
PHYSICAL REVIEW A 106, 032813 (2022)

Combined molecular and atomic potentials for elastic cross sections of electrons
scattering off diatomic molecules at intermediate energies
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A simple model is proposed to compute electron-diatomic molecule elastic differential cross sections at
intermediate energies within the framework of an analytical local optical potential. In a spherical harmonic
expansion of the molecular potential we treat the isotropic term with the partial-wave decomposition and
apply the independent atom model (IAM) on all higher orders. This model is seen to properly converge to
the IAM at high energies, while bringing significant improvement at lower energies. We compare the results
with a well-tested program called ELSEPA, tailored for high-energy electron-atom scattering and address its
further extension to molecules with the method proposed. The simplicity of the calculations and the encouraging
agreement in shape with experimental data could promote attractiveness among plasma physics simulations in
need of coherent and well-resolved differential cross sections.

DOI: 10.1103/PhysRevA.106.032813

I. INTRODUCTION

The importance of (differential) cross sections for electron-
molecule collisions can be found in many applications of
plasma physics, such as Monte Carlo simulations of electron
swarms in gases [1], atmospheric physics [2], electric dis-
charges [3], gas lasers [4], runaway mechanisms [5], plasma
catalysers. They can either be obtained from experimental
measurements [6–8] or quantum calculations [9–12].

Lately, free online databases [13,14] have been set up to
readily provide cross sections from various sources. Addi-
tionally, freely available codes such as ELSEPA [15,16] or
UKRmol [17] enable the generation of elastic differential
cross sections (DCS) for all atoms and many polyatomic
molecules in the complementary domains of high-energy and
low-energy scattering.

When it comes to generating a database of good quality
and resolution, there arise some difficulties. Experimental
databases can be sparse, lack data at both angular ex-
tremes and can be controversial on occasions due to different
methods used for calibration, angular allowance aperture,
precision in energy and angle [18]. Codes on the other
hand can consistently generate DCS but might take consid-
erable time and inevitably are limited to a range of validity.
For instance, ELSEPA [15,16], works remarkably well for
molecules in the independent atom model [19] impacted by
electrons of more than 100 eV, but is less accurate in the
intermediate range 10–100 eV, where typically, the DCS
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gradually evolves from a roughly symmetric cusp at 90°,
to a forward angular distribution. On the other end, UKR-
mol (and its perfected distributions for industrial applications
QUANTEMOL-N [20]-EC [21]), covers all cross sections for
low-energy electron-molecule interactions but is computa-
tionally costly and requires more user experience. This leaves
a gap in the intermediate energy range, which is known to
be fillable with variational [22,23] or close-coupling [24–26]
methods.

Alternatively, there have been some publications centered
on a considerably simpler analytical [27,28] description of
the DCS or a partial-wave [29–31] analysis applied to an
analytical optical potential, which yielded reasonable results
over different ranges of validity. So far, accuracy in producing
outputs has been pushed jointly with the level of sophisti-
cation while using approximations to abridge computational
costs where appropriate.

We propose here instead to withdraw from complexity, and
give practical recommendations on how to obtain accurate
DCS, yet using the simplest tools and models available. We
show how replacing the zeroth (isotropic) interference term
in the independent atom model by a (molecular) partial-wave
scattering amplitude can considerably extend the independent
atom model’s range of applicability toward the lower end of
intermediate energies. The DCS is reconstructed based on its
analogous decomposition in the first Born approximation. For
this, we construct an optical potential taken from the simplest
models [32–35] available for electron-molecule scattering.
The aim is to provide the community of plasma physics with
the tools necessary to generate DCS with relative ease. This
work is partly based on Salvat et al.’s [28] simple model
for electron-atom scattering, which we extended to apply on
diatomic molecules.

2469-9926/2022/106(3)/032813(16) 032813-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9840-4649
https://orcid.org/0000-0002-7922-8627
https://orcid.org/0000-0003-1739-0837
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.032813&domain=pdf&date_stamp=2022-09-29
https://doi.org/10.1103/PhysRevA.106.032813


A. SCHMALZRIED, A. LUQUE, AND N. LEHTINEN PHYSICAL REVIEW A 106, 032813 (2022)

FIG. 1. The scattering of an electron about a diatomic molecule
of internuclear distance R viewed from a fixed (laboratory) reference
frame with the z axis aligned with the incoming direction

The sections are structured as follows: a short introduction
to potential scattering theory; a presentation of the optical po-
tential employed; a description of three ingredients featured in
our approach, namely potential harmonic expansion, indepen-
dent atom model (IAM), and partial-wave decompositions;
and finally results with suitable comparisons in different en-
ergy domains. Due to their notable presence in (atmospheric)
gaseous electronics, we focus on H2, N2, and O2 in particular,
and briefly discuss NO and CO.

II. POTENTIAL SCATTERING

The potential scattering formalism, adequate for describing
weakly inelastic electron-molecule collisions [23,24,36,37],
relies upon the Schrödinger equation for the electron’s static
wave function ψ (r) evolving in a space occupied by an effec-
tive interaction potential V (r, R) traditionally centered on the
diatomic molecule’s center of mass assumed, in our cases, to
lie at the midpoint of the interatomic separation R:

− h̄2

2μ
�ψ (r) + V (r, R)ψ (r) = Eψ (r). (1)

The mass of the target Mt , usually considered infinitely
large [37, p. 220] compared to the electron me, can optionally
be roughly accounted for via the re‘duced mass of‘ the system
[38]: μ = meMt/(Mt + me) � me. In (1), E represents the
asymptotic kinetic energy of the electron E ≡ h̄2|k|2/2me.

The boundary condition applied to the wave function [39]
relates the incident and outgoing plane waves of respective
wave vectors k0 and k:

ψ (r) −→
r→∞ exp(ik0 · r) − 2μ

h̄2

exp(ikr)

4πr

×
∫

r′
e−ik·r′

V (r′, R)ψ (r′)d3r′. (2)

The overall scattering process described can be visualized in
Fig. 1.

For vibrationally elastic collisions at intermediate energies,
one can additionally assume that the electron’s kinetic energy
greatly surpasses the rotational excitations of the molecule

leading to two simplifications: the neglect of the energy loss
[40] |k0| ≈ |k| and the adiabatic [37,41,42] (or impulse) ap-
proximation in which the molecule remains fixed in space
during the entire collision process.

For a linear molecule in a �g state (molecular electronic
orbital and spin momenta with null projection on the internu-
clear axis) all rotational states of excitation can be described
with spherical harmonics Y M

J (R̂) of the molecular axis R̂ with
J, M quanta for the rotational momentum and its projection
(on the z axis of the reference frame on Fig. 1). The scattering
amplitude for an excitation J0, M0 → J, M is given by [40,
p. 117]:

f (kJM ← k0J0M0) = − 2μ

4π h̄2

∫
R̂

∫
r′

Y M∗
J (R̂)e−ik·r′

V (r′, R)

× ψR(r′)Y M0
J0

(R̂)d3r′dR̂. (3)

The parametric dependence of the wave function ψR upon
R makes the integration cumbersome [11]. Nevertheless, a
way around exists by considering the first-order solution of the
iterative equation (2) known as the (first) Born approximation
[40, p. 116]. It effectively replaces the full wave function by
the incident plane wave in (2)’s integrand:

f̃ (kJM ← k0J0M0) = − 2μ

4π h̄2

∫
R̂

∫
r′

Y M∗
J (R̂)e−ik·r′

V (r′, R)

× eik0·r′
Y M0

J0
(R̂)d3r′dR̂. (4)

Finally, defining the angle θ between k0 and k, one can
construct the differential cross section (DCS) from the scatter-
ing amplitude in either case, by summing over all final M and
averaging over all initial M0 rotational magnetic states [40].

dσ

d� J←J0

= k

k0

1

2J0 + 1

∑
M,M0

| f (kJM ← k0J0M0)|2. (5)

In the rest of the paper, in accordance with the customs
of quantum physics, atomic units will be used; in which case
c = h̄ = 1 = e = me, so that kinetic factors in (1)–(4) and
electric factors in potentials can be simplified. Units of length
and energy are expressed respectively in Bohr’s atomic radii
a0 = 52.918.. pm and Hartrees � 27.211 eV. In the next sec-
tion, we present a simple local optical potential for diatomic
molecules.

III. OPTICAL POTENTIAL

The effective interaction between the electron and the
molecule is approximated by an optical model potential. It is
traditionally separated into the static, exchange, polarization,
and absorption terms; for each of which we selected and
adapted the simplest models available in the literature.

A. Static

Roughly speaking, a diatomic molecule taken from the
perspective of an electron scattering at an energy fairly above
the ionization threshold can be viewed as an aggregate of two
separate atoms [15]. The potential Vs of the atom itself can
be approximated by a sum of screened-Coulomb (Yukawa)
potentials. Such potentials have the remarkable property [43,
pp. 109-110] that their related electronic density ρ (through
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TABLE I. Yukawa two-term fits [34] to Dirac-Hartree-Fock-
Slater calculated atomic potentials. The parameters are to be used
as in Eqs. (6) and (7)

Atom(Z) H(1) C(6) N(7) O(8)

γ −184.39 0.1537 0.0996 0.0625
185.39 0.8463 0.9004 0.9375

λ 2.0027 8.0404 10.812 14.823
1.9973 1.4913 1.7987 2.0403

Poisson’s equation [44, p. 8]) is also uniquely composed of
Yukawa-type terms:

Vs(r) = − e2

4πε0
Z

NY∑
i=1

γi exp(−λir)/r; with
NY∑
i=1

γi = 1

(6)

ρ(r) = Z

4π

NY∑
i=1

γi

λ2
i

exp(−λir)/r. (7)

The normalization on γi coefficients constrains the elec-
tronic charge to be equal to the atomic charge number Z . As
a consequence of the units chosen, the electric factor for the
potential can be omitted and a 4π factor is introduced below
Z in the density equation. In the following we will use Salvat
et al.’s [34] two-term fits for the first-row atoms, for which
we give the parameters in Table I. Any deformation of the
electron cloud due to the molecular bond, including multipole
terms (such as the dipole and the quadrupole) are neglected in
the present study.

B. Exchange

The exchange potential represents the possibility [45, §3]
that the incident electron replaces and ejects a molecular elec-
tron of identical spin. This effect, nonlocal [46, Eq. (2.18)] by
nature, can be approximated [33] by a simple local potential
in our limiting case of relatively high incident energies:

Vex(r) ≈ −πρ(r)

[E − Vs(r)]
. (8)

C. Polarization and correlation

The presence of the charged electron induces a deformation
on the molecule’s electron cloud, which is typically repre-
sented by correlation (near-field) and polarization (far-field)
potentials. Intuitively, the first part correlates the displace-
ment of the molecular cloud generating a hole [47] around
the intruding electron, while the second part emerges from
the dipole induced by a displacement of the electronic cloud
through its (isotropic) polarizability α0, neglecting the non-
isotropic part. Both effects can be crudely incorporated into a
simple Buckingham [48,49] potential:

Vp(r) = − α0

2
(
r2 + r2

c

)2 , (9)

with rc =
√

6E/Eexc. (10)

The cutoff radius rc is proposed here to match the second
order of the asymptotic [32,50] nonadiabatic polarization,

which depends both on an average excitation Eexc of the
molecule and on the energy E of the incident electron (effec-
tively reducing polarization effects at higher energies). It can
be seen as a (third) alternative to the two propositions sug-
gested by Onda [51] about cutting off adiabatic polarization
at small ranges and high velocities.

The average excitation Eexc has been widely used as a
tunable parameter and could even take values higher than the
ionization threshold Eion as can be seen in Jain and Baluja
[52]. We will follow Onda’s [32] suggestion (p. 87, §II.A) and
set Eexc ≡ Eion. Lower values would result in flatter DCS at
small angles in Fig. 3.

D. Absorption

The last term in the effective optical potential is the ab-
sorption potential Va (sometimes [53] viewed as the imaginary
part of the complete polarization potential), which decreases
the scattered flux at medium to wide angles due to particle
losses into an inelastic channel of electronic excitation. This
potential is purely negative imaginary [cf. its use in (13)] and
is interpreted as an absorption probability −2Va/h̄ per unit
time [54, §II.B]. We use a widely implemented quasifree local
model [35] given by:

Vabs(r, E ) = − h̄

2
vloc(r)ρ(r)σb(kF (ρ(r)), E ), (11)

with the local scattering electron velocity vloc and cross sec-
tion σb for inelastic collisions expressed in terms of the Fermi
momentum [35, Eq. (2)] kF = 3

√
3π2ρ(r):

vloc =
√

2(E − Vse )/me (12a)

σb(kF , k) = 4π

k2

[
1

2Eth
− k′2 − 3

5 k2
F(

k′2 − k2
F

)2 + H

]
: k′ > kmin,

(12b)

H = 2

5k3
F

(
k2

F + k2
min − k′2)5/2

(
k′2 − k2

F

)2 : k2
F + k2

min > k′2,

(12c)

k2
min = k2

F + 2Eth, (12d)

k′2 = k2 − 2

(
1

r
− Vs(r)

Z

)
. (12e)

The potential Vse in (12a) is simply the sum of static
(6) and exchange (8) potentials defined previously. We ap-
ply the modification to the original potential introduced by
Blanco and García [55] by using k′ as defined in (12e), that
combines the local scattering electron momentum to which
the local binding energy of the target electron is subtracted.
Without this correction, the absorption potential would be
overestimated and produce distortions in the DCS greater than
those seen on the right column of Fig. 3.

E. Sum

Originally, the individual atomic potential VA is simply
the sum of electrostatic (s), exchange (e), polarization (p),
and absorption (a) potentials. However, since the molecular
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polarization is not necessarily equal to the sum of atomic
polarizations, we propose to build the total diatomic potential
V (r) of atoms A and A′, with two displaced atomic potentials
V sea

A (r ± R/2) without polarisation (Vp crossed in Eq. (13))
derived from their atomic density distributions ρ(r ± R/2),
and a total molecular polarization centered on the internuclear
midpoint M:

V sea
A (r) = Vs(r) + Vex(r) + ����Vp + iVabs(r), (13)

V (r) = V sea
A

(∣∣∣∣r − R
2

∣∣∣∣
)

+ V sea
A′

(∣∣∣∣r + R
2

∣∣∣∣
)

+ Vp(r). (14)

As we will see later in Sec. IV D, it will be very useful to
isolate the isotropic term in the molecular potential through
a Legendre polynomial expansion in the cosine of χ (see
Fig. 1), the angle between r and R:

V (r) =V0(r) +
∞∑

l=1

Vl (r)Pl (cos χ ), (15)

V0(r) ≡ V sea
A0 (r) + V sea

A′0 (r) + Vp(r). (16)

For simplicity, we will only consider the explicit expression
for V0. The higher-order terms will be implicitly treated via the
independent atom approximation seen below. The spherical
averages of the decentered atomic potentials V sea

A0 and V sea
A′0

are calculated as follows. For the static part, the isotropic
component of a decentered Yukawa potential can be obtained
from the first term of its addition theorem [56, p. 107]:

Z

2

∫ +1

−1

exp(−λ|r ± R/2|)
|r ± R/2| dξ = Z

sinh(λr<)

λr<

exp(−λr>)

r>

.

(17)

The integral in (17) operates on ξ = cos χ and r< (r>) corre-
spond to the lesser (greater) among r and R/2.

Unfortunately, the exchange and absorption potentials V ea

do not lend themselves to a similarly straightforward ex-
pression for their spherically symmetric term. The averaging
ought to be made numerically as:

V ea
0 (r) = 1

2

∫ 1

−1

⎡
⎣V ea

A

⎛
⎝
√

r2 + R2

4
− rRξ

⎞
⎠

+ V ea
A′

⎛
⎝
√

r2 + R2

4
+ rRξ

⎞
⎠
⎤
⎦dξ . (18)

Nevertheless, we can first attempt to approximate V ea
0 by

assuming that the nonlinear density-dependent part of the
exchange and absorption potentials is sufficiently small so
that their spherical average can be matched to that of the
molecular density ρ0. The error committed thus at small radii
was checked to lie within 15% and becomes negligible for
r � R/2. At intermediate energies, the exchange and absorp-
tion terms are of minor importance compared to the static
potential and the resulting DCS should not be significantly
affected. In the results section, we assess the validity and

TABLE II. Molecular parameters: R: internuclear separation
[69], Table 2.1; α0: static dipole polarizability [69], Table 4.6 [for
Eq. (9)]; Eion: ionization energy [69], Table 3.3 [for Eq. (10)]; Eth:
threshold (electronic) excitation energy [70] [for Eq. (11)]. For O2

we distinguish the first optically allowed state (from the first valence
state in brackets), as discussed below.

H2 N2 O2 CO NO

R (a0) 1.4011 2.0743 2.281 2.1322 2.1746
α0 (a3

0) 5.426 11.74 10.67 13.15 11.47
Eion (eV) 15.426 15.581 12.07 14.014 9.264
Eth (eV) 6.9 6.17 7 6.006 5.48

(0.977)

limitations of this additional simplification. The approximate
expression for V0 (16) now becomes:

V0(r) ≈ Vs0(r) − πρ0(r)

E − Vs0(r)
− α0

2
(
r2 + r2

c

)2

− i
vloc

2
ρ0(r)σb(kF (ρ0(r)), E ); (19)

Vs0(r) = −
∑
A,A′

Z
NY∑
i=1

γi
sinh(λir<)

λir<

exp(−λir>)

r>

, (20)

ρ0(r) =
∑
A,A′

Z

4π

NY∑
i=1

γi

λ2
i

sinh(λir<)

λir<

exp(−λir>)

r>

. (21)

For homonuclear molecules, A is simply A′ and their sum
in (20)–(21) is replaced by a factor 2. The values of the various
molecular parameters used in the potentials are regrouped in
Table II. In the rest of the paper, the atomic potential V sea

A will
be written as VA implying that static, exchange and absorp-
tion contributions are all included. Ultimately, this spherical
decomposition of the potential will enable us to perform a
simple partial-wave expansion (Sec. IV C) with V0(r), and use
it as input to the IAM (Sec. IV B).

IV. APPROXIMATIONS

A. Potential harmonic expansion

To construct a DCS from the Legendre expansion of the
potential in (15), it is most instructive to decompose it in
the first Born approximation, which for a rotational excitation
from degenerate states J0 to J combines (4) with (5) to yield
[40, p. 119, Eq.(26)]:

dσ

d� J←J0

=
∞∑

l=0

2J + 1

(2l + 1)2
〈JJ000|l0〉2

∣∣∣∣−2
∫

r2 jl (qr)Vl (r)dr

∣∣∣∣
2

,

(22)

where we introduced the Clebsch-Gordan coefficient
〈JJ000|l0〉. The spherical Bessel function of order l , jl (qr),
depends on the norm of the electron momentum change
vector: q = k − k0 leading to q = 2k sin(θ/2) when the
energy loss is neglected.

Except for H2, the experimental energy resolution of DCS
measurements [57] does not allow us to discern rotational
excitation levels. Therefore in practice (even for H2 un-
less specified), the DCS ought to be summed over the final
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rotational excitation states J , which gives the interesting prop-
erty of being independent from the initial state J0 (in the first
Born approximation with k � k0):

∞∑
J=0

2J + 1

(2l + 1)
|〈JJ000|l0〉|2 = 1, (23)

dσ

d�
=

∞∑
l=0

1

2l + 1

∣∣∣∣−2
∫

r2 jl (qr)Vl (r)dr

∣∣∣∣
2

. (24)

We can designate each of the terms of (24) inside the mod-
ulus brackets as a partial scattering Born amplitude [58] f̃l ,
associated with the potential term Vl of harmonic order l:

f̃l ≡ −2
∫

r2 jl (qr)Vl (r)dr. (25)

Additionally, if all Vl emerge exclusively from the decom-
position of a decentered isotropic potential; as VA(|r ± R/2|)
in (19), we can establish a link [see the derivation of (A7) in
Appendix A] to the scattering amplitude f̃A of VA:

f̃Al = (∓1)l (2l + 1) jl (qR/2) f̃A. (26)

Furthermore, the simple expressions for the static (6) and
polarization (9) potentials lead to analytical results for f̃s and
f̃ p given in Appendix B. The use of more accurate scattering
amplitudes in (26) will naturally lead to the IAM introduced
below (as demonstrated in Appendix A) and will enable to
ward off the limitations imposed by the first Born approxima-
tion.

B. Independent atom model

To take advantage of our multicentral potential in (14),
the expression (26) can be reinjected into (24) to perform the
infinite summation of partial amplitudes [throughout (A9) of
Appendix A]. The first Born DCS is then only composed of
individual contributions f̃A, f̃A′ , f̃M , from each of the isotropic
potentials centered at A, A′, and M. In our specific case, f̃M

is only due to polarization Vp. Nevertheless, we keep the
molecular notation M for an easier further generalization.

This result, exact for the first Born approximation, is equiv-
alent to the zeroth order of multiple scattering theory [59]
better known as the independent atom approximation [60
Chap. VIII, §3.1]. It can be derived more simply by adding
coherently in (27), this time, the exact scattering amplitudes
fA, fA′ , fM from each central potential and taking the square
modulus. In virtue of (2), the scattering amplitude fA produced
by a potential VA displaced at ±R/2 is simply modulated
by exp(∓iq · R/2). Rotational averaging is in this case per-
formed by a normalized angular integral over the nuclear
axis R̂.

dσIAM

d�
= 1

4π

∫ ∣∣ fAeiq·R/2 + fA′e−iq·R/2 + fM

∣∣2dR̂ ; (27)

= | fA|2 + | fA′ |2 + | fM |2 + 1

4π

∫
2Re

[
fA f ∗

A′eiq·R]
+ 2Re[ f ∗

M ( fAeiq·R/2 + fA′e−iq·R/2)]dR̂,

= | fA|2 + | fA′ |2 + | fM |2 + 2Re[ fA f ∗
A′]

sin(qR)

q · R

+ 2Re[ f ∗
M ( fA + fA′ )]

sin(qR/2)

qR/2
. (28)

To obtain more accurate scattering amplitudes for (28) than
those of the first Born approximation, we apply the method of
partial waves.

C. Partial wave expansion

For a central potential, Schrödinger’s equation (1) can
be projected into the eigenset of spherical harmonics for
the impacting electron’s orbital angular momentum as
eigenvalues and solved independently for each order �. Since
central potentials conserve the orbital momentum of the
projectile, the DCS obtained applies only to pure elastic
scattering, the information of which is contained within the
phase shift [60, Chap. 2] δ� for each radial wave function. The
latter can be extracted from the asymptotic value (r → ∞)
of the variable phase shift [61] δ�(r), which is a solution of a
first-order differential equation:

dδ�(r)

dr
= −2V (r)kr2[cos(δ�(r)) j�(kr) − sin(δ�(r))y�(kr)]2,

(29a)

δ�(0) = 0. (29b)

The spherical Bessel functions of the first j� and second y�

kind are solutions to the radial free-wave equation (1) with
V ≡ 0.

The behavior of j�(kr) ∼ (kr)�/(2� + 1)!! for kr → 0
lessens the short-ranged influence of the potential as � in-
creases, which in turn shrinks the asymptotic value reached
by δ�. Assuming δ� � 0 ⇒ sin δ� � 0 and cos δ� � 1 in the
right-hand side (RHS) of (29a) reduces to a simple integral
[60, V§2.12 and II§2.27]:

δ̃� = −2k
∫ ∞

0
V (r) j2

� (kr)r2dr. (30)

For high values of �, we can thus expect lim
�→∞

δ̃� = δ� and

determine a Lδ beyond which δ� is assigned the value of δ̃�. In
our case, for energies below 100 eV Lδ varied between 72 and
86 depending on the molecule. Those values decreased with
higher energies. The formulas used for computing δ̃� for Vs

and Vp are given in Appendix B.
The (elastic) scattering amplitude f (cos θ ) can then be

reconstructed from those individual phase shifts δ� through
a series of Legendre polynomials P�:

f (cos θ ) = 1

2ik

∞∑
�=0

(2� + 1)[exp(i2δ�) − 1]P�(cos θ ). (31)

The equivalent first Born amplitude of the central (atomic or
averaged molecular) potential is given as a linear combination
[60, V§2, p.89] of δ̃�, therefore referred to as Born phase
shifts:

f̃ ≡ f̃ (cos θ ) = 1

2ik

∞∑
�=0

(2� + 1)2iδ̃�P�(cos θ ). (32)

In light of the convergence lim
�→∞

δ̃� = δ�, one can truncate

the infinite sum of (31) up to L terms and include the remain-
der through a formula known as the Born closure [23,28] for
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FIG. 2. Isotropic potentials V0 of H2, N2, and O2 from the simple model presented above for an incident electron of 50 eV. Solid brown:
Static Yukawa (20), dotted green (· · · ): Exchange (8), dashed purple (- -): Polarization Buckingham (9), dash-dot gray (− · −): Absorption
quasifree (11). For O2 we show how this absorption potential differs for Eth = 0.977 eV and 7 eV.

the scattering amplitude:

f̂ (cos θ ) = f̃ + 1

2ik

L∑
�=0

(2� + 1)(exp(i2δ�) − 1 − 2iδ̃�).

(33)

Here, f stands for either fA, fA′ , f0, which in our model are
all calculated by (31) with V (r) ≡ VA,VA′ ,V0(r) in (29a), and
then closed through (33). The upper partial bound L is cho-
sen such that δ� < 10−6 : ∀� > L and varies according to the
energy taken by the electron. The analytical expressions for
f̃ from the (dominant) static and polarization potentials are
given in Appendix B.

D. Combined model

Alone, the first Born approximation and the IAM are
not expected to yield good results at lower energies. The
equations (30) and (32) from the previous section give an
indication of the errors committed in the first case. In the
second case, (28) should not hold well when the separate
potentials VA,VA′ ,VM overlap each other non-negligibly. This
is certainly the case for the polarization potential, which is of
long range (cf. Fig. 2).

Nevertheless, those two approximations simplify signifi-
cantly the treatment of electron-molecule scattering. In order
to palliate their flaws, our approach consists of three steps.

(i) Use exact partial-wave amplitudes fl in (26) instead of
first Born calculated f̃l

(ii) Isolate and calculate the molecular scattering ampli-
tude f0 from the spherically averaged molecular potential V0

in (15), which includes the polarization potential Vp (also
labeled as VM in the IAM).

(iii) Subtract the zeroth-order interference term in the
IAM and substitute it by the molecular amplitude f0.

The first step is analogous to the IAM when one replaces
f̃ by f in (A8) to conduce to (28). The second step enables
an exact treatment of the interferences arising between the
polarization and the first (isotropic) spherical harmonic of
the separated atoms. The third step is equivalent to execut-

ing the summation (A9) on spherical Bessel functions from
l = 1 to ∞. This procedure, detailed in the Appendix A, leads
to our simple model (A10):

1

C

dσSimple

d�
= | f0|2 + | fA|2 + | fA′ |2 + 2Re[ fA f ∗

A′]
sin(qR)

qR

− j0
(qR

2

)2

| fA + fA′ |2. (34)

Comparing with (28), we see that | f0|2 now effectively in-
corporates high-order interferences between the middle term
fM and the isotropic component fA0, fA′0 of the two atoms. We
show below (top row of Fig. 3) that this procedure enhances
the validity of the IAM at lower energies. Notwithstanding,
we ought to keep in mind that higher-order interference terms
between isotropic and anisotropic terms remain untreated, for
(26) might not apply well to partial-wave amplitudes f at
lower energies. The forthcoming results section should eluci-
date this limitation. As the first Born approximation becomes
increasingly more valid at higher energies, the simple ex-
pression (34) converges toward the IAM (see Fig. 6, bottom
panel at 400 eV). This property emerges from the equivalence
of (A8) and (A10), and from the linearity of the scattering
amplitude (25) with respect to the potentials.

Finally, it is well known that the IAM does not satisfy the
optical theorem [62, Eqs. (9)-(11)] for the integrated cross sec-
tion. For this reason, many attempts [63–65] of renormalizing
the DCS based on geometrical arguments were conducted. We
retain here the simplest model [65] in which the DCS [LHS of
Eq. (34)] is renormalized with a correction factor C:

C = 1 − σAσA′

σA + σA′

(
1

max(πR2, σA, σA′ )

)
(35)

The simplicity of the model presented above may be con-
fusing due to the many approximations taken. To offer a better
understanding of the ensuing limitations and their range of
validity, we implemented a more advanced potential with:

(i) static density and potential based on Cox and Bon-
ham’s [66] six-term Yukawa distribution;
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FIG. 3. Differential cross sections (in units of a2
0/sr) of H2, N2, and O2 at various energies. Theoretical calculations: thick blue: our

recommended model (see text); solid olive: our simple model represented by Eq. (34); light red: ELSEPA’s independent atom model; dashed
purple (–): advanced model described at the end of Sec. IV D. Experimental data: H2 - �: Srivastava et al. [73]; �: Shyn and Sharp [74]; �:
Khakoo and Trajmar [75]; �: Muse et al. [76]; �: van Wingerden et al. [77]; N2 - �: Srivastava et al. [78]; �: Shyn and Carignan [79]; �:
DuBois and Rudd [80]; �: Herrmann et al. [81]; O2 - �: Shyn and Sharp [82].

(ii) modified semiclassical exchange potential from Gi-
anturco and Scialla [67, Eq. (18) ];

(iii) Buckingham polarization (9) with rc =√
( 3

2 Eion + 6E )/Eion for the cutoff radius as in Onda and
Truhlar [32, Eq. (6)] instead of (10);

(iv) Perdew and Zunger’s [68] untruncated correlation po-
tential for atoms as used in Salvat [54, Eq. (7)];

(v) Absorption based on Salvat’s [54] Appendix for binary
collision cross section as used in ELSEPA.

In order to avoid impairing the accuracy of this advanced
potential, we also precisely calculated the spherical average
of the nonstatic components following (18) to be used in the
molecular potential in (14). Using this last advanced model
as a basis for comparison, we would like to demonstrate that
depending on the molecule and energy considered, the use of
simpler models can still lead to satisfactory results.

V. RESULTS

The simple model we presented earlier (34) is compared to
ELSEPA’s [15] independent atom model and contrasted with
the advanced model that involves more accurate potentials.
For each molecule, we then show and recommend the minimal
changes to the simple model that enables us to preserve the
level of accuracy of the advanced model.

The effect of each molecular parameter, whose value is
given in Table II, can be appreciated by looking at the po-

tentials for each molecule in Fig. 2. The peak observed for the
static and exchange potentials is located exactly at half the in-
ternuclear separation R/2. Inclusion of higher-order spherical
harmonics would reconstruct the singularity of the decen-
tered Yukawa potential. This peak is weakly pronounced for
hydrogen, denoting its relative spherical shape. The highest
polarizability α0 belongs to N2, raising the polarization dashed
curve at the origin. One can see that the sensitivity upon the
exact value of the average excitation energy Eexc is effectively
low. On the contrary, the absorption is rather sensitive on the
threshold energy Eth, and is overwhelmingly important for O2

due to its low-lying excited singlet state.
In Fig. 3, we present elastic differential cross-sections in

three different energy ranges for H2, N2, and O2 and compare
them with experimental data detailed in the figure’s caption.
One can observe how the agreement of each model depends
both on the molecule and the energy chosen.

A. H2

Hydrogen is by far the least aspherical molecule with a
separation radius of only 1.4 a0 as opposed to over 2 a0 for ni-
trogen and oxygen. As a consequence, the molecular spherical
average analysis yields accurate results even at energies as low
as 20 eV. On the other hand, with only two orbiting electrons,
local density approximations for the exchange, correlation and
absorption potentials do not apply well.

Nonetheless, it was shown [71] that the semiclassical
model for exchange fitted best an exact nonlocal treatment of
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the exchange. The correlation causes the short-range potential
to fall less sharply and induces the lump seen at small angle
scattering for the advanced model (dashed curve). Next, an
absorption potential based on a binary collision cross sec-
tion with molecular electrons modeled as a free electron gas,
such as the ones presented here, is not relevant for hydrogen.
Previous studies [42,72] on H2 using potential scattering ac-
counted for the static-exchange-polarization trio. There, the
polarization term treats rigorously the higher-order interac-
tions of the scattering electron with molecular electrons.

For purely illustrative purposes, the light red and purple
dashed curves on the left column of Fig. 3 show how the
unsuitable inclusion of correlation and absorption for H2 is,
respectively, characterized by an overestimation (lump) at
small angles and a minor underestimation at large angles.
The effect of absorption is reduced due to the relatively high
excitation threshold of H2 and low molecular electronic den-
sity. This underlines the dominance of the static potential at
nonsmall scattering angles.

Remarkably, our simple static-exchange-polarization po-
tential represented by the thick blue curve on Fig. 3 covers
well a wide range of energies, which we interpret as resulting
from the relative simplicity of the hydrogen molecule. Be-
cause the molecular contribution to the DCS prevails over the
IAM at intermediate energies, no correction factor was used
(C ≡ 1) in any of the DCS and CS for H2 on Figs. 3 and 4.
In this case, we recommend directly using our simple model

which is why the solid-olive curve for H2 is not visible on
Fig. 3.

B. N2

For nitrogen, we observe the typical dip (also present for
oxygen) around 20–40 eV at intermediate angles due to the
IAM interference term sin(qR)/qR passing through a min-
imum around qR �

3
2π that coincides with the cusp in the

atomic scattering amplitude around 90°for R � 2a0. This arti-
fact can be bypassed with the molecular scattering amplitude,
albeit with a slight overestimation instead. On the top middle
graph of Fig. 3, we compare four different models. The dashed
line represents the advanced model with an accurate treatment
of the spherical averaging.

Here we can best assess the error committed by the simpli-
fication taken in (19) by naively replacing ρ by ρ0. At higher
energies, this simplification is acquitted by two effects. First,
the exchange potential becomes effectively more linear as can
be seen in (8). Second, absorption does principally affect the
DCS at larger angles [23,54, §V]. By contrast, for higher
energies, the contribution of the molecular potential V0 is only
relevant at small angles. For this reason, above roughly 50 eV
this simplification becomes acceptable.

At lower energies, a close-coupled study [23,26] reveals
that the coupling between different partial waves becomes
important for the first orders. This implies that one has to
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include more spherical harmonics in the molecular potential
(15) and abandon the zero-order interference given by the
IAM.

Interestingly, the main difference at higher energies (mid-
dle and bottom rows in Fig. 3) between our advanced and
simple models builds up at small-angle scattering due to
a too weak polarization-correlation potential at small radii.
The inclusion of a more accurate potential [68 Appendix C]
straightens the forward scattering for N2 and O2 for the ad-
vanced model given by the dashed curve. Thus the blue curve
showing our recommendation just adds this correlation [54,
§A, Eq. (7)] potential to our simple model in (13).

C. O2

The most interesting discussion emerges from the results
for oxygen. Its first excited singlet state is not far above the
ground triplet state, leaving a very small electronic excitation
threshold at 0.977 eV. As a result, the quasifree absorption
potential in (11) is greatly overestimated and spoils low-order
phase shifts for � = 2..8, by inducing a considerable rotation
in the complex plane through their differential equation (29a).
The two drops around 40°and 100°of the simple model re-
sult from this excessive absorption. There are two ways to
amend this inaccuracy. As suggested by Blanco and García
[55, §II.C], one ought to take the first optically allowed exci-
tation state for Eth, which in the case of O2 lies at the foot of
the Schumann-Runge continuum [83,84, §3.8,§1] that is set
at 7 eV. Alternatively, the more accurate albeit cumbersome
potential model [54] used by ELSEPA presents a lower sensi-
tivity to the threshold energy and reproduces well the results
for Eth = 0.977 eV.

Furthermore, there is an ambiguity in the selection of lower
excitation threshold when representing the potential of an
atom within the molecule. As can be seen on Fig. 3, especially
for O2, the two absorption potentials (quasifree [35,55] of
Eqs. (11)–(12) and ELSEPA [54, §B.(12)]) do not yield equiv-
alent DCS at intermediate energies. The interpretation of the
minimal threshold depends on the model used. For the other
molecules, N2, CO, and NO, their lowest electronic state is not
isolated from higher excited states as for O2, which we sur-
mise is why it is not required, in those cases, to select a higher
electronic threshold Eth to be used in the quasifree model (11).

D. Integral and momentum-transfer cross sections

An overview of the performance of various models can
be better assessed by looking at their integrated (σ ) and
momentum-transfer (σm) cross sections in Fig. 4. The latter
are obtained from the DCS through an integration in the
angular solid space:

σ = 2π

∫ π

0

dσ

d�
(cos θ ) sin θdθ, (36)

σm = 2π

∫ π

0

dσ

d�
(cos θ )(1 − cos θ ) sin θdθ. (37)

The earlier analysis conducted upon the DCS in Fig. 3 is
restated in Fig. 4. For hydrogen, the simple model presented
performs best in generating elastic cross sections in the energy
range 10 eV–1 keV, due to its short internuclear separation.
ELSEPA’s results converge to our model beyond 100 eV for

FIG. 5. Differential cross sections applied to heterogeneous
molecules: CO and NO. Theoretical calculations: thick blue: our
recommended model (see text); solid olive: our simple model rep-
resented by Eq. (34); light red: ELSEPA’s independent atom model;
dashed purple (–): advanced model described at the end of Sec. IV D.
Experimental data: CO - �: Tanaka et al. [90]; NO - �: Mojarrabi et al.
[91].

the momentum transfer and beyond 2 keV for the integrated
cross section. The disagreement at small-angle scattering of
the advanced model seen on Fig. 3, left, is responsible for the
systematic bias in the CS on the top right graph of Fig. 4.
However, when switching to the momentum transfer, this dis-
crepancy is washed out through the (1 − cos θ ) factor in the
formula (37). For nitrogen and oxygen, the correction factor
C from (35) is essential for obtaining a good agreement with
the integrated DCS. Otherwise, the curves would present a
systematic overestimation similar to the one given by the IAM
with ELSEPA on the top row of Fig. 4.

An overall agreement is reached at higher energies beyond
200 eV. As expected, ELSEPA and our advanced model con-
verge since they rely upon a similar potential. However, a
shift in the momentum transfer persists on the bottom row
of Fig. 4. This denotes the fact that scattering at large angles
differs in our simple model. Again, this is induced by the
two different modeling approaches to the absorption potential.
Experimental data is lacking above 100 eV to help in settling
this issue.

E. NO and CO

Finally, the model can also be applied to heterogeneous
diatomic molecules, with selected examples shown in Fig. 5
for CO and NO. The conclusions are similar: the polariza-
tion is underestimated and needs to be supplemented with
the correlation potential from the advanced model, the cor-
rection factor C greatly reduces the systematic bias at lower
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energies, and the effect of | f0|2 in Eq. (34) introduces a slight
overestimation at intermediate angles (best seen for NO)
whereas ELSEPA’s results present an underestimation dip
around 100°. In addition, it is possible that CO and NO’s
permanent dipole [40,80,89] have a small contribution in the
forward scattering.

VI. DISCUSSION

We presented a methodology for computing electron elas-
tic scattering cross sections with diatomic molecules that
connects the independent atom model (IAM) valid at high
energies to the partial-wave shifts of a molecular potential
apt at lower energies. To connect those two approaches, we
borrowed the deconstruction of the IAM as a sum of first Born
amplitudes and proposed to replace the latter by the more
accurate amplitudes coming from the partial-wave analysis.

The resulting DCS palliate the shortcomings of the IAM
at lower energies by removing dips caused by an insufficient
description of higher interatomic interference terms [22]. The
agreement in shape can be considered satisfactory even down
to 30 eV, which we consider the validity range of our method.
Nevertheless, due to the violation of the optical theorem by
the IAM [62, Eq. (9)-(11)], our DCS at lower energies tend to
overestimate scattering over all angles and require a screening
correction factor [65] as defined by (35). Also, at below 30 eV,
our DCS gradually flattens the cusp observed experimentally
at intermediate angles.

Previous studies presented different ways [92,94] to treat
atomic-centered potentials and long-range molecular po-
tentials [93] through the IAM augmented with multiple
intra-molecular scattering corrections [59,95,96]. The analy-
sis revealed that higher-order terms become important [22,
§3] below 60 eV and the convergence is slow [62,97 Fig. 7,
pp. 1918-1919]. With the present methodology, one can sig-
nificantly incorporate the effects of intramolecular scattering
through a partial-wave analysis [yielding | f0|2 in Eq. (34)]
on the isotropic molecular potential V0. In Fig. 6, we com-
pare our model with the screened IAM model of Blanco and
García [29] and higher-order IAM of Hayashi and Kuchitsu
[59] as implemented by Jain and Tayal [93]. Also represented
are the separate contributions of the molecular isotropic term
| f0|2 from the remaining interatomic interferences terms of
Eqs. (34) or (A10). We see that while all models converge at
higher energies where the Born approximation becomes more
acceptable, the situation is different at lower energies.

Of particular interest is that the higher-order IAM (in
orange), through its corrections of single and double scat-
tering interference terms, gives an overall good agreement
without requiring any rescaling with a screening factor C as
defined by (35). Since the present model is a resummation
of the multiple IAM but limited to the zero-order interference,
further improvement could be sought by incorporating higher-
order interferences from multiple scattering into (34). Without
this extension, by using a separate treatment of the isotropic
molecular (V0) and the atomic (VA,VA′ ) potentials, our model
still brings an improvement on the screened IAM at lower
energies and simplifies the treatment of higher-order IAM.

Looking toward the low-energy limit, at least three limi-
tations were identified that invalidate the use of our simple

FIG. 6. Illustration of the present model (blue) compared with
the screened independent atom model [29] (dark red) and higher-
order multiple scattering IAM (orange). The dashed and dotted
curves show how the contribution of | f0|2 (- -) and 2| fA|2(1 +
j0(qR) − 2 j2

0 (qR/2)) (· · · ) differ at low (40 eV) and high (400 eV)
energies. Experimental data: N2 - �: Srivastava et al. [78]; �: Shyn
and Carignan [79]; O2 - �: Daimon et al. [98],;�: Iga et al. [99].

model below 30 eV. First, a correct averaging of the potential
harmonics is recommended: i.e., use (18) instead of (19). Sec-
ond, the absorption potential requires some revision. Either a
corrective factor should be used [54,100,101 Eq.(3), Eq.(12),
Eqs.(1)-(3)] or a different energy threshold considered [55,
§II.C]; otherwise a more elaborate model should be required.
Third, more advanced calculations (coupled channels [25] and
Schwinger variational [23, Eqs. (6)-(12)]), show in fact that
accurate results can be obtained when yet another version of
the absorption model [102, §3.2.3] is used, provided a com-
pletely different interpretation of the energy threshold Eth is
taken [52,103, §II.B]. This implies that the coupling between
different phase shifts due to the aspherical (multipole) com-
ponents of the molecular potential become important below
30 eV. Another limitation of our method may come from
the fact that we subtracted the zeroth interatomic interference
term j0(qR/2) in (34) from the IAM according to first Born
amplitudes f̃ that does not rigorously apply to partial-wave
amplitudes f . At high energies, this results in a slight overes-
timation of the present model at small scattering angles with
respect to the IAM as seen in Fig. 6, bottom. The theory of
multiple scattering shows that such overestimations can be
corrected through inclusion of higher-order interference terms
as conveyed by the orange curve on Fig. 6.

A notable exception is the case of H2, which was tested
down to our lowest limit value of 10 eV yielding reasonable
agreement without requiring screening correction. This sur-
prisingly good performance is due to the reduced internuclear
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separation distance, giving a prominent role to the isotropic
term of the molecular potential.

Regarding scattering at higher energies, since the molecule
is represented as two unperturbed individual atoms, the energy
threshold used in the quasifree absorption potential should
rather be based on the atomic excitation threshold to stay con-
sistent. The decomposition of our model enables one to use a
different energy threshold for the molecular isotropic potential
and the individual atomic potentials. This could potentially
improve the consistency of the IAM throughout a large energy
range and avoid to use corrective scaling factors as suggested
in Staszewska et al. [101, Eqs. (1)-(2)] or Raj and Kumar [100]
for O2 specifically.

In light of the good overall agreement obtained, we sug-
gest using our model’s DCS for ordinary diatomic molecules
down to 30 eV and for H2 to 15 eV. They can provide a
relatively simple way to build a database for predicting elastic
scattering at intermediate energies in Monte Carlo electron
collision simulations. For lower-energy scattering, the users
can either resort to very accurate albeit somewhat costly com-
putations [26,72,104] or to more semiempirical treatments
[29,105,106].

In principle, the present methodology could include more
realistic static potentials in the isotropic part arising from the
molecular bond. Also, generalization for linear polyatomic
molecules, notably CO2 would not require significant effort.
In this latter case, one would simply need to add the atomic
potential of the middle carbon atom VC into the averaged
potential V0 of Eq. (19), which would affect the calculated
f0 used in (34). In the future, this methodology could be
tried upon more complex molecules for which the IAM is not
satisfactory.

VII. SUMMARY AND CONCLUSIONS

Our calculations show that basic models relying upon a
minimalist description of the optical potential are suitable for
the generation of DCS databases for elastic scattering with di-
atomic molecules from intermediate to higher energies, where
the experimental data is either outdated, sparse, incomplete,
or controversial. The key points are summarized below.

(i) An averaged isotropic molecular potential can signifi-
cantly improve the accuracy of differential cross sections cal-
culated with the independent atom model.

(ii) A screening correction factor is essential to enhance
the agreement of integrated cross sections at intermediate
energies below 200 eV.

(iii) When using the quasifree semiempirical model for
absorption of Staszewska et al. [107], better agreement is
found for O2 provided the excitation threshold Eth is identified
with the first optically allowed transition.

(iv) Our model, without correlation and absorption, is par-
ticularly well suited to describe electron elastic scattering by
H2 due to its short internuclear separation.
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APPENDIX A: BORN APPROXIMATION APPLIED
TO DECENTERED POTENTIALS

To show how the IAM is in fact a summation over Born
partial amplitudes, let us first express a decentered central
(atomic) potential VA in terms of the Fourier transformed ṼA:

VA(r) = 1

(2π )3/2

∫
ṼA(k) exp(ik · r)d3k (A1)

VA

(
r ± R

2

)
= 1

(2π )3/2

∫
ṼA(k) exp(ik · (r ± R/2))d3k,

(A2)

VA

(
r ± R

2

)
= 4π

(2π )3/2

∫
ṼA(k)

∑
l

(∓1)l jl (kr) jl

(
kR

2

)

× (2l + 1)Pl (cos χ )k2dk. (A3)

In (A3) we used a product of two Rayleigh expansions [108,
§10.1.47]:

exp(−iq · r) =
∞∑

l=0

(2l + 1)(−i)l jl (qr)Pl ( cos(q̂r)), (A4)

(where q̂r expresses the angle between q and r), the addition
theorem [109, 14.30.9] and orthogonality [108, 14.30.8] of
Legendre polynomials through spherical harmonics, with χ

being the angle between r and R as in Fig. 1.
We recognize now through the Legendre polynomial

Pl (cos χ ), the spherical-harmonic component VAl of a decen-
tered central potential as in (15). Replacing (A3) into the
integral (25) for the Born scattered wave f̃Al , we obtain:

f̃Al ≡ −2
∫

r2 jl (qr)VAl (r)dr

= −2
∫

r2 jl (qr)
4π

(2π )3/2

×
∫

ṼA(k)(∓1)l jl (kr) jl (kR/2)(2l + 1)k2dkdr. (A5)

Applying the identity [109, 1.17.14]:

∫
r2 jl (kr) jl (qr)dr = π

2q2
[δ(k − q) + (−1)lδ(k + q)]

(A6)
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we can swap in (A5) the integrals on dk and dr. Then using
(A6) for the dr integration, we have:

f̃Al = −2
2π2

(2π )3/2
ṼA(q)(∓1)l jl (qR/2)(2l + 1)

= (∓1)l (2l + 1) jl (qR/2)
−2

4π

∫
VA(r)e−iq·rd3r

= (∓1)l (2l + 1) jl (qR/2) f̃A. (A7)

Replacing this into Born’s expression (24), in addition to the
polarization Vp (which appears only for the isotropic l = 0
term), the combination of IAM with Born’s approximation for
vibrationally elastic scattering gives:

dσ

d�
=

∞∑
l=0

1

2l + 1

∣∣∣∣∣ − 2
∫

r2 jl (qr)(VAl (r)

+ VA′l (r) + δl0Vp(r))dr

∣∣∣∣∣
2

=
∞∑

l=0

1

2l + 1

∣∣(2l + 1) jl (qR/2)( f̃A+(−1)l f̃A′ )+δl0 f̃M

∣∣2

=
∞∑

l=0

(2l + 1) j2
l

(
qR

2

)
| f̃A + (−1)l f̃A′ |2

+ 2Re[ f̃ ∗
M ( f̃A + f̃A′ )] j0

(
qR

2

)
+ | f̃M |2

= | f̃A|2 + | f̃A′ |2 + | f̃M |2 + 2Re[ f̃A f̃ ∗
A′]

sin(qR)

qR

+ 2Re[ f̃ ∗
M ( f̃A + f̃A′ )]

sin(qR/2)

qR/2
(A8)

The infinite summation on the product of spherical Bessel
functions comes from their addition theorem [108, §10.1.45,
p.440]:

∞∑
l=0

(2l + 1) j2
l

(
qR

2

)
(±1)l =

{
1

sin(qR)/qR ≡ j0(qR)
.

(A9)

The result obtained (A8) corresponds to the zero-order
expansion in the multiple scattering theory of Hayashi and
Kuchitsu [59, Eq. (15), 18&31]. Noting in fact that V0 ≡
VA0 + VA′0 + Vp as in (16), we can now group the terms in (A8)
differently and separate the l = 0 term:

dσ

d�
=

∣∣∣∣−2
∫

r2 j0(qr)V0(r)dr

∣∣∣∣
2

+
∞∑

l=1

1

2l + 1

∣∣∣∣−2
∫

r2 jl (qr)(VAl (r) + VA′l (r))dr

∣∣∣∣
2

= | f̃0|2 +
∞∑

l=1

(2l + 1) j2
l

(
qR

2

)
| f̃A + (−1)l f̃A′ |2

= | f̃0|2 − j2
0

(
qR

2

)
| f̃A + f̃A′ |2

+
(

| f̃A|2 + | f̃A′ |2 + 2Re[ f̃A f̃ ∗
A′ ]

sin(qR)

qR

)
. (A10)

We have now uncovered a formula that explicitly links
the IAM to a decomposition of anisotropic terms f̃l from
Born’s first-order approximation. In particular, we can relate
the first isotropic term | f̃0|2 in (A10) to the interferences of a
molecular term f̃M with atomic terms f̃A and f̃A′ in (A8) and
their first harmonic j0( qR

2 )2 interatomic interference.

APPENDIX B: ANALYTICAL BORN
AMPLITUDES AND PHASES

For the simple potentials presented: Yukawa static (6)
and Buckingham polarization (9), the first Born integrals
for the amplitude (4) and the phase-shifts (30) can be com-
puted analytically [110, see 6.623(1),6.612(3) for Yukawa and
6.565(3),6.541(1-2) for Buckingham]:

Static atomic:

f̃A = −2Z
∫ ∞

0
−

NY∑
i=1

γi
e−λir

r
j0(qr)r2dr =

NY∑
i=1

2Zγi

q2 + λ2
i

(B1)

δ̃A� = −2k
∫ ∞

0
−Z

NY∑
i=1

γi
e−λir

r
j2
� (kr)r2dr

= Z

k

NY∑
i=1

γiQ�

(
1 + λ2

i

2k2

)
(B2)

Polarization:

f̃B = −2
∫ ∞

0
− α0 j0(qr)r2

2(r2 + r2
c )2

dr = α0π

4rc
exp(−qrc) (B3)

δ̃B� = −2k
∫ ∞

0
− α0 j2

� (kr)r2

2(r2 + r2
c )2

dr

= α0π

2rc

(
I�+ 1

2
(krc)K ′

�+ 1
2
(krc) + 1

2krc

)
. (B4)

The functions introduced are the Legendre function [108,
Chap. 8] of the second kind Q�, the modified Bessel functions
[108, Chap. 9] of the first I�+ 1

2
and second K�+ 1

2
kind.

The static molecular terms arise from integrals (4) and (30)
with V taken as the static spherically averaged potential Vs0

(20). For the phase shift, however, the integral has to be partly
calculated by numerical quadrature. We give two variants in
(B6) based on the partial-wave order � and the magnitude of
λiR/2.

Static molecular:

f̃0 = ( f̃A + f̃A′ ) j0(qR/2) = ( f̃A + f̃A′ )
sin(qR/2)

qR/2
(B5)
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δ̃M� = −2k
∑
A,A′

(−Z )
NY∑
i=1

γi

(∫ R
2

0

e−λiR/2

R/2

sinh(λir)

λir
j2
� (kr)r2dr +

∫ ∞

R
2

e−λir

r

sinh(λiR/2)

λiR/2
j2
� (kr)r2dr

)

= 2k
∑
A,A′

Z
NY∑
i=1

γi

⎧⎨
⎩

sinh(λiR/2)
λiR/2

( ∫ R
2

0
sinh(λi (r− R

2 ))

sinh(λi
R
2 )

j2
� (kr)r2dr + 1

2 Q�

(
1 + λ2

i
2k2

))
; λiR/2 � 1, � � 1

1
λiR

( ∫ ∞
0 e−λi|r−R/2| j2

� (kr)r2dr − e−λiR/2

2 Q�

(
1 + λ2

i
2k2

))
; λiR/2 > 1, � � 1

. (B6)

The integrals over Vex and Vabs, would have to be computed by numerical quadrature.
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proved model of a complex optical potential for electron
elastic scattering, J. Electron Spectrosc. Relat. Phenom. 168,
40 (2008).

[102] G. Staszewska, P. Staszewski, and K. Żebrowski, Effec-
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