
PHYSICAL REVIEW A 106, 033117 (2022)

Coulomb effects in the high-energy part of above-threshold-ionization
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A. V. Sviridov ,1,2 M. V. Frolov ,1,2 S. V. Popruzhenko ,1,3 Lei Geng ,4 and Liang-You Peng4,5

1Department of Physics, Voronezh State University, Voronezh 394018, Russia
2Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia

3Prokhorov General Physics Institute of the RAS, Moscow 119991, Russia
4State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics,

School of Physics, Peking University, 100871 Beijing, China
5Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China

(Received 26 April 2022; revised 11 August 2022; accepted 8 September 2022; published 28 September 2022)

Coulomb effects in the high-energy part of photoelectron spectra produced through the above-threshold
ionization of an atom subject to intense short laser pulses are analyzed. The analysis is carried out for linearly
polarized and tailored bicircular laser pulses consisting of the fundamental and the second-harmonic components.
We include the Coulomb effects in the analytic semiclassical description of the photoelectron rescattering plateau
using the recently developed adiabatic approach [Phys. Rev. A 104, 033109 (2021)] and the expression for
the Coulomb phase derived for description of the high harmonic generation [J. Phys. B: At., Mol. Opt. Phys.
51, 144006 (2018)]. Comparisons between predictions of the analytic approach and numerical solutions of
the time-dependent Schrödinger equation are presented. They allow the identification of the contribution of
the Coulomb interaction to photoelectron spectra for different laser pulse forms. We show that the Coulomb
effects appear more pronounced for bicircular fields, where they demonstrate considerable sensitivity to the
photoelectron emission angle. Instead, for linear polarization, the Coulomb effect in the high-energy plateau is
generally insignificant.
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I. INTRODUCTION

Above-threshold ionization (ATI) of atoms in intense laser
fields has remained in the focus of high-field physics for
more than forty years, starting from experiment [1], where
ATI photoelectron spectra were for the first time recorded.
Continuous progress in laser techniques and diagnostics
has been progressively offering new opportunities for de-
tailed experimental investigation of photoelectron momentum
distributions (PMDs). Advances in photoelectron and ion
diagnostics made in the two past decades include the develop-
ment of the velocity map imaging (VMI) [2] and the reaction
microscope technique [3]. In combination with the progress in
the generation and characterization of ultrashort laser pulses
[4,5] this allowed for detailed investigations of a broad variety
of ATI-associated effects with an unprecedented resolution.
This includes the high-energy ATI (HATI) [6], high harmonic
generation (HHG) [5,7,8], the low-energy structures in ATI
spectra [9,10], effects of atomic structure in ATI and HHG
[11–13], nondipole and magnetic-field effects [14], and more.

Over the past decade, ATI and HHG in tailored laser pulses
have attracted the exceptional interest of researchers. This
includes in particular ionization dynamics in laser fields of
complex polarization states such as radially polarized pulses,
twisted laser beams, beams with orbital momentum [15,16]
and bicircular fields [8,17–19]. The latter is a coherent su-
perposition of two circularly polarized fields of different

wavelengths. Most typically, in studies of ATI and HHG,
bicircular fields consisting of ω and 2ω components are used,
where ω is the laser frequency. An important feature of bi-
circular laser pulses is that their fields drive photoelectron
trajectories of very different shapes. These shapes depend on
the ionization time on the phase and amplitude relation be-
tween the two field components. As a consequence, in contrast
to the case of monochromatic fields with circular or elliptical
polarization, in bicircular fields returns of the photoelectron
to its atomic residual become possible at different incident
angles. Therefore, bicircular fields offer significant additional
degrees of freedom for manipulation by HATI and HHG spec-
tra. Recent results of experimental and theoretical studies of
the recollision dynamics in intense bicircular fields have been
reported in Refs. [20–26]; see also the literature quoted there.

The theory of ATI, HATI and HHG in intense laser
fields employs three basic approaches: The Keldysh theory
or strong-field approximation (SFA) [27–31], the adiabatic
method [32–35], and the numerical solution to the time-
dependent Schrödinger equation (TDSE). The SFA in its
standard form discards the Coulomb interaction between the
photoelectron and its parent ion, which limits its quantita-
tive applicability to descriptions of negative ion multiphoton
photodetachment. The same holds for the time-dependent
effective range approach [36], which provides an analytic
solution for an electron bound by a short-range forces in the
presence of an intense laser field. In the limit of the zero-range
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potential, the effective range approach provides an exact ana-
lytic solution for an electron in the field of a strong arbitrary
polarized laser wave. Because of the discard of the Coulomb
interaction, predictions of these model approaches may fail
in describing experimental data and TDSE solutions for ATI
and HHG in atoms. Such disagreements are commonly at-
tributed to the effect of the Coulomb interaction. A broad
variety of Coulomb effects in ATI and HHG have been studied
theoretically, some of them have been experimentally veri-
fied. For reviews of Coulomb effects in strong-field ionization
and methods applied to include the Coulomb interaction into
approximate theoretical approaches, see Refs. [31,37] and
references therein. These methods include, in particular, the
Coulomb-corrected versions of the SFA [31,38,39] and the
adiabatic approach based on the factorization of the ionization
amplitude [35], which will be used for our current analysis.

The Coulomb interaction most significantly affects the
dynamics of low-energy electrons produced through the di-
rect ionization [27–31]. The energies of these slow electrons
typically do not exceed the doubled ponderomotive energy
and the corresponding low-energy part of the ATI spectrum,
formed by multiple soft recollisions, is strongly modified by
the Coulomb interaction [40–42]. HATI and HHG spectra
are typically less affected by Coulomb effects and therefore
in many cases they can be described within Coulomb-free
analytic approaches. Qualitatively, this can be explained by
the fact that the HATI and HHG plateaus are formed by fast
electrons whose trajectories remain only slightly deformed
by the Coulomb force. For HHG, the Coulomb effect was
theoretically studied in Ref. [43]. It was shown there that
the Coulomb modification of the high-harmonic phase is
relatively small, although feasible. However, in the case of
HHG, additional contributions of propagation effects may
essentially screen or modify the Coulomb distortion of HHG
spectra. In ATI, Coulomb effects are easier to trace, because
of the single-atom nature of the ionization process. Detailed
comparisons of HATI spectra calculated within Coulomb-free
approaches with those extracted from TDSE numerical so-
lutions demonstrate visible discrepancies. These deviations
become more apparent in bichromatic fields, owing to a more
complex form of photoelectron trajectories, such that different
ionization times and trajectory shapes correspond to different
emission angles. This makes ATI and HATI in bicircular fields
capable of a much more detailed encoding of the ionization
dynamics in photoelectron angular distributions. In combina-
tion with the existence of two-dimensional closed trajectories
supporting recollisions, this offers an additional way of con-
trol of photoelectron dynamics in the presence of laser and the
Coulomb fields.

In this paper, we explore this feature of the bichromatic
fields and look for Coulomb effects in HATI spectra taking
the case of linear polarization where these effects are less
pronounced as a benchmark. At the same time, we do not
focus on the Coulomb effects in the direct part of ATI spectra
and spectra in circularly polarized fields, which have already
received a detailed consideration (see recent publications
[44–46], review [31]. and the literature therein). The paper is
organized as follows: In the next section (Sec. II) we describe
the theoretical methods used for the calculation of ATI and
HATI spectra. These include (a) the adiabatic approach, (b) its

modification through the Coulomb corrections of the ioniza-
tion amplitude, and (c) numerical TDSE solutions. Section III
presents photoelectron spectra for different emission angles
in the reference case of linear polarization and in a bichro-
matic field. In the same section, Coulomb effects are identified
by comparisons between analytic and numerical calculations.
Section IV contains summary and outlook. Appendixes A and
B report technical details of the derivation of the direct and
rescattering ionization amplitudes in the adiabatic limit.

II. THEORETICAL METHODS FOR ABOVE
THRESHOLD IONIZATION

In this section we give a short overview of the theoreti-
cal methods applied to our analysis of ATI. Details of these
methods can be found in Refs. [34,35] for the adiabatic ap-
proach, and in Refs. [31,43,47] for the Coulomb corrections.
Technical details of the TDSE numerical solution, which we
will apply to benchmark our analytic results, can be found in
Ref. [48].

A. Adiabatic approach

The original formulation of the adiabatic approach is based
on two assumptions: (i) the electron-atom interaction is ap-
proximated by a short-range potential, and (ii) the carrier
frequency ω and field strength F of a laser pulse are small
compared with the corresponding atomic values (ω � Ip,
F � (2Ip)3/2), where Ip is the atomic affinity (ionization po-
tential). Here and below we use atomic units m = e = h̄ = 1.
Within the adiabatic approach, the amplitude A(p) of above-
threshold detachment ATD is given by the sum

A(p) = A(k)(p) + A(r)(p), (1)

where amplitudes A(k)(p) and A(r)(p) describe the subsequent
levels of account of the atomic potential, and p is the pho-
toelectron final momentum. The lowest-order contribution is
given by the amplitude A(k)(p), also known in the literature
as the Keldysh amplitude [27,30,31], while the term A(r)

accounts for effects of a single additional interaction of the
liberated electron with the atomic potential in the continuum.
Each amplitude can be presented as a sum of partial contribu-
tions:

A(α)(p) =
∑

j

A(α)
j (p), α = k, r, (2)

where each A(α)
j (p) is associated with a classical trajectory

of a free electron in a laser pulse and expressed in terms of
quantities parametrizing this trajectory. The partial amplitude
A(k)

j (p), mostly describing the low-energy photoelectron dis-
tribution, is parametrized by an outgoing trajectory with a
given momentum of photoelectron far from the atom [31,44]
(see also Appendix A). The partial amplitude A(r)

j (p), describ-
ing “fast” (or rescattering) electrons, is expressed in terms of
ionization and rescattering times, which parametrize a closed
classical trajectory of a free electron in a laser field [34,35].
Under closed trajectories here we mean those arriving to
parent ion space position at some time instant (referred to
as “rescattering time” above) after the ionization event. This
should not be confused with trajectories closed in energy or
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momentum space. In the frame of the adiabatic approxima-
tion, the ionization (t ′

j) and recombination (t j) times are real
solutions of a system of two transcendental equations:

K ′
j · K̇

′
j = 0, (3a)

P2(t j )

2
− K2

j

2
− �E j = 0. (3b)

Definitions for K ′
j , K̇

′
j , P(t j ), K j , �E j can be found in

Appendix B. These equations represent semiclassical con-
ditions, which make possible realization of the rescattering
mechanism for the ATD process [49]: Equation (3a) shows
that the atomic electron appears in the laser-dressed contin-
uum at the moment, which ensures the minimum of the kinetic
energy; Eq. (3b) indicates that the rescattering event happens
for those moments, when the energy gained by the electron
during its motion along a closed trajectory equals the energy
of the ionized electron with a given final momentum.

The amplitude A(k)
j (p) is parametrized in terms of a clas-

sical action of a free particle and the tunneling exponent (see
Appendix A), which identifies the mechanism of the nonlin-
ear detachment. More complex parametrization is obtained
within the adiabatic approach for the amplitude A(r)

j (p). This
amplitude is presented as the product of three factors (see
Appendix B) describing tunneling, propagation, and elastic
rescattering on the atomic potential, which is the third step
in the recollision scenario.

Once the amplitude A(p) is found analytically, the momen-
tum distribution of photoelectrons can be calculated as

P (p) ≡ d3W (p)

dEpd�p
= p

(2π )3 |A(p)|2, (4)

where Ep = p2/2 and �p is the solid angle of the photo-
electron emission. Note that the geometry of the momentum
vector p in Eq. (4) is uniquely determined by the energy Ep

and solid angle �p, so that for shortness of notation in the sub-
sequent analysis we use the abbreviation p ≡ (Ep,�p): e.g.,
for the linearly polarized field �p = (θp ≡ θ, ϕp = 0), θp and
ϕp are spherical angles; for the bicircular field �p = (θp =
π/2, ϕp ≡ θ ). Below, we refer to the outcome of this adiabatic
approach as the adiabatic result (AR), while results obtained
with the reduced amplitude, A(p) ≈ A(k)(p) are denoted as
the Keldysh result (KR).

B. Coulomb corrections

Results obtained within the aforementioned adiabatic ap-
proach cannot be directly utilized to describe ionization of
atoms because it does not account properly for the long-range
Coulomb interaction. Even the electron-scattering amplitude
cannot be calculated within the standard expression for a
short-range potential [see Eq. (B5)] and requires a special
consideration [50]. Moreover, the Coulomb field affects the
ionization process of an atomic system by considerably en-
hancing the total ionization yield [51,52] and changing the
photoelectron momentum distributions [40,53,54]. Therefore,
the amplitudes A(k)

j and A(r)
j need a Coulomb modification.

The amplitude A(k)
j is modified by introducing the exponential

Coulomb-induced correction [31,38,40,47], while correcting

the amplitude A(r)
j is more laborious: It requires (i) chang-

ing the electron-scattering amplitude to the corresponding
atomic counterpart calculated numerically or analytically for
a hydrogen-like atom [50], and (ii) introducing a special
exponential Coulomb-induced correction along a closed pho-
toelectron trajectory [43].

The Coulomb-induced factor in the amplitude A(k)
j is given

by the expression

Q(k)
j = ei	(k)

j , (5)

where the phase 	
(k)
j is expressed through a one-dimensional

integral in the complex time plane [43,47]:

	
(k)
j =

∫ τ

t (k)
j

dt

⎡
⎣ 1√

r(k)
j (t ) · r(k)

j (t )
+ iν

t − t (k)
j

⎤
⎦, (6a)

r(k)
j (t ) = p

(
t − t (k)

j

) +
∫ t

t (k)
j

A(t ′)dt ′, (6b)

1

2

[
p + A

(
t (k)

j

)]2 + Ip = 0, ν = Z

κ
, (6c)

and t (k)
j ≈ t j + iκ j/F j is the complex transition moment

from the bound state to the continuum state (see the definitions
of t j , κ j , and F j in Appendix A), τ is the moment that the
laser pulse is turned off, Z is the atomic residual charge (Z = 1
for ionization of a neutral atom). Note that the integration path
is chosen to avoid crossings with the integrand branch cuts
to make it a single-valued function.1 Below we refer results
obtained with the Coulomb-corrected Keldysh amplitude as
the Coulomb-corrected Keldysh result (CCKR).

The corresponding Coulomb-induced factor for the am-
plitude A(r)

j is derived within the procedure suggested in
Ref. [43] (see also Ref. [55]) and presented by the expression:

Q(r)
j = ei	(r)

j , 	
(r)
j =

∫ t j

t ′
j
(r)

⎡
⎣ 1√

r(r)
j (t ) · r(r)

j (t )

+ iν

t − t ′
j
(r) − ν

t − t j

]
dt, (7a)

r(r)
j (t ) =

∫ t

t ′
j
(r)

A(t ′)dt ′ − t − t ′
j
(r)

t j − t ′
j
(r)

∫ t j

t ′
j
(r)

A(t ′)dt ′, (7b)

t ′
j
(r) = t ′

j + iκ j/F j, (7c)

where equations for times t ′
j and t j expressions for κ j and

F j are given in Appendix B. Similarly to (6a), the integral in
Eq. (7a) is taken in the complex-time plane avoiding crossing
with the branch cuts.

Extension of analytic results obtained within the adia-
batic approximation to neutral atoms or positively charged
ions is achieved by multiplication of the amplitudes A(k)

j

and A(r)
j to the corresponding Coulomb-induced factors and

1The branch cut crossing changes the sign of the potential, thereby
changing an attractive potential to a repulsive one.
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replacing the electron-scattering amplitude by the corre-
sponding atomic counterpart. Below we call the sum of the
two Coulomb-corrected amplitudes A(k)(p) and A(r)(p) the
Coulomb-corrected adiabatic result (CCAR).

C. Numerical solution of time-dependent Schrödinger equation

For the numerical solution of TDSE, we use the velocity
gauge and dipole approximation for the electron-laser interac-
tion:

i
∂

∂t
�(r, t ) = Ĥ�(r, t ), Ĥ = −∇2

2
− 1

r
− iA(t ) · ∇, (8)

where A(t ) is the vector potential of the laser field. The time-
dependent wave function is expanded in terms of spherical
harmonics Ylm(r̂) for angular coordinates:

�(r, t ) = 1

r

lmax∑
l=0

m=l∑
m=−l

ψlm(r, t )Ylm(r̂), (9)

with r̂ = r/r. We choose lmax = 130 to ensure convergence of
the result. The finite element discrete variable representation
(FE-DVR) is used to discretize the radial coordinate r [56].
The entire coordinate space, ranging from zero to rmax =
240 a.u., is partitioned into 112 finite elements. We have
checked the convergence of our calculation by doubling the
grid size and found no visible differences. Legendre-Gauss-
Lobatto quadratures of order eight are employed in every finite
element. The ground state of the hydrogen atom is prepared
numerically by the restarted Lanczos algorithm. Otherwise,
we use the Arnoldi propagator to carry out the evolution of the
wave function [57]. To save computational time and reduce
the reflection effect, the splitting scheme is used for the wave
function �(r, t ) [58]:

� = �inner + �outer = M� + (1 − M )�. (10)

The wave function is split by a mask function M:

M(r) = 1

1 + exp
( r−rc

rw

) , (11)

where rc = 0.5rmax and rw = 0.03rmax. Every one-third of
the laser cycle at time ti, �outer is separated, which is then
projected to the scattering states and analytically propagated
until the end of the pulse t f by using the Volkov propagator,

UV (t f , ti ) = exp

[
−iE (t f − ti ) − i

∫ t f

ti

p · A(τ ) dτ

]
. (12)

The residual wave function �(r, t f ) is also projected to the
scattering states after the laser pulse is turned off. Finally,
the split wave function and the residual wave function are
coherently added up in the momentum space to calculate the
double-differential probability:

P (p) = d3W (p)

dEpd�p

= 1

2π p

∣∣∣∣∣
∑
l,m

(−i)l eiδlYlm( p̂)
∫ ∞

0
drψall

lm (r, t f )rRpl (r)

∣∣∣∣∣
2

,

(13)

FIG. 1. Color-coded angle-resolved ATI spectra for the linearly
polarized field (15). The polarization direction (z direction) is hor-
izontal. Because of the symmetry of the distribution with respect
to this direction, only upper half planes (py > 0) are shown. The
low-energy part of the distributions is not shown (empty circle at
photoelectron energies Ep < 2.5 a.u.). Panel (a) shows the AR result.
Panel (b) shows the TDSE-result. Panel (c) shows the CCAR result.
For laser parameters see the text.

ψall
lm (r, t f ) =

∑
ti

UV (t f , ti )ψ
outer
lm (r, ti ) + ψlm(r, t f ), (14)

where p̂ = p/p defines the photoelectron momentum direc-
tion, δl stands for the Coulomb phase shift, and Rpl stands for
the Coulomb scattering states in the radial coordinate r, both
functions are described by analytic expressions.

III. RESULTS AND DISCUSSION

In Figs. 1 and 2 we present two-dimensional (2D) ATI
momentum distributions found for linearly polarized and bi-
circular laser pulses using the above-described approaches.
For linear polarization the field was taken in the form

A(t ) =
{

−ẑ
F

ω
cos2

(πt

τ

)
cos (ωt ), |t | � τ/2

0, otherwise,
(15)

while the bicircular pulse was parametrized as

A(t ) = ∂R(t )

∂t
, R(t ) = R1(t ) + R2(t ), (16a)

Ri = F

ω2
i

fi(t )(x̂ cos ωit + ηiŷ sin ωit ), (16b)

fi(t ) = exp
(−2(ln 2)t2/τ 2

i

)
. (16c)
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FIG. 2. Color-coded angle-resolved ATI spectra for the bicircular
field (16) in the polarization plane. The x axis is horizontal, the
y axis is vertical. The low-energy part of the distributions is not
shown (empty circle at photoelectron energies Ep < 1.5 a.u.). Panel
(a) shows the AR result. Panel (b) shows the TDSE-result. Panel
(c) shows the CCAR result. See text for laser parameters.

For Eq. (15), F = 0.0654 a.u. is the laser field strength
corresponding to the intensity I = cF 2/(8π ) = 1.5 × 1014

W/cm2, ω = 0.035 a.u. is the pulse carrier frequency corre-
sponding to the wavelength λ = 2πc/ω = 1.3 μm, c is the
speed of the light, τ = 26 fs is the full duration of the six-cycle
pulse. For Eq. (16), F = 0.0534 a.u. corresponding to the
intensity I = 1 × 1014 W/cm2, ωi are the carrier frequencies
of the bicircular field components ω1 = ω2/2 = 0.057 a.u., ηi

are the ellipticities (η1 = −η2 = 1) and the full width at half
maximum of the intensity pulse durations are τi = 2πNi/ωi

with N1 = 2, N2 = 4. All calculations were performed for
hydrogen in the initial 1s state. Results shown in Figs. 1 and 2
were obtained by the TDSE numerical solution (TDSE result),
in the adiabatic approximation with the Coulomb interaction
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FIG. 3. ATI spectra for the hydrogen in the linearly polarized
field [see the text for laser parameters and Eq. (15) for parametriza-
tion] calculated for six photoelectron emission angles θ with respect
to the polarization vector ẑ (indicated in Fig. 1 by thin radial lines).
The values of θ are marked in the panels. Photoelectron energies are
shown both in atomic units and in units of the ponderomotive energy.
Black solid lines show TDSE result; blue solid lines show AR; blue
dashed lines show KR; red solid lines show CCAR; red dashed lines
show CCKR. Up = F 2/(4ω2) ≈ 0.87 a.u.

neglected (adiabatic result—AR) and within the Coulomb-
corrected adiabatic approximation (CCAR).

Since we focus on the Coulomb effect for the high-energy
part of the photoelectron distributions, in Figs. 1 and 2 we
do not show the low-energy domain known in the literature
as the direct ionization spectrum (for Fig. 1 this domain
is limited by Ep < 2.5 a.u., for Fig. 2, Ep < 1.5 a.u.). (We
show the contribution of the low-energy part in Figs. 3 and
4.) The central message of the distribution shown in Figs. 1
and 2 is that the Coulomb effect on the high-energy part of
the spectrum is much less pronounced in the case of linear
polarization than for a bicircular pulse. Indeed, for linear
polarization, the AR and CCAR distributions [see Fig. 1(a)
and 1(c), respectively] look almost identical and both of them
match with results in Fig. 1(b). For the bicircular field, the
TDSE result [see Fig. 2(b)] and the CCAR [see Fig. 2(c)]
appear qualitatively more similar to each other than the
AR distribution in Fig. 2(a). In particular, both distributions
in Figs. 2(b) and 2(c) show areas of enhanced ionization
probability in forms of three leafs at photoelectron energies
1.5–3.0 a.u. Also, the TDSE and CCAR distributions
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FIG. 4. ATI spectra for the hydrogen atom in the bicircular field
[see the text for laser parameters and Eq. (16) for parametrization]
calculated in the polarization plane (XY plane) for different photo-
electron emission angles θ with respect to x̂ vector. Photoelectron
energies are shown both in atomic units and in units of the pon-
deromotive energy. Black solid lines show TDSE-result; blue solid
lines show AR; blue dashed lines show KR; red solid lines show
CCAR; red dashed lines show CCKR. Up = F 2/(2ω2

1 ) + F 2/(2ω2
2 )

≈ 0.55 a.u.

demonstrate a less pronounced interference pattern than
shown in Fig. 2(a) for the AR distribution. These qualitative
observations allow us to conclude that for bicircular laser
fields the Coulomb interaction makes a stronger effect on the
structure of the high-energy photoelectron plateau, compared
with the case of linear polarization where this effect remains
hardly visible.

To provide a more detailed quantitative consideration of
this Coulomb effect we present in Figs. 3 and 4 ATI spectra for
several fixed emission angles. Except for the above-mentioned
TDSE, AR, and CCAR results we also show the Keldysh
Coulomb-free result (KR) and its Coulomb-corrected version
(CCKR).

Our numerical results for the linearly polarized pulse show
that the Coulomb factor (5) for the partial amplitudes A(k)

j
changes the low-energy part of the ATI spectra. However, its
inclusion does not provide quantitative agreement between the
analytic approach and the numerical TDSE solution. In the
best case, the Coulomb factor yields some quantitative im-
provement. First, it leads to the development of the low-energy
plateau with an overestimated magnitude near the low-energy
cutoff [see Figs. 3(a) and 3(b)]. This effect received a detailed
consideration in Ref. [54]. Secondary, the Coulomb factor
corrects the phase of the partial ionization amplitude A(k)

j ,
thereby forming the large-scale interference structure in the
ATI spectra at low energies [see Figs. 3(c) and 3(d)]. We
observe significant discrepancies between predictions of the
analytic approach and numerical TDSE results in the range
1–3 a.u., where the partial rescattering amplitudes A(r)

j do
not yet contribute. As we do focus here on the low-energy
part of the photoelectron distributions but consider effects of
the Coulomb interaction in the high-energy plateau, we limit

FIG. 5. Dependence of the imaginary part of 	
(r)
j on the photo-

electron energy for two photoionization angles: (a) θ = 100◦, (b) θ =
340◦. Parameters of the bicircular field are the same as in Fig. 4.
Each line corresponds to a particular closed trajectory, while its
continuously changing color marks the absolute value of the partial
amplitude A(r)

j . Vertical dashed lines indicate two photoelectron en-
ergies: Ep = 3 a.u. and Ep = 3.55 a.u.

our discussion of the low-energy electrons by the following
brief comments: (i) The discrepancies may be attributed to
an incomplete account of the Coulomb-distorted trajectories,
which can be additionally induced by the Coulomb field
[59–61]. Such new trajectories do not appear in our calcula-
tion based on the Coulomb-free ones. (ii) The disagreement
may result from a more fundamental reason, which potentially
roots to the inconsistency of the expression (1) establish-
ing the explicit separation of the ionization amplitude in the
rescattering and Keldysh-like contributions, which may not be
applicable in the presence of the long-range Coulomb field.
Note that a similar problem is known in scattering theory,
where the laser-free continuum states are separable into the
plane and the scattering parts for a short-range potential,
while for Coulomb continuum states this cannot be done
[50,62]. The high-energy part of ATI spectra for the linearly
polarized pulse (see Fig. 3) is less sensitive to the Coulomb
corrections (7). Indeed, excluding some energies, the TDSE
results, analytic results with and without Coulomb factors are
found in good agreement with each other. For those small
energy intervals where we observe discrepancies between the
TDSE and the Coulomb-free analytic results, the factor (7)
improves the agreement. Note that, for backscattered electrons
(θ = 0◦, 180◦), the plateau cutoff position is slightly shifted
toward lower energies with respect to the commonly expected
value of 10UP. This can be explained by the finite pulse
duration τ = 26 fs. Indeed, the instant field amplitude and the
ponderomotive energy upon the first photoelectron return to
the nucleus appear below their peak values [63].

ATI spectra for the bicircular field (16) are presented in
Fig. 4. In contrast to the case of the linearly polarized field,
the low-energy parts of the ATI spectra are in good agreement
with numerical TDSE results showing a gradual decrease
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FIG. 6. Phase dependence of the partial amplitudes on the photoelectron energy. Continuously changing color along the curves indicates
the relative absolute value of the partial amplitude. Labeling of the partial amplitudes (and of the corresponding classical trajectories) is the
same as in Fig. 5. (a) Ionization angle θ = 100◦, the Coulomb corrections are not included. (b) Ionization angle θ = 100◦, the Coulomb
corrections are included. (c) Ionization angle θ = 340◦, the Coulomb corrections are not included. (d) Ionization angle θ = 340◦, the Coulomb
corrections are included. Parameters for the bicircular field are the same as in Fig. 4. Vertical dashed lines mark energies Ep = 3 a.u. and
Ep = 3.55 a.u.

of the photoelectron yield with increasing energy. Note,
however that in this study we focus on high-energy photo-
electron spectra. The rescattering part of the ATI amplitude
generates a shorter (compared with the case of linear polariza-
tion) plateau, which ends up by a smoothly decreasing tail. As
can be seen from Fig. 4, the Coulomb corrections contribute
differently for different emission angles. For instance, for two
ionization angles θ = 100◦ and θ = 225◦ [Figs. 4(a) and 4(b)]
the Coulomb factor (7) makes a minor contribution to the
high-energy plateau structure, while for θ = 340◦ [Fig. 4(c)]
it smears out a large-scale oscillation in the plateau region.
Note that the Coulomb factor enhances the absolute value of
the partial amplitudes. For consistency, the ionization yield in
the absence of the Coulomb correction was properly scaled to
the Coulomb-corrected results.

In Fig. 5 we present the dependence of the imaginary part
of 	

(r)
j [see Eq. (7a)] on the photoelectron energy for the most

contributing trajectories and two ionization angles [θ = 100◦,
Fig. 5(a), and θ = 340◦, Fig. 5(b)]. The contributing trajec-
tories are combined in pairs in such a way that each pair
merges at the same energy. In a linearly polarized field, such
pairs turn into the well-known short and long trajectories.
Each pair is marked by a number, while within the pair the
second trajectory is additionally marked by a prime. Within a
pair, contributions of the trajectories can considerably differ in
absolute value. As an example, in Fig. 5(a) the contribution of
trajectory “2” is much higher than that of trajectory “2′”. The
imaginary part of 	

(r)
j [see Eq. (7a)] determines the Coulomb-

induced enhancement or suppression of the contribution of a
partial amplitude A(r)

j [see Eq. (7)]. In combination with the

tunneling factor of A(r)
j [see Eq. (B3)] this determines the con-

tribution of a particular trajectory to the ionization amplitude.2

For θ = 100◦ [see Fig. 5(a)] there are two contributing tra-
jectories (see lines marked by “1” and “2”), whose Coulomb
factors enhance the corresponding partial amplitudes. Coher-
ent summation of these amplitudes generates the interference
pattern with ω-separated peaks. Note that these peaks should
not be associated with ATI peaks, since their position and
appearance depend on the ionization angle. As an example,
for θ = 340◦ [see Fig. 5(b)] there is only one contributing
trajectory and the plateau structure for this angle does not
demonstrate any interference pattern. The traveling time (i.e.,
the difference t j − t ′

j) of the most contributing trajectories is
near one third of the laser period, 2π/ω.

Figures 5 and 6 can help to shed further light on the
formation of the large-scale interference structure and on
the Coulomb effect on this structure. The dependence of the
relative phases and magnitudes of the partial amplitudes A j

on the photoelectron energies is presented in Fig. 6. The
absolute value of the partial amplitude is shown by con-
tinuously changing color along the curve associated with
a given partial amplitude A j plotted in the “energy-phase”
plane. Figures 6(a) and 6(b) show the phase dependence for
the case of pronounced interference structure in ATI spectra
for θ = 100◦. In both cases of AR [Fig. 6(a)] and CCAR

2See the amplitude suppression in Fig. 5(a) for trajectory “3,”
whose phase imaginary part is less than the corresponding part of
	

(k)
j for trajectory “1′.”
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Ep = 3.0 a.u., θ = 100◦

(a) 1 (b) 1 (c) 2 (d) 2 (e) 3

Ep = 3.55 a.u., θ = 100◦

(f) 1 (g) 1 (h) 2 (i) 2 (j) 3

Ep = 3.0 a.u., θ = 340◦

(k) 1 (l) 1 (m) 2 (n) 3 (o) 3

Ep = 3.55 a.u., θ = 340◦

(p) 1 (q) 1 (r) 2

FIG. 7. 2D graphs of the dominant closed classical electron trajectories for different energies and ionization angles as marked in the figure.
Red lines show closed classical electron trajectories (the electron moves counterclockwise). Black lines show the corresponding electric-field
hodograph (black line) drawn from the instant of ionization (blue circle) to that of recombination (red square). Thin blue lines show the
electric-field hodograph for the entire pulse.

[Fig. 6(b)] the interference structure results from coherent
summation of the mostly contributing trajectories marked as
“1” and “2.” The relative phases of trajectories “2” are reduced
to the interval [0, 2π ] so that the corresponding curves form
sloping discontinued lines separated by ω. Consequently, their
coherent summation forms an ω-spaced interference struc-
ture. Note that two trajectories “2” and “2′” contribute almost
equally to the interference with the trajectory “1,” while for
CCAR the dominant contribution comes from trajectory “2.”
For θ = 340◦ the topological shape of the phase dependence
changes dramatically. The phase of the partial amplitudes
for trajectories “2” and “2′” changes its slope and the corre-
sponding discontinued lines are separated by energy intervals
exceeding ω. At the same time, the contribution of the partial
amplitudes associated with trajectories “2” and “2′” becomes
less pronounced in comparison with the amplitude “1.” These
two effects lead to suppression of interference effects in the

plateau region [see Fig. 4(c)]. As we can see from our nu-
merical analysis, for this ionization angle the Coulomb effects
appear much more pronounced than for θ = 100◦. The shapes
of several most contributing trajectories are shown in Fig. 7.

We attribute the observed selectivity of the Coulomb cor-
rections to the ionization angle to the short time duration of
the bicircular pulse. Indeed, for a monochromatic bicircular
field interference of partial amplitudes of the same type leads
to the appearance of Ep-dependent δ functions, determining
positions of the ATI peaks. For a short pulse, each partial
amplitude and the corresponding classical trajectory have in-
dividual forms suppressing the development of the ideal ATI
comb. As a consequence, the Coulomb factors come with
different weights and change the interference pattern.

For better visualization of the contributions of different
partial amplitudes A(r)

j , we plot them as vectors with length
and angle given by the absolute value and the phase of the
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FIG. 8. Schematic representation of partial ionization amplitudes. Solid red vectors show the most contributing partial amplitudes, solid
blue vectors show the remaining contributing amplitudes, dashed black vectors show the total ionization amplitudes, dashed blue vectors
show the sum of the remaining contributing amplitudes. Panels (a), (c), (e), (g) show diagrams of the partial amplitudes without the Coulomb
corrections, panels (b), (d), (f), (h) show diagrams of the partial amplitudes with the Coulomb corrections. Numbers mark trajectories associated
with the corresponding partial amplitudes as in Fig. 5. Photoelectron energies and emission angles are presented in the figures. The bicircular
field parameters are the same as in Fig. 4.

considered partial amplitude (Fig. 8). The offset angle is
chosen zero for the most contributing trajectory. The left-hand
side (right-hand side) of Fig. 8 shows the partial amplitudes
without (with) the Coulomb factor (7). We consider two pho-
toelectron energies (marked in Fig. 5 by dashed vertical lines)
and two photoionization angles θ = 100◦ and θ = 340◦. To
exclude the difference in absolute ionization yields caused
by the Coulomb factors we scale the Coulomb-free results
[see Figs. 8(a), 8(c), 8(e), and 8(g)] by the factor 3.8 × 10−5,
thereby reducing the length of the red vector (corresponding
to the most contributing partial amplitudes) in Fig. 8(g) to
one. The corresponding scaling factor for Figs. 8(b), 8(d), 8(f),
and 8(h) is 9.8 × 10−4. In all cases the Coulomb corrections
crucially change the relative contribution of different partial
amplitudes by changing both their absolute values and relative
phases. However, the modification of the partial amplitudes
caused by the Coulomb effect does not necessarily affect
the ionization yield. These special cases can also be found
in Figs. 8(a)–8(d). They correspond to the situation when
the sum of the remaining partial amplitudes (see blue vec-
tors in Fig. 8) is not significantly changed by the Coulomb
corrections. For those ionization angles where the Coulomb
corrections are significant [see Figs. 8(e)–8(h)] we observe
a considerable change in the resulting sum of the remain-
ing partial amplitudes. This change is mostly caused by the
Coulomb correction to the phase, while the change in the
absolute value plays a secondary role. As a result, we observe
the interference-related suppression or increase of the total
ionization probability.

IV. SUMMARY

In this work, we have analyzed the Coulomb field effects
for high-energy electrons produced through the nonlinear
ionization of an atom subject to intense linearly polarized
and bicircular laser fields. The Coulomb factors for rescat-
tered electrons were introduced within the adiabatic approach
[35] by extending the semiclassical method previously devel-
oped in Ref. [43] for description of high-harmonic spectra,
to the HATI case. Two types of short laser pulses were
considered: A linearly polarized pulse and a tailored bicir-
cular pulse with ω and 2ω components and counter-rotating
circular polarizations. Although the introduced Coulomb cor-
rections improve the agreement between analytic results and
numerical solutions of TDSE in both cases, the improve-
ment is considerably more apparent for the tailored bicircular
pulse, while for the linearly polarized field the Coulomb
correction reduces to the common factor weakly depen-
dent on the photoelectron energy. We show that coherent
summation of different partial amplitudes associated with
spatially closed classical trajectories in the bicircular pulse
can be considerably affected by the Coulomb corrections
changing both the absolute values and the phases of these
amplitudes. This significantly modifies the interference pat-
tern in the high-energy photoelectron plateau. In a linearly
polarized field the effects of multiple returns and of soft
recollisions both discarded in our consideration are known
to significantly influence the photoelectron spectra. Highly
likely, this is the reason why in linearly polarized fields
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our adiabatic Coulomb-corrected approach appears less effi-
cient.
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APPENDIX A: THE “DIRECT” AMPLITUDE A(k)
j

The partial “direct” amplitude A(k)
j can be calculated along

the expressions

A(k)
j = f (p)eiS(p,t j )e

− κ
3
j

3F j , (A1a)

P(t j ) · F(t j ) = 0, P(t ) = p + A(t ), (A1b)

where p is the final photoelectron momentum, A(t ) is the
laser field vector potential, F(t ) = −∂A(t )/∂t is the electric
field, and

S(p, t j ) =
∫ t j

t0

{
P(t )2

2
+ Ip

}
dt, (A2a)

κ j =
√

κ2 + P
2
j , P j = P(t j ), (A2b)

F j =
√

F
2
j − P j · Ḟ j, (A2c)

F j = F(t j ), Ḟ j = ∂F(t )/∂t |t=t j
, (A2d)

f (p) = Cκ

2π

√
2iκ jF j

, κ = √
2Ip. (A2e)

t0 is some constant, whose value does not affect the detach-
ment probability, and Cκ is the asymptotic coefficient for s
initial state ψ0(r):

ψ0(r)|κr	1 
 Cκ√
4π

e−κr

r
.

APPENDIX B: THE “RESCATTERING” AMPLITUDE A(r)
j

The rescattering amplitude A(r)
j (p) can be presented as a

product of three terms:

A(r)
j = eiS(p,t j )a(tun)

j a(prop)
j A(P j, K j ), (B1)

where the factor a(tun)
j describes tunneling step, a(prop)

j is the
propagation factor, describing the semiclassical motion of
the liberated electron in the laser-dressed continuum along
a closed classical trajectory, and A(P j, K j ) is the electron-
scattering amplitude, describing backscattering on the atomic

residual as the final step in the rescattering mechanism. All
these factors depend parametrically on the classical ionization
(t ′

j) and recombination (t j) times, which obey a system of two
transcendental equations:

K ′
j · K̇

′
j = 0, (B2a)

P2(t j )

2
− K2

j

2
− �E j = 0, (B2b)

�E j = − κ
2
j(

t j − t ′
j

)
F2

j

[
K j · K ′

j

t j − t ′
j

− F ′
j · (K j − K ′

j )

2

]
,

(B2c)

where κ = √
2Ip and

K ′
j = A(t ′

j ) − 1

t j − t ′
j

∫ t j

t ′
j

A(t )dt,

K j = A(t j ) − 1

t j − t ′
j

∫ t j

t ′
j

A(t )dt,

K̇
′
j = ∂K ′

j

∂t ′
j

, F j =
√

F ′
j
2 − K ′

j · Ḟ
′
j,

κ j =
√

κ2 + K ′2
j , P j = P(t j ),

F ′
j = F(t ′

j ), Ḟ
′
j = ∂F(t ′

j )

∂t ′
j

.

The tunneling and propagation factors can be expressed in
the form

a(tun)
j = Cκ

e
− κ

3
j

3F j√
4πκ jF j

, (B3)

a(prop)
j =

√
2π i

β j

eiS j

(t j − t ′
j )

3/2
, (B4)

where

S j = −Ip
(
t j − t ′

j

) − 1

2

∫ t j

t ′
j

[A(t ) − k j]
2dt,

k j = 1

t j − t ′
j

∫ t j

t ′
j

A(t )dt,

β j = F j · (K j − P j ) + K2
j/(t j − t ′

j ).

The scattering amplitude can be presented as an integral in-
volving an exact scattering state, ψ

(+)
k and a plane wave:

A(p, k) = − 1

2π

∫
e−iprU (r)ψ (+)

k (r)dr, (B5)

where U (r) is the atomic potential.
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ing in a bicircular laser field, Opt. Express 24, 6413 (2016).

[9] F. H. M. Faisal, Ionization surprise, Nat. Phys. 5, 319 (2009).
[10] C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller,

P. Agostini, and L. F. DiMauro, Strong-field photoionization
revisited, Nat. Photonics 5, 335 (2009).

[11] R. A. Ganeev, High-order harmonic generation in a laser
plasma: A review of recent achievements, J. Phys. B: At., Mol.
Opt. Phys. 40, R213 (2007).

[12] T. Morishita, A.-T. Le, Z. Chen, and C. D. Lin, Potential for
ultrafast dynamic chemical imaging with few-cycle infrared
lasers, New J. Phys. 10, 025011 (2008).

[13] C. D. Lin, A.-T. Le, Z. Chen, T. Morishita, and R. Lucchese,
Strong-field rescattering physics – self-imaging of a molecule
by its own electrons, J. Phys. B: At., Mol. Opt. Phys. 43, 122001
(2010).

[14] M.-X. Wang, S.-G. Chen, H. Liang, and L.-Y. Peng, Review
on non-dipole effects in ionization and harmonic generation of
atoms and molecules, Chin. Phys. B 29, 013302 (2020).

[15] B. Böning, W. Paufler, and S. Fritzsche, Above-threshold ion-
ization by few-cycle bessel pulses carrying orbital angular
momentum, Phys. Rev. A 98, 023407 (2018).

[16] W. Paufler, B. Böning, and S. Fritzsche, Strong-field ion-
ization with twisted laser pulses, Phys. Rev. A 97, 043418
(2018).

[17] P. Ge, Y. Fang, Z. Guo, X. Ma, X. Yu, M. Han, C. Wu, Q. Gong,
and Y. Liu, Probing the Spin-Orbit Time Delay of Multiphoton
Ionization of Kr by Bicircular Fields, Phys. Rev. Lett. 126,
223001 (2021).

[18] M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev,
N. V. Vvedenskii, M. Yu. Ivanov, and A. F. Starace, Analytic
description of high-order harmonic generation in the adiabatic
limit with application to an initial s state in an intense bicircular
laser pulse, Phys. Rev. A 99, 053403 (2019).

[19] M. V. Frolov, N. L. Manakov, A. A. Minina, N. V. Vvedenskii,
A. A. Silaev, M. Yu. Ivanov, and A. F. Starace, Control of
Harmonic Generation by the Time Delay Between Two-Color,
Bicircular Few-Cycle Mid-IR Laser Pulses, Phys. Rev. Lett.
120, 263203 (2018).

[20] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Cohen,
Spin angular momentum and tunable polarization in high-
harmonic generation, Nat. Photonics 8, 543 (2014).

[21] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, D.
Popmintchev, T. Popmintchev, H. Nembach, J. M. Shaw, A.
Fleischer, H. Kapteyn, M. Murnane, and O. Cohen, Generation
of bright phase-matched circularly-polarized extreme ultravio-
let high harmonics, Nat. Photonics 9, 99 (2015).

[22] C. A. Mancuso, D. D. Hickstein, P. Grychtol, R. Knut, O. Kfir,
X.-M. Tong, F. Dollar, D. Zusin, M. Gopalakrishnan, C. Gentry,
E. Turgut, J. L. Ellis, M.-C. Chen, A. Fleischer, O. Cohen, H. C.
Kapteyn, and M. M. Murnane, Strong-field ionization with two-
color circularly polarized laser fields, Phys. Rev. A 91, 031402
(2015).

[23] C. A. Mancuso, K. M. Dorney, D. D. Hickstein, J. L.
Chaloupka, X.-M. Tong, J. L. Ellis, H. C. Kapteyn, and M. M.
Murnane, Observation of ionization enhancement in two-color
circularly polarized laser fields, Phys. Rev. A 96, 023402
(2017).
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ference structure of above-threshold ionization versus above-
threshold detachment, New J. Phys. 14, 055019 (2012).

[54] Th. Keil, S. V. Popruzhenko, and D. Bauer, Laser-Driven Recol-
lisions under the Coulomb Barrier, Phys. Rev. Lett. 117, 243003
(2016).

[55] L. Torlina and O. Smirnova, Coulomb time delays in high
harmonic generation, New J. Phys. 19, 023012 (2017).

[56] T. N. Rescigno and C. W. McCurdy, Numerical grid methods
for quantum-mechanical scattering problems, Phys. Rev. A 62,
032706 (2000).

[57] Tae Jun Park and J. C. Light, Unitary quantum time evolution
by iterative Lanczos reduction, J. Chem. Phys. 85, 5870 (1986).

[58] X. M. Tong, K. Hino, and N. Toshima, Phase-dependent atomic
ionization in few-cycle intense laser fields, Phys. Rev. A 74,
031405(R) (2006).

[59] X.-Y. Lai, C. Poli, H. Schomerus, and C. Figueira de Morisson
Faria, Influence of the Coulomb potential on above-threshold
ionization: A quantum-orbit analysis beyond the strong-field
approximation, Phys. Rev. A 92, 043407 (2015).

[60] X.-Y. Lai, S.-G. Yu, Y.-Y. Huang, L.-Q. Hua, C. Gong, W. Quan,
C. Figueira de Morisson Faria, and X.-J. Liu, Near-threshold
photoelectron holography beyond the strong-field approxima-
tion, Phys. Rev. A 96, 013414 (2017).

[61] A. S. Maxwell, S. V. Popruzhenko, and C. Figueira de Morisson
Faria, Treating branch cuts in quantum trajectory models for
photoelectron holography, Phys. Rev. A 98, 063423 (2018).

[62] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-
Relativistic Theory) (Pergamon Press, Oxford, 1977).

[63] M. V. Frolov, D. V. Knyazeva, N. L. Manakov, J.-W. Geng,
L.-Y. Peng, and A. F. Starace, Analytic model for the descrip-
tion of above-threshold ionization by an intense short laser
pulse, Phys. Rev. A 89, 063419 (2014).

033117-12

https://doi.org/10.3367/UFNr.0185.201501b.0003
https://doi.org/10.3367/UFNr.0185.201501b.0003
https://doi.org/10.1080/09500340802161881
https://doi.org/10.1088/1361-6633/ab5c91
https://doi.org/10.1103/PhysRevLett.105.253002
https://doi.org/10.1103/PhysRevLett.105.113003
https://doi.org/10.1103/PhysRevLett.108.033201
https://doi.org/10.1088/1361-6455/aac787
https://doi.org/10.1103/PhysRevA.96.023406
https://doi.org/10.1103/PhysRevLett.121.113202
https://doi.org/10.1038/s41586-019-1028-3
https://doi.org/10.7868/S0044451014040089
https://doi.org/10.1016/j.physrep.2015.02.002
https://doi.org/10.1088/0953-4075/27/21/003
https://doi.org/10.1088/1367-2630/14/5/055019
https://doi.org/10.1103/PhysRevLett.117.243003
https://doi.org/10.1088/1367-2630/aa55ea
https://doi.org/10.1103/PhysRevA.62.032706
https://doi.org/10.1063/1.451548
https://doi.org/10.1103/PhysRevA.74.031405
https://doi.org/10.1103/PhysRevA.92.043407
https://doi.org/10.1103/PhysRevA.96.013414
https://doi.org/10.1103/PhysRevA.98.063423
https://doi.org/10.1103/PhysRevA.89.063419

