Rabi frequency. The cooling coefficient in
Eq. (3) determines the average population

n̄(t ) = Tr[n̂ρa(t )], n̂ ≡ a†a, (7)
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by reshaping the population distributions over all the Fock
states. Note in Eq. (6) the cooling coefficient for |0〉 is unit,
|α0(τi )|2 = 1, meaning that the ground-state population is
always under protection during the cooling process. The pop-
ulations on high-occupied Fock states are gradually reduced
by |αn(τi )|N < 1 with increasing N unless sin(�nτi ) = 0 or
�nτi = jπ with integer j.

B. Unconditional measurement

Unconditional-measurement cooling is a statistical mixture
of the conditional-measurement counterpart achieved by ex-
panding the measurement subspace to the whole space of the
detector system. After a period of joint unitary evolution under
the Hamiltonian (1), the overall state can be written as

ρtot (τ ) =
⊕

n

pn

(|αn(τ )|2 χn(τ )

χ∗
n (τ ) |βn(τ )|2

)
, (8)

where

χn(τ ) ≡ −g
√

n[� sin2(�nτ ) − i�n sin(2�nτ )]

2�2
n

,

|βn(τ )|2 ≡ g2n sin2(�nτ )

�2
n

.

UM can be implemented by tracing out the degrees of freedom
of the detector Trd [ρtot (τ )]. Then the resonator state reads

ρa(τ ) =
∑
n�0

[|αn(τ )|2 pn + |βn+1(τ )|2 pn+1]|n〉〈n|. (9)

So after a nonselective measurement, i.e., a measurement
without recording the result, a population transfer in the target
resonator occurs as

pn → |αn(τ )|2 pn + |βn+1(τ )|2 pn+1. (10)

In contrast to the CM strategy that is characterized by a single
cooling coefficient |αn|2 in Eq. (6), the UM strategy depends
subtly on an extra cooling coefficient |βn|2. According to
Eq. (10), the initial population on the ground state p0 becomes
|α0(τ )|2 p0 + |β1(τ )|2 p1 = p0 + |β1(τ )|2 p1, indicating that a
part of the population on the first excited state is transferred to
the ground state. Under rounds of nonselective measurements,
it is intuitive to expect that the populations on the higher states
of the resonator keep moving to the lower states and eventu-
ally to the ground state. In practice, however, the cooling is
constrained and even invertible since the populations on cer-
tain excited states can be fixed or enhanced when |αn(τ )|2 = 1
and |βn+1(τ )|2 � 0, i.e., �nτ = 1 and �n+1τ � 0. This prob-
lem can be addressed by employing the unequal-time-spacing
strategy. A time-varying τ could ensure that populations on
all excited states are gradually reduced.

The cooling efficiency of the UM strategy depends strongly
on the choice of τ spacing neighboring measurements, analo-
gous to that of CM [29]. That could be observed in Fig. 1 by
the average population of the resonator n̄ under one measure-
ment on the detector. The τ -dependence of n̄ demonstrates
similar patterns across four orders in a scale of initial tempera-
ture. It is found that the average population declines gradually
to a minimal point (the relative reduction becomes smaller

FIG. 1. Average population of the resonator after a single uncon-
ditional measurement as a function of the measurement-interval τ

under various initial temperatures. (a) T = 0.01 K, (b) T = 0.1 K,
(c) T = 1.0 K, and (d) T = 10 K. The vertical black-dashed lines
indicate the analytical results for the optimized intervals given by
Eq. (14). The parameters for the blue-solid curves are set as g =
0.04ωa and � = 0.01ωa.

with increasing temperature) at an optimized measurement-
interval τ u

opt, then it rebounds quickly and ends up with a
random fluctuation around a value slightly lower than its ini-
tial thermal occupation n̄th ≡ Tr(n̂ρ th

a ).
To make full use of the cooling strategy, it is desired to an-

alytically find the optimized interval τ u
opt as a functional of the

current state and the model parameters. By virtue of Eq. (9)
and under the resonant condition, the average population after
a single unconditional measurement reads

n̄ =
∑
n�0

n(pn cos2 �nτ + pn+1 sin2 �n+1τ )

= η + 1

2Z

∑
n�0

ne−nx(cos 2�nτ − e−x cos 2�n+1τ ), (11)

where η ≡ (n̄th + 2n̄2
th )/(2 + 2n̄th ) and x ≡ h̄ωa/kBT . Since

the weight function ne−nx in Eq. (11) is dominant around
nd ≡ kBT/h̄ωa = 1/x, the variables �n and �n+1 could thus
be expanded around n = nd . To the first order of n − nd , we
have

cos 2�nτ − e−x cos 2�n+1τ

≈ cos 2�dτ − e−x cos 2�d+1τ + (n − nd )

×
(

− �dτ sin 2�dτ

nd
+ e−x �d+1τ sin 2�d+1τ

nd + 1

)
,

where

�d ≡ g
√

nd , �d+1 ≡ g
√

nd + 1 (12)

define the dominant Rabi frequencies. Under the approxima-
tions that are appropriate for a moderate temperature e−x =
n̄th/(n̄th + 1) ≈ 1 and �d+1/(nd + 1) ≈ �d/nd , the average
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population in Eq. (11) can be expressed by

n̄ ≈ η + sin �−τ (n̄th sin �+τ + η′�dτ cos �+τ ), (13)

where �± ≡ �d+1 ± �d and η′ ≡ n̄th(1 + 2n̄th − nd )/nd .
Note that we have used the formulas about the geometric
series

∑∞
n=0 ne−nx = ex/(ex − 1)2 and

∑∞
n=0 n2e−nx = ex(1 +

ex )/(ex − 1)3. Within a moderate time step τ , Eq. (13)
depends predominantly on the high-frequency terms char-
acterized by �+. In the regime of T ∼ 0.1–10 K, the term
weighted by η′�dτ overwhelms that weighted by n̄th. And
as evidenced by Fig. 1, this advantage expands with a larger
τ u

opt when the initial or effective temperature of the resonator
becomes lower. We can therefore focus on the last term in
Eq. (13) to minimize n̄. Subsequently, cos �+τ = −1 yields

τ u
opt = π

�d + �d+1
. (14)

This result can be extended to the near-resonant situa-
tion by modifying the definition of �d in Eq. (12) to√

g2nd + �2/4. The vertical black-dashed lines in Fig. 1 de-
note the measurement-intervals optimized by Eq. (14). It is
found that the analytical expression is well suited to estimate
the minimum values of the average population in a wide
range of temperature. As demonstrated by both analytical and
numerical results, a shorter measurement interval is required
to cool down a higher-temperature resonator. In the JC-like
models, coupling a qubit to a high-temperature resonator in-
duces a faster transition between the ground state and the
excited state of the qubit. Although a quick measurement
would interrupt this process, an inappropriate time interval
would have a negative effect on cooling [30].

Similar to the optimized interval τ c
opt (t ) for the conditional-

measurement strategy [29], here τ u
opt is also updatable by

substituting time-varied �d and �d+1 into Eq. (14). The dom-
inant Fock-state-number nd determining �d in Eq. (12) could
be understood as a function of the effective temperature during
the cooling procedure, which relies uniquely on n̄(t ) or pn(t ).

III. MEASUREMENT OPTIMIZATION

A thermal resonator could be steadily yet slowly cooled
down by an unconditional measurement strategy equipped
with an optimized measurement interval in Eq. (14). And this
strategy is performed with a unit probability in the absence
of postselection over the measurement outcome. In sharp
contrast, a conditional measurement strategy is a more effi-
cient cooling protocol but with a poor success probability. It
is therefore desired to find an optimized sequence of mea-
surements as a hybrid of UM and CM to maintain a great
performance, taking both cooling efficiency and experimental
overhead into account. In this section, we present an algo-
rithm that employs the reinforcement learning to generate
the optimized control sequence indicating when and which
measurement is performed.

The performance of any cooling-by-measurement strategy
can be characterized or evaluated by the cooling ratio n̄(t )/n̄th,
the success probability Pg of the detector in the measured
subspace, and the fidelity of the resonator in its ground state,
F = 〈n = 0|ρa(t )|n = 0〉 [24]. To compare various interpola-
tion sequences of UM and CM in cooling performance and to

FIG. 2. (a) RL-optimization diagram on cooling by measure-
ment. An agent constructed by the neural network interacts with
an environment. The agent chooses an action (CM or UM strategy)
according to the current state of the resonator. Then the environment
would take this action and return both the state under the measure-
ment and the reward R based on the cooperative cooling performance
C in Eq. (15). (b) Circuit model for our cooling algorithm based on
the local-optimized UM and CM strategies. Starting from a ther-
mal state, the resonator (the upper line) would be gradually cooled
down to its ground state with implementation of measurement on
the detector (the lower line), which starts from the ground state. The
measurement sequence can be obtained by reinforcement learning.

evaluate the figure of merit for the reinforcement learning, we
can define a cooperative cooling quantifier as

C = FPg log10
n̄th

n̄(t )
. (15)

Notably, the logarithm function is used to obtain a positive
value with almost the same order as F and Pg in magnitude.
Then n̄(t ), Pg, and F could be considered in a balanced
manner. In fact, the average population could be reduced
by several (normally less than 10) orders of magnitude un-
der an efficient cooling protocol. In the EIT cooling [47],
log10[n̄th/n̄(t )] ∼ (2, 3); and in the resolved sideband cool-
ing [48], log10[n̄th/n̄(t )] ∼ (4, 5). Although Eq. (15) is not
a unique choice, it is instructive to find that a lower average
population, a larger success probability, and a higher ground-
state fidelity yield a better cooling performance.

The RL optimization is shown in Fig. 2(a). It is con-
stituted by the “agent” part based on a series of neural
networks and the “environment” part performing the cooling-
by-measurement actions on a quantum system. In the
reinforcement learning, the agent has a cluster of parameters,
which would be learned and trained using the data collected
through its interaction with the environment. In our architec-
ture, the agent would choose an action, i.e., conditional or
unconditional measurement, on the resonator, given its current
state. Then the environment takes this action and returns the
updated resonator-state ρa and a “reward” R after the mea-
surement. The reward is generated by the indicator in Eq. (15)
to estimate whether the action is good or bad, which would be
used to update the agent’s parameters. During one “episode”,
the agent would interact with the environment for N times,
i.e., the number of measurements during the whole sequence,
which has been fixed from the beginning. A total reward is
eventually counted. And the agent is trained to maximize
the total reward through artificial episodes until it converges.
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Then the agent could provide a realistic control sequence of
the measurement strategies with their own (optimized) mea-
surement intervals. The cooling-by-measurement sequence
can be realized in a circuit model in Fig. 2(b). Rounds of
free evolutions and measurements are successively arranged.
The evolution time between two neighboring measurements
depends on the measurement strategy and the resonator state
at the end of the last round. We follow the PPO algorithm in
the agent structure, the data-collecting methods, and the up-
dating parameters, whose details can be found in Appendix A.
The interpolation algorithm of UM and CM and the imple-
mentation of the measurement sequence are illustrated by a
pseudocode in Appendix B.

We consider cooling down a mechanical microresonator
in gigahertz [49,50] with various interpolation sequences of
UM and CM. Using the resonator frequency, ωa = 1.4 GHz;
the coupling strength between the resonator and the detec-
tor, g = 0.04ωa; and the initial temperature of the resonator,
T = 0.1 K; it is found that the average population starts from
n̄th = 8.85. The cooling performances under the sequences
entirely consisting of UM and CM are shown by the blue
solid lines with circle markers and the orange dotted lines
in Figs. 3(a)–3(d), labeled by Su and Sc, respectively. It is
found that under the conditional measurement strategy with
N = 16, the average population n̄ is reduced by five orders
of magnitude [see Fig. 3(a)], and the ground-state fidelity is
over F > 0.9999 [see Fig. 3(b)] with less than 10% of the
success probability [see Fig. 3(c)]. In sharp contrast, under
the same number of unconditional measurements, n̄ is merely
reduced to n̄ ≈ 3.36 and the ground-state fidelity F ≈ 0.78,
despite having a unit success probability. In terms of all the
individual quantifiers, i.e., n̄, F , and Pg, the results under the
hybrid sequences of UM and CM labeled by Sk , k = 1, 2, 4,
are among the former two limits Su and Sc. As illustrated by
Figs. 3(e), 3(f), and 3(g), the three sequences start from a CM
(indicated by 1), switch to the UM (indicated by 0) after k
rounds of free evolution and measurement, switch back to
CM after a single round, and then the preceding arrangement
is repeated. In comparison to the entire UM sequence, the
interpolation with CM promotes the cooling efficiency in n̄. A
larger k gives rise to a smaller proportion of the unconditional
measurements and a lower probability Pg that the detector
remains in its measured subspace.

With respect to the cooperative cooling performance given
by Eq. (15), it is found [see Fig. 3(d)] that C(S1) > C(S2) >

C(S4) > C(Su) and yet C(S2) ≈ C(Sc), such that a regular in-
terpolation sequence could therefore have a better cooperative
cooling performance than the entire CM sequence. However,
the dependence of C for an arbitrary hybrid sequence on its
proportion of CM strategies might not be monotonic. We
are then motivated to find an optimized sequence by virtue
of the PPO algorithm. A typical RL-optimized sequence of
cooling strategies labeled by Sopt is described in Fig. 3(h).
With four orders reduction in the average population (close
to the cooling efficiency provided by Sc), an almost unit
ground-state fidelity F > 0.9999, and a moderate success
probability Pg ≈ 30% (much larger than that by Sc), the
optimized sequence achieves an overwhelming cooperative
cooling performance C(Sopt ) = 2.73 according to Eq. (15)
over all the other measurement sequences. Therefore, we have

FIG. 3. (a) Average population, (b) fidelity of the resonator in
its ground state, (c) success probability, and (d) cooperative cooling
performance under various sequences of cooling-by-measurement.
The blue solid lines with circle markers labeled by Su and the orange
dotted lines labeled by Sc indicate the sequences entirely consist-
ing of UM and CM strategies, respectively. The green solid lines,
red dashed lines, and purple dot-dashed lines describe the hybrid
sequences shown in (e), (f), and (g), and labeled by S1, S2, and S4,
respectively. The brown solid lines with triangle markers labeled
by Sopt denote the RL-optimized sequence presented in (h). For all
the sequences in (e), (f), (g), and (h), 1 and 0 indicate CM and
UM strategies, respectively. The parameters are set as ωa = 1.4 GHz,
T = 0.1 K, g = 0.04ωa, and � = 0.01ωa.

achieved a compromise of the cooling rate and the success
probability through the reinforcement leaning method with
much less overhead than the brute-force searching. The RL-
optimized sequence is not unique, yet the current results of n̄,
F , Pg, and C in Fig. 3 are almost invariant as long as there is
one CM in the first several rounds.

The RL-optimized algorithm applies to a wide range of
initial temperature for the resonator. Starting from various
n̄th determined by the temperature, the average populations
could be reduced by three to five orders of magnitude under
the optimized measurement sequences, as demonstrated in
Fig. 4(a). It is found that under a higher temperature, it is
harder to suppress the transitions between the ground state
and the excited states of the detector. Then both the relative
magnitude in the population reduction [see Fig. 4(a)] and the
cooperative cooling performance [see Fig. 4(b)] manifest a
monotonically decreasing behavior as temperature increases.

Similar to Fig. 3(h), here we present in Figs. 4(c), 4(d),
4(e), and 4(f) the optimized sequences fully determined by
the PPO algorithm, which still outperform any regular inter-
polated sequence in the cooling quantifier C. Comparing these

033124-5



JIA-SHUN YAN AND JUN JING PHYSICAL REVIEW A 106, 033124 (2022)

FIG. 4. (a) Average populations and (b) cooperative cooling per-
formance under the RL-optimized cooling algorithm with various
initial temperatures. Parts (c), (d), (e), and (f) describe the optimized
sequences of UM and CM with T = 0.05, 0.1, 0.2, and 0.3 K,
respectively. The other parameters are the same as those in Fig. 3.

four subfigures corresponding to various temperatures, it is
interesting to find that a larger portion of the unconditional
measurements is required along the optimized sequence for a
higher temperature. This is consistent with the fact that under
CM the success probability Pg to find a detector in its ground
state decreases exponentially with increasing temperature of
the target resonator. Then more UMs are used to save a
rapidly declining Pg for obtaining a larger C. In addition, for
T > 0.05 K, the RL-optimized sequence always starts from
a conditional measurement, which is an important part of
having a significant cooling rate for n̄ during the first several
rounds of the whole sequence.

The profiles shown in Fig. 3(h) and Figs. 4(d), 4(e), and
4(f) manifest a common pattern for all the RL-optimized
sequences. It is found in the previous several rounds that a
conditional or projective measurement should be performed
on the detector, when the resonator is normally in a com-
paratively high-temperature state, and several unconditional
measurements ensued before further cooling. This pattern is
consistent with the variations of both energy and entropy in
nonunitary controls [51]. The energy variation induced by a
projective measurement is kBT H (ρ) on average, where H (ρ)
is the Shannon entropy of the whole system after a free
evolution. Then in the end of the first round, a projective
measurement is desired to cut down as much energy as it
could, which is followed by several rounds of unconditional
measurements to save the success probability. Thus in general
we anticipate seeing more UMs than CMs in the first several
rounds and more CMs than UMs in the remaining rounds.

IV. DISCUSSION AND CONCLUSION

The preceding analysis over the cooling performance ne-
glects environment-induced dissipation. We now consider
the cooling process in an open-quantum-system scenario, in
which the free evolution between neighboring measurements

FIG. 5. (a) Average population and (b) cooperative cooling per-
formance of the resonator coupled to a thermal environment under
the optimized cooling strategy with various dissipative rates. The
dissipation-free results are those labeled by Sopt in Figs. 3(a) and 3(d).

is influenced by a finite-temperature environment. The dy-
namics is then described by the master equation

ρ̇(t ) = −i[H, ρ(t )] + γ (n̄th + 1)D[a]ρ(t )

+ γ n̄thD[a†]ρ(t ), (16)

where D[A] represents the Lindblad superoperator

D[A]ρ(t ) ≡ Aρ(t )A† − 1
2 {A†A, ρ(t )}. (17)

In Figs. 5(a) and 5(b), we present the average population n̄ and
the cooperative cooling performance C, respectively, with var-
ious dissipation rates. To compare the cooling performances
in the presence of thermal decoherence to the dissipation-free
situation, we apply the RL-optimized sequence provided in
Fig. 3(h). It is found that a larger dissipation rate gives rise
to a weaker cooling performance in terms of both n̄ and C,
exhibiting the struggle between cooling effects by measure-
ment and the accumulated heating effects by environment.
Nevertheless, for typical mechanical resonators in gigahertz
with γ /ωa ∼ 10−5 [49,50], our optimized cooling protocol
is still capable of reducing n̄ by three orders of magnitude
with about N = 10 measurements [see the green dashed line
in Fig. 5(a)]. In the mean time, the asymptotic value of C still
overwhelms the CM strategy labeled by Sc in Fig. 3(d).

Even in the absence of thermal decoherence, n̄ does not
keep decreasing. Fundamentally, it is under the constraint of
the third law of thermodynamics that absolute zero cannot be
attained within a finite number of operations. Actually, either
τ c

opt or τ u
opt approaches infinity as n̄ → 0, which indicates that

the whole cooling process has to be truncated by a maximum
timescale.

We emphasize again that the preceding hybrid cooling
sequences based on the conditional and unconditional mea-
surements are optimized in both global and local perspectives.
Globally, we use the reinforcement learning to find the opti-
mized order for UM and CM. The local optimization depends
on the selected measurement interval to obtain a minimum
average-population n̄ under one measurement. For UM in
Eq. (14), τ u

opt (t ) is not necessarily obtained by an instant
feedback mechanism during a realistic practice. The mea-
surement sequence {τ1(t1), τ2(t2), . . . , τN (tN )} can actually be
obtained prior to the cooling measurements. τ1(t1) depends on
the initial population-distribution pn, and τk (tk ), k � 2, can
be calculated on the effective temperature that is uniquely
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determined by the dynamics of pn(t ) through Eq. (12). In
other words, we can avoid the feedback error and imprecision
induced by detecting the resonator states during the experi-
ment.

In summary, we present an optimized cooling architec-
ture on a sequential arrangement of both conditional and
unconditional measurements. We analyze and compare the
advantages and disadvantages of both CM and UM on cool-
ing rate and success probability. We obtain analytically an
analytical expression for the optimized unconditional mea-
surement interval τ u

opt = π/(�d + �d+1) in parallel to that
for conditional measurement [29]. Here the dominant Rabi
frequency �d depends on the dominant distribution of the res-
onator in its Fock state with nd = kBT/(h̄ωa) and the coupling
strength between target and detector. The combination of the
advantages of both measurement strategies gives rise to an
optimized hybrid cooling algorithm assisted by reinforcement
learning. It is justified by the cooperative cooling performance
that we defined to quantify the comprehensive cooling effi-
ciency for an arbitrary cooling-by-measurement strategy. Our
work, therefore, pushes the cooling-by-measurement to an
unattained degree with regard to efficiency and feasibility. It
offers an appealing interdisciplinary application of quantum
control and artificial intelligence.
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APPENDIX A: PROXIMAL POLICY OPTIMIZATION

This Appendix provides more details on proximal policy
optimization, a typical reinforcement learning algorithm that
we use to optimize the measurement sequence for cooling.
The PPO algorithm follows an “actor-critic” frame, in which
actors receive the current state as an input, and then they
output an action according to an updatable policy, and a critic
evaluates this action to determine whether the action should
be encouraged or not. In the following, we do not discriminate
“actor” and “policy” for simplicity.

As shown in Fig. 6, the PPO algorithm has two actors (poli-
cies) πold({θ}) and πnew({θ ′}) and one critic. Any of them is of
an agent constructed by the neural networks (see Fig. 2) feath-
ered with a set of parameters {θ}. The two policies have the
same structures in PPO. The old policy collects the sampling
data through interaction with the environment, and the new
one would use these data stored in a buffer to update {θ} to
be {θ ′}. At first, the environment would initialize and deliver
the state s1 of the target system to the old policy πold({θ});
then the old policy generates an action a1 according to s1 and
{θ}. In the environment, the action a1 is taken and the system
state becomes s2. The environment also provides a reward R1

indicating how good the action is. The reward is generated by
a task-specified reward function. At this stage, an interaction
between the policy and the environment is completed, and
one set of “trajectory” or return {s1, a1, R1} is collected. N
trajectories are collected in one episode, where N amounts to
the number of actions required to complete the task. The critic

FIG. 6. Diagram of the proximal policy optimization algorithm.

takes both actions and states as input and outputs an advantage
Ai representing the contribution of the current action ai on the
current state si. After collecting a sufficient amount of data,
the critic would estimate the actions’ contribution as precisely
as possible. In the mean time, according to the advantages to
maximize a clipped surrogate objective function LCLIP({θ})
[52], the new policy would transfer its parameters {θ ′} to the
old one.

In our application for optimizing the cooling sequence,
the allowed inputs of the system states are defined as the
populations in the Fock states, i.e., the diagonal elements of
the target resonator ρa,

si = {p0(t ), p1(t ), p2(t ), . . . , pnc (t )}, (A1)

where nc indicates the cutoff Fock state for the resonator. The
actions taken by the environment are selected from the set

ai ∈ {0, 1}, (A2)

where 0 and 1 represent unconditional and conditional mea-
surements, respectively. Two policies are used to decide which
type of measurement to be performed due to the current state
of the resonator. The environment represents the quantum de-
vices performing measurements, obtaining the updated states,
and returning the rewards. When an action is selected and
sent to the environment, the optimized measurement interval
is calculated according to the measurement type. After unitary
evolution lasting τopt ∈ {τ c

opt, τ
u
opt}, measurement is performed

on the detector. Then the average population n̄, the ground-
state fidelity F , and the success probability Pg are obtained
to calculate the cooperative cooling performance C given by
Eq. (15). The reward function is set as a certain multiple of
C, Ri(si, ai ) = 100 × C(si, ai ). After measurement, the envi-
ronment then returns the resonator state and the reward to the
policies. When the training is completed, a policy π ({θopt})
with a set of optimized parameters is achieved. The neutral
network equipped with {θopt} could then be used to generate
the optimized actions to cool down the current state.

APPENDIX B: GENERATION OF AN OPTIMIZED
SEQUENCE

Both the order of measurements and the sequence of
measurement intervals could be regarded as output of our
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RL-optimized cooling algorithm as shown in Algorithm 1.
The input information is the initial temperature T , fully
determining the thermal state of the resonator. When the
reinforcement learning process was completed by the PPO
algorithm (see Appendix A), the parameters {θ} of the neural
network (policy π ) had been trained to be capable of selecting
one of the two measurement strategies for the current state,
which maximizes the cooperative cooling performance, and
then the cooling procedure is formally launched. We run the
policy π ({θopt}) on ρa(0) = ρ th

a , which generates the first mea-
surement strategy M1, M1 ∈ {0, 1}. Here 0 and 1 indicate
UM and CM, respectively. If M1 = 0, then τopt (t1) = τ u

opt in
Eq. (14), which could be obtained by the effective temperature
Teff of the resonator (initially Teff = T , and it is updated by
the current state of the last round). Subsequently, the cooling
coefficients |αn|2 and |βn|2 are calculated and the resonator
state is modified according to Eq. (9). Otherwise if M1 =
1, a conditional measurement will be implemented after an
interval τopt (t1) = τ c

opt = 1/�th(t ) and the resonator state is
modified according to Eq. (3). In the end of this round, one
can calculate Teff by the current pn(t ) and then go to the
next round. After N iterations, the optimized measurement
sequence characterized by Sopt = {M1,M2, . . . ,MN } and
T = {τopt (t1), τopt (t2), . . . , τopt (tN )} appears as described in
Fig. 3(h) and Figs. 4(c), 4(d), 4(e), and 4(f), respectively.

Algorithm 1. RL-optimized cooling procedure.

Output: Sopt = {M1,M2, . . . ,MN } and
T = {τopt (t1), τopt (t2), . . . , τopt (tN )}

Input: Temperature T
Initialize the thermal state ρa = ∑

n pn|n〉〈n| with
T Use PPO to train an optimized policy π ({θopt})
for i = 1, 2, . . . , N do

Run the policy π ({θopt}) on ρa to generate Mi

Attain Teff = h̄ωa/[kB ln (1 + 1/n̄)] on n̄(ρa)
if Mi = 0 then

Calculate τopt (ti ) = π/(�d + �d+1) on Teff

Get the cooling coefficients |αn|2 and |βn|2
UM: ρa ← ∑

n(|αn|2 pn + |βn+1|2 pn+1)|n〉〈n|
end

else if Mi = 1 then
Calculate τopt (ti ) = 1/�th on Teff

Get the cooling coefficients |αn|2
CM: ρa ← ∑

n |αn|2 pn|n〉〈n|/(
∑

n |αn|2 pn)
end

end

In practical implementations, the measurements by Sopt and T
can be acted on the detector without knowledge of the target-
resonator state.
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