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Metallization in hydrogenlike systems under high pressure
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Almost a century ago, it was proposed that solid hydrogen could become metallic at sufficiently high pressure.
Five years back, scientists observed an insulator to metal transition in liquid deuterium experimentally, at around
300 GPa. The present work discusses and demonstrates the metal-like behavior in elemental hydrogen under
various plasma environments. At the onset, the Herzfeld criterion is invoked to examine such characteristics in
such plasmas under multimegabar pressure. However, a thorough study using this condition can only explain the
metal-like pattern in s-wave states under a shell-confined condition (the system is trapped inside two concentric
spheres with inner and outer radii Ra, Rb). Moreover, using this criterion, it is not possible to explain such
phenomena in (i) confined systems (involving all �) and (ii) for � �= 0 states in a shell-confined environment.
Here this criterion is modified to incorporate the environmental conditions (nuclear charge, screening constant,
boundary conditions) by utilizing several independent and generalized scaling concepts. The present condition
can interpret a metallic pattern in confined and shell-confined plasmas connecting � � 0 states. Further, a
different descriptor is proposed therefrom. The role of pressure in defining such a descriptor is also examined.
Pilot calculations are performed using Debye Hückel, exponential screen Coulomb potential, and ion-sphere
plasmas. The relevance of the shell-confined model in the context of plasmas is elaborated. Additionally, an
attempt is made to investigate the metallic character in H-like systems embedded in fullerene under high pressure.
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I. INTRODUCTION

Hydrogen is the most abundant material in the universe.
Being the lightest element, its behavioral pattern is strongly
affected by the nuclear quantum mechanical effect. As a con-
sequence, several unique characteristics are observed in it. It
has massive quantum zero point energy. It forms one of the
strongest bonds (H−H) in chemistry. Further, as the simplest
element, it acts as a classical testing ground for physics,
chemistry, geosciences, and material science. At an ambient
condition, it can readily form compounds with almost every
element in the periodic table. It forms water with oxygen—the
main requirement of life to survive. At 180 GPa and 260 ◦K,
it combines with lanthanum to form the highest claimed tem-
perature superconductor LaH10 [1,2]. It has been found that
the Jovian planets, such as Jupiter, Saturn, etc., mainly consist
of highly condensed metallic hydrogen in a plasma state [3,4],
which is responsible for their extraordinary magnetic field [5].
In the near future, hydrogen fuel cells may become the main
source of energy for industrial and transportation purposes.

Materials under significantly high pressure undergo fas-
cinating changes in their structure, bonding, and properties
that have important implications for the fundamental science,
material, and technology [6,7]. In the first half of the 20th
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Century, the famous Irish physicist Bernal proposed that “all
substances go over under very high pressures into metal-
lic or valence lattice” [8]. Synthesis of metallic hydrogen
under extreme conditions will provide us with the lightest
metal on the earth. Most importantly, it was proposed that
at very high pressure, hydrogen might undergo a transition
from an insulator to a monatomic metal. Particularly at that
characteristic pressure, it possesses a unique density with a
negative energy, but much higher than that of its ordinary
form [8,9].

In 1968, it was proposed that metallic modification of
hydrogen may guide us to a high-temperature superconduc-
tor [10]. With an increase in external pressure, conductivity
increases and resistivity decreases [11]. An explicit theoret-
ical investigation elicits that at around 400 GPa and 0 ◦K,
hydrogen is entirely in a new state of matter. Moreover, de-
pending upon the applied magnetic field, such a state can
be superfluid and superconducting [12,13]. Thirty years ago,
the first claim about the metallization of hydrogen at around
200 GPa was made in [14,15]. In this context, the authors
used certain Raman spectroscopic observations to explain this
phenomenon. Later, with the improvement of experimental
techniques, it was found that such outcomes appeared due to
the instrumental noise. About 10 years ago, a new demand
surfaced that scientists have observed “liquid atomic metallic
hydrogen” at above 260 GPa [16]. They delineated that above
260 GPa, the Raman signal disappears and the resistivity of
the sample drops drastically. However, immediately after this
report, it was found that hydrogen exists in a mixed atomic
and molecular semiconducting solid phase (IV) at least up
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to 315 GPa at 300 ◦K [17]. Moreover, at lower temperature,
phase IV transforms to phase III [18]. Additionally, it was
also established that the Raman signal is lost due to a loss of
hydrogen. The sample resistance drops due to chamber col-
lapse [19]. However, these studies have provided the required
insight about the P − T condition to convert the molecular gas
into a monatomic metal. A new phase (V) of hydrogen has
been observed experimentally in room temperature under 325
GPa [20]. Recently, the insulator to metal transition in liquid
deuterium has been observed experimentally (at around 400
GPa and 1000 ◦K) using the shock-wave technology [21,22].
Thus it seems that at a high pressure regime, a plethora of
interesting and exciting properties are observed in hydrogen,
but the metallic state at low temperate remains elusive. In
the present attempt, we would like to investigate metal-like
properties in H-like ions and plasmas under high pressure
using the Herzfeld criterion of polarizability [23].

The simplest plasma condition is introduced by in-
voking the Debye-Hückel potential (DP). In the last two
decades, DP was investigated vigorously with the utmost
attention. For example, the effect of plasma screening on
the energy spectrum [24–27], virial and Hellmann-Feynman
theorem [28], two 4-proton transitions [29,30], transition
probabilities connecting electron-impact excitation [31–33],
inelastic electron-ion scattering [34,35], Fisher information,
Shannon entropy, statistical complexity [36], etc., have been
studied. Numerical values of the critical screening constant
λ(c) for ground and low-lying excited states were presented
in [37]. Recently, an empirical relation between λ

(c)
n,� and Z

was proposed in [38]. Spectroscopic properties, together with
multipole oscillator strength (OS) and static multipole polar-
izabilities, were evaluated [39–43] using various numerical
methods.

The exponential cosine screened Coulomb potential (EC-
SCP) exerts a stronger effect compared to DP. The existence
of the oscillatory part manifests in a combined screening and
wake effect around a slow-moving test charge in high plasma
number density (ne), low T plasma. The cosine term drives
the quantum force enacting on plasma electrons to predom-
inate over statistical pressure exerted by plasmas [44,45]. In
quantum plasma, λD depends on the wave number of the
electron. Its eigenvalue and eigenfunctions were studied using
various quantum-chemical methods [46–56]. The influence
of λD on the energy spectrum [26,27], photoionization cross
section [51,57], electron-impact excitation [33], etc., has been
probed as well. Similar to DP, an attempt was made to de-
termine the characteristic λD beyond which the bound states
cease to exist [38,58]. The laser-induced excitation on the con-
fined H atom (CHA) in ECSCP was reported in terms of laser
pulse, rc, λD using the Bernstein polynomial [59]. Variations
of f (1), α(1) against λD were reported in [45,48,49,55,56,60].
In ion-sphere plasmas (ISPs), plasmalike behavior is ob-
served within the ion sphere of radius R. Inside that
radius, plasma electrons are uniformly distributed [61,62].
The energy spectrum, spectroscopic properties such as
static polarizabilities, photoionization cross section, etc. of
ISPs have been investigated by using several theoretical
procedures [63–65].

In chemistry, the shell-confinement condition can be il-
lustrated by citing the examples of trapping of an atom

or molecule within the metal organic framework [66,67],
inside the fullerene cage, and zeolite cavity [68]. The sin-
tering effect gets minimized; as a consequence, the catalytic
activity and thermal stability of certain noble metals are
improved [67,69–72]. Further, such a condition amplifies
the photoluminescence character in nanocrystals by reducing
nonradiative Auger processes [66,73] and dispels defects in
polymer crystals [74,75], etc. Shell confinement plays a key
role in energy storage [76–78], therapeutics [79], and pollu-
tion control [80,81]. A recent theoretical study also reveals
that with increase in pressure, the (H2)n clusters trapped in-
side the endohedral cavity become dominantly atomic [82].
Therefore, it will be interesting to investigate the metal-
like behavior of hydrogen under such stressed chemical
environment.

In 1927, Herzfeld defined a criterion of metallization while
answering the question “when will an element show metallic
conductivity?” He suggested that under a stressed condition,
metallic behavior prevails, if dipole polarizability α(1) of the
system becomes greater than its volume (V ). In this context,
he also pointed out that this relation is valid for monatomic va-
por, nearly cubic (simple) solids, and monatomic liquids [23].
This was pursued to examine the metal-like character in the
1s state of a shell-confined H atom or H-like ions (SCHA).
Further, according to the Herzfeld criterion (HC), such phe-
nomena can only be observed in s waves (not in � �= 0 states)
involving SCHA [83]. Moreover, in confined H-like ions
(CHA), α(1) is always less than V . In this endeavor, our ob-
jective is threefold. First of all, we intend to apply the existing
HC for several hydrogenic plasmas such as DP, ECSCP, and
ISP. Later, we would like to remodel HC in terms of the
pressure of the system. This can be achieved by replacing V
with pressure in HC. In principle, this will provide us with
an immediate alternative to measure the metal-like pattern in.
atoms or plasmas under high pressure. It is a well known fact
that the metallic character in hydrogen is observed at very high
temperature and pressure. Therefore, the system is obviously
not in its ground state [2,21,22]. Moreover, at a given pressure,
V is the same for all elements (as it is chosen to be the
volume of the vessel). However, actually, both the pressure
and volume alter with the change in state as well as system. It
means that these two quantities depend on the nuclear charge
(Z), screening constant (λ), as well as quantum numbers n, �.
Therefore, we have to incorporate the environmental effect in
HC by invoking several scaling ideas. The present modified
form of HC incorporates the influence of all the parameters
present in the Hamiltonian. The utility and efficiency of this
expression is examined for CHA, SCHA, DP, ECSCP, and ISP.
Finally, on the basis of the HC, we have commented about the
metal-like character of the H atom and plasmas trapped inside
a fullerene moiety. This article is planned as follows: Sec. II
provides a detailed description of the formalism employed
in the present work. Section III offers a detailed discussion
of the results. Finally, we conclude with a few remarks in
Sec. IV.

II. THEORETICAL FORMALISM

The time-independent nonrelativistic radial Schrödinger
equation (SE) in the shell-confined condition is expressed as
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(in atomic units){
−1

2

d2

dr2
+ �(� + 1)

2r2
+ v(r)

+V0[1 − θ (r − Ra) + θ (r − Rb)]

}
ψn,�(r)

= En,� ψn,�(r), (1)

where v(r) is the potential under confinement. Our desired
situation can be envisaged by invoking the term V0[1 − θ (r −
Ra) + θ (r − Rb)], with V0 representing a large number that ap-
proaches ∞. The Heaviside theta functions, θ (r − Ra), θ (r −
Rb), become unity at r � Ra and r � Rb, and zero otherwise.
Also, f [r] = [1 − θ (r − Ra)] vanishes at r � Ra and 1 at
r < Ra. Besides this model, one can also make use of the
following to describe the situation:[

−1

2

d2

dr2
+ �(� + 1)

2r2
+ v(r) +

(Ra

r

)k

+
( r

Rb

)k
]
ψn,�(r)

= En,� ψn,�(r). (2)

At k → ∞, ( Ra
r )k approaches ∞ in the r � Ra region and

becomes zero at r > Ra. On the contrary, ( r
Rb

)k climbs up to
∞ at r � Rb, and zero otherwise. In essence, the potential
v(r) becomes effective in the range at Ra � r � Rb. It is note-
worthy to mention that at Ra = 0 and Rb = R, both of these
models reduce to a conventional hard confinement model. In
the present work, all numerical calculations are performed
using Eq. (1).

Another prototypical example of shell confinement is the
trapping of an atom or molecule inside a fullerene cavity
and zeolite cage or within a metal-organic framework. The
corresponding radial SE under high pressure is conveniently
expressed as [84–87][

−1

2

d2

dr2
+ �(� + 1)

2r2
+ v(r) + vc(r) + vR(r)

]
ψn,�(r)

= En,� ψn,�(r),

vc(r) = V1

1 + exp
[−( r−(R0+�)

γ

)] − V1

1 + exp
[−( r−R0

γ

)] . (3)

Here, vR(r) can be chosen as vR(r) = ( r
R )k or vR(r) =

V0θ (r − R).
In the above equation, R0 is the inner radius of the cavity

with thickness �, and V1 is the well depth with γ the smooth-
ing parameter. Further, one can also change the electronic
configuration by modulating V1 [87]. Under ambient pressure
(1 atm), the experimental values are V1 = 0.302 a.u., R0 = 5.8
a.u., � = 1.89 a.u., and γ = 0.1 a.u. [85,88,89]. However, in
the present case, we have assumed that these values remain
unaltered with a change in pressure.

The plasma potentials are expressed in the following gen-
eralized form [63]:

v(r) = −Z

r
(1 + br)e−λr cos(cλr), (4)

where b, c, λ are positive real numbers. Depending upon the
values of these two parameters, Eq. (4) modifies to three
undermentioned forms:

(1) b = λ = c = 0, the H-like ions: v(r) = − Z
r .

(2) b = c = 0, λ � 0, the Debye-Hückel potential [90]:

v(r) = − Z
r e−λ1r . The Debye radius is D = 1

λ1
=

√
kbTe

4πe2ne
. In

DP, the probability of finding plasma particles within the
Debye sphere is negligible. In the free condition, there arises
the plasma-tail effect due to the presence of the asymptotic
part in the plasma potential. With an increase in Te, the charge
cloud gets diffused, leading to an enhancement of this effect,
which declines with an increase in external pressure [38]. In
the confined condition, it is assumed that the charge cloud
remains inside the spherical enclosure.

(3) b = 0, c = 1, λ � 0, the ECSCP [91]: v(r) =
− Z

r e−λ2r cos(λ2r). Here, D approaches the de Broglie
wavelength; as a consequence, the quantum effect appears and
λ2 is connected to the plasma frequency through λ2 = √

ωpe.
Further, a multiparticle cooperative interaction is enhanced
with an increase in ion density. The presence of an additional
cosine term provides a stronger screening effect compared to
DP.

Besides these, the ISP model is explained as [92]

vISP(r) =
{

− Z
r + ( Z−Ne

2R

)[
3 − (

r
R

)2]
0, r > R.

(5)

In this case, the ion is trapped inside a spherically symmetric
enclosure with radius R. Beyond R, the effect of the potential
vanishes. Such plasmas are experimentally designed in a lab-
oratory environment using a laser pulse. Now the radial SE
becomes[

−1

2

d2

dr2
+ �(� + 1)

2r2
+ vISP(r) + v0 θ (r − R)

]
ψn,�(r)

= En,� ψn,�(r). (6)

Systems having Ra = 0 and Rb = R will be referred to as
confined systems. For numerical purposes, we invoke the gen-
eralized pseudospectral (GPS) method to evaluate energies,
dipole oscillator strength, and polarizability. The utility and
efficiency of this method in both free and confined conditions
has been well documented in [93–100].

A. Shell-confined plasmas

High energy-density physics covers a broad range of plas-
mas from very hot to dense conditions. In this scenario,
there occurs a coupling between plasma electrons and im-
mersed atoms, leading to a change in electronic properties.
The composite influences of plasma free-electron density
(ne) and temperature (T ) play a crucial role in stabilizing
a bound state by controlling the strength of this coupling
represented through a coupling parameter (�) defined as be-
low [38,63,101],

� = r−
a

= ECoulomb

Ethermal
= Q2

aT
, (7)

where r− is the critical radius of a circular volume beyond
which no plasma electron can approach the atom [63], a =
( 3

4πne
)

1
3 is the interparticle spacing, called ion-sphere radius,

and Q denotes the charge of the ion. � << 1 signifies a
high T , low ne condition (weakly coupled), while, � � 1
represents a low T , high ne situation (strongly coupled). In
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a given plasma, the correlated many-particle interactions are
described by an average screening potential, incorporating the
collective effects due to the presence of a charged cloud [87].
In a dense plasma, the competing effects of ne and T are mod-
ulated through the Debye length, λD = ( T

4πQ2ne
)

1
2 . At high T

and low ne, λD possesses a higher value and, as a consequence,
offers a greater number of bound states. On the contrary, λD

decreases at low T and high ne, leading to a decrease in the
count of bound states. Further, the plasma-tail effect appears
in the picture as T rises.

In plasmas, the atom or ion is encompassed by
(+)ve/(−)ve mobile charges. The relative density of the sur-
rounding particles is measured through the radial distribution
function g(r). It is ubiquitous in plasmas and is expressed
as [63]

g(r) =
[
1 − Q

Te
φ(r)

]
. (8)

Here, Q is the charge and Te refers to plasma temperature;
φ(r) signifies the solution of the Poison-Boltzmann equation.
For DP and ECSCP, Eq. (8) leads to

g(r) =
[
1 − Q

Ter
e−λr

]
for DP,

g(r) =
[
1 − Q

Ter
e−λr cos λr

]
for ECSCP. (9)

Equation (9) suggests that in either of the plasmas at r → 0,
g(r) becomes (−)ve. This is an unphysical condition, as all
particles repel each other. In order to gain stability, it be-
comes a forbidden region for the particle. This no-go zone
is called ion sphere with radius a. Physically, g(r) → 0 at
r → a. This situation is appropriately explained by adopting
the shell-confined model, as it can efficiently explain this
limiting criterion. Further, by modulating Rb, we can meet
the condition g(r) → 1 at large r. Moreover, this change in
Rb also incorporates the temperature effect. The plasma-tail
effect [38] predominates with a rise in Rb. However, ISP is
beyond the scope of the shell-confined model because, in this
case, the central charged ion is trapped inside the pool of
charged particle within the ion sphere. Therefore, at the said
forbidden region, g(r) becomes finite.

B. Dipole polarizability and HC of metallization

The static dipole polarizability is expressed as

α
(1)
n� = α

(1)
n� (bound) + α

(1)
n� (continuum), (10)

where the first and second terms represent bound and contin-
uum contributions (the selection rule for the dipole transition
is �� = ±1). From perturbation theory consideration, these
may be expressed as [92,102]

α
(1)
n� (bound) =

∑
i

[
f (1)
n�→i(�−1)

(Ei(�−1) − En�)2
+ f (1)

n�→i(�+1)

(Ei(�+1)− En�)2

]
,

α
(1)
n� (continuum) = c

∫ |〈Rn�|r Ykq(r)|Rεp〉|2
(Eεp − En�)

dε. (11)

The analytical closed-form expression of the dipole oscillator
strength, f (1)

nl→n′�′ , can be written as

f (1)
nl→n′�′ = 2

3
(2�′ + 1)(En′�′ − En�) |〈r〉n′�′

n� |2
{
�′ 1 �

0 0 0

}2

.

(12)
The transition matrix element is evaluated using the following
radial integral:

〈r〉n′�′
nl =

∫ ∞

0
Rn′�′ (r)rRn�(r)r2dr. (13)

The dipole oscillator strength sum rule is stated as

S(1)
n� =

∑
j

f (1)
n�→ j�′ = 〈ψn�|ψn�〉 = 1, (14)

where the summation includes the contribution from both
bound and continuum states ( j), whereas �′ signifies both the
(� + 1) and (� − 1) states.

According to HC [23], the insulator to metallic conversion
occurs after attaining a threshold value of α

(1)
n� having the form

V � 4

3
πα

(1)
n� , χm = α

(1)
n�

V
� 3

4π
. (15)

Here, V signifies the closed volume under which an atom or
ion is trapped. This relation is valid for monatomic vapor,
nearly cubic (simple) solids, and monatomic liquids [23]. The

ratio α
(1)
n�

V = χm (subscript m signifies metal) can act as an
indicator of metallization. Thus, one can easily conclude that
χm � 3

4π
for metals and χm < 3

4π
for nonmetals. Therefore,

we define χm as a descriptor of the metallic character in an
atom or ion. This provides a lower bound of χm, while α

(1)
n�

is a state-dependent quantity, but χm is a universal descriptor.
This lower bound can be further modified to unity. Depending
upon the nature of confinement, the following situations may
arise:

(1) For a spherically confined atom, since V = 4
3πR3,

Eq. (15) gives

χm = α
(1)
n�

R3
� 1. (16)

(2) For a shell-confined atom, since V = 4
3π (R3

b − R3
a),

Eq. (15) can be recast to

χm = α
(1)
n�(

R3
b − R3

a

) � 1. (17)

Thus it appears that one can follow the metallic behavior
in confined atomic systems, in terms of χm becoming greater
than or equal to unity. This criterion was used to examine
the metallic character in atomic H and plasmas. It was re-
ported for s-wave states in a shell-confined H atom. But for
� �= 0 states, it is always less than unity [83,103]. Further,
for confined systems, χm never crosses the threshold mark.
But, some literature suggests that the metallic character could
be observed at extreme pressure, when the system is in an
excited state [2,21,22]. In this regard, we shall first try to
recast Eq. (15) in terms of pressure (Pn�). Second, it would
be useful to incorporate the environmental contributions by
envisaging the effect of Z , λ, Ra, Rb in χm.
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At the onset, we would like to replace V in Eq. (15) in
terms of Pn,�. The thermodynamic equation of state suggests
that under an adiabatic environment, Pn,� can be written as
Pn,� = −( ∂En,�

∂V ). In confined systems, it (a state-dependent
property) can be expressed in the following form [104,105]:

Pn,� = −
(

∂En,�

∂V

)
= −

(
∂En,�

∂R

)(
∂R

∂V

)
. (18)

Further, using Eqs. (16), one can write ∂V
∂R = 3V

R . Therefore,
the following situation can be envisaged:

3V Pn,� = −R

(
∂En,�

∂R

)
. (19)

Now replacing V in Eq. (15), one finally achieves the follow-
ing form:

Pn,�α
(1)
n� � − 3R

4π

(
∂En,�

∂R

)
. (20)

Let us define ζn,� = Pn,�α
(1)
n� . The above relation suggests that

in an atom, the metallic nature may be observed when ζn�

predominates over the corresponding right-hand side quantity
presented in Eqs. (20), respectively. It is worth mentioning
that in either atom, the right- and left-hand sides become state
dependent. An increase in R always leads to a decrease in Pn,�;
therefore, En,� declines with a reduction of Pn,�. As a conse-
quence, ∂En,�

∂R becomes negative. Hence, the right-hand side of
Eqs. (20) always remains positive. At a given λ, the expression
of Pn,� in Eq. (18) is valid for both plasmas. Unfortunately, the
analytical closed-form expressions of ( ∂En,�

∂R ) for DP, ECSCP,
etc. in both confined and shell-confined systems are not yet
known. In future works, we may engage into such relations.
However, we concentrate on modifying χm.

C. Scaling concept

In plasma potentials, the scaling concept has been dis-
cussed previously in [28,38,64,92,106]. However, so far the
scaling concept has not been extended to a shell-confined
quantum system, which we pursue here. Thus, starting from
an arbitrary set of Z, λ, Ra, Rb, one can derive four inde-
pendent scaling ideas. We attempt to connect all these ideas
into a single equation. Thus one can estimate a given desired
property for a series of Z, λ, Ra, Rb, related by the scaling
concepts. To proceed further, we have used Eq. (1) to derive
the required scaling relations. However, similar relations can
also be extracted by employing Eq. (2). To move forward, we
write Eq. (1) as{

− h̄

2m
∇2 + V (r, Z, λ, Ra, Rb)

+V0[1 − θ (r − Ra) + θ (r − Rb)]

}
ψn,�(r)

= En,� ψn,�(r). (21)

In the above, v(r, Z, λ, Ra, Rb) is the Coulombic potential,
where Z, λ both appear in the linear part. Now we derive
analytical relations among f (k)

n� , α
(k)
n� , En,� in terms of Z, λ, Ra,

and Rb. In this context, four independent and parallel scal-
ing concepts will be employed. Using atomic units, we have
h̄ = m = 1.

(1) Applying a transformation (r = Zr1), the Hamiltonian
can be modified as

H (Z; λ; Ra, Rb; r) ↔ H

(
1;

λ

Z
; ZRa, ZRb; r1

)
. (22)

Thus, the Z-containing part becomes free from it. By taking
that into account, the radial SE can be written as{

−1

2
∇2

1 + V

(
r1, 1,

λ

Z
, ZRa, ZRb

)

+Z2V0[1 − θ (r1 − ZRa) + θ (r1 − ZRb)]

}
ψn,�(r1)

= Z2En,�

(
1,

λ

Z
, ZRa, ZRb

)
ψn,�(r1). (23)

The ψn,�(r), En,�, f (k)
n� , and α

(k)
n,� of the initial and modified

Hamiltonians are found to be connected as

En,�(Z, λ, Ra, Rb) = Z2En,�

(
1,

λ

Z
, ZRa, ZRb

)
,

ψn,�(Z; λ; Ra, Rb; r) = 1

Z
3
2

ψn,�

(
1;

λ

Z
; ZRa; ZRb; r1

)
,

f (k)
n�

(Z, λ, Ra, Rb) = f (k)
n�

(
1, λ

Z , ZRa, ZRb
)

Z2(k−1)
,

α
(k)
n�

(Z, λ, Ra, Rb) = α
(k)
n�

(
1, λ

Z , ZRa, ZRb
)

Z2(k+1)
. (24)

Equation (24) clearly indicates that f (1)
nl remains unaffected

with Z scaling.
(2) Next, replacing r = r2

λ
, one can map the effective

Hamiltonian as

H (Z; λ; Ra, Rb; r) ↔ H
(Z

λ
; 1; λRa, λRb; r2

)
. (25)

In this occasion, the λ-containing part becomes independent.
The SE now becomes{

−1

2
∇2

2 + V
(

r2,
Z

λ
, 1, λRa, λRb

)

+ 1

λ2
V0[1 − θ (r2 − λRa) + θ (r2 − λRb)]

}
ψn,�(r2)

= λ2En,�

(Z

λ
, 1, λRa, λRb

)
ψn,�(r2). (26)

The quantities from the initial and modified Hamiltonians are
seen to be related as

En,�(Z, λ, Ra, Rb) = λ2En,�

(Z

λ
, 1, λRa, λRb

)
,

ψn,�(Z; λ; Ra, Rb; r) = λ
3
2 ψn,�

(Z

λ
; 1; λRa; λRb; r2

)
,

f (k)
n�

(Z, λ, Ra, Rb) = f (k)
n�

(
Z
λ
, 1, λRa, λRb

)
λ2(k−1)

,

α
(k)
n�

(Z, λ, Ra, Rb) = α
(k)
n�

(
Z
λ
, 1, λRa, λRb

)
λ2(k+1)

. (27)
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As usual, f (1)
nl remains unchanged with λ scaling.

(3) Substituting r = Rar3, one can write the Hamiltonian in
the form below,

H (Z; λ; Ra, Rb; r) ↔ H

(
ZRa; λRa; 1;

[
Rb

Ra

]
; r3

)
. (28)

Hence Ra is fixed at 1. Therefore, the SE converts to the given
form,

− 1

2
∇2

3ψn,�(r3) + V
(

r3, ZRa, λRa, 1,
[Rb

Ra

])
ψn,�(r3)

+ R2
aV0[1 − θ (r3 − 1)]ψn,�(r3)

+ R2
aV0

{
θ
(

r3 −
[Rb

Ra

])}
ψn,�(r3)

= R2
aEn,�

(
ZRa, λRa, 1,

[Rb

Ra

])
ψn,�(r3). (29)

Thus, ψn,�(r), En,�, f (k)
n� , and α

(k)
n,� of the initial and modified

Hamiltonians are connected as

En,�(Z, λ, Ra, Rb) = R2
aEn,�

(
ZRa, λRa, 1,

[Rb

Ra

])
,

ψn,�(Z; λ; Ra, Rb; r) = 1

R
3
2
a

ψn,�

(
ZRa; λRa, 1,

[Rb

Ra

]
; r3

)
,

f (k)
n�

(Z, λ, Ra, Rb) = f (k)
n�

(
ZRa, λRa, 1,

[ Rb
Ra

])
R2(k−1)

a

,

α
(k)
n� (Z, λ, Ra, Rb) = α

(k)
n�

(
ZRa, λRa, 1,

[ Rb
Ra

])
R2(k+1)

a

. (30)

Equation (30) suggests f (1)
nl remains invariant with Ra scaling.

(4) Replacing r = Rbr4, one can transform the Hamiltonian
in the form given below,

H (Z; λ; Ra, Rb; r) ↔ H
(

ZRb; λRb;
[Ra

Rb

]
, 1; r4

)
. (31)

Thus, Rb is fixed at 1. Further, we get ( Ra
Rb

) < 1. The SE now
transforms to the form given below,

− 1

2
∇2

4ψn,�(r4) + V
(

r4, ZRb, λRb,
[Ra

Rb

]
, 1

)
ψn,�(r4)

+ R2
bV0[θ (r4 − 1)]ψn,�(r4)

+ R2
bV0

{
1 − θ

(
r4 −

[Ra

Rb

])}
ψn,�(r4)

= R2
bEn,�

(
ZRb, λRb,

[Ra

Rb

]
, 1

)
ψn,�(r4). (32)

The desired quantities in the initial and modified Hamiltonians
are related as

En,�(Z, λ, Ra, Rb) = R2
bEn,�

(
ZRb, λRb,

[
Ra

Rb

]
, 1

)
,

ψn,�(Z; λ; Ra, Rb; r) = 1

R
3
2
b

ψn,�

(
ZRb; λRb,

[
Ra

Rb

]
, 1; r4

)
,

f (k)
n� ([Z, λ, Ra, Rb) = f (k)

n�

(
ZRb, λRb,

[Ra
Rb

]
, 1

)
R2(k−1)

b

,

α
(k)
n� (Z, λ, Ra, Rb) = α

(k)
n�

(
ZRb, λRb,

[Ra
Rb

]
, 1

)
R2(k+1)

b

. (33)

Equation (33) suggests that f (1)
nl remains unaltered with Rb

scaling.
Thus, as can be seen, we have converted the initial

Hamiltonian, given by Eq. (1), into four independent scaled
Hamiltonians, viz., Eqs. (23), (26), (29), and (32). Now com-
bining Eqs. (24), (27), (30), and (33), one can write the unified
equation for En,�,

En,�(Z, λ, Ra, Rb) = Z2En,�

(
1,

λ

Z
, ZRa, ZRb

)

= λ2En,�

(Z

λ
, 1, λRa, λRb

)

= R2
aEn,�

(
ZRa, λRa, 1,

[Rb

Ra

])

= R2
bEn,�

(
ZRb, λRb,

[Ra

Rb

]
, 1

)
, (34)

f (k)
n� (Z, λ, Ra, Rb) = f (k)

n�

(
1, λ

Z , ZRa, ZRb
)

Z2(k−1)

= f (k)
n�

(
Z
λ
, 1, λRa, λRb

)
λ2(k−1)

= f (k)
n�

(
ZRa, λRa, 1,

[ Rb
Ra

])
R2(k−1)

a

= f (k)
n�

(
ZRb, λRb,

[Ra
Rb

]
, 1

)
R2(k−1)

b

, (35)

α
(k)
n� (Z, λ, Ra, Rb) = α

(k)
n�

(
1, λ

Z , ZRa, ZRb
)

Z2(k+1)

= α
(k)
n�

(
Z
λ
, 1, λRa, λRb

)
λ2(k+1)

= α
(k)
n�

(
ZRa, λRa, 1,

[ Rb
Ra

])
R2(k+1)

a

= α
(k)
n�

(
ZRb, λRb,

[Ra
Rb

]
, 1

)
R2(k+1)

b

. (36)

Figure 1 now pictorially represents the interconversion
framework. It indicates that performing the calculation at a
definite set of (Z, λ, Ra, Rb), one can estimate the properties
of other sets of Z, λ, Ra, Rb (connected by scaling) without
solving the SE. These are derived for any four-parameter
potentials. In DP and ECSCP, λ becomes λ1, λ2, respectively.

D. Descriptor of metallization

The volume of a quantum system is entirely controlled by
its state as well as environment. But here V is a function
of R only. As a consequence, Eqs. (15) to (17) do not com-
ment about the influence of Z , λ, and the boundary condition
(Ra, Rb) on χm. Therefore, it is necessary to introduce the
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FIG. 1. Schematic diagram to describe the interconversion
among five Hamiltonians through scaling transformation. See text
for details.

effect of surrounding by assimilating all these parameters in
the expression of χ . In the future, this modification can be
treated as an environmental correction on it. Before going into
the detailed derivation, it should be kept in mind that HC is
applicable for all monatomic vapors. Therefore, χm obtained
from all four Hamiltonians discussed in Sec. II C and Fig. 1
must be greater than or equal to unity.

Now invoking Eq. (24) and putting k = 1, one obtains

α
(1)
n� (Z, λ, Ra, Rb) = α

(1)
n�

(
1, λ

Z , ZRa, ZRb
)

Z4
,

α
(1)
n� (Z, λ, Ra, Rb)

(R3
b − R3

a)
= α

(1)
n�

(
1, λ

Z , ZRa, ZRb
)

Z4(R3
b − R3

a)
,

χm(Z, λ, Ra, Rb) = χm(1, λ
Z , ZRa, ZRb)

Z
,

Z χm(Z, λ, Ra, Rb) = χm

(
1,

λ

Z
, ZRa, ZRb

)
. (37)

Now, recalling the condition of metallization given in
Eq. (15), one may write χm(1, λ

Z , ZRa, ZRb) � 1.
Next, substituting k = 1 in Eq. (27), we get

α
(1)
n� (Z, λ, Ra, Rb) = α

(1)
n�

(
Z
λ
, 1, λRa, λRb

)
λ4

,

α
(1)
n� (Z, λ, Ra, Rb)

(R3
b − R3

a)
= α

(1)
n�

(
Z
λ
, 1, λRa, λRb

)
λ4(R3

b − R3
a)

,

χm(Z, λ, Ra, Rb) = χm
(

Z
λ
, 1, λRa, λRb

)
Z

,

λ χm(Z, λ, Ra, Rb) = χm

(Z

λ
, 1, λRa, λRb

)
. (38)

Now let us mention the condition discussed in Eq. (15) as
χm( Z

λ
, 1, λRa, λRb) � 1.

So, referring Eqs. (30) and choosing k = 1, we get

α
(1)
n� (Z, λ, Ra, Rb) = α

(1)
n�

(
ZRa, λRa, 1,

[ Rb
Ra

])
R4

a

,

α
(1)
n� (Z, λ, Ra, Rb)

(R3
b − R3

a)
= α

(1)
n�

(
ZRa, λRa, 1,

[ Rb
Ra

])
R4

a

(
R3

b
R3

a
− 1

) ,

χm(Z, λ, Ra, Rb) = χm
(
ZRa, λRa, 1,

[ Rb
Ra

])
Ra

,

Ra χm(Z, λ, Ra, Rb) = χm

(
ZRa, λRa, 1,

[Rb

Ra

])
, (39)

again using the condition available in Eq. (15) as
χm(ZRa, λRa, 1, [ Rb

Ra
]) � 1.

Finally, we use Eq. (33) and replace k = 1 to get the fol-
lowing equations:

α
(1)
n� (Z, λ, Ra, Rb) = α

(1)
n�

(
ZRb, λRb,

[Ra
Rb

]
, 1

)
R4

b

,

α
(1)
n� (Z, λ, Ra, Rb)

(R3
b − R3

a)
= α

(1)
n�

(
ZRb, λRb,

[Ra
Rb

]
, 1

)
R4

b

(
1 − R3

a

R3
b

) ,

χm(Z, λ, Ra, Rb) = χm
(
ZRb, λRb,

[Ra
Rb

]
, 1

)
Rb

,

Rb χm(Z, λ, Ra, Rb) = χm

(
ZRb, λRb,

[Ra

Rb

]
, 1

)
. (40)

Again, the same Eq. (15) takes the form
χm(ZRb, λRb, [ Ra

Rb
], 1) � 1.

When Ra = 0 and Rb = R [χm(ZR, λR, 1) � 1 from
Eq. (15)], we get the following from Eq. (33):

R χm(Z, λ, R) = χm(ZR, λR, 1). (41)

Our desired expression of modified HC can be derived in
two different ways, namely, by considering a product and sum
of the χm’s, which are denoted by χ th

m (P) and χ th
m (S) in the

following discussion. At first, we discuss χ th
m (P), then χ th

m (S)
and, finally, a comparative analysis between the two has been
provided.

(1) Product (P): multiplying Eqs. (37)–(40), one can write

(Z × λ × Ra × Rb) [χm(Z, λ, Ra, Rb)]4 = K, (42)

where

K = χm

(
1,

λ

Z
, ZRa, ZRb

)
× χm

(Z

λ
, 1, λRa, λRb

)

× χm

(
ZRa, λRa, 1,

[Rb

Ra

])
× χm

(
ZRb, λRb,

[Ra

Rb

]
, 1

)
.

(43)

Here, K � 1 because all four constituent terms are individu-
ally �1. Applying this condition in Eq. (43), one can easily
obtain

(Z × λ × Ra × Rb) × [χm(Z, λ, Ra, Rb)]4 � 1,

(Z × λ × Ra × Rb)
1
4 × χm(Z, λ, Ra, Rb) = χ ′

m � 1. (44)

Thus, we have arrived at a modified expression of χm in the
form of χ ′

m without changing the threshold value (which is
1). This form explains the influence of Z, λ and boundary
conditions on χm. Instead of using χ ′

m, one may further recast
this equation into the following form, where the right-hand
side becomes dependent on Z, λ, Ra, Rb:

χm(Z, λ, Ra, Rb) � χ th
m (P) = 1

(Z × λ × Ra × Rb)
1
4

. (45)
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Here, χ th
m (P) signifies the threshold value of χm(Z, λ, Ra, Rb),

beyond which metallization can be observed. This threshold
value changes from one system to another. This criterion may
be applied to ionic systems. Note that Ra = 0 and Rb = R, and
Eq. (45) modifies to

χm(Z, λ, R) �
(

1

Z × λ × R

) 1
3

. (46)

In the future, this expression will provide us with the required
path to determine the metallic character in confined systems.
Now using the outcome in Eqs. (45) and (46), one can con-
jecture that if we have n number of parameters (ai) in the
Hamiltonian, then we get the relation as given below,

χm
(∏

ai
)
� χ th

m (P) =
(

1∏n
i=1 ai

) 1
n

. (47)

Among these n parameters, if j of them become 1, then
Eq. (47) can be expressed as

χm
(∏

ai
)
� χ th

m (P) =
(

1∏(n− j)
i=1 ai

) 1
(n− j)

. (48)

The above relation provides a detailed illustration of the de-
scriptor χm. Interestingly, all these derived relations converge
to the conventional form, viz., Eq. (16), when χ th

m (P) (when
all ai’s are unity) becomes unity.

(2) Sum (S): Adding Eqs. (37)–(40), one can express

(Z + λ + Ra + Rb)χm(Z, λ, Ra, Rb) = K1, (49)

where

χm

(
1,

λ

Z
, ZRa, ZRb

)
+ χm

(Z

λ
, 1, λRa, λRb

)

+ χm

(
ZRa, λRa, 1,

[Rb

Ra

])

+ χm

(
ZRb, λRb,

[Ra

Rb

]
, 1

)
= K1. (50)

Now we can write K1 � 4, as all the components in Eq. (50)
are �1. Using this condition, one can rewrite Eq. (49) as

(Z + λ + Ra + Rb)χm(Z, λ, Ra, Rb) � 4,

χm(Z, λ, Ra, Rb) � χ th
m (S)

= 4

(Z + λ + Ra + Rb)
.

(51)

Thus, we have found another criterion for metallization in
the form of χ th

m (S). Further, when Ra = 0 and Rb = R, then
Eq. (51) modifies to

χm(Z, λ, R) � 3

(Z + λ + R)
. (52)

Applying the expressions in Eqs. (51) and (52), one can de-
duce that for a Hamiltonian with n number of parameters (ai),
χm becomes

χm
(∏

ai
)
� χ th

m (S) = n∑
i ai

. (53)

This equation indicates that χ th
m (S) depends on the nature of

the parameters as well as on their numbers. Moreover, one
may also derive a generalized expression of χ th

m (S) in the
following form:

χm
(∏

ai
)
� χ th

m (S) =
(

n∑
i ab

i

) 1
nb

, (54)

where b is a real positive constant. Like χ th
m (P), when all ai’s

are unity, all these relations nicely converge to Eq. (16).
From the foregoing discussion, we now present a compar-

ative analysis of χ th
m (P) and χ th

m (S) in the following:
(1) The numerator in χ th

m (P) is always 1. However, in
χ th

m (S), it is n. The numerator changes with a change in the
count of the parameters. Moreover, the first quantity changes
only with the environmental factors. On the contrary, the sec-
ond quantity alters with the parameters and their numbers. It
also depends on an arbitrary real constant b. This additional
dependence may lead to an overestimation of χ th

m (S).
(2) It is interesting to point out that when b is signifi-

cantly large and any one of the ai’s is greater than unity,
then ( n∑

i ab
i
) → 0. But it is not permissible as a criterion of

metallization. Therefore, a limiting value of b is required. This
special situation is not encountered in the case of χ th

m (P).
(3) In χ th

m (S), if any one of the parameters becomes sig-
nificantly small compared to the others, then its relative
contribution appears negligible. But this situation is also not
observed in χ th

m (P).
The above three points thus suggest χ th

m (P) to be rela-
tively better than χ th

m (S). From now onwards, throughout the
manuscript, we use the simplest forms of χ th

m (P) and χ th
m (S)

given in Eqs. (47) and (53), for illustrative purposes. These
two conditions will now be used to discuss the metal-like
character in confined and shell-confined (H-like ions, DP, EC-
SCP) systems and ISP. Note that as χ th

m (P), χ th
m (S) are two

different quantities, for a given set of parameters, they provide
separate values. In this situation, we choose the lower χ th

m as
the threshold for metallization. Demonstrative results will be
shown for the 1s, 2s, 2p, 3d states. Some other consequences
of Eqs. (47) and (53) are discussed in the Appendix.

III. RESULT AND DISCUSSION

A. Metallization in CHA and SCHA

At the onset, it should be mentioned that in CHA,
the analytical closed-form expression of Pn,� is avail-
able [104,105,107–109]. Therefore, it is useful to begin the
present demonstration by exploring ζn,�(= Pn,�V ). Follow-
ing [104,105,107–109], one can write

3Pn,�V = −R

(
dEn,�

dR

)

= En,� + Tn,� = 2En,� − Cn,� = 2Tn,� + Cn,�. (55)

Now, upon application of this relation, it modifies Eq. (20) as
follows:

Pn,�α
(1)
n� = ζn,� = ζm � 3

4π
(En� + Tn,�) = 3

4π
(2En� − Cn,�)

= 3

4π
(Tn� + Cn,�) = ζ th. (56)

032812-8



METALLIZATION IN HYDROGENLIKE SYSTEMS UNDER … PHYSICAL REVIEW A 106, 032812 (2022)

 0

 53

 106

 159

 0  12  24  36

(c)I 3d-state
χ m

R

Z=1

Z=2

Z=3

Z=4

 0

 1

 2

 3

 0  12  24  36

Z=1
Z=2
Z=3
Z=4

 0

 0.006

 0.012

 0.018

 0  8  16  24

(c)II 3d-state, CHA (Z=1)

ζ m
/ζ

th

R

ζm

ζth

 0

 0.005

 0.01

 0.015

 0  5  10  15

(c)III 3d-state, CHA (Z=2)

ζ m
/ζ

th

R

ζm

ζth

 0

 450

 900

 1350

 0  8  16  24

(b)I 2p-state

χ m

R

Z=1

Z=2

Z=3

Z=4

 0

 1

 2

 3

 0  8  16  24

Z=1

Z=2

Z=3

Z=4

 0

 0.01

 0.02

 0.03

 0  5  10  15

(b)II 2p-state, CHA (Z=1)

ζ m
/ ζ

th

R

ζm

ζth

 0

 0.015

 0.03

 0.045

 0  3  6  9

(b)III 2p-state, CHA (Z=2)

ζ m
/ζ

th

R

ζm

ζth

 0

 1

 2

 3

 0  2  4  6

metallic zone

non-metallic
zone

(a)I 1s-state, SCHA

χ m

Ra

Z=1, Rb=5

Z=1, Rb=10

Z=2, Rb=5

Z=2, Rb=10

 0

 0.2

 0.4

 0.6

 0  1.5  3  4.5

(a)II 1s-state, SCHA
(Z=1, Rb=5)

ζ m
/ζ

th

Ra

ζm

ζth

 0

 0.2

 0.4

 0.6

 0  3  6  9

(a)III 1s-state, SCHA
(Z=1, Rb=10)

ζ m
/ζ

th

Ra

ζm

ζth

FIG. 2. Variation of (I) χm (in a.u.) and (II)–(III) ζm/ζ th (in a.u.) for (a) 1s, (b) 2p, and (c) 3d states as a function of Ra [for the 1s state at
Rb = 5, 10 (in a.u.)] or R (in a.u.) (for 2p, 3d states). See text for details.

Thus, according to Eq. (56), the metallic character can be
observed when ζn,�(= ζm) becomes larger than the ζ th. Note
that a similar such relation in SCHA is not known. In this
endeavor, before going to probe the present condition, given
by Eq. (47), it is important to review some of the conclu-
sions of [83]. There, the major objective was to examine the
existence of a metallic character in SCHA using HC. Two
candid conclusions were reported: (i) in SCHA, the metal-
lic character was predicted at the � = 0 states, and (ii) in
CHA, no metallic pattern was observed. However, the cal-
culation was restricted up to Rb/R = 10 in SCHA and CHA.
In the present attempt, we have performed a thorough inves-
tigation by applying χm, ζm, ζ th in the 1s, 2s, 3s, 4s, 2p, 3d

states at Z = 1, 2, 3, 4. The calculated outcomes (metalliza-
tion involving the 1s, 2p, 3d states) are plotted in Fig. 2.
Here, the bottom (a) row represents the 1s state of SCHA
(Rb = 5, 10). The middle (b) and top (c) rows represent
the 2p, 3d states of CHA. Panels I illustrate the change of
χm, while panels II and III demonstrate the alteration of
ζm/ζ th as a function of Ra/R. The figures in panels (b)I and
(c)I are magnified in the inset plot to display the thresh-
old of metallization. The following main conclusions can be
drawn:

(1) χm, ζm both can explain the metallic pattern in CHA
and SCHA. Also, ζm complements the results obtained by
employing χm.
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TABLE I. α
(1)
n� , χm(n�) for 1s, 2s, 2p, 3d states in CHA and SCHA. Metallic states are highlighted in bold font. See text for details.

CHA

Z λ Ra Rb χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s) α

(1)
2p χm(2p) α

(1)
3d χm(3d )

1 0 0 1 1 1 0.028792 0.028792 0.004414 0.004414 0.0171513 0.0171513 0.00894345 0.0089434

1 0 0 5 1
5

1
3 3.422454 0.027379 −21.106573 −0.168853 18.0892462 0.144714 7.21196971 0.0576957

1 0 0 8 1
8

2
9 4.453964 0.008699 −450.541668 −0.879964 203.884365 0.3982116 59.2654093 0.1157527

1 0 0 10 1
10

2
11 4.496814 0.004497 −2086.463707 −2.086464 793.323127 0.7933231 171.836687 0.171837

1 0 0 12 1
12

2
9 4.499828 0.002604 −8329.942227 −4.820568 2919.43908 1.6894902 431.846554 0.249911

2 0 0 5
√

1
10

2
7 0.281051 0.002248 −130.403981 −1.043232 49.5826954 0.3966616 10.739793 0.085918

2 0 0 9
√

1
18

2
11 0.281250 0.000386 7.0637078 0.0096896 10.748798 0.0147445 285.246944 0.391285

2 0 0 12
√

1
24

1
7 0.281250 0.000163 7.4858069 0.0043320 10.993356 0.0063619 2632.57032 1.523502

SCHA

Z λ Ra Rb χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s) α

(1)
2p χm(2p) α

(1)
3d χm(3d )

1 0 1.5 2
√

1
3

2
3 6.201980 1.340968 6.144904 1.328628 0.000824 0.0001782 0.0008244 0.000178

1 0 3 8
√

1
24

1
4 527.1729790 1.086955 512.997468 1.057727 8.314061 0.0171424 8.4883946 0.017502

1 0 1 12 1
12

3
14 191.1721328 0.1106961 501.362811 0.290309 147.5111 0.0854147 277.05547 0.1604259

1 0 1 15 1
15

3
17 204.610181 0.0606432 1088.76830 0.322694 241.63929 0.071618 823.36412 0.244032

2 0 2 5
(

1
20

) 1
3 1

3 87.0959196 0.7444096 86.1225205 0.736090 1.0711982 0.0091555 1.091477 0.0093289

2 0 3 8
(

1
48

) 1
3 1

3 488.5711833 1.0073633 523.019593 1.078391 8.0246547 0.0165555 8.3249448 0.0171648

2 0 0.1 12
(

5
12

) 1
3 10

47 1.2280053 0.0007107 −9.119076 −0.005277 24.8620099 0.0143555 2135.8451 1.236022

2 0 0.5 12
(

1
12

) 1
3 6

29 12.9305981 0.0074835 217.2985067 0.125760 19.4197955 0.0112391 333.45412 0.192985

(2) CHA:
(a) In s-wave states, χm < 1 (always); further, ζm > ζ th

(never).
(b) In 2p, 3d states, the metallic character can be seen.

Both χm and ζ m support the existence of such pattern for the
� �= 0 states.

(c) In 2p and 3d states, the metallic region decreases with
an increase in Z . Additionally, the intersection point between
ζm and ζ th gets left shifted with Z .

(d) In 2p and 3d states, at a certain Z value, χm increases
with R to reach a maximum value and finally falls down below
1.

(3) SCHA:
(a) A metallic signature is observed in s-wave states. At a

given (Rb, Z), χm increases with a rise in Ra. There exists a
threshold Ra after which χm > 1. Similarly, at a given (Rb, Z),
both ζm and ζ th decrease with Ra. However, at a characteristic
Ra, ζm becomes greater than ζ th.

(b) For the 2p state, χm is always less than 1, and ζm never
exceeds ζ th.

(c) For the 3d state (Z = 1, 2) at a fixed Rb, χm > 1 at
some small value of Ra. On the contrary, with a rise in Ra,
it becomes less than 1. However, for the Z > 2 cases, such
phenomena of metallization are not seen.

Now the focus is to examine the conditions derived in
Eqs. (47) and (53). For CHA and SCHA, this extended
form is modified to χm � 1√

Z×R
, χm � ( 2

Z+R ) and χm �
1

(Z×Ra×Rb)
1
3

, χm � ( 3
Z+Ra+Rb

). In CHA, χ th
m (P) = 1√

Z×R
> 1

if R < 1
Z . Similarly, in SCHA, χ th

m (P) = 1

(Z×Ra×Rb)
1
3

> 1,

when RaRb < 1
Z . Table I delineates the numerical results of

χ th
m (P), χ th

m (S), χm, α
(1)
n,� in 1s, 2s, 2p, 3d states for CHA and

SCHA in the upper and lower sections. These are tabulated
for eight selected separate sets of Z, Ra, Rb (different for CHA
and SCHA). In some cases, the χ th

m (P) value is greater than
χ th

m (S), and vice versa. In metallic cases, χm is greater than
both thresholds. Similarly, in nonmetallic cases, it is less than
either of these quantities. Metallic patterns are marked with
bold font. A detailed analysis elicits several conclusions and
they are as follows:

(1) CHA:
(a) For 1s, 2s states, χm < χ th

m (always). Therefore, the
metallic character is not seen.

(b) For 2p, 3d states, the metallic characteristic is ob-
served. In the 2p state, χm > χ th

m at R ≈ 8 for Z = 1 and
R ≈ 5 for Z = 2. Further, in the 3d states, χm overcomes χ th

m
at R ≈ 10, 9 for Z = 1, 2, respectively. Thus, employing the
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TABLE II. α
(1)
n� , χm(n�) values for 1s, 2s, 2p, 3d states in CDP and SCDP. Metallic states are highlighted in bold font. See text for details.

CDP

Z λ1 Ra Rb χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s) α

(1)
2p χm(2p) α

(1)
3d χm(3d )

1 3 0 5
√

1
15

1
3 19.109231 0.152874 1.471052 0.011768 11.335210 0.0906817 5.3753898 0.0430031

1 3 0 10
√

1
30

3
14 327.30979 0.32731 42.08979 0.042098 172.381668 0.1723817 84.8148705 0.0848149

1 0.7 0 15
√

2
21

30
167 28.447601 0.00843 6070.83704 1.798766 −818.245723 −0.242443 500.162473 0.1481963

1 0.6 0 20
√

1
12

5
36 16.928366 0.002116 10968.4142 1.371052 181.315540 0.022664 1588.579581 0.1985724

1 3 0 20
√

1
60

1
8 5498.63355 0.68733 975.261462 0.121907 2631.30019 0.328913 1352.59487 0.169074

1 4 0 10
√

1
40

1
5 344.261325 0.34426 62.28041 0.062280 164.036308 0.164036 84.601556 0.084601

1 5 0 15
√

1
75

1
7 1799.15502 0.53308 383.92066 0.113754 803.431212 0.238054 427.800342 0.126756

2 4 0 15
(

1
120

) 1
3 1

7 1637.78292 0.48527 175.79271 0.052087 885.676827 0.262423 428.098198 0.126844

SCDP

Z λ1 Ra Rb χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s) α

(1)
2p χm(2p) α

(1)
3d χm(3d )

1 0.005 3 5
(

40
27

) 1
3 800

1801 165.909136 1.692950 161.858188 1.651614 0.211711 0.002160 0.212007 0.002163

1 0.005 5 10 4
1
3 800

3201 1969.388635 2.250729 1925.745173 2.200851 8.272785 0.009454 8.321984 0.009511

1 1 1.2 2
√

5
12

10
13 4.262406 0.679593 4.139491 0.659995 0.005424 0.000865 0.005431 0.000866

1 2 2 5
(

1
20

) 1
3 2

5 84.642595 0.723441 93.685705 0.800732 1.0902882 0.009319 1.096345 0.00937

2 1 1 15 1
15

4
19 1886.33083 0.559078 712.167126 0.211075 637.13395 0.188837 434.612171 0.128812

1 6 1 12
√

1
72

1
5 1017.16582 0.58898 500.704442 0.289927 221.729741 0.128391 167.059065 0.096733

2 5 1 10
(

1
100

) 1
3 2

9 522.112782 0.522635 278.578518 0.278857 98.425239 0.098524 78.177816 0.078257

2 1 1 20
√

1
40

1
6 6862.778876 0.857955 1697.30985 0.212190 2398.740394 0.299879 1411.938337 0.176514

3 4 2 15
(

1
360

) 1
4 1

6 2996.594701 0.889989 1819.141066 0.540285 420.065662 0.12476 363.565429 0.107979

4 0.5 2 10
(

1
40

) 1
4 8

33 427.576435 0.431025 575.104856 0.579743 56.179984 0.056633 70.135258 0.070701

present condition, the metallic nature can be expected at lower
R or higher Pn,�.

(2) SCHA:
(a) The metallic pattern is obeyed in 1s, 2s states. At a

fixed Rb, the threshold value of Ra (for metallization) de-
creases. For example, in the 1s state (Z = 1) at Rb = 5, 10,
the threshold values of Ra are approximately 1.3, 1.4, respec-
tively. However, applying HC, the previous cutoff values were
2.3295, 3.1477 successively [83].

(b) Interestingly, χm becomes greater than χ th
m for both the

2p and 3d states.
(3) The proposed criterion complements the observation

obtained by employing HC and ζm. Further, it also explains
the metallic pattern in the 2p state of SCHA.

B. Metallization in confined and shell-confined DP and ECSCP

In the Herzfeld framework, the metal-like behavior of
confined and shell-confined DP (CDP and SCDP) is yet to

be explored. In this section, at first we apply the conven-
tional HC (χm � 1) to examine the metallic pattern in CDP
and SCDP. Then, we shall discuss the modified criterion
(χm � χ th

m ) on them. Table II displays the numerical values
of α

(1)
n� , χm, χ th

m (P), χ th
m (S) for 1s, 2s, 2p, 3d states involving

CDP and SCDP. A careful analysis indicates that in CDP,
the metallic feature can be observed only in the 2s state,
as per the original HC. However, in SCDP, it can be ex-
pected in both the 1s and 2s states. Thus, by applying the
modified conditions available in Eq. (57), one may expect a
metal-like pattern in all of these four states (1s, 2s, 2p, 3d) of
CDP.

Now let us discuss χ th
m . For CDP and SCDP, Eqs. (47)

and (53) read as

χm � 1

(Z × λ1 × R)
1
3

= χ th
m (P) and χm �

(
3

Z + λ1 + R

)

= χ th
m (S) (CDP),
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χm � 1

(Z × λ1 × Ra × Rb)
1
4

= χ th
m (P) and χm �

(
4

Z + λ1 + Ra + Rb

)

= χ th
m (S) (SCDP). (57)

It should be kept in mind that in CDP, when R < 1
λ×Z , then

χ th
m (P) > 1. Similarly, in SCDP, if RaRb < 1

λ×Z , then again
χm > 1. An examination of Table II implies that the metallic
character can be observed in 1s, 2s, 2p, 3d of both CDP and
SCDP.

Now we move to pursue confined ECSCP (CECSCP) and
shell-confined ECSCP (SCECSCP). Similar to DP, the metal-
like behavior in these two systems has not been investigated

yet. Equations (47) and (53) in this case read as

χm � 1

(Z × λ2 × R)
1
3

= χ th
m (P) and χm �

(
3

Z + λ2 + R

)
= χ th

m (S),

χm � 1

(Z × λ2 × Ra × Rb)
1
4

= χ th
m (P) and χm �

(
4

Z + λ2 + Ra + Rb

)
= χ th

m (S).

(58)

Now Table III delineates the numerical outcomes in CECSCP
and SCECSCP for the same set of parameters at the same
set of Z, λ2, Ra, R Rb mentioned in Table II connecting the

TABLE III. α
(1)
n� , χm(n�) values for 1s, 2s, 2p, 3d states in confined and shell-confined ECSCP. Metallic states are highlighted in bold font.

See text for details.

CECSCP

Z λ2 Ra Rb χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s) α

(1)
2p χm(2p) α

(1)
3d χm(3d )

1 3 0 5
√

1
15

1
3 22.35614 0.178849 4.61301 0.03690 9.92192 0.07937 5.24135 0.04193

1 3 0 10
√

1
30

3
14 361.60966 0.3616 82.99628 0.082996 155.88079 0.15588 84.39217 0.08439

1 0.7 0 15
√

2
21

30
167 350.70554 0.10391 −20460.73597 −6.06244 8082.38001 2.39478 407.19846 0.12065

1 0.6 0 20
√

1
12

5
36 83.63644 0.01045 14974.59512 1.87182 −730.13219 −0.09127 1284.26877 0.16053

1 3 0 20
√

1
60

1
8 5802.27299 0.72528 1359.48149 0.16993 2484.04397 0.31051 1351.62413 0.16895

1 4 0 10
√

1
40

1
5 362.72302 0.36272 84.93378 0.08493 155.24372 0.15524 84.45772 0.08446

1 5 0 15
√

1
75

1
7 1838.71230 0.54480 434.12775 0.12863 784.54805 0.23246 427.70510 0.12673

2 4 0 15
(

1
120

) 1
3 1

7 1829.92476 0.5422 422.21408 0.12510 788.85887 0.23374 427.63232 0.12671

SCECSCP

Z λ2 Ra Rb χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s) α

(1)
2p χm(2p) α

(1)
3d χm(3d )

1 0.005 3 5
(

40
27

) 1
3 800

1801 165.909136 1.69295 161.85819 1.65161 0.21171 0.00216 0.21201 0.00216

1 0.005 5 10 4
1
3 800

3201 1969.35464 2.25069 1925.7546 2.20086 8.27270 0.00955 8.32192 0.00951

1 1 1.2 2
√

5
12

10
13 4.26402 0.67985 4.13903 0.65992 0.00543 0.00086 0.00543 0.00087

1 2 2 5
(

1
20

) 1
3 2

5 93.70837 0.80093 84.65575 0.72355 1.08986 0.00932 1.09589 0.00937

2 1 1 15
√

1
15

4
19 2516.52307 0.74586 1209.96756 0.35862 540.52441 0.16020 400.40297 0.11867

1 6 1 12
√

1
72

1
5 1017.17687 0.58899 500.74971 0.28995 221.72672 0.12839 167.05824 0.09673

2 5 1 10
(

1
100

) 1
3 2

9 522.15 0.52267 278.61561 0.27889 98.4169 0.098515 78.17432 0.07825

2 1 1 20
√

1
40

1
6 7352.37264 0.91916 3225.75953 0.40327 1873.40216 0.23421 1311.00250 0.1639

3 4 2 15
(

1
360

) 1
4 1

6 2996.61654 0.88999 1819.16476 0.54029 420.0616 0.12476 363.56326 0.10798

4 0.5 2 10
(

1
40

) 1
4 8

33 843.45417 0.85026 487.43521 0.49137 64.21420 0.06473 57.21745 0.05768
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FIG. 3. Variation of χm (in a.u.) for (a) 1s, (b) 2s, (c) 3s, (d) 4s, (e) 2p, and (f) 3d states as a function of R (in a.u.) at Z = 2, 3, 4. See text
for details.

1s, 2s, 2p, 3d states. It reveals an analogous conclusion to DP.
Note that HC can only explain the metallic feature in the 2s
state of CECSCP and 1s, 2s of SCECSCP. However, Eq. (58)
shows the metallicity in the 1s, 2s, 2p, 3d states under both
kinds of confinement.

C. Metallization in ISP

Now the focus is on ISP, where, like the other two plasmas,
the metallic property has not yet been probed. Like the previ-
ous two sections, we first apply HC in ISP, and then extend the
discussion to Eq. (47). Before going into the detailed analysis,
it should be kept in mind that for ISP, Z � 2. Figure 3 displays
the plots of χm as a function of R in the 1s, 2s, 3s, 4s, 2p, 3d
states involving three Z , namely, 2,3,4. Figure 3(a) indicates
that χm for the 1s state is always less than 1. Therefore, the
metallic behavior is not recorded. However, Figs. 3(b)–3(f)
portray that at a certain range of R, χm in the 2s, 3s, 4s, 2p, 3d
states becomes larger than 1. However, for a given state, this
metallic region changes with Z . Analysis of Figs. 3(b)–3(d)
suggests that for 2s, 3s, 4s states, with an increase in R, χm

decreases (becomes negative) and then suddenly rises abruptly
to indicate a metallic property. But an opposite pattern is
noticed in the 2p, 3d states in Figs. 3(e) and 3(f). It increases
with a rise in R to show the metallic feature, and then reaches
a maximum value and suddenly jumps down to lower than

unity. In essence, the metallic pattern can be seen in all five of
these excited states, but the ground state is nonmetallic.

The usual scaling transformation with respect to λ of
Eq. (6) says that in ISP, λ = ( 1

2R3 )
1
4 . In that case, Eqs. (47)

and (53) can be projected as

χm � χ th
m (P)

=
(

2
1
4

Z
1
3 × R

1
12

)
and χm � χ th

m (S) =
(

3

Z + R + λ

)
.

(59)

Table IV illustrates the calculated values
χm, χ th

m (P), χ th
m (S), α(1)

n� at 12 sets of Z, λ and R in the
1s, 2s, 2p, 3d states. These outcomes complement the
observation found by applying HC. The metallic feature is not
reported in the 1s state; however, in other states (2s, 2p, 3d),
this characteristic can be found.

D. Hydrogenlike ions and plasmas inside fullerene cavity

Finally, we arrive at a situation where the H-like ions, DP,
and ECSCP are trapped inside a fullerene cavity. As usual,
we have applied the HC in the 1s, 2s states. One cannot
derive Eq. (47) for these systems using the scaling concept.
A thorough investigation is necessary. In the future, we shall
pursue in this direction. However, we conjecture an empirical
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TABLE IV. α
(1)
n� , χm(n�) for the 1s, 2s, 2p, 3d states in ISP. Metallic states are highlighted in bold font. See text for details.

ISP

Z
(

1
2R3

) 1
4 R χ th

m (P) χ th
m (S) α

(1)
1s χm(1s) α

(1)
2s χm(2s) α

(1)
2p χm(2p) α

(1)
3d χm(3d )

2 0.23414 5.5 0.72953 0.38789 0.28388 0.00171 −489.42904 −2.94172 171.23976 1.02924 17.63837 0.10602
2 0.21935 6 0.72426 0.36499 0.28330 0.00131 −1776.12141 −8.22278 601.64237 2.78538 27.88738 0.12911
2 0.20657 6.5 0.71945 0.34457 0.28287 0.00103 9684.22515 35.26345 −3217.14850 −11.7147 43.30084 0.15767
2 0.17678 8 0.70711 0.29479 0.28211 0.00055 2049.7721 4.00346 −669.86708 −1.30833 154.0665 0.30091
2 0.14954 10 0.69408 0.24692 0.28169 0.00028 3121.76752 3.12177 −1026.53077 −1.02653 979.04436 0.97904
2 0.13922 11 0.68859 0.22832 0.28158 0.00020 4064.78465 3.05393 −1340.92491 −1.00746 4071.5293 3.0590
3 0.29730 4 0.65445 0.41111 0.05582 0.00087 −15.06549 −0.235398 67.54544 1.0554 5.45227 0.08519
3 0.17678 8 0.61771 0.26841 0.05559 0.00011 −5319.65601 −10.38995 −513.37676 −1.00269 3173.7898 6.19881
3 0.16183 9 0.61168 0.24667 0.05558 0.00008 34963.03344 47.96027 −729.23835 −1.00033 −1551.23814 −2.1279
4 0.36889 3 0.60903 0.40712 0.01764 0.00065 −50.94067 −1.88669 17.55851 0.65031 1.71588 0.06355
4 0.29730 4 0.59460 0.34906 0.01760 0.00027 336.56034 5.25876 −111.38035 −1.74032 9.01553 0.14087
4 0.21935 6 0.57485 0.28369 0.01759 0.00008 652.78524 3.02215 −216.73912 −1.00342 444.19117 2.05644

relation, based on the observations we have obtained so far.
With a rise in Z , the effective volume decreases. However,
the effective volume increases with a rise in V1,�, γ , and R0.
Therefore, one can obtain

χm � χ th
m (P) =

(
1

Z × λ × V1 × � × γ × R0 × R

) 1
7

,

χm � χ th
m (S) =

(
7

Z + λ + V1 + � + γ + R0 + R

)
. (60)

For H-like systems, it becomes

χm � χ th
m (P) =

(
1

Z × V1 × � × γ × R0 × R

) 1
6

,

χm � χ th
m (S) =

(
6

Z + V1 + � + γ + R0 + R

)
. (61)

Sample results are presented in Table V at different sets of
the Z, λ, R value keeping V1,�, γ , R0 fixed at experimental
values of 0.302, 5.8, 1.89, 0.1 a.u., respectively. According

to HC, the 2s state of DP, ECSCP, and H-like ions becomes
metallic under high pressure. But, the 1s state always re-
mains nonmetallic. On the contrary, using Eq. (61), one can
observe metallic behavior in the 1s state of ECSCP. Unfor-
tunately, similar results are not observed in DP and H-like
ions. However, for the 2s state, Eqs. (60) and (61) complement
the results obtained by employing HC. For a more elaborate
picture, more works are necessary.

IV. CONCLUSION

Metallization conditions [χm(
∏

ai )�( 1∏n
i=1 ai

)
1
n,χm(

∏
ai )�

n∑n
i=1

ai] have been proposed for confined monatomic systems
under pressure by invoking the HC and scaling concept. The
present form incorporates the effect of the environment by
including Z, λ and the boundary condition, etc. One can use
this to explain metallicity in � � 0 states. In these condi-
tions, the threshold value of metallization remains unchanged.
However, a new volume correction term is introduced. The
volume of a system varies with variation of charge, screen-

TABLE V. α
(1)
n� , χm(n�), χ th

m for the 1s, 2s states in the H atom, DP, and ECSCP encapsulated inside a fullerene cavity (experimental values
of V1, �, γ , R0 are used). Metallic states are highlighted in bold font. See text for details.

H-like ion in fullerene

Z λ R χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s)

1 0 8.0 0.82301 0.35104 4.74411 0.00927 2455.46032 4.79582
2 0 8.5 0.74979 0.32272 0.28125 0.00046 1075.46513 1.75122

DP in fullerene

Z λ1 R χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s)

1 1 8.5 0.81309 0.37651 325.73794 0.53041 −110.54169 −0.179998
2 1 9.0 0.74269 0.36665 0.69985 0.00096 851.85352 1.16852

ECSCP in fullerene

Z λ2 R χ th
m (P) χ th

m (S) α
(1)
1s χm(1s) α

(1)
2s χm(2s)

1 1 10.0 0.78708 0.36665 942.00971 0.94201 39.742268 0.039742
2 1 9.0 0.74269 0.36665 1.216007 0.00167 915.65709 1.25604
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ing constant, and boundary. Moreover, the transfer of phase
also alters the volume. Therefore, in the present work, an
environmental correction is done on volume. Thus we pro-

pose [(
∏n

i=1 ai )
1
n

α
(1)
n�

V � 1, (
∑n

i=1 ai )
α

(1)
n�

V � n] as two effective
expressions of metallization in the framework of Herzfeld.
Besides this, a different descriptor in the form of χm has been
proposed to determine the metal-like properties in systems
under high pressure. Apart from that, we have recast the
conventional HC in terms of state pressure. A criterion has
been designed based on that result. In the future, the derivation
of ( dEn,�

dR ) for a given confined system will provide us with the
concrete analytical expression of ζ th

m .
The applicability of this scheme has been tested and

verified by doing pilot calculations on a total of eight differ-
ent confined and shell-confined systems. It reveals that the
metallic character can be observed in systems trapped un-
der multimegabar pressure. It is worth mentioning that these
relations can be applied to other atomic and ionic systems
under such stressed condition. There are several open ques-
tions which may lead to an important conclusion and require
further scrutiny, such as the use of these HC in determining
metallic characteristics in atomic and molecular clusters and
solids under high pressure.
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APPENDIX: ADDITIONAL DISCUSSION
ON METALLIZATION

Here, we enumerate several auxiliary forms of
Eqs. (45), (46), (51), and (52). At first, from Eqs. (45)
and (51), the following situations may be conceived:

(1) When Z = λ = Rb = 1, χm(P)(1, 1, Ra, 1) � 1
Ra

, and

χm(S)(1, 1, Ra, 1) � ( 4
Ra+3 ), Ra < 1.

(2) When Z = λ = Ra = 1, χm(P)(1, 1, 1, Rb) � 1
Rb

, and

χm(S)(1, 1, Rb, 1) � ( 4
Rb+3 ), Rb > 1.

(3) When Z = λ = 1, χm(P)(1, 1, Ra, Rb) � 1√
Ra×Rb

, and

χm(S)(1, 1, Ra, Rb) � ( 4
Ra+Rb+2 ).

(4) When λ = Ra = 1, χm(P)(Z, 1, 1, Rb) � 1√
Z×Rb

, and

χm(S)(Z, 1, 1, Rb) � ( 4
Z+Rb+2 ), Rb > 1.

(5) When Z = Ra = 1, χm(P)(1, λ, 1, Rb) � 1√
λ×Rb

, and

χm(S)(S)(1, λ, 1, Rb) � ( 4
λ+Rb+2 ), Rb > 1.

(6) When λ = Rb = 1, χm(P)(Z, 1, Ra, 1) � 1√
Z×Ra

, and

χm(S)(S)(Z, 1, Ra, 1) � ( 4
Z+Ra+2 ), Ra < 1.

(7) When Z = Ra = 1, χm(P)(1, λ, 1, Rb) � 1√
λ×Rb

, and

χm(S)(1, λ, 1, Rb) � ( 4
λ+Rb+2 ), Rb > 1.

(8) When Z = 1, χm(P)(1, λ, Ra, Rb) � 1

(λ×Ra×Rb)
1
3

, and

χm(S)(1, λ, Ra, Rb) � ( 4
λ+Ra+Rb+1 ).

(9) When λ = 1, χm(P)(Z, 1, Ra, Rb) � 1

(Z×Ra×Rb)
1
3

, and

χm(S)(Z, 1, Ra, Rb) � ( 4
Z+Ra+Rb+1 ).

(10) When Ra = 1, χm(P)(Z, λ, 1, Rb) � 1

(Z×λ×Rb)
1
3

, and

χm(S)(Z, λ, 1, Rb) � ( 4
Z+λ+Rb+1 ), Rb > 1.

(11) When Rb = 1, χm(P)(Z, λ, Ra, 1) � 1

(Z×λ×Ra )
1
3

, and

χm(S)(Z, λ, Ra, 1) � ( 4
Z+λ+Ra+1 ), Ra < 1.

Likewise, a consideration of Eqs. (46) and (52) leads to the
following:

(1) When Z = λ = 1, χm(P)(1, 1, R) � 1
R and

χm(S)(1, 1, R) � ( 3
R+2 ).

(2) When Z = R = 1, χm(P)(1, λ, 1) � 1
λ

and
χm(S)(1, λ, 1) � ( 3

λ+2 ).
(3) When λ = R = 1, χm(P)(Z, 1, 1) � 1

Z and
χm(S)(Z, 1, 1) � ( 3

Z+2 ).
(4) When R = 1, χm(P)(Z, λ, 1) � 1√

Z×λ
and

χm(S)(Z, λ, 1) � ( 3
Z+λ+1 ).

(5) When Z = 1, χm(P)(1, λ, R) � 1√
λ×R

and

χm(S)(1, λ, R) � ( 3
R+λ+1 ).

(6) When λ = 1, χm(P)(Z, 1, R) � 1√
Z×R

and

χm(S)(Z, 1, R) � ( 3
R+Z+1 ).

Thus, depending upon the conditions, the above relations
can be used to determine the metallic character in a confined
or shell-confined atom or ion.
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