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Strong-field ionization of atoms beyond the dipole approximation
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Strong-field ionization of atoms by an elliptically polarized laser field is discussed beyond the dipole ap-
proximation. We develop a theory based on the strong-field approximation which includes nondipole effects by
expanding vector potential up to the first order in 1/c. Both direct and rescattered electrons are investigated. The
differential ionization rate is calculated numerically or using the saddle-point method. We find that nondipole
effects are mostly pronounced in the regions near and beyond the cutoff. The existence of additional regions in
the photoelectron momentum plane where nondipole effects are significant is explained using the saddle-point
method and the interference of partial contributions of particular saddle-point solutions to the differential
ionization rate, which is modified when nondipole effects are taken into consideration. These regions are well
defined for a linearly polarized field as well as for an elliptically polarized field with ellipticity lower than 0.4.
For the rescattered electrons we find saddle-point solutions which contribute significantly to the differential
ionization rate. These solutions are classified in a similar way as in the framework of the dipole approximation.
The agreement of the results obtained by numerical integration and the results obtained using the saddle-point
method is excellent.
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I. INTRODUCTION

During the past decades dipole approximation has been
employed to describe various strong-field processes such as
high-order above-threshold ionization (HATI) and high-order
harmonic generation [1]. This approximation assumes that the
laser field is described by a spatially homogeneous electric
field and vector potential so that the corresponding magnetic
field is zero [2]. The laser-field parameters typical for the
Ti:sapphire laser systems (wavelength around 800 nm and
intensity of the order of 1014 W/cm2), which have been em-
ployed to induce various atomic processes, are usually such
to allow the use of the dipole approximation. However, laser
systems with parameters for which this approximation is not
adequate are now easily available. These systems typically
have longer wavelength and higher intensity than that of the
Ti:sapphire laser (see Fig. 2 in [3]). To assess whether the
magnetic-field component should be taken into consideration
it is useful to introduce the parameters z f and β0 [4,5]

z f = 2Up

mc2
, β0 ≈ Up

2mcω
, (1)

where Up is the electron ponderomotive energy, m and c are
the electron mass and the speed of light, respectively, while
ω is the laser-field frequency. The parameter z f determines
whether the relativistic effects should be taken into consid-
eration, while the parameter β0 determines whether or not
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the dipole approximation is adequate. In more detail, z f = 1
means that 2Up is equal to the rest energy of the particle
so that the condition for the process to be nonrelativistic is
z f � 1. On the other hand, β0 has a dimension of length
and is the amplitude of motion in the propagation direction.
For β0 � 1 a.u. the influence of the magnetic field should be
taken into consideration. In this paper we are interested in
the nonrelativistic nondipole regime, i.e., the regime where
z f � 1 and β0 � 1 a.u. The approach based on the time-
dependent Schrödinger equation (TDSE) is time consuming
and the semi-analytical theories are beneficial. One such the-
ory is based on the strong-field approximation (SFA), which
assumes that the influence of the parent ion on the liber-
ated electron is negligible until eventual rescattering. The
nondipole effects can be introduced by using the expansion of
the vector potential A(r, t ) up to the first order in 1/c [6], i.e.,
A(t − k̂ · r/c) ≈ A(t ) + (k̂ · r)E(t )/c, where k̂ is the unit
vector in the propagation direction and E(t ) = −dA(t )/dt .
The first term A(t ) corresponds to the dipole approximation,
while the second term accounts for the nondipole nonrela-
tivistic effects. The transition amplitude can be written in the
form of the sum of the contributions which correspond to
the direct and rescattered electrons. The direct electrons do
not interact with the parent ion after they are liberated, while
the rescattered electrons exhibit one rescattering of the parent
ion. The mentioned nondipole effects are sometimes called
magnetic nondipole effects. In addition to them, the electric
nondipole effects also arise due to the position dependence
of the electric field and affect the momenta of the electrons
emitted in the strong-field ionization [7]. These effects are not
elaborated on in this paper.
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The influence of the nondipole effects on the photoelec-
tron momentum distribution was experimentally observed in
[8–12] and the theories which include nondipole corrections
were employed. For example, in [13] the influence of the
magnetic field on the plateau height and the position of the
cutoff was investigated, while the transfer of the momentum in
the propagation direction to the photoelectrons was explored
in [14]. Moreover, in [15,16] the HATI process beyond dipole
approximation was investigated using the TDSE for the model
atom and the H+

2 ion, while in [17] the Hamiltonian of the
charged particle in a laser field was analyzed in detail. Fi-
nally, the nonrelativistic theory which describes detachment
of an electron from the negative ion taking into considera-
tion the nondipole effects was recently formulated in [18].
The nondipole ionization induced by a circularly polarized
pulse was investigated in Refs. [19–22]. Particularly, using the
Coulomb-corrected nondipole molecular SFA the photoelec-
tron momentum distribution and the role of the degeneracy
of the molecular orbitals was investigated in [21], while in
[22] the nondipole under-the-barrier dynamics of the electron
during strong-field tunneling ionization was explored by in-
vestigating the role of the Coulomb field of the atomic core.

In this paper we formulate the nonrelativistic theory of
strong-field ionization that includes nondipole corrections of
the order of 1/c and apply it to the ionization of neutral
atoms exposed to a strong elliptically polarized laser field. The
transition amplitudes of the direct and rescattered electrons
are calculated using numerical integration as well as using the
saddle-point method. The main goal of this paper is to investi-
gate how the nondipole contributions affect the photoelectron
spectra and how well the spectra can be reproduced using the
saddle-point method. We use He and Xe atoms with s and p
ground states, respectively, as examples. In addition, using the
parameter β0 introduced above we investigate the dependence
of the nondipole contributions on the applied-field parameters.

This article is organized as follows. In Sec. II we formu-
late the SFA theory which includes nondipole corrections.
Also, we define the driving field and discuss the saddle-point
method, which can be used to calculate approximately the
differential ionization rate. In Sec. III we present our numeri-
cal results for the cases of linear and elliptical polarizations
for both direct and rescattered electrons. There we discuss
how the nondipole contribution affects the photoelectron mo-
mentum distributions. Finally, in Sec. IV we summarize our
paper and state the main conclusions. Atomic units in which
c = 137.036 a.u. are used throughout the paper.

II. THEORY

A. Strong-field approximation

The HATI theory, based on the strong-field approximation,
presented in [1], can be generalized to include nondipole
effects. The expansion of the vector potential

A
(

t − k̂ · r
c

)
≈ A(t ) + k̂ · r

c
E(t ), (2)

requires the dipole interaction r · E(t ) to be replaced by [6]

Hint(t ) = E(t ) ·
(

r − i
k̂ · r

c
∇

)
. (3)

Additionally, the Volkov states are replaced by

|χp(t )〉 = |qp(t )〉e−iSp(t ), (4)

where

qp(t ) = p + A(t ) + k̂[p · A(t ) + A2(t )/2]/c, (5)

Sp(t ) = 1

2

∫ t

dt ′q2
p(t ′)

= Ept + [p · α(t ) + U (t )](1 + p · k̂/c). (6)

Here α(t ) = ∫ t dt ′A(t ′), Ep = p2/2 is the photoelectron en-
ergy, and U (t ) = ∫ t dt ′A2(t ′)/2 = Up t + U1(t ). For a T =
2π/ω-periodic laser field, the differential ionization rate for
the electron with momentum p and energy Ep is

wpi(n) = 2π p|Tpi(n)|2, (7)

where n is the number of absorbed photons and the
T -matrix element is Tpi(n) = T (0)

pi (n) + T (1)
pi (n). The contri-

butions T (0)
pi (n) and T (1)

pi (n), in the SFA, are given by

T (0)
pi (n) =

∫ T

0

dt0
T

〈qp(t0)|Hint(t0)|ψi〉eiS(p;t0 ), (8)

T (1)
pi (n) = −i

∫ T

0

dt

T

∫ t

−∞
dt0

[
2π

i(t − t0)

]3/2

eiSp,st (t0,t )

× 〈p + p · A(t )k̂/c|V (r)|Kst + Kst · A(t )k̂/c〉
× 〈qKst (t0)|Hint(t0)|ψi〉, (9)

and they correspond to the direct and rescattered electrons,
respectively. Here, S(p; t0) = Sp(t0) + Ipt0, with Ip the ion-
ization potential and Kst (t0, t ) = kst(t0, t ) + κ (t0, t )k̂/c with
kst(t0, t ) = − ∫ t

t0
dt ′A(t ′)/(t − t0) and κ (t0, t ) = k2

st(t0, t ) −
[U1(t ) − U1(t0)]/(t − t0) − Up. Also,

Sp,st (t0, t ) = Sp(t ) − 1

2

∫ t

t0

dt ′q2
Kst

(t ′) + Ipt0, (10)

where |ψi〉 is the initial bound state, and t0 and t are the ion-
ization and rescattering times, respectively. The rescattering
potential is represented by the double Yukawa potential

V (r) = − Z

H

e−r/D

r
[1 + (H − 1)e−Hr/D], (11)

where H = DZ0.4 and the values of D can be found in [23]
for different noble gases. Using the double Yukawa potential
we removed the singularity associated with the Coulomb po-
tential, but also lost the long-range feature of the Coulomb
potential.

The contributions T (0)
pi (n) and T (1)

pi (n), given by Eqs. (8)
and (9), can be calculated numerically. The energy-
conservation condition reads nω = Ep + Ip + Up(1 + p ·
k̂/c), while the initial bound state can be written as ψi(r) ≡
ψilm(r) = Ril (r)Ylm(θ, φ), where Ylm(θ, φ) are normalized
spherical harmonics and the radial functions Ril (r) are repre-
sented either as a linear combination of the Slater-type orbitals
[24–27] or by the asymptotic wave functions [1,28]. In the first
case, the radial wave function reads

Ril (r) =
∑

a

ca
(2ζa)na+1/2

√
(2na)!

rna−1e−ζar, (12)

033101-2



STRONG-FIELD IONIZATION OF ATOMS BEYOND THE … PHYSICAL REVIEW A 106, 033101 (2022)

where the parameters ca and ζa characterize the radial elec-
tron probability density distribution, while the na and l are
the quantum numbers. In the second case, the radial wave
function is

Ril (r) ≈ Arν−1e−κ0r, r 
 1, (13)

where ν = 1/κ0, κ0 = √
2Ip and the constant A can be found

in [27]. This approximation is appropriate for large distances
r [28].

To quantify the influence of the nondipole effects on the
differential ionization rate we introduce the parameter δpi(n),

δpi(n) = wnd
pi (n) − w

dip
pi (n)

wnd
pi (n) + w

dip
pi (n)

, (14)

which represents the normalized difference between the dif-
ferential ionization rates calculated using nondipole effects
(“nd”) and using the dipole approximation (“dip”). At the end
of this subsection let us mention that the nondipole SFA the-
ory was also established in [29,30] using different approaches.

B. Saddle-point method

In the present paper, we analyze the case of a field with
parameters for which nondipole effects have to be taken into
consideration. In particular, we analyze the elliptically polar-
ized field of the form

E(t ) = E√
1 + ε2

[sin(ωt )êx − ε cos(ωt )êy], (15)

where E , ε, and ω are the laser field amplitude, ellipticity,
and frequency, respectively, and the propagation direction is
êz = k̂, with êx, êy, and êz the unit vectors. We determine
the photoelectron momentum in the pz px plane, using the
momentum-space spherical coordinates. The corresponding
azimuthal angle is ϕ = 0◦, while the polar angle θ is the
electron emission angle.

The integral which appears in Eq. (8) can be solved approx-
imately using the saddle-point (SP) method. The condition
dS(p; t0)/dt0 = 0 leads to the SP equation q2

p(t0) = −2Ip

which, neglecting the term proportional to 1/c2, can be written
as

{p2 + A2(t0) + 2p · A(t0)

+ 2pz[p · A(t0) + A2(t0)/2]/c}2 = −2Ip, (16)

and represents the energy-conservation condition at the
ionization time. For the initial state represented by the asymp-
totic wave function, the direct-electron contribution becomes
[28,31]

T (0),SP
pi (n) = i2−3/2T −1Aκν

0 ν�(ν/2)

×
∑

t0s

(
qs

iκ0

)l

Ylm(q̂ps)eiSs

(
2i

S′′
s

)(ν+1)/2

, (17)

where the sum over t0s is the sum over the solutions of the
SP Eq. (16), located in the upper half of the complex plane,

qps ≡ qp(t0s), Ss ≡ S(p; t0s), and

S′′
s ≡ d2S(p; t0s)

dt2
0

= −qp(t0s) · {E(t0s)

+E(t0s) · [p + A(t0s)]k̂/c}. (18)

On the other hand, for the rescattered electrons the station-
arity conditions ∂Sp,st (t0, t )/∂t0 = 0 and ∂Sp,st (t0, t )/∂t = 0
lead to the SP equations q2

Kst
(t0) = −2Ip and q2

Kst
(t ) = q2

p(t ).
Using Eq. (5) and neglecting the terms proportional to 1/c2

these equations become

[kst + A(t0)]2 = −2Ip, (19)

[kst + A(t )]2 = {p2 + A2(t ) + 2p · A(t )

+ 2pz[p · A(t ) + A2(t )/2]/c}2, (20)

and represent the energy-conservation conditions at the ion-
ization and rescattering times, respectively. Equation (19) is
the same as in the dipole approximation, while Eq. (20) is
modified by the nondipole effects with respect to the corre-
sponding equation obtained using the dipole approximation.
The modified SP method leads to the following expression for
the rescattering T -matrix element [31]:

T (1),SP
pi (n) = π2T −1Aκν

0 ν�(ν/2)
∑
{t0s,ts}

(qKsts

iκ0

)l
eiSst,s

× Ylm(q̂Ksts)
〈p|V |kst〉

[i(ts − t0s)]3/2

×
(

2i

S′′
st0,s

)(ν+1)/2( 2i

S′′
st,s

)1/2

, (21)

where qKsts≡qKst (t0s), Sst,s≡Sp,st (t0s, ts), S′′
st0,s≡∂2Sp,st (t0, t )/

∂t2
0 |t0s,ts , and S′′

st,s ≡ ∂2Sp,st (t0, t )/∂t2|t0s,ts .
The solutions of the SP Eqs. (19) and (20) in the dipole

approximation were analyzed in [31–35] for the linearly po-
larized field and for the bicircular field.

Before we proceed and present our numerical results, let us
investigate the number of solutions of Eq. (16) for our ellipti-
cally polarized field. Neglecting the term proportional to 1/c2,
the SP Eq. (16) can be written in the form q2

p(t0) + 2Ip = 0,
with

q2
p(t0) + 2Ip =

2∑
k=0

ak cos(kωt0) +
2∑

k=1

bk sin(kωt0). (22)

Using the substitution z = eiωt0 and the exponential forms of
the sine and cosine functions, the trigonometric polynomial
(22) can be rewritten as q2

p(t0) + 2Ip = z−2F (z) where the
function F (z) is the polynomial of the order four [32,36,37],

F (z) =
4∑

k=0

ckzk, (23)

with c2 = a0 and ck = c∗
4−k = (a2−k + ib2−k )/2, k = 0, 1.

This polynomial has four complex zeros provided c4 = 0,
while the corresponding zeros of the polynomial q2

p(t0) + 2Ip

are

ωt0k = −i ln zk, 0 � Re ωt0k < 2π, k = 1, . . . , 4. (24)
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FIG. 1. Logarithm of the differential ionization rate of He atom presented in false colors in the photoelectron momentum plane for the
case of ionization by a linearly polarized field with intensity I = E 2 = 5×1014 W/cm2. The values of the wavelength λ and parameter β0 are
λ = 2000 nm, β0 = 1.1 a.u. (left panel), and λ = 3200 nm, β0 = 4.51 a.u. (right panel).

For every solution ωt0, its complex conjugate ωt∗
0 is also a

solution. However, for the application of the SP method we
only take into account the two solutions in the upper half of
the complex plane. The differential ionization rate

wab
pi (n) ∝ |aeiSa + beiSb |2, S j = S(p, t0 j ), j = a, b, (25)

which corresponds to these solutions (denoted by the labels
“a” and ‘‘b”) can be written as [38]

wab
pi (n) ∝ |a|2e−2 Im Sa{1 + |A|2 + 2|A|

× sin[Re(Sa − Sb) + arcsin(ReA/|A|)]}, (26)

where A = b exp[Im(Sa − Sb)]/a. Finally, it is instructive to
mention that if the term proportional to 1/c2 is taken into
account, Eq. (16) has four instead of two relevant solutions.
This term is significant for a very strong laser field when the
relativistic effects have to be taken into consideration.

III. NUMERICAL RESULTS

In this section we present our numerical results using the
examples of He and Xe atoms exposed to the laser field
with parameters for which the dipole approximation is ques-
tionable. The intensity of the applied field is such that the
saturation effects and the depletion of the ground state do not
have to be taken into consideration. The helium (xenon) atom
has 1s (5p) ground state so that the magnetic quantum number
is m = 0 (m = 0,±1).

A. Direct photoelectron spectra

We start with the example of He atoms exposed to the
linearly polarized field (ε = 0). In Fig. 1 we present the
photoelectron momentum distributions obtained by exposing
He atoms to the linearly polarized field with intensity I =
5×1014 W/cm2. The values of the wavelength are 2000 nm
(left panel) and 3200 nm (right panel), while the correspond-
ing values of the parameter β0 are 1.1 a.u. (left panel) and
4.51 a.u. (right panel). The values of the parameter β0 are
larger than 1 a.u. and the dipole approximation is question-
able. The photoelectrons are predominantly emitted in the
field polarization direction even though the distribution is

slightly tilted towards the positive values of pz. This alteration
becomes more pronounced for larger values of β0 as we shall
discuss later. Before that, let us first analyze the influence
of the nondipole effects on the differential ionization rate
for different values of the photoelectron energy and emission
angle. To do that, in Fig. 2 we present the parameter δpi(n),
given by Eq. (14), in the photoelectron momentum plane
for the same laser-field parameters as in Fig. 1. The first
obvious observation is that the nondipole effects are crucial
for the energy close to and beyond the point after which the
differential ionization rate drops significantly. However, it is
also evident that the nondipole effects are significant for some
lower values of the energy for which the differential ionization
rate is high. For example, in the left panel of Fig. 2, for
pz > 0 two parentheses-like structures are clearly visible and
represent the regions in the photoelectron momentum plane
where the nondipole effects are significant. The first structure
extends from (pz, px ) = (1.5 a.u.,−5.5 a.u.) to (pz, px ) =
(1.5 a.u., 5.5 a.u.), while the second one is located closer to
the cutoff position, i.e., from (pz, px ) = (2 a.u.,−3 a.u.) to
(pz, px ) = (2 a.u., 3 a.u.). Similar structures are also present
for pz < 0. Comparing the left panels of Figs. 1 and 2 it is
evident that the differential ionization rate is significant along
the observed parentheses-like structures. For the larger values
of β0, the number of these structures increases and already
for β0 = 4.51 a.u. the nondipole effects should be taken into
consideration for most values of the photoelectron energy and
emission angle. Moreover, let us mention that the larger value
of the parameter z f would be more beneficial for generating
the asymmetry in the photoelectron momentum distribution.
However, for the laser-field parameters examined in this paper
z f � 1, i.e., the relativistic effects are negligible.

To explain these structures, we use the saddle-point
method. For illustration we use the example for which β0 =
1.1 a.u. The corresponding photoelectron momentum distri-
bution and δpi(n) are shown in the left panels of Figs. 1
and 2, respectively. Solving Eq. (16) we obtain two complex
solutions t0s in the upper-half of the complex plane. With
these solutions we calculate the corresponding value of the
direct T -matrix element T (0),SP

pi (n) using Eq. (17) where Y00 =
1/

√
4π and the corresponding differential ionization rate is

033101-4



STRONG-FIELD IONIZATION OF ATOMS BEYOND THE … PHYSICAL REVIEW A 106, 033101 (2022)

FIG. 2. Parameter δpi(n) presented in false colors in the photoelectron momentum plane for He atom exposed to the same laser field as in
Fig. 1.

given by Eq. (7). This procedure is done taking into account
the nondipole effects as well as in the dipole approximation
which allows one to calculate the corresponding value of the
parameter δpi(n) for different values of the photoelectron en-
ergy and emission angle. In Fig. 3 we present the differential
ionization rate calculated using one solution (upper left panel)
and both solutions (upper right panel) of the SP Eq. (16),
while the corresponding results for the parameter δpi(n) are
presented in the lower panels. Careful comparison of the
results shown in the upper panels of Fig. 3 reveals that the
oscillations of the differential ionization rate are caused by

the interference of the two SP contributions to the differential
ionization rate. The distributions shown in the left panels of
Fig. 3 are smooth, while those shown in the right panels
exhibit rapid oscillations. The oscillations of the differential
ionization rate are fast so that the spectra look as averaged
to one particular value. In addition, the result obtained using
the SP method reproduces well the one obtained by numerical
integration (compare the upper right panel of Fig. 3 and the
left panel of Fig. 1). This is particularly important due to the
fact that the numerical calculations for the laser-field parame-
ters for which nondipole effects are significant are often time

FIG. 3. Upper row: Logarithm of the differential ionization rate of the He atom presented in false colors in the photoelectron momentum
plane for the case of ionization by a linearly polarized field, calculated using one solution (left panel) and both solutions (right panel) of the
SP Eq. (16). Lower row: The corresponding parameter δpi(n) presented in false colors in the photoelectron momentum plane calculated using
one solution (left panel) and both solutions (right panel) of the SP Eq. (16). Laser-field parameters are the same as in the left panel of Fig. 1.
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FIG. 4. Logarithm of the differential ionization rate of the He
atom presented in false colors in the photoelectron momentum plane
for the case of ionization by a linearly polarized field with intensity
I = 1.5×1015 W/cm2 and wavelength 4000 nm. The corresponding
value of the parameter β0 is β0 = 26.42 a.u. The results in the left
panel are obtained using the dipole approximation, while the results
in the right panel include nondipole effects.

consuming. Furthermore, regarding the parameter δpi(n), it is
clear that the parentheses-like structure obtained using nu-
merical integration is well reproduced using the SP method
(compare the lower right panel of Fig. 3 and the left panel
of Fig. 2). This structure is absent if only one quantum orbit
is taken into account (see the lower left panel of Fig. 3),
indicating that the interference of the two SP contributions is
influenced by the nondipole effects. This dependence causes
the earlier-noticed parentheses-like structures. Finally, let us
mention that the parentheses-like regions where the nondipole
effects are significant (see Fig. 2 and the lower right panel of
Fig. 3) are quantitatively changed when the rescattered elec-
trons are taken into consideration. This particularly happens
for the values of the photoelectron energy close and beyond
the cutoff energy of the direct electrons due to the interference
of the direct and rescattered contributions to the T -matrix
element. The photoelectron momentum distributions similar
to those shown in our previously discussed figures were also
analyzed in [39,40]. In more detail, in [39] the tunneling
dynamics was investigated using the relativistic SFA theory,
while in [40] the dependence of the radiation pressure on
photoelectrons on the details of the ionization mechanism was
explored.

Let us discuss in more detail the effects of nondipole
contributions on the shape of the photoelectron momentum
distribution and the position of the cutoff. In Fig. 4, for the
He atoms exposed to a linearly polarized field with intensity
I = 1.5×1015 W/cm2 and wavelength 4000 nm, we present
the photoelectron momentum distribution for px > 0. Helium
atom has large ionization potential so that such high intensity
still does not require inclusion of the saturation effects. The
corresponding value of the parameter β0 is β0 = 26.42 a.u.
For a given value of the emission angle, the position of the
cutoff is changed when the nondipole effects are included.
In particular, in the framework of the dipole approximation,
the photoelectrons with highest energy can be expected in the
direction of the driving-field polarization, which is not the
case when the differential ionization rate is calculated using
the nondipole SFA theory. Additionally, in the nondipole SFA
case the photoelectrons with higher energy can be expected.

To discuss this point in more detail we use the SP method.
The imaginary part of the ionization time t0 is related to the

FIG. 5. Saddle-point solutions for the complex ionization time t0

for the He atom, exposed to a linearly polarized field with the same
parameters as in Fig. 4, calculated using the dipole approximation
(left panel) and taking into account nondipole effects (right panel).
The values of the emission angle are indicated in the legend. The
photoelectron energy changes from 0.01Up to 3Up along each curve
as indicated.

ionization probability. In particular, the subintegral function in
the action S(p; t0s) contains the term q2

p(t ′), which can be ap-
proximated using the first three terms of the Taylor expansion
about the point t0sR = Re t0s:

q2
p(t ′) ≈ q2

p(t0sR) + ∂q2
p(t ′)/∂t ′|t ′=t0sR (t ′ − t0sR )

+ 1
2∂2q2

p(t ′)/∂t ′2|t ′=t0sR (t ′ − t0sR)2. (27)

Using Eq. (27) and the SP Eq. (16) the exponential term in
Eq. (17) becomes

eiS(p;t0s ) = eiS(p;t0sR )e−[q2
p(t0sR )+2Ip]t0sI/3, (28)

where t0sI is the imaginary part of the ionization time. The ion-
ization probability decreases exponentially with the increase
of t0sI. In Fig. 5 we present two SP solutions for the ionization
time t0 (in units of the optical period T ), for the values of
the emission angle as indicated in the legend, calculated in
the framework of the dipole approximation (left panel) and
taking into account nondipole effects (right panel). The pho-
toelectron energy on each curve changes continuously from
0.01Up to 3Up. Even though in both cases the solutions are
symmetric with respect to the Re t0 = 0.5T line, their depen-
dence on the angle θ is different. In the dipole approximation,
the imaginary part of the ionization time increases as the angle
θ decreases from 90◦, leading to a decrease of the differential
ionization rate. Even an alteration of the emission angle of
only few degrees from θ = 90◦ leads to a drastic decrease
of the differential ionization rate except for the low-energy
electrons. This is in agreement with the results shown in the
left panel of Fig. 4. On the other hand, when the nondipole
effects are taken into account, the imaginary part of the time t0
(for a fixed energy) first decreases and then increases with the
decrease of the angle θ from 90◦ (see the right panel of Fig. 5).
As a result, the differential ionization rate is maximal for the
emission angle θ = 90◦. Both SP solutions are affected in the
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FIG. 6. Logarithm of the contribution wab
pi (n) to the differential ionization rate as a function of the emission angle and photoelectron

energy calculated using the dipole approximation (left panel) and including nondipole effects (right panel) for the He atom exposed to a
linearly polarized field with the same parameters as in Fig. 4.

same way by the nondipole effects. This can be elaborated
further using the fact that Eq. (16) has only two solutions
and that the differential ionization rate can be estimated using
Eq. (26). Assuming that the contributions of the two SP solu-
tions are equal, the differential ionization rate can be estimated
for the given photoelectron energy and emission angle. In
Fig. 6 we present the logarithm of the contribution wab

pi (n) to
the differential ionization rate as a function of the emission
angle and photoelectron energy using the dipole approxima-
tion (left panel) and including nondipole effects (right panel).
The results obtained using the dipole approximation show
that the contribution wab

pi (n) rapidly decreases as the emission
angle decreases from θ = 90◦ for all photoelectrons except
those with very low energy. Beyond the dipole approximation
this distribution is altered in such a way that the contribution
wab

pi (n) exhibits maximum for the emission angle θ = 90◦. In
addition, the position of the cutoff is shifted towards higher
energy. This significant change induced by nondipole effects
steams from the fact that the quantity Re(Sa − Sb), which
appears in the second line of Eq. (26), strongly depends on the
nondipole contributions, particularly for energy Ep > 0.8Up.
This change is qualitatively the same for a broad range of
values of the parameter β0.

In conclusion, the nondipole effects alter the shape of the
photoelectron spectra as well as the position of the cutoff. This
is particularly pronounced for the values β0 > 20 a.u. On the
other hand, for smaller values of this parameter the nondipole
effects are significant for some values of the photoelectron
energy and emission angle as explained using the SP method.
In short, these effects exert influence on the interference of the
partial contributions to the differential ionization rate.

Similar conclusions hold for other noble gases and an ellip-
tically polarized field. For illustration, in Fig. 7 we present the
photoelectron momentum distribution for Xe atoms exposed
to an elliptically polarized field with ellipticity ε = 0.25 (top
left panel), ε = 0.35 (middle left panel), and ε = 0.5 (bottom
left panel) together with the corresponding values of the pa-
rameter δpi(n) (right column). The photoelectron momentum
distribution is obtained using nondipole SFA theory.

For the elliptically polarized field with ellipticity ε = 0.25
the photoelectron momentum distribution has a similar shape
as the one obtained using a linearly polarized field. One

obvious difference is that the photoelectrons with low and
medium energy emitted in the direction θ = 90◦ are sup-
pressed to some extent (see the top left panel of Fig. 7)
in comparison with those obtained using a linearly polar-
ized field. The parameter δpi(n) behaves in a similar way as
for the linearly polarized field. For the elliptically polarized
field with ellipticity ε = 0.35, the suppression of the low-
and medium-energy electrons is even more pronounced. The
earlier-discussed structures which appear when the parameter
δpi(n) is presented in the photoelectron momentum plane are
still visible, but now they rather have an erratic form due to
the fact that the differential ionization rate is low regardless
of whether nondipole effects are taken into account or not.
In this case, even the electrons with the energy close to the
cutoff are significantly suppressed (cf. the false color scales in
the top and middle left panels of Fig. 7). Finally, the bottom
left panel shows the photoelectron momentum distribution for
the elliptically polarized field with ellipticity ε = 0.5. The
shape of the spectra is similar to the one obtained using a
circularly polarized field [18] and the differential ionization
rate of the high-energy electrons is significantly higher than
for the case of the field with ellipticity ε = 0.35. The corre-
sponding parameter δpi(n) shown in the bottom right panel of
Fig. 7 exhibits little or no structure and the only important
information which can be extracted is that the nondipole ef-
fects are mostly pronounced in the close proximity of the
cutoff. The nondipole ionization induced by an elliptically
polarized pulses was also investigated in [41] where field-
induced momentum transfer is explored as a function of the
properties of the ultrashort laser pulse and in [42] where
the electron nondipole dynamics was investigated using a
relativistic Coulomb-corrected SFA based on the eikonal ap-
proximation of the Klein-Gordon equation.

B. Rescattered photoelectron spectra

After analyzing direct photoelectron spectra let us now
devote our attention to the rescattered electrons. The calcu-
lations which have to be done to obtain the corresponding
spectra are time consuming even for the driving-field pa-
rameters for which β0 ≈ 1 a.u. so that the SP method is
particularly desirable. As an example, we use the He atom
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FIG. 7. Logarithm of the differential ionization rate (left column) and corresponding parameter δpi(n) (right column) of the Xe atom,
presented in false colors in the photoelectron momentum plane for the case of ionization by an elliptically polarized field with ellipticity ε =
0.25 (top row), ε = 0.35 (middle row), and ε = 0.5 (bottom row). The field intensity and wavelength are I = 1014 W/cm2 and λ = 3500 nm,
respectively.

exposed to a linearly polarized field with the same parameters
as in the left panel of Fig. 1. For the rescattered electrons the
SP equations are given by Eqs. (19) and (20). If we restrict
the rescattering time 0 < Re t < T and solve the system of
Eqs. (19) and (20) we get the so-called backward-scattering
solutions which are mostly dominant in the medium- and
high-energy part of the spectra. For a linearly polarized field,
in the framework of the dipole approximation these solutions
can be classified using the multi-index (α, β, m) [43]. The
same classification can also be used when nondipole effects
are taken into consideration. The solutions appear in pairs.
The index m = 0, 1, . . . , counts the approximate length of
the travel time Re(t − t0) in the multiples of the field pe-
riod T , while the index β counts the solutions within one

optical cycle characterized by the index m. Finally, the in-
dex α serves to distinguish solutions of one pair, i.e., the
so-called long and short orbits [44]. In Fig. 8 we present
the solutions of the system of the SP Eqs. (19) and (20) for the
emission angle θ = 90◦ and the same field parameters as in
the left panel of Fig. 1. In the left (right) panel the photoelec-
tron energy Ep is presented as a function of the real part of the
ionization (rescattering) time. For a given value of the index
m there are two pairs of the backward-scattering solutions
with different values of the index α. The contribution of one
of the α = ±1 solutions is divergent after the cutoff where
it should be disregarded (this problem can be solved using
the uniform approximation [43–45]). The partial contributions
of the (α, β, m) solutions to the differential ionization rate
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FIG. 8. Solutions of the system of the SP Eqs. (19) and (20) for a linearly polarized field beyond the dipole approximation for the same
parameters as in the left panel of Fig. 1. The emission angle is θ = 90◦. In the left (right) panel the photoelectron energy Ep is presented as a
function of the real part of the ionization (rescattering) time.

are shown in the left panel of Fig. 9, while the comparison
of the SP result with the one calculated using the numerical
integration is presented in the right panel of Fig. 9. The
contribution of the solution (β, m) = (1, 0) is significant for
all values of the photoelectron energy, while the solution
(β, m) = (2, 0) is significant for the energy lower than 7.3 Up.
On the other hand, the contributions of the solutions (β, m) =
(1, 1) and (β, m) = (2, 1) are large only for some narrow en-
ergy regions. Finally, the solution (β, m) = (0, 0) contributes
only in the low-energy part of the spectra. The results obtained
by numerical integration are well reproduced using the SP
method for all values of the photoelectron energy, as can be
seen in the right panel of Fig. 9.

In the end, let us compare the differential ionization rates
of the rescattered electrons obtained in the dipole approxi-
mation with those obtained including nondipole effects. For
this purpose we use the SP method. In Fig. 10 we present the
logarithm of the differential ionization rate as a function of

the photoelectron energy calculated using the dipole approx-
imation (black solid line) and taking into account nondipole
effects (red dashed line). The emission angle is θ = 87◦.
Contrary to the case of the direct electrons, for the rescattered
electrons the position of the cutoff changes only slightly when
the nondipole effects are taken into consideration. To explain
this, we recall that the direct electrons are predominantly emit-
ted in the direction of the applied field, while the differential
ionization rate of the rescattered electrons is significant for a
broad range of values of the photoelectron momentum (see
Fig. 6 in [18]). As a result, the photoelectron momentum
spectra would be tilted towards the positive values of pz, but
the position of the cutoff would not be changed a lot. Besides
the cutoff region, the nondipole effects can affect other parts
of the photoelectron energy spectra as well, provided β0 > 1
a.u. In the case of the example shown in Fig. 10 it is ob-
vious that the nondipole effects alter the contribution of the
(β, m) = (0, 0) solution which is dominant in the low-energy

FIG. 9. Left panel: Partial contributions of the backward-scattering SP solutions, shown in Fig. 8, to the differential ionization rate. Right
panel: Comparison of the rescattered photoelectron spectra obtained by using the numerical integration (black solid line) and the SP method
(red dashed line).
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FIG. 10. Comparison of the rescattered photoelectron spectra of
the He atom obtained by using the dipole approximation (black solid
line) and including nondipole effects (red dashed line). The direct
electrons are not taken into account. The emission angle is θ = 87◦.
The intensity of the applied field is I = 1.5×1015 W/cm2, while the
fundamental wavelength is 2600 nm.

part of the spectra. The influence of the nondipole effects on
the other SP solutions is not so significant in this case.

IV. CONCLUSION

In this paper we generalized high-order above-threshold
ionization theory based on the strong-field approximation so
that the nondipole effects are taken into consideration. The
integrals which appear in the corresponding expression for
the differential ionization rate can be calculated numerically
or using the saddle-point method. To determine whether or
not nondipole effects should be taken into consideration we
employed the parameter β0 which represents the amplitude of
the electron motion parallel to the field propagation direction.

First, we investigated the direct photoelectrons which after
liberation do not interact with the parent ion. For a laser field
polarized in the xy plane, the photoelectron momentum dis-
tribution in the pz px plane, obtained in the framework of the
dipole approximation, exhibits reflection symmetry with re-
spect to the pz py and px py planes. When the nondipole effects
are taken into consideration, the reflection symmetry with
respect to the px py plane is broken and the photoelectron mo-
mentum distribution is tilted towards the positive pz part of the
momentum plane. To quantitatively describe the intensity of
nondipole effects, we introduced the parameter δpi(n) which
represents the normalized difference between the differen-
tial ionization rates calculated with and without nondipole
effects. Presenting this parameter in the photoelectron mo-

mentum plane it becomes obvious that nondipole effects are
most significant in the vicinity of the cutoff. In addition, the
parentheses-like structures appear, defining the regions with
large differential ionization rate in which these effects are
nonnegligible. These structures appear for the values of the
parameter β0 close to 1 a.u. and they can be explained using
the saddle-point method. In short, for an elliptically polarized
field there are two solutions of the saddle-point equation for
the direct electrons. The interference of these solutions is
responsible for the oscillatory character of the differential
ionization rate as a function of the photoelectron energy and it
depends on whether or not the nondipole effects are included.
The number of parentheses-like structures increases with the
increase of β0 and for values β0 > 5 a.u. the nondipole effects
are significant for most values of the photoelectron energy and
emission angle.

Moreover, the photoelectron momentum distribution
strongly depends on the ellipticity of the driving field. As-
suming that β0 is not too large, the photoelectrons are
predominantly emitted in the px py plane regardless of the field
ellipticity. However, the increase of the ellipticity lead to the
suppression of the low- and middle-energy electrons and the
structure exhibited by the parameter δpi(n) is not visible for
the driving field with large ellipticity (ε > 0.3).

In addition to the direct electrons we also analyzed the
rescattered electrons. The numerical calculations necessary to
obtain the photoelectron energy spectra are time consuming
even for the laser-field parameters for which β0 is close to
one. Solving the corresponding system of the saddle-point
equations we have found that its solutions can be classified
in a similar way as in the dipole approximation. The so-
called backward-scattering solutions mainly contribute in the
medium- and high-energy parts of the spectra. We presented
the partial contributions of these solutions to the differential
ionization rate as well as their coherent sum together with
the result obtained using the numerical integration. The re-
sults obtained using the SP method reproduce effectively the
results obtained using the numerical integration. This allows
us to get accurate values of the differential ionization rate
for a given value of the emission angle and a given range of
the photoelectron energy without performing time-consuming
numerical calculations.
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[18] R. Kahvedžić and S. Gräfe, Strong-field approximation with
leading-order nondipole corrections, Phys. Rev. A 105, 063102
(2022).

[19] C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz,
D. M. Villeneuve, A. Staudte, and P. B. Corkum, Partitioning
of the Linear Photon Momentum in Multiphoton Ionization,
Phys. Rev. Lett. 106, 193002 (2011).

[20] A. Hartung, S. Eckart, S. Brennecke, J. Rist, D. Trabert, K.
Fehre, M. Richter, H. Sann, S. Zeller, K. Henrichs et al., Mag-
netic fields alter strong-field ionization, Nat. Phys. 15, 1222
(2019).

[21] P.-L. He, K. Z. Hatsagortsyan, and C. H. Keitel, Nondipole
Time Delay and Double-Slit Interference in Tunneling Ioniza-
tion, Phys. Rev. Lett. 128, 183201 (2022).

[22] P.-L. He, M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel,
Nondipole Coulomb sub-barrier ionization dynamics and pho-
ton momentum sharing, Phys. Rev. A 105, L031102 (2022).
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