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Scattering of a twisted electron wavepacket by a finite laser pulse
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The behavior of a twisted electron colliding with a linearly polarized laser pulse is investigated within relativis-
tic quantum mechanics. In order to better fit the real experimental conditions, we introduce a Gaussian spatial
profile for the initial electron state as well as an envelope function for the laser pulse, so that both interacting
objects have a finite size along the laser propagation direction. For this setup, we analyze the dynamics of various
observable quantities regarding the electron state: the probability density, angular momentum, and mean values
of the spatial coordinates. It is shown that the motion of a twisted wavepacket can be accurately described by
averaging over classical trajectories with various directions of the transverse momentum component. On the
other hand, full quantum simulations demonstrate that the ring structure of the wavepacket in the transverse
plane can be significantly distorted, leading to large uncertainties in the total angular momentum of the electron.
This effect remains after the interaction once the laser pulse has a nonzero electric-field area.
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I. INTRODUCTION

Both the massive and massless particles which are capable
of carrying nonzero orbital angular momentum (OAM) are
of great interest to researchers in different fields of study.
The first seminal description of the concept of such twisted
particles was introduced by Allen et al. in the early 1990s in
Ref. [1], where it was discussed in the context of photons.
The wave front of the corresponding beams has a helical
spatial structure allowing the beams to carry a nonzero OAM
projection onto the propagation direction. Soon afterwards,
the fact that twisted photons possess discreet OAM was con-
firmed experimentally in Ref. [2] and, two years later, He
et al. managed to transfer OAM from light to matter [3].
In fact, the opportunities related to the information capac-
ity and other specificities of these optical vortices—twisted
photons—have encouraged numerous studies concerning a
huge variety of their applications [4] (see, also, reviews
[5–10]).

Despite the fact that the development of the field began
with the investigation of photons, it was clear from the very
beginning that massive twisted particles could also be pro-
duced. The fundamental possibility that not only photons can
carry OAM but also, for example, electrons was indicated
in a number of studies (see, e.g., Refs. [11–14]). For prac-
tical applications, an interesting feature of twisted electrons
is that unlike photons, they carry a magnetic moment pro-
portional to OAM which can experimentally reach hundreds
of h̄ [15]. It allows electron vortices to effectively interact
with external magnetic fields [14,16–21], which makes them
a versatile tool for investigating the magnetic properties of
different materials [22–25] as well as for detecting such subtle
magnetic effects as, e.g., polarization radiation [26,27]. The

method proposed by Bliokh et al. in Ref. [16] for producing
such electrons was successfully employed by several groups
of experimentalists who have played a pioneering role in
this field of study [17,28,29] (see, also, more recent papers
[30–33]). The energy scale in these experiments amounted to
∼300 keV, while the orbital quantum number reached 100.
This experimental breakthrough has motivated theorists to
more deeply analyze the properties of twisted electrons and
also to propose new setups for their generation and inves-
tigation [18–20,34–37]. The positive outcome opened broad
prospects not only for researchers in nuclear and high-energy
physics, where this feature may serve as an efficient tool
for a better understanding of processes occurring in collision
and scattering experiments [38–41], but also for investigations
dealing with magnetic and biological materials [42–44]. A de-
tailed description of theoretical and experimental studies that
have emerged over the last decade was presented by Bliokh
et al. in a comprehensive review [45]. One should note here
that the relativistic and nonrelativistic descriptions may lead
to substantially different results for observable quantities. In
particular, due to the nontrivial coupling of the electron spin
and its angular momentum according to the Dirac equation,
the latter is not conserved, in contrast to the case of the non-
relativistic treatment. A detailed analysis of the Schrödinger
equation for the case of twisted electrons can be found, e.g.,
in Ref. [34].

In order to describe the behavior of twisted electrons
within relativistic theory, one has to construct the correspond-
ing solutions of the Dirac equation which differ from the
usual plane-wave states. For instance, the solution in the
form of the so-called Bessel beams can be considered [14].
However, one should also find out whether such solutions
properly mimic the real experimental setups. For example,
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the Bessel beams themselves are not localized in space. To
eliminate this shortcoming, one can introduce wavepackets
(WPs) or consider other solutions of the Dirac equation, e.g.,
the so-called exponential WPs proposed in Refs. [46,47].
Alternatively, relativistic electron vortices can be described
by using the Foldy-Wouthuysen transformation of the Dirac
equation followed by a series of quite natural approxima-
tions [48]. It allows one to derive the equations that can
be solved much easier in contrast to the Dirac one. How-
ever, the legitimacy of the Foldy-Wouthuysen representation
in this context is not that clear. In particular, the determi-
nation of the correct operators for physical observables and
the possibility of a probabilistic interpretation of the wave
function have given rise to heated debates [49–51]. Recently,
a number of approaches has been published which offer al-
ternative methods for obtaining exact solutions of the Dirac
equation on the basis of the Bateman-Hillion ansatz [52] and
by means of a newly developed relativistic dynamic inversion
approach [53].

The list of theoretical studies of physical processes
involving twisted electrons is very extensive (see, e.g.,
Refs. [54–62]). Let us note that the formalism describing the
phenomena associated with the scattering processes of elec-
trons in matter is relatively well developed; the recent studies
have covered a number of important issues playing a vital role
for the completeness of the theoretical basis [56–60]. This
contrasts, however, with the study of the behavior of twisted
electrons colliding with a laser pulse. Although the problem
and related issues have already been considered in a number
of works [61,62], we aim to obtain more accurate results by
taking into account the finite size of both the electron WP and
the laser pulse. For this purpose, within relativistic quantum
mechanics, we follow the theoretical approach employed in
Ref. [63] for a plane-wave electron, where the spatial enve-
lope of the laser pulse along its propagation direction was
introduced and the initial electron WP had a Gaussian profile.
Following this scheme, one explores a more realistic setup
from the experimental viewpoint.

Our computations are based on the following procedure.
First, a localized electron WP is constructed from the Bessel
beams while the laser pulse is assumed to be a linearly po-
larized plane wave. The WP is then expanded in terms of
the Volkov solutions [64]. Having obtained the correspond-
ing expansion coefficients, one can construct the solution
of the Dirac equation at arbitrary time. We analyze var-
ious observable quantities such as the probability density,
angular momentum, and its dispersion, and mean values
of the coordinates. These quantities are computed for var-
ious parameters of the external laser field and the initial
electron state.

The paper is organized as follows. In Sec. II, we de-
scribe the setup under consideration. In Sec. III, we briefly
outline the approach based on the expansion of the wave
function in terms of the Volkov solutions in the case of
a plane-wave electron state. Section IV is devoted to a
detailed description of the analogous method for treat-
ing twisted electrons. We discuss our numerical results
in Sec. V.

Throughout the paper, we use atomic units h̄ =
me = −e = 1.

z

x

FIG. 1. Initial state of the counterpropagating twisted WP (left)
and laser pulse (right). The momentum projection of the former is
pz ≡ p‖. The laser field is polarized along the x direction according
to Eq. (1) and has amplitude E∗. The center of the initial WP corre-
sponds to z = 0 (the x axis in the figure does not cross the origin).

II. SETUP: ELECTRON WAVEPACKET COLLIDING
WITH A LASER PULSE

We consider a twisted electron WP propagating along
the z axis and a linearly polarized plane-wave laser pulse
traveling along the opposite direction (see Fig. 1). The lat-
ter is described by the following expression for the electric
component:

Ex(t, z) = E (ct + z), (1)

E (ξ ) = E∗F (ωξ/c) sin(ωξ/c + φ). (2)

Here, E∗ and ω are the field amplitude and frequency, respec-
tively, the function F is a smooth Gaussian-shaped envelope,
F (η) = exp(−η2/a2), where a is a dimensionless parameter
governing the pulse duration, and φ is a carrier-envelope phase
(CEP). It is convenient to introduce the field peak intensity,
which in atomic units reads

I = 1

8πα
E2

∗ . (3)

Here, α ≈ 1/137 is the fine-structure constant. The only
nonzero component of the potential Aμ is A1 = Ax(t, z) =
A(ct + z), with

A(ξ ) = −
∫ ξ

−∞
E (ξ ′)dξ ′. (4)

We underline here that the vector potential does not nec-
essarily vanish for ξ → +∞. We will denote this limit by
A0 = A(+∞). Nonzero values of A0 correspond to a nonzero
unipolarity of the laser pulse, i.e., nonzero momentum trans-
ferred to the electron along the electric-field direction,

A0 = −
∫ +∞

−∞
E (ξ ′)dξ ′ = −

√
πaE∗
ω

e−a2/4 sin φ. (5)

The laser pulse unipolarity will be varied by changing the
CEP φ. As will be seen later, the electric-field area of the
laser pulse, which is proportional to A0, may have a profound
impact on the properties of the electron state, e.g., large values
of A0 may substantially distort the vortex structure of the elec-
tron WP. From the experimental point of view, unipolar laser
pulses can be generated, e.g., via the interaction of standard
bipolar pulses with ultrathin metallic foils [65,66]; see, also,
Ref. [67] for other techniques for generating unipolar pulses.

In what follows, we will exploit the fact that the envelope
F (η) has an almost finite support, i.e., the function A(ξ )
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almost vanishes for ξ < −ξmax and does not differ much from
A0 for ξ > ξmax. This means that at the initial time instant
tin = −(L + ξmax)/c, the laser pulse is localized within the
region z ∈ (L, L + 2ξmax), where L should be sufficiently
large so that the pulse and the electron WP do not overlap.

The final state after the interaction is considered at t =
tout = (L̃ + ξmax)/c, where −L̃ is the position of the right edge
of the laser pulse. One has to make sure that L̃ is sufficiently
large, so that the external field and the electron WP no longer
overlap.

In what follows, we will discuss how the initial state of the
electron WP can be evolved in time by means of the exact
(Volkov) solutions of the Dirac equation in the external plane-
wave background.

III. PLANE-WAVE ELECTRON STATE

First, we will examine a plane-wave electron state and
briefly recap the approach which we previously employed in
Ref. [63]. Since the external field does not depend on x and y,
the corresponding components of the generalized momentum
are conserved. With respect to the z direction, we construct a
WP of the following form:

ψ (0)
p,s(x) = 1

(2π )3/2
eipx

∫ +∞

−∞
dq f (q) eiqzu(p + qn, s), (6)

where n is a unit vector along z and the smearing function
f (q) determines the spectral content of the initial WP. It is
normalized to ensure 〈ψ (0)

p,s|ψ (0)
p,s′ 〉 = δss′ . The initial spin state

of the electron is governed by the constant bispinors u(p, s)
corresponding to the positive-energy solutions of the Dirac
equation (s = ±). Together with bispinors v(p, s), they form
an orthonormal and complete set. These bispinors obey

(c α · p + βc2)u(p, s) = εu(p, s), (7)

(c α · p + βc2)v(p, s) = −εv(p, s), (8)

where αi and β are the standard Dirac matrices, and ε =
c
√

c2 + p2.
The initial condition is ψp,s(tin, x) = ψ (0)

p,s(x), and our goal
is to evolve the wave function in time. The main idea is
to expand the initial state in terms of the Volkov solutions
[64] and then combine them at some given t using the same
coefficients as they do not depend on time. The Volkov states
are given by

ϕ
(ζ )
p′,s′ (t, x) = 1

(2π )3/2
eiζ p′x f (ζ )

p′,s′ (t, z), (9)

f (ζ )
p′,s′ (t, z) = e−iζε′t

× exp

(
i
∫ n·x

−∞
dξ

1

2(np′)

{
2

c
[p′A(ξ )] + ζ

c2
A2(ξ )

})

×
[

1 − ζ

2c(np′)
(γ n)(γ A)

]
wζ (p′, s′), (10)

where ζ = ± denotes the sign of the energy, w+(p′, s′) =
u(p′, s′), and w−(p′, s′) = v(−p′, s′). In our case, it yields

f (ζ )
p′,s′ (t, z) = e−iζε′t exp

{
− i

ε′ + cp′
z

[
p′

x

∫ ξ

−∞
dξ ′ A(ξ ′) + ζ

2c

∫ ξ

−∞
dξ ′ A2(ξ ′)

]}

×
[

1 + ζ

2(ε′ + cp′
z )
A(ξ )(γ 0 + γ 3)γ 1

]
wζ (p′, s′), (11)

where ξ = nx = ct + z.
To construct the time-dependent solution of the Dirac equa-

tion, we make use of the fact that the Volkov states form an
orthonormal and complete set [68,69], so the wave function
can be expanded as follows:

ψp,s(t, x) =
∑

ζ

∑
s′

∫
d p′ C(ζ )

p′,s′ϕ
(ζ )
p′,s′ (t, x), (12)

where the coefficients C(ζ )
p′,s′ do not depend on time because the

Dirac Hamiltonian is Hermitian. They can be evaluated at the
time instant t = tin as a usual inner product,

C(ζ )
p′,s′ = 〈ϕ(ζ )

p′,s′ (tin)|ψ (0)
p,s〉 ≡

∫
dx

[
ϕ

(ζ )
p′,s′ (tin, x)

]†
ψ (0)

p,s(x). (13)

It turns out that in the plane-wave background, these
coefficients are “diagonal” with respect to px and
py: C(ζ )

p′,s′ = δ(p′
x − ζ px )δ(p′

y − ζ py)c(ζ )
p′

z,s
′ . One can explicitly

verify that −i∂xϕ
(+)
p′,s′ (t, x) = p′

xϕ
(+)
p′,s′ (t, x), so the index p′

x
corresponds to the generalized momentum. Since the initial
wave function (6) corresponds to the positive-energy subspace

of solutions, the coefficients c(−)
p′,s′ vanish, so one can use only

the positive-energy Volkov solutions (ζ = +). Note that the
Volkov functions possess a well-defined sign of the energy
which does not depend on time (this is in accordance with
the fact that a plane-wave background does not produce e+e−
pairs). We obtain

c(+)
p′

z,s
′ =

∫ +∞

−∞

dz

2π

∫ +∞

−∞
dq f (q) ei(pz−p′

z )zeiqz

× [
f (+)

p′,s′ (tin, z)
]†

u(p + qn, s), (14)

where p′
x = px and p′

y = py. The wave function can then be
evaluated at arbitrary time instant t via

ψp,s(t, x) =
∑

s′

∫
d p′

z c(+)
p′

z,s
′ϕ

(+)
px,py,p′

z,s
′ (t, x). (15)

IV. TWISTED ELECTRON

In this section, we will discuss how the approach described
above should alter if one replaces a plane-wave electron with
a twisted one. First, we discuss the case of Bessel beams,
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which are spatially infinite, and then turn to the analysis of
localized WPs.

A. Bessel beam

Let us consider the so-called Bessel beam of twisted elec-
trons traveling along the z axis (p‖ ≡ pz) [14],

ψ
(B)
l,p‖,p⊥,s(x) =

√
p⊥

23/2π
eip‖zgl,p‖,p⊥,s(x, y), (16)

where

gl,p‖,p⊥,s(x, y) ≡ gl,p‖,p⊥,s(ρ, ϕ)

=
+1∑

k=−1

ikakei(l+k)ϕJl+k (p⊥ρ). (17)

Here,

a0 =

⎛
⎜⎜⎝

√
1 + c2/ε �w√

1 − c2/ε σz cos θ0 �w

⎞
⎟⎟⎠,

a−1 =

⎛
⎜⎜⎝

0
0

β̄
√

�

0

⎞
⎟⎟⎠, a1 =

⎛
⎜⎜⎝

0
0
0

ᾱ
√

�

⎞
⎟⎟⎠, (18)

�w = (ᾱ, β̄ )t is either (1, 0)t or (0, 1)t for s = 1/2
and s = −1/2, respectively, � = (1 − c2/ε) sin2 θ0,

ε = c
√

c2 + p2
⊥ + p2

‖, p‖ = |p| cos θ0, and p⊥ = |p| sin θ0.

The functions ak depend on p‖, p⊥, and s, but are independent
of the spatial coordinates. The transverse coordinates can
either be x and y or ρ and ϕ. The wave function is determined
by the following quantum numbers: l , s, p‖, and p⊥. Note
that the OAM and the spin projection are not well defined and
only the projection of the total angular momentum m = l + s
is conserved. Note also that the Bessel beams with given s
have a nonzero projection onto the Volkov solutions (9) with
the other sign of s′. The Bessel beams (16) are normalized
according to〈

ψ
(B)
l,p‖,p⊥,s|ψ (B)

l,p′
‖,p′

⊥,s′
〉 = δss′δ(p‖ − p′

‖)δ(p⊥ − p′
⊥). (19)

This inner product is evaluated in Appendix A.
In what follows, we will calculate the coefficients C(ζ )

p′,s′
[see Eq. (13)] using the explicit form of Volkov states [see
Eqs. (9)–(11)]. One obtains

C(ζ )
p′,s′ =

√
p⊥

8π5/2

∫ ∞

−∞
dz ei(p‖−ζ p′

‖ )z
[

f (ζ )
p′,s′ (tin, z)

]†

×
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−iζ (p′

xx+p′
yy)gl,p‖,p⊥,s(x, y). (20)

The double integral over x and y can be calculated analytically
(see Appendix A). We arrive at

C(ζ )
p′,s′ = δ(p⊥ − p′

⊥)c(ζ )
p′

‖,ϕp′ ,s′ , (21)

where p′ = (p′
⊥ cos ϕp′ , p′

⊥ sin ϕp′ , p′
‖) and

c(ζ )
p′

‖,ϕp′ ,s′ = 1

4π3/2

1√
p⊥

i−ζ l eilϕp′
∫ ∞

−∞
dz ei(p‖−ζ p′

‖ )z
[

f (ζ )
p′,s′ (tin, z)

]†

×
+1∑

k=−1

(−1)kδζ ,−1 akeikϕp′ . (22)

Here, δζ ,−1 reflects that the Bessel beam contains only the
positive-energy components. Accordingly, we construct a de-
composition of the Bessel beam in terms of plane waves with
given p⊥, which are determined by the momentum projection
p′

‖, direction of the transverse momentum component ϕp′ , and
spin quantum number s′. In what follows, we will discuss the
analogous expansion in the case of a localized twisted WP.

B. Twisted wavepacket

To make the wave function finite in the z direction, one
has to combine solutions with different longitudinal momenta.
In the case of a plane-wave electron, these solutions usually
correspond to given values of the transverse projections px

and py. However, in the case of vortex states, these are not
well defined. In this study, we will fix the magnitude of the
transverse momentum component p⊥, so the expression for
the twisted WP reads

ψ
(0)
l,p‖,p⊥,s(x) =

∫ +∞

−∞
dq f (q)ψ (B)

l,p‖+q,p⊥,s(x), (23)

where the smearing function f (q) satisfies∫ +∞

−∞
dq | f (q)|2 = 1. (24)

We choose a Gaussian profile,

f (q) = 1

(πσ 2)1/4
exp(−q2/2σ 2), (25)

where σ determines the WP width in momentum space,
i.e., the uncertainty in p‖. In all our calculations, we set
σ = 10 a.u.

C. Plane-wave decomposition of a twisted wavepacket

Assuming that at t = tin = −(L + ξmax)/c the WP has
the form (23), we will now evaluate the positive-energy
coefficients with the aid of Eqs. (21) and (22). Since the laser
field almost vanishes for ξ < −ξmax, its left edge is initially
located to the right of z = L. We assume that the electron
WP is localized within the interval [−L, L]. It means that in
Eq. (22), where p‖ should be replaced with p‖ + q according
to Eq. (23), one can integrate only over this region. The con-
dition z ∈ [−L, L] corresponds to ξ ∈ [−2L − ξmax, −ξmax],
so the external field and its potential involved in f (ζ )

p′,s′ (tin, z)
vanish. It allows us to perform integration over z:

∫ L

−L
dz ei(p‖+q−p′

‖ )z = 2 sin(p‖ + q − p′
‖)L

p‖ + q − p′
‖

. (26)
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t

0.2

0.1

0

−0.1

−0.2

x

FIG. 2. Snapshots of the twisted WP density integrated over z
at different t . The x coordinate corresponds to the position of the
WP center. The laser field and WP parameters are I ≈ 1.3 × 1013

W/cm2, a = 9, φ = 0, ω = 0.242 a.u., l = 3, θ0 = π/4, and Ekin =
817.4 keV.

The results proved to be independent of L and ξmax, provided
they are sufficiently large. One obtains

C(+)
p′,s′ = 1

2π3/2
i−l eilϕp′

∫ +∞

−∞
dq f (q) eiε′tin (p⊥)−1/2δ(p⊥ − p′

⊥)

× sin(p‖ + q − p′
‖)L

p‖ + q − p′
‖

+1∑
k=−1

eikϕp′ u†(p′, s′)ak . (27)

Here, ak involve p‖ + q. The wave function at arbitrary time
instant t can then be evaluated via

ψp,s(t, x) = i−l√p⊥
2π3/2

∑
s′

∫ +∞

−∞
d p′

‖

∫ 2π

0
dϕp′ eilϕp′

×
∫ +∞

−∞
dq f (q)eiε′tin

sin(p‖ + q − p′
‖)L

p‖ + q − p′
‖

×
+1∑

k=−1

eikϕp′ [u†(p′, s′)ak]ϕ(+)
p′,s′ (t, x). (28)

In this expression, p′ = (p⊥ cos ϕp′ , p⊥ sin ϕp′ , p′
‖).

V. RESULTS

Here we implement the procedure described in Sec. IV and
examine various observable quantities concerning the struc-
ture and dynamics of twisted WPs interacting with finite laser
pulses. We start our analysis from the following set of param-
eters. The laser field parameters are I ≈ 1.3 × 1013 W/cm2,
a = 9, φ = 0, and ω = 0.242 a.u. The electron state corre-
sponds to l = 3, θ0 = π/4, and kinetic energy Ekin = 817.4
keV. These parameters are chosen as in Ref. [62]. The WP
width in momentum space is σ = 10 a.u. Note that in
Ref. [62], the Gaussian envelope function is involved in the
vector potential, while here we use it in the electric field
itself [see Eq. (2)], which allows us to construct unipolar laser
pulses, A0 �= 0.

A. Overall dynamics

In order to analyze the twisted WP dynamics, we integrate
the electron probability density |ψp,s(t, x)|2 over z at various
time instants t and plot the corresponding snapshots in the xy
plane. As the external field does not exert a force along the y
axis, we observe displacements only in the x direction. Several
snapshots are displayed in Fig. 2. Although the WP moves as

t

0.2

0.1

0

−0.1

−0.2

x

FIG. 3. Snapshots of the twisted WP density integrated over z
at different t . The x coordinate corresponds to the position of the
WP center. The laser frequency is ω = 4.84 a.u. and intensity is
I ≈ 2.1 × 1018 W/cm2. The rest of the parameters are the same as
in Fig. 2.

a whole along the x axis, its ring structure remains the same
[62]. However, this is not always the case, as demonstrated
in the following example. In Fig. 3, we present the analogous
results for higher frequency and amplitude of the laser pulse:
ω = 4.84 a.u. and I ≈ 2.1 × 1018 W/cm2. In this case, the
spatial extent of the twisted WP exceeds the laser wavelength,
so different “slices” perpendicular to the z axis interact with
different parts of the laser pulse and thus have different x
displacements as the local values of the vector potential vary
with z. Accordingly, the overall structure of the WP blurs or
even disintegrates. After the interaction, the x displacements
vanish altogether, so the vortex structure recovers. As will be
discussed in Sec. V D, the final structure of the twisted WP
strongly depends on the CEP parameter φ and can possess
large uncertainties in the total angular momentum. Note that
the parameters chosen in Figs. 2 and 3 lead to the same
value of the classical nonrelativistic oscillation amplitude, so
the x displacements do not differ much for these two field
configurations.

We have not yet explored the WP dynamics with respect to
the z axis, nor have we specified the x(t ) dependence. It turns
out that great insights can be obtained from the analysis of
classical trajectories. This will be discussed next.

B. Comparison with classical motion

Twisted electron states do not possess well-defined mo-
mentum projections along the x and y axes as they are
characterized only by the magnitude p⊥ of the transverse mo-
mentum component. It suggests that the dynamics of a twisted
electron cannot be traced by solving the classical equations of
motion. Here we will evolve classical trajectories with various
initial directions of the transverse momentum component and
compare them with the results of our quantum simulations
based on solving the Dirac equation. As will be seen, the
crucial parameter here is the electric-field area of the laser
pulse,

SE =
∫ +∞

−∞
Ex(t, z)dt = −1

c
A0. (29)

The classical equations of motion can be solved by following
the same procedure as was outlined in Ref. [63], where the
external field was assumed to be monochromatic. Let p0 be the
initial momentum of the electron. Then the final momentum
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FIG. 4. Comparison between the mean value of the x coordinate
of the twisted WP and the classical predictions for various directions
ϕp0 of the initial transverse momentum. Here, δ = −4 × 10−6. The
electron and laser parameters are the same as in Fig. 2.

projections read

px = p0x − SE , (30)

py = p0y, (31)

pz = p0z + SE

p0z + ε0/c

(
p0x − 1

2
SE

)
, (32)

where ε0 = c
√

c2 + p2
0. Although the z component of the mo-

mentum of the twisted WP (23) approximately corresponds
to p‖, the x and y projections are completely unknown and
only obey p2

0x + p2
0y = p2

⊥. Let us introduce angle ϕp0 : p0 =
(p⊥ cos ϕp0 , p⊥ sin ϕp0 , p‖). Changing ϕp0 , we obtain a set of
classical trajectories, none of which is supposed to follow
the mean values of the momentum and coordinate operators
within the quantum computations. However, we will also av-
erage the results over ϕp0 in order to approximately predict the
quantum behavior. Our goal is to examine the accuracy of this
approach.

In Fig. 4, we display the mean values of the x coordinate
of the electron WP as a function of t for the parameters used
in Fig. 2. One observes that by averaging the classical pre-
dictions over ϕp0 , one obtains a very accurate approximation
of the results of quantum simulations. Although the classical
trajectories are extremely sensitive to the value of ϕp0 , for
ϕp0 = π/2 the results are also close to the quantum mean.
Note, however, that in the case ϕp0 = π/2, the y coordinate
tends to infinity with increasing t , while the actual position
of the electron WP always corresponds to y = 0. This sug-
gests that one has indeed to average the classical predictions.
Moreover, the classical trajectories turn out to be extremely
sensitive to the value of ϕp0 (see the results for ϕp0 = π/2 + δ

in Fig. 4).
In Fig. 5, we show that the mean classical trajectory is

also very close to the quantum mean of the z coordinate.
Here we use different parameters to make the curve non-
trivial and thus more evidently demonstrate the efficiency of
the classical approach. Classical trajectories are also used to
guess a proper position of the spatial box within quantum
calculations. Finally, we point out that although the analysis
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FIG. 5. Comparison between the mean value of the z coordinate
of the twisted WP and the classical predictions averaged over the
direction ϕp0 of the initial transverse momentum. The laser field and
WP parameters are I ≈ 3.5 × 1018 W/cm2, a = 9, ω = 0.15 a.u.,
l = 3, θ0 = 11.3◦, and Ekin = 0.014 keV.

of classical trajectories allows one to accurately predict the
mean values of the electron coordinates, it obviously does
not provide any information on the WP structure and does
not take into account the interference effects. For instance,
in the presence of sufficiently strong and rapidly oscillating
laser fields, the vortex structure of the WP can be significantly
modified, as was discussed above and demonstrated in Fig. 3.

C. Current density

Now we turn to the analysis of the local current density
along the z axis in the absence of the external field. As was
demonstrated in Refs. [59,60], in the case of Bessel beams,
this quantity may be negative at certain positions in space,
while the wavepacket itself travels with a positive speed in the
z direction (previously, the analogous finding in the case of
twisted light was reported in Ref. [70]). However, the local
current values in the states (16) are given by

jz(x) = ψ
(B)†
l,p‖,p⊥,s(x)αzψ

(B)
l,p‖,p⊥,s(x)

= p⊥
4π2

pc

ε
cos θ0J2

l (p⊥ρ), (33)

where p =
√

p2
⊥ + p2

‖, so the current is always positive. It

turns out that one may indeed obtain negative values of jz
if one constructs a linear combination of two Bessel beams
(16) with given m = l + s and s = ±1/2. The functions
used in Refs. [59,60] are exactly those combinations (see
Appendix B).

Let us construct wave functions ψ (R)
m,p‖,p⊥,μ according to

ψ
(R)
m,p‖,p⊥,1/2(x) = cos

θ0

2
ψ

(B)
m−1/2,p‖,p⊥,1/2(x)

+ i sin
θ0

2
ψ

(B)
m+1/2,p‖,p⊥,−1/2(x), (34)

ψ
(R)
m,p‖,p⊥,−1/2(x) = i sin

θ0

2
ψ

(B)
m−1/2,p‖,p⊥,1/2(x)

+ cos
θ0

2
ψ

(B)
m+1/2,p‖,p⊥,−1/2(x). (35)
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FIG. 6. Local current density of a twisted electron integrated
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and (35) [labeled as (R), dashed lines]. In the latter case, the current
density can have negative values. The momentum components are
p⊥ = p‖ = 10 a.u.

We distinguish between the functions (34) and (35) by means
of the quantum number μ, which determines the helicity of
the electron beam [37]. Instead of Eq. (33), it now yields

j̃z(x) = p⊥
4π2

pc

ε

{
[cos(θ0/2)Jm−μ(p⊥ρ)]2

− [sin(θ0/2)Jm+μ(p⊥ρ)]2}, (36)

which coincides, e.g., with Eq. (13) from Ref. [59] up to a
common normalization factor 1/(2π p⊥). We perform com-
putations with the twisted WP (23) consisting of the Bessel
beams (16) and with a similar combination of the “rotated”
beams (34) and (35). The results for p⊥ = p‖ = 10 a.u., and
m = −1/2 at t = tin, are given in Fig. 6, where we present the
local current density integrated over the polar angle ϕ and over
the z coordinate. We observe that the local current density can
indeed be negative in the case of the “rotated” wave functions
(dashed lines). Finally, we note that the sum of two currents
in Eq. (36) with different signs of μ precisely corresponds to
the sum of currents (33) for given m and l = m ± 1/2, i.e.,
the sum of the solid lines in Fig. 6 equals the sum of the
dashed ones.

D. Total angular momentum and its dispersion

The twisted WP (23) involves Bessel beams with given
numbers l and s, which means that the electron wave function
initially has a well-defined value of the z projection of the
total angular momentum m = l + s. Here we will evaluate the
uncertainty of this number which arises due to the interaction
with the external laser field. To this end, we will compute a
mean value of the operator Jz = Lz + Sz and its dispersion
(standard deviation),

DJz =
√〈

J2
z

〉 − 〈
Jz

〉2
. (37)

In the case of an individual Bessel beam ψ
(B)
l,p‖,p⊥,s, one obtains

〈Lz〉 = l + s(1 − c2/ε) sin2 θ0, (38)

〈Sz〉 = s − s(1 − c2/ε) sin2 θ0, (39)

〈Jz〉 = l + s = m, (40)

DJz = 0. (41)

Combining Bessel beams according to Eq. (23) and evolving
the WP in time, we find out that the interaction with the
laser pulse can lead to large values of DJz. In Fig. 7, we
present 〈Jz〉 and DJz at the final time instant t = tout as a
function of the electric-field area SE for the following param-
eters: I ≈ 3.5 × 1016 W/cm2, a = 0.9, ω = 0.15 a.u., l = 3,
θ0 = 11.3◦, and Ekin = 1.41 keV. We change the field area by
means of the CEP parameter φ [see Eq. (5)]. The mean value
of the total angular momentum remains almost the same even
for large SE , but there is still a certain deviation from 3.5 a.u.
due to the changes in the spin projection 〈Sz〉 [63]. More im-
portant, the dispersion turns out to be significant. This effect
can be explained if one recalls that the z slices of the electron
wave function can have very different displacements along
the x direction (this leads to the blurred structures revealed
in Fig. 3). While it does not alter the mean value 〈Jz〉 since
〈y〉 = 0 and 〈py〉 = 0, the dispersion DJz increases with the
relative displacement among different z slices, which, in turn,
is proportional to SE . This suggests that a highly unipolar
finite laser pulse can substantially damage the vortex structure
of the electron state.

VI. CONCLUSION

In this study, the interaction of a twisted wavepacket
with a linearly polarized laser pulse was investigated within
relativistic quantum mechanics. The process was simulated
taking into account the finite size of both objects. A special
focus was placed on the dynamics of the electron state and
evolution of its various characteristics. It was demonstrated
that the coordinates of the center of the wavepacket can
be accurately determined by averaging over the classical
trajectories corresponding to different orientations of the
initial momentum of the particle. This observation is expected
to be highly beneficial as it allows one to obtain valuable
predictions without performing quantum calculations, i.e.,
without solving the Dirac equation. The analysis of classical
trajectories was also extremely helpful in interpreting other
effects revealed in our study. Namely, it was shown that
the vortex structure of the electronic state can be destroyed
by highly unipolar laser pulses. This was found by a direct
inspection of the ring structure of the wavepacket and also
by computing the dispersion of the total angular momentum,
which proved to rapidly increase with the pulse area. In
addition, it was demonstrated that the local current density
can have negative values if the Bessel beams are properly
combined within the electron wave function.
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APPENDIX A: NORMALIZATION OF BESSEL BEAMS
AND INTEGRATION OVER TRANSVERSE COORDINATES

Here we will show that the Bessel beams (16) are nor-
malized according to Eq. (19). Although the presence of
δ(p‖ − p′

‖) in Eq. (19) is obvious, let us briefly discuss how
the second δ function should appear. According to Eq. (18),
the wave function contains three terms with Bessel functions
of different orders. First, we note that the integration over ϕ

makes all of the terms with two different orders vanish, so
one has to consider only “diagonal terms.” The corresponding
integral over ρ reads

∫ ∞

0
dρρJl (p⊥ρ)Jl (p′

⊥ρ). (A1)

Calculating this integral with a finite upper limit, one can
show that

∫ R

0
dρρJl (p⊥ρ)Jl (p′

⊥ρ) −→
R→∞

1

p⊥
δ(p⊥ − p′

⊥), (A2)

provided p⊥, p′
⊥ > 0. Combining all the terms, we obtain

Eq. (19).
The relation (A2) is also useful in calculating the integral

over x and y in Eq. (20). According to Eq. (17), there are three

terms. Let us consider that containing ak :

Ik ≡ akik
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−iζ (p′

xx+p′
yy)ei(l+k)ϕJl+k (p⊥ρ)

= akik
∫ ∞

0
dρρ

∫ 2π

0
dϕ e[−iζ p′

⊥ρ cos (ϕp′−ϕ)]ei(l+k)ϕJl+k (p⊥ρ).

(A3)

To perform integration over ϕ, we utilize the following
identity [71]:

∫ 2π

0
dϕ eiz cos ϕ einϕ = 2π inJn(z). (A4)

Thus, one obtains

Ik = 2πaki2k+l ei(l+k)ϕp′
∫ ∞

0
dρρJl+k (p⊥ρ)Jl+k (−ζ p′

⊥ρ)

= 2πak

p⊥
(−1)kδζ ,−1 i−ζ l ei(l+k)ϕp′ δ(p⊥ − p′

⊥). (A5)

Here, we have used Jl (−z) = (−1)l Jl (z). It immediately
brings us to Eq. (22).

APPENDIX B: CONNECTION WITH THE
WAVEFUNCTIONS FROM REFS. [37,59,60]

In Refs. [59,60] the relativistic wave functions of twisted
electrons were chosen in the form ψ̃m,p‖,p⊥,μ,

ψ̃m,p‖,p⊥,1/2(x) = 1

(2π )3/2

eip‖z

√
2ε

⎛
⎜⎜⎜⎜⎜⎝

√
ε + c2 cos(θ0/2) ei(m−1/2)ϕJm−1/2(p⊥ρ)

i
√

ε + c2 sin(θ0/2) ei(m+1/2)ϕJm+1/2(p⊥ρ)
√

ε − c2 cos(θ0/2) ei(m−1/2)ϕJm−1/2(p⊥ρ)

i
√

ε − c2 sin(θ0/2) ei(m+1/2)ϕJm+1/2(p⊥ρ)

⎞
⎟⎟⎟⎟⎟⎠, (B1)

ψ̃m,p‖,p⊥,−1/2(x) = 1

(2π )3/2

eip‖z

√
2ε

⎛
⎜⎜⎜⎜⎜⎝

i
√

ε + c2 sin(θ0/2) ei(m−1/2)ϕJm−1/2(p⊥ρ)
√

ε + c2 cos(θ0/2) ei(m+1/2)ϕJm+1/2(p⊥ρ)

−i
√

ε − c2 sin(θ0/2) ei(m−1/2)ϕJm−1/2(p⊥ρ)

−√
ε − c2 cos(θ0/2) ei(m+1/2)ϕJm+1/2(p⊥ρ)

⎞
⎟⎟⎟⎟⎟⎠, (B2)
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where m is the projection of the total angular momentum as used in the main text and μ is an additional quantum number
governing the helicity of the beam [37]. These solutions are normalized according to

〈ψ̃m,p‖,p⊥,μ|ψ̃m,p′
‖,p′

⊥,μ′ 〉 = 1

2π p⊥
δμμ′δ(p‖ − p′

‖)δ(p⊥ − p′
⊥). (B3)

For a given value of m and given momentum, Eq. (16) yields two functions with s = ±1/2 and l = m − s. Each of these functions
can be represented as a combination of the two solutions (B1) and (B2),(

ψ
(B)
m−1/2,p‖,p⊥,1/2

ψ
(B)
m+1/2,p‖,p⊥,−1/2

)
=

√
2π p⊥

(
cos(θ0/2) −i sin(θ0/2)

−i sin(θ0/2) cos(θ0/2)

)(
ψ̃m,p‖,p⊥,1/2

ψ̃m,p‖,p⊥,−1/2

)
. (B4)

Accordingly, the wave functions (B1) and (B2) coincide with the functions (34) and (35) up to a factor of
√

2π p⊥,

ψ̃m,p‖,p⊥,μ(x) =
√

2π p⊥ψ (R)
m,p‖,p⊥,μ(x). (B5)

Finally, we note that in Ref. [37], twisted electron states were described by the wave functions which differ from those in
Eqs. (B1) and (B2) only in an overall numerical factor.
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