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In this paper the nonlinear interaction of a Weyl semimetal (WSM) with a strong driving electromagnetic
wave field is investigated. In the scope of the structure-gauge-invariant low-energy nonlinear electrodynamic
theory, the polarization-resolved high-order harmonic generation spectra in the WSM with broken time-reversal
symmetry are analyzed. The results obtained show that the spectra in the WSM are completely different
compared to the two-dimensional graphene case. In particular, at the noncollinear arrangement of the electric and
Weyl node momentum separation vectors, anomalous harmonics are generated which are polarized perpendicular
to the pump wave electric field. The intensities of anomalous harmonics are quadratically dependent on the
momentum space separation of the Weyl nodes. If the right and the left Weyl fermions are merged, we have
a four-component trivial massless Dirac fermion and, as a consequence, the anomalous harmonics vanish. In
contrast to the anomalous harmonics, the intensities of normal harmonics do not depend on the Weyl nodes’
momentum separation vector and the harmonics spectra resemble the picture for a massless three-dimensional
Dirac fermion.
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I. INTRODUCTION

As three-dimensional analogs of graphene [1,2], Dirac
semimetals (DSMs) [3–6] and Weyl semimetals (WSMs)
[7–12] have been implemented in a variety of condensed-
matter systems. These materials are three-dimensional quan-
tum phases of matter with gapless electronic excitations
that are protected by topology and symmetry [13,14]. The
low-energy dispersion of such materials contains conical in-
tersections and diabolical points, which are referred to as
Dirac points or a Weyl nodes [15]. The DSMs possess both
time-reversal and spatial inversion symmetry. When one of
these symmetries is broken, the Dirac points are split into
a pair of Weyl nodes and the medium becomes a WSM.
The low-energy theory of the simplest WSM is described
by the Weyl Hamiltonian [16] near the Weyl nodes where
the right-handed and left-handed chirality fermions are sep-
arated in the momentum space. Due to the nontrivial topology
of the bands, the Berry curvature in the momentum space
is nonzero [17,18] and we have an appropriate case of the
Dirac monopole-antimonopole [19] realization in the mo-
mentum space [20]. As a result, the linear electromagnetic
(EM) response of the three-dimensional WSM is described
by an axionic field theory [21–23] with the anomalous linear
electrodynamic effects [24–28]. The interaction between the
strong EM waves and the WSM gives rise to nonlinear op-
tical effects, such as the photovoltaic effect [29,30], optical
rectification, second-harmonic generation [31–33], terahertz
emission [34], and third harmonic generation [35]. These
are perturbative nonlinear optical effects. With a further in-
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crease of the driving wave intensity, the extreme nonlinear
optical effects [36] may be visible in pseudorelativistic sys-
tems. In particular, high-order harmonic generation (HHG)
is an essential nonlinear dynamic process that can be used
as a probe to extract the properties of a medium. It can
also be useful for new nanodevices. To date, HHG has been
observed in graphene [37], DSMs [38,39], topological in-
sulators [40], and WSMs [41], where the spikelike Berry
curvature may generate even-order harmonics. Note that,
as in graphene, there is quite a high carrier mobility in
WSMs [42,43], that is, electrons can move significantly in the
Brillouin zone, which is favorable for the HHG phenomenon
in nanostructures.

As is well studied for graphene, the HHG process for the
Dirac-cone approximation [44–49] is significantly different
from HHG when electrons can move significantly in the Bril-
louin zone; here polarization and optical anisotropy effects of
HHG in graphene arise [50–59]. The HHG in WSMs with
a particular lattice realization was studied theoretically in
Ref. [60], which reported anisotropic anomalous HHG from
time-reversal symmetry-broken WSMs. The nonperturbative
topological intraband current and transport in WSMs and
DSMs in laser fields were investigated in Refs. [61,62]. The
electron coherent dynamics in WSMs at the interaction with
an ultrafast optical pulse was investigated in Ref. [63].

A nonlinear response intrinsically connected to topology
should arise from the universal Weyl Hamiltonian, which
is the root of the field theory anomalies. Hence, there is
tremendous interest from a strong-field physics perspec-
tive in understanding how the field theory anomalies affect
the nonlinear response of WSMs at low-energy excitations
where the theory is universal and does not depend on the
particular lattice realization of the WSM. To this end, in
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the present paper we investigate the low-energy nonlinear
electrodynamics of WSMs with broken time-reversal sym-
metry and analyze polarization-resolved high-order harmonic
generation spectra in WSMs. The consideration is based on
the structure-gauge-invariant low-energy nonlinear electrody-
namics where an ansatz applied to the Dirac monopole [64] is
adopted to overcome the topological singularity.

The paper is organized as follows. In Sec. II the structure-
gauge-invariant low-energy nonlinear electrodynamic theory
with an evolutionary equation for the single-particle density
matrix is presented. In Sec. III we consider polarization-
resolved HHG spectra and present the main results. A
summary is given in Sec. IV.

II. MODEL HAMILTONIAN AND EVOLUTIONARY
EQUATION FOR THE SINGLE-PARTICLE

DENSITY MATRIX

We start from the low-energy universal Hamiltonian in-
volving the four-component massless Dirac fermion

Ĥ0 = v

∫
d3x �̄(−iγ j∂ j + bμγ μγ 5)�, (1)

where v is the Fermi velocity, �̄ = �†γ0, matrices γ 0 and
γ j ( j = 1, 2, 3) are Dirac anticommuting γ matrices, γ 5 =
iγ 0γ 1γ 2γ 3 is the chirality matrix, and bμ is the axial 4-vector.
In the chiral representation of the γ matrices we have

γ 0 =
(

0 1
1 0

)
, γ =

(
0 σ̂

−σ̂ 0

)
, γ 5 =

(−1 0
0 1

)
,

(2)
where σ̂ is the vector operator formed of three Pauli matrices.
In Eq. (1) the term proportional to bμ breaks charge, parity, or
time-reversal symmetry. In this paper we consider the case of a
spacelike axial vector b0 = 0. In this case the axial vector term
bγ preserves inversion (P) and charge conjugation (C) sym-
metries, but breaks time-reversal symmetry (T ). Note that this
case is more feasible for the realization of a Weyl semimetal
and the corresponding minimal lattice model can easily be
constructed [28]. The Hamiltonian (1) in the momentum space
becomes

Ĥ0(k) = v

(
σ · (k + b) 0

0 −σ · (k − b)

)
. (3)

For compactness of equations, atomic units are used through-
out the paper unless otherwise indicated. The eigenstates of
this Hamiltonian are also eigenstates of the chirality matrix
γ 5 with eigenvalues χ = ±1. Since the Dirac mass is zero,
Ĥ0(k) is block diagonal and the left-handed (1 − γ 5)�/2 and
right-handed (1 + γ 5)�/2 components of the Dirac field are
decoupled into left-handed and right-handed two-component
Weyl spinors, described by the Hamiltonians [13,14,27,28]:

Ĥχ = −χvσ · (k−χb), χ = ±1. (4)

The 2 × 2 Hamiltonians Ĥ1 and Ĥ−1 also describe the
monopole and the antimonopole of the Berry curvature in
the momentum space, respectively [18,64]. For b �= 0, the
right and the left Weyl fermions are separated in the mo-
mentum space and the WSM is topologically nontrivial. The
momentum space separation of the Weyl nodes is 2|b|. The

eigenvalues χ = ±1 also have a topological notion. The Berry
flux piercing any surface enclosing the Weyl nodes k = χb
is exactly 2πχ , i.e., χ also defines the Chern number or
topological charge. In accordance with the Nielsen-Ninomiya
theorem, the Weyl nodes should come in opposite chirality
pairs [65]. When b = 0 these Weyl nodes are merged, giving
rise to a topologically trivial, four-component massless Dirac
fermion.

For the calculation of the nonlinear EM response of a WSM
we need the eigenstates of the Hamiltonian (4). With these
eigenstates we should calculate the Berry connection and then
curvature. Because of the monopole in momentum space, the
eigenstates of the Weyl Hamiltonian (4) cannot be defined
globally for all k. The eigenstates |β, χ, k〉, where β refers to
the band index, can be subject to an arbitrary structure-gauge
[66] transformation

|β, χ, k〉′ = eiϑχβ (k)|β, χ, k〉 (5)

without changing the physical properties of the system. For
the quantum kinetics we need to calculate the transition dipole
moments dββ ′ (χ, k) = 〈β, χ, k|i∂k|β ′, χ, k〉. The Berry con-
nections are defined as the diagonal elements Aβ (χ, k) =
dββ (χ, k). Hence, due to the gradient ∂k, a smooth struc-
ture gauge for the eigenstates is thus required. To overcome
this problem we will adopt the ansatz applied to the Dirac
monopole. To this end we choose the axial vector b directed
along the x axis b = bx̂ and define the eigenstates for kz � 0
and kz � 0. Since Ĥχ=1(−k) = Ĥχ=−1(k) we will arrive at
the solution for the left-handed Weyl spinors. The eigenstates
|β, χ, k〉+ for kz � 0 are

|c, χ, k〉+ = 1√
2k2

χ + 2kχkz

[
kχ + kz

kxχ + iky

]
, (6)

|v, χ, k〉+ = 1√
2k2

χ + 2kχkz

[−kxχ + iky

kχ + kz

]
; (7)

for kz � 0 we have

|c, χ, k〉− = 1√
2k2

χ − 2kχkz

[
kxχ − iky

kχ − kz

]
, (8)

|v, χ, k〉− = 1√
2k2

χ − 2kχkz

[−kχ + kz

kxχ + iky

]
, (9)

where kxχ = kx − χb and kχ =
√

k2
xχ + k2

y + k2
z . The

eigenenergies are Ecχ (k) = vkχ and Evχ (k) = −vkχ .
The solutions for the opposite chirality are |c, χ, k〉± =

|c,−χ,−k〉∓ and |v, χ, k〉± = |v,−χ,−k〉∓. At the overlap
kz = 0 solutions Eqs. (6) and (8) and Eqs. (7) and (9) are
connected by the gauge transformation

|c, χ, k〉− = e−iϑ (kxχ ,ky )|c, χ, k〉+,

|v, χ, k〉− = eiϑ (kxχ ,ky )|v, χ, k〉+,

where ϑ (kxχ , ky) = arctan(ky/kxχ ). From Eqs. (6) and (8) and
Eqs. (7) and (9) for the total Berry connection A(χ, k) =
〈c, χ, k|i∂k|c, χ, k〉 − 〈v, χ, k|i∂k|v, χ, k〉 we obtain

A+(χ, k) = −χ
kyx̂ − kxχ ŷ
k2
χ + kχkz

, (10)
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A−(χ ; k) = χ
kyx̂ − kxχ ŷ
k2
χ − kχkz

. (11)

For the Berry curvature B(χ ; k) = ∂k × A(χ, k) we obtain,
located at the Weyl node k = χb, the monopole field

Bx = χ
kxχ

k3
χ

, By = χ
ky

k3
χ

, Bz = χ
kz

k3
χ

, (12)

where divB = 4πχδ(k−χb) and δ is the Dirac delta function.
For the transition dipole moments we have

dcv+ (χ, k) = (ikxχ − χky)ẑ
2k2

χ

+ 1

2kχ (kχ + kz )

×
{[

i

(
k2

xχ

kχ

− kχ − kz

)
− χkykxχ

kχ

]
x̂

+
[
χ

(
kχ + kz − k2

y

kχ

)
+ i

kxχky

kχ

]
ŷ
}
, (13)

dcv− (χ, k) = (ikxχ + χky)ẑ
2k2

χ

− 1

2kχ (kχ − kz )

×
{[

χ
kykxχ

kχ

+ i
(k2

xχ

kχ

− kχ + kz

)]
x̂

−
[
χ

(
kχ − kz − k2

y

kχ

)
− ikxχky

kχ

]
ŷ
}
. (14)

Note the useful relation

1
2εabcBc(χ, k)

= i
{
da

cv (χ, k)db
vc(χ, k) − db

cv (χ, k)da
vc(χ, k)

}
, (15)

where εabc is the Levi-Cività symbol and the summation over
the repeated upper indices is implied. This equation is gauge
invariant and connects the transition dipole moments with the
Berry curvature. Here, for the sake of brevity, we omit the
indices ±.

The semiconductor Bloch equations (SBEs) governing a
WSM driven by a strong laser field in the length gauge read

∂tραβ;χ (k0, t ) = iEβα;χ (k0 + A)ραβ;χ (k0, t )

− (1 − δαβ )�ραβ;χ (k0, t )

+ i
[∑

α′
dα′β (χ, k0+A)ραα′;χ (k0, t )

−
∑
β ′

dαβ ′ (χ, k0+A)ρβ ′β;χ (k0, t )
]
E(t ),

(16)

where ραβ;χ are the single-particle density-matrix elements,
E is the laser electric-field strength, A = − ∫ t

0 E(t ′)dt ′ is
the vector potential, Eβα;χ (k) = Eβχ (k) − Eαχ (k), and �−1

is the dephasing time. The crystal momentum k has been
transformed into a frame moving with the vector potential
k0 = k − A. Note that in Eq. (16), the Berry connections (10)
and (11) are included, dββ (χ, k)=̂Aβ (χ, k).

The optical excitation induces a volume current that can be
calculated by the formula

j(t ) = −
[ ∑

αχk0

[Vαχ (k0+A)]ραα;χ (k0, t )

+ i
∑

α �=β,χ

∑
k0

dβα (χ, k0+A)

× Eβα;χ (k0+A)ραβ;χ (k0, t )
]
, (17)

where the band velocity is defined by Vαχ (k) = ∂kEαχ (k).
Note that Eqs. (16) and (17) provide structure-gauge -invariant
kinetic theory. Thus, at the structure-gauge transformation (5)
we have

d′
αβ (χ, k) = eiθχβ (k)−iθχα (k)dαβ (χ, k),

A′
α (χ, k) = Aα (χ, k) − ∂kθχα (k), B′(χ ; k) = B(χ ; k),

ρ ′
αβ;χ (k0, t ) = eiθβ (k0+A)−iθα (k0+A)ραβ;χ (k0, t ),

j′(t ) = j(t ).

III. RESULTS

We explore the nonlinear response of a WSM in a laser
field of ultrashort duration

E(t ) = f (t )E0ê cos(ωts), (18)

where f (t ) = sin2(πt/τ ) is the sin-squared envelope func-
tion, τ is the pulse duration, ê is the unit polarization vector, ω
is the currier frequency, and E0 is the electric-field amplitude.
We use a ten-cycle fundamental laser field.

As in graphene, the wave-particle interaction in a WSM is
characterized by the dimensionless parameter [45]

ξ0 = eE0vT

h̄ω
, (19)

which represents the work of the wave electric field E0

on a period T = 2π/ω in the units of photon energy h̄ω.
The parameter is written here in general units for clarity.
For a two-band WSM system the SBEs (16) are reduced
to a closed set of equations for the interband polariza-
tion Pχ (k0, t ) ≡ ρvc;χ (k0, t ) and for the distribution functions
Nc (v)(k0, t ) ≡ ρcc (vv);χ (k0, t ) in the conduction (valence)
bands. For an undoped system in equilibrium, the initial
conditions Pχ (k0, 0) = 0, Nc(k0, 0) = 0, and Nv (k0, 0) = 1
are assumed, neglecting thermal occupations. The integra-
tion of the SBEs is performed on a three-dimensional grid
of 500 × 500 × 500 points homogeneously distributed in the
cube (−αcutω/v, αcutω/v)XY Z . The minimum or maximum
crystal momentum is defined by αcut, which in turn depends
on the intensity of the pump wave. The time integration is per-
formed with the standard fourth-order Runge-Kutta algorithm.
From Eq. (17) follows the relation

dj(t )

dt

(2π )3v2

ω4
= w

(
t̄, ξ0,

bv

ω
,
�

ω

)
, (20)
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FIG. 1. Particle distribution function Nc(k, t f ) (in arbitrary units) in the plane kz = 0 after the interaction at the instant t f = τ for a WSM,
as a function of scaled dimensionless momentum components (kxv/ω and kyv/ω) for different orientations of the laser electric-field strength.
The wave-particle dimensionless interaction parameter is taken to be ξ0 = 0.5 and the axial vector magnitude is chosen to be b = ω/v. The
Weyl nodes are located at kxv/ω = ±1. The rightmost panel shows the Berry curvature normalized vector field (in arbitrary units) in the plane
kz = 0. The Weyl points are the sink and source of the Berry curvature.

where t̄ = ωt and w(t̄, ξ0,
bv
ω

, �
ω

) is a periodic (in the case
of an external monochromatic wave) dimensionless universal
function that parametrically depends on the WSM–wave in-
teraction parameters ξ0, the scaled axial vector, and the scaled
relaxation rate. Hence, by solving the SBEs (16), performing
the integral over k0 (17), and taking Fourier transform F , the
polarization-resolved high-harmonic spectrum is calculated as

Iα =
∣∣∣∣F

(
wα

(
t̄, ξ0,

bv

ω
,
�

ω

))∣∣∣∣
2

, α = x, y, x. (21)

For all calculations, the relaxation time is taken to be equal to
half of the wave period �−1 = T/2 = π/ω.

The typical photoexcitation of the Fermi-Dirac sea is pre-
sented in Fig. 1, which shows the density plot of the particle
distribution function Nc(k, t f ) after the interaction at the in-
stant t f = 10T , as a function of dimensionless momentum
components, for different orientations of the laser electric-
field strength. As can be seen from this figure, near the Weyl
nodes we have an almost homogeneous excitation due to the
singularity of the transition dipole moments. Far from the
Weyl nodes the excitation pattern is defined by the anisotropy
of the transition dipole moments (13) and (14). The rightmost
panel of Fig. 1 shows the Berry curvature vector field. The
Weyl points are the sink and source of the Berry curvature.
The Berry curvature can be thought of as an effective magnetic
field, which will initiate Hall current perpendicular to the
applied electric field. Figure 2 shows the polarization-resolved
HHG spectra in logarithmic scale for a WSM in the strong-
field regime for different orientations of the laser electric-field
strength. From top to bottom we show the spectra for the x, y,
and z polarizations of the pump wave. As can be seen from this
figure, when the driving wave is polarized in the x direction,
the odd harmonics are generated only in the laser polarization
direction. However, when the wave is polarized in the y or
z direction, in addition to normal harmonics generated along
the laser polarization, anomalous harmonics in perpendicular
directions are also generated. As reflected from Fig. 2, anoma-
lous harmonics are generated at the noncollinear arrangement
of the electric field and the Weyl node’s momentum separation
vectors. This is a manifestation of the axionic field theory with
anomalous nonlinear electrodynamic effects.

To understand how these findings are related to the non-
trivial topology of a WSM, let us derive another equivalent
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FIG. 2. Polarization resolved HHG spectra in logarithmic scale
for a WSM in the strong-field regime for different orientations of
the laser electric-field strength. The wave-particle dimensionless
interaction parameter is taken to be ξ0 = 0.5 and the axial vector
magnitude is chosen to be b = ω/2v. The Weyl nodes are located at
kxv/ω = ±0.5.
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equation for the current (17) that explicitly includes Berry
curvature (12). From Eq. (16), inserting the expression for
iEβαχ (k0 + A)ραβ;χ (k0, t ) into the equation for the current
(17) and taking into account the relation (15), electron-
hole symmetry Vvχ = −Vcχ , and the integral of motion
Nv;χ (k0, t ) + Nc;χ (k0, t ) = 1, we find

ja(t ) = − 2
∑
χk0

V a
cχNc;χ (k0, t )

− 2 Re
∑
χk0

da
cv (χ, k0+A){∂t Pχ (k0, t ) + �Pχ (k0, t )}

+ 2 Re
∑
χk0

iEb(t )Ab(χ, k0+A)da
cv (χ, k0+A)

× Pχ (k0, t )

+
∑
χk0

1
2εabcEb(t )Bc(χ, k0+A)

−
∑
χk0

εabcEb(t )Bc(χ, k0+A)Nc;χ (k0, t ), (22)

where the summation over the repeated upper indices is
implied. The first term in Eq. (22) is the ordinary intra-
band part of the current, the second and third terms define
the interband part of the current, and the fourth and fifth
terms represent the topological part of the current. These
terms are defined by the Berry curvature (12). The fourth term
is nothing but the anomalous Hall current [27,28] and depends
linearly on the field strength E , since

∑
χk0

Bc(χ, k0+A) =∑
χk Bc(χ, k). The last term in Eq. (22) is the nonlinear part

of the anomalous Hall current that gives rise to anomalous
harmonics perpendicular to the laser field strength directions:
εabcEbBc = E × B. From the vector field structure (cf. Fig. 1)
of Berry curvature, it is clearly seen that the x component does
not change the sign away from the Weyl nodes along the kx

axis, while the y component changes the sign along the ky axis.
Thus, if the driving wave is polarized along the axial vector b
(x direction), then it is easy to see that the anomalous current
in the y and z directions turns out to be zero as the monopole
fields (12) of Weyl nodes cancel each other. On the other hand,
when the driving wave is polarized in the y or z direction, then
the x component of the Berry curvature comes into play. Let
us analyze for concreteness the case of the z-polarized driving
wave. In this case the anomalous Hall current can be written

jy = Ez(t )

(2π )3

∫
d3k0

×
⎡
⎣ (k0x + b)Nc;1(k0, t )√

(k0x + b)2 + k2
0y + (k0z + Az )2

− (b → −b)

⎤
⎦.

(23)

At the first glance, for each Weyl node taking into account un-
bounded linear dispersion of fermions, one can make a naive
shift of the variable kxχ = kx − χb and make this integral
vanish. However, we should take into account singularity near
±b points as in the case of linear axionic field theory [27].
Therefore, we need to choose a finite cutoff along the axial
vector (x direction), which can be sent to infinity at the end of
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FIG. 3. Anomalous HHG spectra in logarithmic scale for a WSM
in the strong-field regime for different axial vector magnitudes
bv/ω = 0.25 and 0.5. The wave-particle dimensionless interaction
parameter is taken to be ξ0 = 1.0. The black solid line for the
z polarization of the pump wave corresponds to the approximate
result (24).

calculations and can keep the cutoffs infinite in the directions
perpendicular to the axial vector. As reflected from Fig. 1, near
the Weyl nodes we have an almost homogeneous excitation
due to the singularity of the transition dipole moments (13)
and (14). Hence, we can approximate the integral (23) as

jy 	 2

(2π )3
Ez(t )Nc;1(k0w, t )

×
∫ ∞

0
k⊥dk⊥

∫ �

−�

dk0x

∫ 2π

0
dφ

k0x + b[
k2
⊥ + (k0x + b)2

]3/2

= 2

(2π )2
Ez(t )Nc;1(k0w, t )

∫ �

−�

sgn(k0x + b)dk0x

= b

π2
Ez(t )Nc;1(k0w, t ), (24)

where Nc;1(k0w, t ) = Nc;1(kw − A, t ) is calculated near the
Weyl node kw = (b, 0, 0). This is an interesting result which
implies that the nonlinear anomalous Hall current is propor-
tional to the axial vector as in the linear axionic field theory.
However, this result is only valid for the unbounded linear
dispersion of the Weyl fermions. If we consider a lattice model
of a WSM, the linear dispersion is valid only near the Weyl
nodes and integration is performed over the finite Brillouin
zone. Therefore, the nonlinear anomalous Hall current of a
WSM at high energies will be modified by a nonlinear contri-
bution from the axial vector. Figure 3 presents the anomalous

033107-5



H. K. AVETISSIAN et al. PHYSICAL REVIEW A 106, 033107 (2022)

10-8

10-6

10-4

10-2

100

102

 1  3  5  7  9  11

x-polarized

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Harmonic order

�0=0.5
�0=1.0
�0=1.5

10-8

10-6

10-4

10-2

100

102

 1  3  5  7  9  11

y-polarized

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Harmonic order

�0=0.5
�0=1.0
�0=1.5

10-8

10-6

10-4

10-2

100

102

 1  3  5  7  9  11

z-polarized

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Harmonic order

�0=0.5
�0=1.0
�0=1.5

FIG. 4. The HHG spectra for the normal harmonics in
logarithmic scale for a WSM in the strong-field regime for different
orientations of the pump laser electric-field strength at various values
of the wave-particle dimensionless interaction parameter ξ0.

HHG spectra in logarithmic scale for a WSM in the strong-
field regime, for different axial vector magnitudes, calculated
with the help of Eq. (17). The results for bv/ω = 0.25 are
multiplied by the factor 4. As can be seen from Fig. 3, the
intensities of anomalous harmonics are quadratically depen-
dent on the momentum space separation of the Weyl nodes.
Also presented in Fig. 3 is the result calculated with the help
of the approximate formula (24). As can seen from this figure,
the approximate curve reproduces well the exact numerical
results for low harmonics but fails at higher harmonics, since
higher harmonics being more sensitive to the time variation of
the particle distribution function Nc(k, t f ) require a more
accurate approach. The obtained anomalous harmonics’ de-
pendence on the distance between the Weyl nodes in
reciprocal space differs from the case of the lattice model
[60] where the intensity of anomalous harmonics decreases
with the increasing distance between the Weyl nodes. It is
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FIG. 5. The HHG spectra for the anomalous harmonics in
logarithmic scale for a WSM in the strong-field regime for different
orientations of the pump laser electric-field strength at various values
of the wave-particle dimensionless interaction parameter ξ0. The
Weyl nodes are located at kxv/ω = ±0.5.

straightforward to see that for the normal harmonics with
the shift of variable kxχ = kx − χb one can obtain results
independent of b. This is equivalent to the fact that the right
and the left Weyl fermions are merged and we have a four-
component trivial massless Dirac fermion; as a consequence,
the anomalous harmonics vanish. In addition, the intensities of
normal harmonics do not depend on the Weyl node’s momen-
tum separation vector and resemble the results for a massless
three-dimensional Dirac fermion.

We now turn to an examination of the effect of the driving
wave intensity on the HHG in a WSM. We present the results
of simulations for normal harmonics at different polarizations
in Fig. 4. The intensities of normal harmonics Iα do not depend
on the Weyl node’s location. For the considered intensities the
perturbation theory is not applicable, and in Fig. 4 we have
a strong deviation from the power law for the intensities of
harmonics. In particular, the intensities of the fifth, seventh,
and ninth harmonics scale as I5 ∼ ξ 3

0 , I7 ∼ ξ 7
0 , and I9 ∼ ξ 9

0 , re-
spectively, whereas they should show the In ∼ ξ 2n

0 dependence
in the perturbative limit. In addition, this figure shows that the
intensities of the normal harmonics are almost independent
of the pump wave polarization, which is connected with the
isotropic linear dispersion of the Weyl fermions.

Figure 5 shows the HHG spectra for the anomalous har-
monics for a WSM in the strong-field regime for different
orientations of the pump laser electric-field strength at various
values of the wave-particle dimensionless interaction param-
eter ξ0. The Weyl nodes are located at kxv/ω = ±0.5. In this
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case, we also have a strong deviation from the power law
for the intensities of anomalous harmonics. In particular, the
intensities of the third, fifth, and seventh harmonics scale as
I3 ∼ ξ 4

0 , I5 ∼ ξ 6
0 , and I7 ∼ ξ 8

0 , respectively. The dependences
of the intensities of normal and anomalous harmonics on the
intensity of the driving wave are completely different, which
is due to the different underlying mechanisms.

IV. CONCLUSION

We have presented a structure-gauge-invariant microscopic
theory of nonlinear interaction of a time-reversal symmetry-
broken WSM with a strong low-frequency driving pulse of
linear polarization. We numerically solved the semiconductor
Bloch equations governing a WSM driven by a strong laser
field in the length gauge and considered the HHG process
depending on the Weyl node’s momentum separation vector
and the driving wave intensity. Our results show that at the
noncollinear arrangement of the electric field and Weyl node’s
momentum separation vectors, anomalous harmonics are

generated which are polarized perpendicular to the direction
of the pump wave electric field. The intensities of anoma-
lous harmonics are quadratically dependent on the momentum
space separation of the Weyl nodes. When the right and the
left Weyl fermions are merged, the anomalous harmonics
vanish. In contrast to the anomalous harmonics, the intensities
of normal harmonics do not depend on the Weyl node’s mo-
mentum separation vector. The dependences of the intensities
of the normal and anomalous harmonics on the intensity of
the driving wave are completely different, and for moderately
strong driving waves one can enter an extreme nonlinear
regime of HHG. The results of the present investigation not
only are of theoretical and academic importance, but also
will have significant implications for the rapidly develop-
ing area of modern extreme nonlinear optics of topological
nanomaterials.
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