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Meridional composite pulses for low-field magnetic resonance
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We discuss procedures for error-tolerant spin control in environments that permit transient, large-angle
reorientation of a magnetic bias field. Short sequences of nonresonant magnetic-field pulses in a laboratory-frame
meridional plane are derived. These are shown to have band-pass excitation properties comparable to established
amplitude-modulated, resonant pulses used in static, high-field magnetic resonance. Using these meridional
pulses, we demonstrate robust z inversion in proton (1H) nuclear magnetic resonance near Earth’s field.
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I. INTRODUCTION

Pulsed alternating (ac) electromagnetic fields are a staple
of atomic, electronic, and nuclear spin resonance spec-
troscopies. Following decades of development in these
disciplines and others, e.g., magnetic resonance imaging
(MRI) [1,2] and quantum information processing (QIP) [3,4],
there exist many species of ac pulse for precise qubit
control that compensate for errors inevitably present in
experimental parameters. Among error-tolerant pulses engi-
neered are those utilizing phase modulation [5–10], amplitude
modulation [11–13], or both phase-and-amplitude modula-
tion [14–16] of the ac fields.

These pulse composition strategies are available to tra-
ditional spin-resonance experiments, which are performed
inside strong magnets (e.g., superconducting magnets) with
fixed magnitude and direction of the magnetic field. In this
scenario, only ac amplitude and phase degrees of freedom
remain for spin control. Other strategies are, in principle, pos-
sible, however. At a mathematical level, error-compensated
pulse design can be traced to a common set of principles,
for instance the Magnus expansion [17], impulse-response
theory [18], recursive iteration [19], and other time symmetry
considerations. When the strong field constraint is removed,
new pulse strategies become available, and existing pulse
strategies can be implemented using different degrees of free-
dom.

In this paper we illustrate the above reutilization con-
cept to derive error-tolerant pulses for magnetic resonance
experiments where the orientation of the total magnetic
field is unconstrained in the laboratory frame of reference.
The case includes Earth’s field nuclear magnetic resonance
(NMR) [20–22] as well as the emerging area of zero to
ultralow-field (ZULF) NMR [23,24], which presents attractive
regimes for nuclear spin hyperpolarization [25,26], relaxom-
etry [27,28], and precision spectroscopy [29–31] in fields
ranging from nT to μT. Here, standard ac pulses may achieve
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spin-species and/or transition-selective excitation [32]. Op-
timal control pulses [33] and direct-current (dc) analogs of
ac composite pulses (e.g., 90x180y90x) [28,34,35] can also be
used for error compensation.

We observe that composite pulses do not always appear
to translate directly from ac (high-field) to dc (low-field)
techniques. For instance, in high field, a 90x180y90x pulse is
often a first choice for tolerance to error in Rabi frequency
and thus pulse length. However, in a low field, the pulse
length tolerance of a dc composite pulse can be achieved using
analogs of ac pulses that compensate for the offset in the ac
carrier frequency (a different source of error). This concept
shall be illustrated for dc composite pulses where fields are
confined to a single meridional plane of the Bloch sphere
(e.g., x-z plane, where z defines the bias axis). We call such
pulses meridional composite pulses and show that they are
considerably more selective than traditional composite pulses,
including 90x180y90x where the magnetic field is kept in the
equatorial plane of the Bloch sphere (x-y plane).

II. THEORY

In any NMR scenario, the magnetic field �B(t ) is used to
produce controlled rotations of a spin �S, governed by the
Bloch equation

d

dt
�S = γ �S × �B. (1)

In a high-field NMR scenario, a strong constant field along
the z direction with magnitude B0 is applied and a weaker
orthogonal field Bx(t ) is temporally shaped to produce pulses
of oscillating field near the Larmor frequency ωL = γ B0, with
a determined detuning, duration, and phase. Via the Bloch
equation, such a pulse produces a spin rotation R(ψ, �n), where
the spin rotation angle ψ is proportional to the strength and
duration of the pulse and the (rotating frame) rotation axis �n
is determined by the phase and frequency of the pulse.

In low-field NMR, it is possible to directly implement a ro-
tation R(ψ, �n) about a (laboratory frame) axis �n, by applying
a dc field of strength B along �n for a time τ to generate rotation
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by an angle ψ = γ Bτ . Rotations with arbitrary �n and ψ can,
in principle, be produced with three-axis control of �B(t ). In
this way, any simple rotation R(ψ, �n) used in high-field NMR
can be implemented also in low-field NMR.

Composite pulses are not simple pulses, but rather trains
of simple pulses that together implement a desired rotation.
Unlike simple pulses, these can be designed to perform nearly
the same rotation for a range of parameter values, e.g., γ

or B0, so these rotations become robust against experimen-
tal imperfections. They can also be used to apply different
rotations to different γ values and thus implement species-
specific rotations. Composite pulses do not translate directly
from high-field to low-field techniques because parameter
variations affect the rotation in different ways. For example,
in a resonant rotation, �n depends on the detuning and thus on
γ , whereas for a dc rotation it is ψ that depends on γ .

As a starting point for meridional composite pulse design
we use the theorem that successive rotation of a spin (and
more generally, any three-dimensional object) by π radians
about an arbitrary pair of unit vectors �n′ and �n′′ is equivalent
to a single rotation by an angle φ about the perpendicular unit
vector �n parallel to �n′ × �n′′, where φ/2 is the angle between
�n′ and �n′′, i.e. �n′ · �n′′ = |�n′||�n′′| cos(φ/2):

R(π, �n′′)R(π, �n′) = R(φ, �n). (2)

By extension, an equation follows for the cumulative effect of
2N rotations-by-π about axes �n′

1, �n′′
1 , �n′

2, �n′′
2, . . . , �n′

N , n′′
N in a

common plane normal to �n:

N∏
j=1

R(π, �n′′
j )R(π, �n′

j ) ≡ R

(
N∑

j=1

φ j, �n
)

. (3)

For instance, if all of the �n′ and �n′′ vectors lie within the
Cartesian x-z plane as defined by vectors �x = (1, 0, 0) and
�z = (0, 0, 1), then the overall rotation is produced about the y
axis, defined �y = (0, 1, 0); �n = �y. A graphical representation
of Eq. (2) is shown in Fig. 1.

The problem of interest for robust, spin-selective pulse
generation is the approximate implementation of Eq. (3),
where a sequence of 2N rotations by κπ is applied about
axes �n′

1, �n′′
1, . . . , �n′

N , �n′′
N . If, as above, the angle between �n′

i
and �n′′

i is φi/2, the objective is to find a sequence of angles
φ1, φ2, . . . , φN such that the resulting rotation is

R̃(κ ) ≡
N∏

j=1

R(κπ, �n′′
j )R(κπ, �n′

j ) ≈ R(β, �n) (4)

for some detuned range of κ (and therefore gyromagnetic ratio
γ ∝ κ), say (κ mod 2) = (1 + δ), where δ is the detuning.
Here β is the target rotation angle.

One route to a solution is to recognize that for κ = (1 + δ)
one can cast Eq. (4) (see Appendix) into a form

R̃(κ ) =
N∏

j=1

R

(
φ j

2
, �y

)
R(π [1 + δ], �z)R

(
− φ j

2
, �y

)

×R(π [1 + δ], �z)

= R2N
z

N∏
j=1

[
R̂2 j

z (δ)R

(
φ j

2
, �y

)][
R̂2 j−1

z (δ)R(−φ j

2
, �y)

]
, (5)

FIG. 1. Some graphical examples of Eq. (2) for φ = 90◦ (top
row) and φ = 180◦ (bottom row). The solid red curves show the
trajectory undertaken by a particle starting at the point �z = (0, 0, 1),
following successive 180 ◦ rotations about the pair of axes �n′ and �n′′,
as indicated by the purple arrows, which subtend an angle φ/2 and
lie within the x-z plane.

where R̂d
z (δ) is the dth power of the right-acting superop-

erator R̂z(δ), which rotates operators R(φ, �n) by an angle
π (1 + δ) about z, as defined by R̂z(δ)R(φ, �n) ≡ R(−π [1 +
δ], �z)R(φ, �n)R(π [1 + δ], �z) [36]. The form of Eq. (5) indi-
cates that, relative to the ideal transformation (κ = 1), the
error δ has the effect of shifting the spins’ frame of reference
by an offset 2δ about �z between each φ j rotation. In this
way, the problem of finding a suitable set of φ js is mapped
onto another problem that of compensating for frame off-
set. Frame-offset compensation is a well-explored topic in
physics and is of high importance in NMR, MRI, and QIP.
One representative strategy uses broadband uniform-rotation
pure-phase (BURP [13]) pulses, as first developed by Geen
and Freeman [14]. A BURP pulse is an amplitude-modulated
ac pulse of duration τp, with the carrier resonant with the
nominal Larmor frequency. The carrier envelope is chosen
such that for detuning δ = 0, the (rotating frame) rotation is
R(β(t ), �y), where for 0 � t � τp the accrued flip angle is

β(t )=a0
t

τp
+ b0 +

ncut∑
k=1

[
ak sin

(
2πkt

τp

)
+ bk cos

(
2πkt

τp

)]
.

(6)
This is a truncated Fourier series and a cutoff of ncut ∼ 6 typ-
ically gives sufficient precision [13,14]; numerical values for
ak and bk are given in the Supplemental Material [37]. BURP
pulses generously tolerate mismatch between the carrier and
Larmor precession frequencies, with an excitation pass-band
inversely proportional to the BURP pulse length.

Using dc pulse pairs as described in Eq. (3), we can make
a pointwise approximation of β(t ): We define intermediate
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TABLE I. Composite pulses for the inversion operation z → −z. All angles φ j are given in degrees.

angles (degree) Stopband Passband Reference
N φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 [R̃zz(κ ) > 0.99] [R̃zz(κ ) < −0.95]

2 60 −240 |κ| < 0.20 0.83 < κ < 1.17 This work
3 59 −298 59 |κ| < 0.36 0.93 < κ < 1.07 Shaka et al. [12]
3 24 −97 253 |κ| < 0.24 0.75 < κ < 1.25 This work
4 −34 123 −198 289 |κ| < 0.29 0.86 < κ < 1.14 Shaka [11], Yang et al. [39]
4 27 −81 263 −30 |κ| < 0.29 0.75 < κ < 1.25 This work
5 325 −263 56 −263 325 |κ| < 0.41 0.95 < κ < 1.05 Shaka et al. [12]
9 70 −238 −355 296 276 296 −355 −238 70 |κ| < 0.55 0.89 < κ < 1.11 This work

rotation angles

φ j = β
(τp j

N

)
− β

(
τp( j − 1)

N

)
, (7)

and then construct a sequence of nominally π rotations

R̃(κ ) ≡
N∏

j=1

R(κπ, �n′′
j )R(κπ, �n′

j ), (8)

with �n′
j = [+ sin(φ j/4), 0, cos(φ j/4)] and �n′′

j =
[− sin(φ j/4), 0, cos(φ j/4)]. This defines a meridional
composite pulse, i.e., a series of κπ rotations about pairs
of axes in the x-z plane, separated by angles φ j/2 [38].
Values of φ j from N = 10 up to N = 40 are tabulated in the
Supplemental Material [37].

The performance of the discretized BURP pulses can be
analyzed by numerical simulation. As a first example, we
study the inversion pulse I-BURP-1 [13], as shown in Fig. 2.
Continuous and pointwise β(t ) values agree closely with one
another for N � nmax. For instance, for N > 10, the fractional
difference between β(t ) and the connecting line between sam-
pling points β( jτp/N ) is below 0.05 for all time points.

We quantify the inversion by R̃zz(κ ) ≡ �zT R̃(κ )�z, where
R̃(κ ) is the matrix representation of the net rotation operator
R̃(κ ). A value R̃zz(κ ) = −1 implies complete spin inversion,
while R̃zz(κ ) = +1 indicates zero net rotation of the spin away
from �z. From plots on the right side of Fig. 2, R̃zz(κ ) shows an
inversion passband of full width at half-maximum 2δ ≈ 5/N ,
which for moderate values N ∼ 20 should be wide enough to
provide generous error tolerance, e.g., 2δ ∼ 0.25, while being
selective in γ .

DC field pulses are typically produced by field coils, with
each coil contributing the field component along one Carte-
sian axis. To implement the pulse sequence of Eq. (5), for
example, X (field along �x) and Z (field along �z) coils could
be used. We now analyze the effect of a miscalibration of the
Z coil by a factor of s, so that the produced field is

�B = B0(sin ϕ, 0, s cos ϕ), (9)

where B0 is the intended field strength and ϕ is the intended
angle in the x-z plane. For s ≈ 1, the effect on the rotation
angle, i.e., on δ, is first order in s − 1, and the effect on �n is a
nonsimple function of ϕ and φ. For symmetric displacement
of �n′ and �n′′ about �z (and thus �n′

j + �n′′
j parallel to �z, when ϕ =

±φ/2) the excitation profile remains mostly unchanged with
respect to s and the passband center shifts to κ ≈ (1 + s)/2.

Representative profiles for the I-BURP-1 pulse are shown in
Fig. 2.

Another result of this approach is dc analogs of wide-
offset-tolerant ac composite pulses. These pulses in high-
field NMR are often termed “phase-alternating composite
pulses” [11,12,39–41] due to the alternating sign of flip angle
in the ac frame, e.g., (β1, β2, β3) = (59◦, −298◦, 59◦) [12].
These angles can be directly mapped to a meridional compos-
ite pulse using φ j = β j and using the same paradigm of dc
pulse pairs to generate the required flip angles.

Selected phase-alternating composite pulses for inversion
and the widths of their passbands are listed in Table I. Highly
uniform inversion can be achieved using only a few pulses
(N < 10), with a degree of selectivity comparable to, if not
better than, I-BURP-1. We note that the passband widths vary
between the works of different authors because of different
optimization criteria. Uniform excitation within the passband
is often given the highest priority, followed by rejection in
the stopband. Because in some low-field NMR applications
both figures of merit may have equal priority, the present work
includes some additional solutions. The original sequences we
report in Table I are found in a few minutes with a standard
desktop computer, by randomly sampling ∼50 000 points in a
N − 1-dimensional space of φ values φ1, φ2, . . . , φN−1, with
resolution 0.02 × π rad. The final angle is constrained to
be φN = π − ∑N−1

j=1 φ j , so that β = π . Our merit function
is l1 + l2, where l1 is the mean value of [1 + R̃zz(κ )]2 over
the range 0.8 < κ < 1 and l2 is the mean of [1 − R̃zz(κ )]2

for |κ| < 0.5. Angle sets up to length N = 9 giving widest
passband and stopband widths are presented in Table I. Gen-
erally, we observe these sequences can have a wider passband
than the existing phase-alternating composite pulses of the
same length N . An increased width of the stopband is more
challenging and requires higher N . The performance of these
pulses is illustrated in Fig. 3; in addition, the Supplemental
Material [42] provides a set of animations to help visualize
the spin vector trajectories undertaken during the pulses.

III. EXPERIMENTAL RESULTS

The band-pass profiles of meridional composite pulses
such as those shown in Figs. 2 and 3 can be measured using
a sample containing only a single spin species, e.g., 1H in
water (1H2O). We note that the rotation axes �n′ and �n′′ are
independent of γ , while κ is directly proportional to γ and
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FIG. 2. Band-pass spin inversion using dc pulses derived from
I-BURP-1 [13]. The left column shows time profiles of flip angle
accumulated in the x-z plane for the conventional (β, black) and
discretized (φ j , red) pulses with N = 1, 2, 4, 10, 20, 40. The plots
to the right show z inversion performance R̃zz(κ ) for the discretized
pulse, using scaling factors s = 1 (red), s = 0.9 (gray), s = 1.1 (light
gray) as defined in Eq. (9). The dashed vertical lines show values of
κ (S)/κ (1H) ≡ γS/γH , for the case κ (1H) = 1.

the pulse duration. Thus the effects of a change in γ can be
simulated by a corresponding change in the pulse duration.

The experimental setup and testing protocol are shown in
Fig. 4(a). Water, prepolarized along z, flows through a cell
surrounded by two coils (X and Z) that produce uniform
fields along �x and �z, respectively. Bipolar current control of
the X coil is provided by a simple electronic circuit com-
prising a digital-to-analog converter, amplifier and H-bridge
module. A constant current is passed through the Z coil, as in
Fig. 4(b) (right). In this arrangement [unlike what is suggested

FIG. 3. Spin vector trajectories in the Bloch sphere and band-
pass inversion profiles for selected composite pulses listed in Table I.
The black, blue, and red trajectories are for values κ = 0.25, κ =
0.85, and κ = 1.0. Rotation axes indicated by purple arrows are
displaced symmetrically about �z in the x-z plane. The solid red
curve indicates the band-pass profile �z → −�z for s = 1; dashed and
dotted gray curves correspond to profiles for s = 0.9 and s = 1.1,
respectively.

by Eq. (9)], the field strength B0 depends on the angle ϕ.
The pulse duration τ is compensated accordingly, so that the
nominal rotation angle ψ = γ B0τ is always π . Further details
are given in the Sec. V.

The performance of the spin-selective inversion pulses is
measured by applying a composite pulse, then immediately
applying a dc pulse of flip angle 90 ◦ along +�x. The peak field
of the composite pulse is controlled such that I-BURP-1 pulse
lengths are of comparable length for different N : (τp/κ ) ∼
8 ms for 1H. An alkali-metal-vapor magnetometer [27] adja-
cent to the flow cell detects the resulting 1H free precession
signal (FID).

The observed FID amplitude for composite pulses of dura-
tion κτp is denoted Sκ , and the FID amplitude with no applied
composite pulse is S0. The ratio Sκ/S0 equals R̃zz(κ ), which
takes values between −1 (for complete spin inversion) and +1
(for no spin inversion) and is plotted up to κ = 4 for various
pulses in Fig. 5.

The experimental and simulated profiles agree closely, with
residuals below the experimental error margins. This result
confirms that spin selective pulses can indeed be designed
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FIG. 4. The experimental setup to test dc meridional composite
pulses. (a) NMR detection apparatus and electrical circuit used to
supply variable current to X and Z field coils. Typical field switching
and settling times are < 2 µs. M = alkali-atom vapor magnetometer
used to detect NMR signals. F = Flow cell containing spin-polarized
water, MCU = Microcontroller Unit. TTL = 3.3 V transistor-
transistor logic signal. (b) Time profile of dc field amplitude for the
N = 4 sequence (φ1, φ2, φ3, φ4) = (27◦, −81◦, 263◦, −30◦), where
magnetic fields are applied in the x-z plane. Two possible implemen-
tations are shown. On the left, total field amplitude B0 and pulse
duration are kept constant during each pulse section, while on the
right, the pulse lengths and amplitudes are scaled for constant Bz.

using the approach of Eq. (3). It also suggests that any imper-
fections in the pulses are small compared to the compensation
limits, which is remarkable considering the simplicity of the
electronic drive circuitry.

IV. DISCUSSION AND CONCLUSION

It is shown theoretically and confirmed by experiment that
efficient, robust, and spin-selective composite pulses can be
composed using switched dc fields in a meridional plane. Also
identified is an equivalence between the problems of flip-angle
tolerance in low-field NMR and the well-studied problem of
frame rotation tolerance in high-field NMR.

In contrast to high-field NMR, where phase or frequency
offsets and flip-angle offsets originate in distinct imperfec-
tions of the experimental system and have different effects
on the generated spin rotations, in low-field NMR flip angle
and axis are both determined by the dc field strengths. As
shown, this allows a single composite pulse strategy to be
robust against variations of each, something that is uncommon
in high-field composite pulses.

Also, unlike many high-field NMR composite pulses, the
criterion determining total flip angle of a meridional compos-
ite pulse [ Eq. (3)] is not limited to special angles (e.g., 90◦,

180◦) and thus should allow one to obtain pulses of arbitrary
flip angle. This general design approach, coupled with the
above error compensation properties, should prove valuable
in spin resonance applications at low field that require robust
and selective control. The pulses demonstrated here are much
shorter in duration than high-frequency ac pulses of equivalent
compensation bandwidth, such as swept-frequency adiabatic
inversion pulses [43], and can be performed without tuned
high-frequency circuitry [44]. Application is expected in sub-
MHz NMR spectroscopy and MRI, field-cycling relaxation
measurements, nuclear spin polarimetry, as well as portable
NMR spectrometers for use outside of the research laboratory.

The pulse durations τp in the present study are limited by
hardware timer resolution (2μs) and the field-to-current ratio
of the X coil. Faster clock speeds and stronger fields, subject
to the electrical inductance of the coils, could shorten pulse
lengths by at least one order of magnitude, giving τp between
10 μs and 100 μs. These durations are much shorter than the
periods of the spin-spin scalar couplings between common
nuclear spin species and thus should be applicable to het-
eronuclear quantum control in low-field NMR in which pulses
selectively rotate one or more spins in a multispecies system.
The selectivity and error tolerance should be complementary
to existing control methods based on equatorial composite
pulses [28,45].

V. METHODS

Experimental testing of the composite pulses utilized a
continuous-flow (a.k.a. “polarization on tap”) test sample for
the high-throughput measurement. As shown in Fig. 4(a), dis-
tilled water from a reservoir of several liters’ capacity drained
continuously under gravity (flow rate ∼1 mLs−1) through a
low-homogeneity 1.5 T magnet [46] allowing the 1H spins
to reach thermal equilibrium polarization. The liquid sub-
sequently flowed into the ∼1 mL sample chamber, with the
sample magnetization of around 1 pT being aligned parallel
to the axis of the background field, along �z.

Centered on the sample chamber was a solenoid coil (∼7.5
mT/A) and a saddle coil (∼80 μT/A) to produce magnetic
fields along �z and �x, respectively. Currents applied to the
saddle coil were controlled using a simple dc switch compris-
ing a microcontroller (ARM Cortex M4F) digital-to-analog
converter (DAC) (12 bits, 0 to 3.3 V), operational ampli-
fier (L272M, STMicroelectronics), and an H-bridge module
(Texas Instruments DRV8838 on Pololu 2990 carrier board),
as shown in Fig. 4(a). Rabi curves were measured for different
values of the DAC output to confirm a linear output of voltage
across the coils between 0.4 and 10 V (see Supplemental
Material [37]). This determined the switchable range of field
for a given series resistance of the coil. The 10 V and ground
op-amp rails were connected to a standard laboratory power
supply unit (Hameg HM7042-5).

Details of the magnetometer used to measure the NMR
signals can be found in previous work [27]. The signals Sκ and
S0 of the two pulse sequences are acquired in an interleaved
fashion to minimize the effect of drifts.

The raw data generated in this study have been deposited
in the OpenAIRE database [47].
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FIG. 5. The experimental (black circles) versus simulated (solid red curves) band-pass inversion profiles for meridional composite pulses
with N = 2, 3, 4 listed as “this work” in Table I and for discrete I-BURP-1 pulses with N = 10, 12, 14, 16, 18, 20 and 40. Each data point
represents the mean signal amplitude of approximately 10 NMR transients.
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APPENDIX: DERIVATION OF EQ. (5)

Starting from Eq. (4), we choose rotation axes �n′
j = �z and

�n′′
j = (sin[φ j/2], 0, cos[φ j/2]) that subtend the angle φ j/2

and then use the Euler Y ZY convention to rewrite the product
in terms of rotations about the Cartesian �z and �y axes:

R̃(β, �n) =
N∏

j=1

[
R

(
φ j

2
, �y

)
R(π [1 + δ], �z)R

(
− φ j

2
, �y

)

× R(π [1 + δ], �z)

]
. (A1)

Then by using y j ≡ R(φ j/2, �y), z ≡ R(π [1 + δ], �z), and an
overbar to denote opposite sign of φ, the product in Eq. (A1)
can be written in a shorthand notation

R̃(β, �n) =
N∏

j=1

(y jzy j )z ≡ yN zyN . . . zy2zy2zy1zy1z. (A2)

The next step is to insert the identity operation 1 ≡ z jz− j in
between every zy or zy product to obtain products of the form
z− jyz j . The right side of Eq. (A2) then equals

z2N (z−2N yN z2N )(z1−2N yN z2N−1) . . . (z−2y1z2)(z−1y1z), (A3)

and therefore also equals the right side of Eq. (5) when writing
it back in long form, using z−iy jzi = R̂i

zR(φ j/2, �y), z−iy jz
i =

R̂i
zR(−φ j/2, �y), and so on.
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