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Positronium collisions with polar molecules
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We calculate elastic and positronium (Ps) break-up cross sections for collisions of Ps with the polar molecules
CO, HCl, and LiF in the fixed-nuclei approximation. We incorporate electron exchange and correlation for these
processes by using the free-electron-gas model developed earlier for Ps scattering by rare-gas atoms, N2, O2,
and CO2 molecules. The present target molecules provide a range of dipole moments from the weakly polar CO
to the strongly polar LiF. We find that Ps scattering is similar to electron scattering when the cross sections are
plotted as a function of projectile velocity for the targets with smaller dipole moments (CO, HCl). However,
we do not see such a similarity for LiF which has a large dipole moment. Below the Ps break-up threshold we
observe resonance structures similar to those obtained earlier for the other molecular targets that we have studied.
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I. INTRODUCTION

Not long ago the similarity between electron and positron-
ium (Ps) scattering cross sections when plotted as a function
of projectile velocity was demonstrated experimentally [1].
This similarity exists over a wide velocity range for veloc-
ities (energies) above the Ps ionization (break-up) threshold
which occurs at a velocity of 0.5 a.u. (or Ps kinetic energy
6.8 eV). Near the threshold, resonances in Ps-N2 [2] and
Ps-CO2 [3] scattering have been observed experimentally.
These resonances are similar to those observed in electron
scattering by these targets (see [4–6] and references therein).
Similar resonances near the ionization threshold have been
seen in our previous theoretical calculations, which employ
a free electron gas (FEG) model to determine the scattering
potentials. [7,8].

A proof of the similarity between electron and Ps cross
sections for the same projectile velocity was given in Ref. [9].
It is based on the impulse approximation and is valid for high
enough projectile energies, at least above the Ps break-up
threshold. The physical reason for this result is the domi-
nance of the electron scattering amplitude, as compared to the
positron scattering amplitude, due to electron exchange with
the target electrons [10]. The impulse approximation equa-
tions also show that the dominant scattering in Ps collisions
is due to quasifree electrons having momentum q = −�p/2,
where �p is the Ps momentum transfer, resulting in equal
cross sections for equal velocities. This similarity extends to
the resonant scattering, if the resonance position is above the
Ps break-up threshold. We should emphasize that this result
is valid only at high enough energies. At low energies the
long-range interaction between the target and the projectile
dominates, and it is determined by two different potentials:
the dipole or polarization potential for electron scattering and

the van der Waals potential for Ps scattering. This difference,
for example, results in the absence of the Ramsauer-Townsend
minimum in Ps scattering by heavy rare-gas atoms [11]

Recently we performed FEG calculations for the O2 and
CO2 molecules which also exhibited resonant features near or
below the Ps ionization threshold [8]. At higher Ps velocities
good agreement between the total electron and Ps scattering
cross sections as a function of projectile velocity was found.

As was emphasized above, it shouldn’t necessarily be ex-
pected that the similarity between electron and Ps scattering
extends to low velocities. In addition to the aforementioned
long-range effects, there are also considerations based on
angular momentum conservation. In contrast to electron-
molecule scattering, in the case of Ps-molecule scattering
the electron in Ps does not possess a certain projection of
angular momentum on the internuclear axis, therefore the
symmetry of the resonance is different in the two cases. In
particular in the case of Ps − N2 scattering, instead of one
resonance of �g symmetry, we obtain three resonances of
�u, �u, and �g symmetries [7]. For electron scattering by
a polar molecule the long-range interaction is dominated by
the dipole potential which decays inversely with the square
of the electron-molecule distance. This can lead to large
cross sections for slow electrons, and, in fact the total cross
section in this case is formally divergent in the fixed-nuclei
approximation [12,13]. For Ps scattering by a polar molecule
the long-range interaction is due to the van der Waals potential
which decays as the sixth power of the distance. The van der
Waals coefficient in this case is due to the interaction of the
dipole moment and the neutral Ps (Debye interaction) as well
as the charge distribution of the molecule and Ps (London
interaction), but due to the rapid decay of the van der Waals
potential it should be expected that the dipole moment has
much less effect on the low-velocity (energy) behavior for
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Ps scattering than it does for electron scattering. Therefore it
is of a certain interest to extend comparison of electron and
Ps scattering to polar targets. The UCL group performed this
comparison for the water molecule [14,15] by measuring elec-
tron and Ps cross sections. They found similar cross sections
for the projectile velocity above 1 a.u. For lower velocities the
Ps cross section is substantially lower as should be expected.
The water molecule, being nonlinear, presents a challenge for
Ps scattering calculations, therefore in the present paper we
start these investigations for linear diatomic targets.

Another challenging aspect of the theoretical treatment
of the Ps-atom and Ps-molecule interaction is an accurate
inclusion of electron exchange and electron and positron cor-
relation. The exact treatment of these effects based on the
close-coupling method [16–18] becomes very computation-
ally expensive as the size of the target grows, and therefore so
far this type of calculation has been carried out only for simple
atomic systems like hydrogen and light rare-gas atoms. A few
approximate methods for inclusion of exchange and correla-
tion have been developed which include the pseudopotential
method [10,19], methods based on many-body theory [20],
and methods based on confined basis sets [21–24].

Our FEG model for Ps-atom or Ps-molecule scattering has
been developed in Ref. [25]. The FEG potentials were used
to calculate elastic scattering cross sections for Ps-N2 [7,26]
and Ps-rare-gas-atom collisions [11] as well as for Ps-O2 and
Ps-CO2 [8]. The calculations were successful in the descrip-
tion of the relevant experiments, particularly in explanation
of the resonance structure in the cross sections for Ps-N2

scattering.
The molecules studied in our previous work all have an

inversion symmetry which allows the scattering matrices to
be described as gerade or ungerade. In the present paper we
extend our calculations to polar molecules. The present targets
were selected for their range of dipole moments starting with
the slightly polar CO, then going to the moderately polar HCl,
and finishing with the highly polar LiF. In order to obtain
total Ps scattering cross sections we add the elastic and Ps
ionization cross sections. To determine the ionization cross
sections we use the binary-encounter model [7,23] which re-
lies on the elastic scattering of electrons and positrons with
the target molecules.

In Sec. II we discuss important aspects of our electron
and positron scattering calculations including Born closure
and the FEG correlation potential for positron scattering. In
Sec. III we present our Ps ionization cross sections using
the binary-encounter model. In Sec. IV we describe the Ps-
molecule scattering potentials used in the present calculations
to obtain elastic cross sections, and in Sec. V we present
our elastic and total Ps scattering cross sections. Section VI
is a brief conclusion. As has become customary since the
discovery of the similarity between electron and Ps scattering
[1], we plot most cross sections as functions of the projectile
velocity. Atomic units are used throughout unless stated
otherwise.

II. ELECTRON AND POSITRON SCATTERING

In the present paper we compare integrated cross sec-
tions for electron and Ps scattering assuming that the main

TABLE I. Dipole moments D and polarizabilities α of the target
molecules, comparison with the NIST data [32] (experiment and
theory) for CO and HCl. Theoretical values for LiF are from [33].
All quantities are listed in a.u.

Target Present Exp. Theorya

CO D 0.058 0.044 0.052–0.068
HCl 0.46 0.43 0.47–0.57
LiF 2.52 2.49 2.34–2.60
CO α 13.19 13.19
HCl 17.0 17.0
LiF 10.9 10.45–11.10

aDifferent versions of coupled-cluster calculations and MP perturba-
tion theory.

contribution to the total cross section for electrons is due to
elastic scattering, and for Ps due to elastic scattering and Ps
ionization (break-up). Since we use the fixed-nuclei approx-
imation (with the exception of the Born closure, see below),
our “elastic” cross section include implicitly rotationally in-
elastic transitions. For calculation of the Ps ionization cross
sections we need electron and positron elastic cross sections.
To estimate the quality of our results, we have calculated elas-
tic electron and positron cross sections for the selected targets.
Another reason for performing electron scattering calculations
is to compare electron and Ps cross sections when exchange
and correlation effects treated in the same way (FEG model in
our case) are included for both projectiles. In this section we
describe some important aspects of these calculations.

The elastic scattering cross sections are obtained from
the scattering matrices T m

ll ′ in the fixed-nuclei approximation.
Here lm are electron angular momentum and its conserved
projection on the internuclear axis. We compute the scattering
potentials from the charge density of the target molecule at
the equilibrium internuclear separation. For electron scatter-
ing we use the Hara free electron gas exchange (HFEGE)
model [27] and the FEG correlation potential of O’Connnell
and Lane [28]. For positron scattering we use a modified
FEG correlation potential described below in Sec. II B. The
charge densities for all molecules studied here were calculated
using the 6-31G* basis set in the PySCF quantum chemistry
package [29–31]. The values of the dipole moment were ob-
tained from the asymptotic behavior of the potentials, and
polarizabilities of CO and HCl from the NIST data [32]. By
analyzing the computed values of polarizabilities calculated
in Ref. [33], we have chosen for the averaged polarizability
of LiF 10.9 a.u. A summary of the literature data and the
present data on the dipole moments D and polarizabilities α

is presented in Table I.
We solve the coupled equations with the appropriate static,

exchange, and correlation potentials using the integral equa-
tion method of [34] to obtain elastic e− and e+ (as well as
Ps) scattering matrices and cross sections. The FEG potentials
used for Ps scattering are described in Sec. IV.

A. Closure formulas and electron scattering cross sections

Several different versions of the closure formulas for
electron-polar-molecule scattering were discussed in the
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review [13]. Here we give a summary of the approach used
in the present paper.

The total elastic cross section in the fixed-nuclei approxi-
mation (T m

ll ′ is the fixed nuclei T matrix)

σ = (2 − δm0)
π

k2

∑
ll ′m�0

∣∣T m
ll ′

∣∣2

is diverging in m as a harmonic series; therefore to get a finite
result we use closure with account of rotations

σ j j′ = Bσ j j′ +
∑

m

(σ (m) − Bσ (m) ), (1)

where Bσ j j′ is the cross section for rotational transition j → j′
in the Born approximation

Bσ j j′ = 8πD2

3k2
0

j>
2 j + 1

ln
k0 + k

|k0 − k|
and Bσ (m) is the partial fixed-nuclei cross section in the Born
approximation including |m| and −|m| contributions

Bσ (m) = 8πD2

k2
[2m2ψ ′(m) − 2m − 1] for m �= 0,

where ψ ′ is the derivative of the digamma function. We note
that D is the dipole moment and k0, k are the initial and final
electron momenta, respectively. For m = 0

Bσ (0) = 4πD2

k2
.

Equation (1) will be called the m closure. The m closure might
not be sufficient for convergence since the partial cross section

σ (m) = (2 − δm0)
π

k2

∑
ll ′

∣∣T m
ll ′

∣∣2

is slowly convergent with l . To speed up this convergence, we
employ the fixed-nuclei T matrix in the Born approximation

BT m
ll ′ = 2iD(qm

l δl ′l−1 + qm
l+1δl ′l+1), (2)

where

qm
l = 1

l

[
(l + m)(l − m)

(2l − 1)(2l + 1)

]1/2

.

Using the symmetry of the T matrix, we obtain

σ (m) = π

k2

∞∑
l=m

∞∑
l ′�l

(2 − δm0)(2 − δll ′ )|T m
ll ′ |2.

Similarly, using the Born T matrix, Eq. (2), we have

Bσ (m) = 8πD2

k2
(2 − δm0)

∞∑
l=m

(
qm

l+1

)2
.

Therefore the second (l) closure equation becomes

σ (m) = Bσ (m) + (2 − δm0)
π

k2

∞∑
l=m

[ ∞∑
l ′=l

(2 − δll ′ )
∣∣T m

ll ′
∣∣2 − 8D2

(
qm

l+1

)2

]
. (3)

In practice the upper limits of summation goes to lmax where lmax is determined from the requirement that convergence of the
sum (3) is achieved. For sufficiently large m the Born approximation is valid for any l , therefore

lmax∑
l ′=l

(2 − δll ′ )
∣∣T m

ll ′
∣∣2 − 8D2

(
qm

l+1

)2 = 0 (largem).

This also can be rewritten as

σ (m) = 8πD2

k2

∞∑
l=m

(
qm

l+1

)2
(large m). (4)

Combining Eqs. (1) and (3) we obtain

σ j j′ = Bσ j j′ + π

k2

∞∑
m=0

(2 − δm0)
∞∑

l=m

[ ∞∑
l ′=l

(2 − δll ′ )
∣∣T m

ll ′
∣∣2 − 8D2

(
qm

l+1

)2

]
(5)

or

σ j j′ = Bσ j j′ +
∞∑

m=0

[
σ (m) − 8πD2

k2
(2 − δm0)

∞∑
l=m

(
qm

l+1

)2

]
. (6)

In Fig. 1 we present the integrated elastic cross section for
e−-HCl scattering and compare it with the total integrated
cross sections of Hamada and Sueoka [35]. These authors
obtained their integrated cross sections by extrapolating mea-
sured differential cross sections using the Born formula for
the most populated rotational state at T = 300 K, j = 3.

Therefore in our calculations we used Eq. (6) with the same
value of j. Agreement is satisfactory, for both shape and abso-
lute values, although the theoretical minimum at low energies
is much more pronounced than in the experimental curve. At
higher energies inelastic processes, mostly electron impact
ionization which are not included in calculations, start to
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FIG. 1. Electron-HCl elastic cross sections. Solid line, present
calculations; error bars, measured total cross sections of Hamada and
Sueoka [35]. Previous calculations of elastic cross section: Padial
et al. [36] and Vinodkumar et al. [37].

contribute to the total cross section. Two previous calculations
[36,37] for a few energy points are also shown. The R-matrix
results [37] are too high because of the overestimated value
of the dipole moment (0.544 a.u.). As was discussed above, in
this and all following figures by “elastic” we mean the cross
sections including rotational excitation.

In Fig. 2 we present elastic cross sections for e−-CO
scattering with and without closure and compare them with
recommended cross sections of Itikawa [38]. The results with-
out closure were obtained with mmax = 6, lmax = 10. Due to
the small dipole moment in this case higher partial waves
have a relatively small effect and do not change the cross sec-
tion much except at very low velocities. Agreement with the
recommended cross sections is good, with the pronounced �

resonance appearing at only a slightly higher velocity (energy)
compared with the recommended values. Also the computed

resonance is much narrower, apparently due to the neglect of
inelastic scattering channels, mostly vibrational excitation.

B. Positron correlation potential

The correlation-polarization potential for electron scatter-
ing was derived [28] from the correlation energy for a free
electron gas. Similar attempts have been made to derive a
positron correlation-polarization potential from the many-
body theory result of Arponen and Pajanne [39] who obtained
the correlation energy of a positron embedded in the electron
gas. Boronski and Niemenen [40] worked out an analytical
expression describing Arponen and Pajanne’s results. Jain
[41] and Gianturco et al. [42] used this expression to derive the
correlation potential for a positron interacting with a molec-
ular system using the expression from density-functional
theory [43]

Vcorr (r) =
(

1 − 1

3
rs

d

drs

)
εcorr (rs), (7)

where rs is the average-distance parameter related to the elec-
tron density n(r) as

4
3πr3

s n(r) = 1.

Using Eq. (7) Jain [41] and Gianturco et al. [42] derived
the correlation potential, but the final expression in Ref. [42]
contains several typos. Note that the review paper of Kimura
et al. [44] gives the correct expression. The incorrect result
[42] was used in [45,46]. A more recent paper [47] used the
correct expression following from Eq. (7).

With regard to Jain’s result [41], we should note that the
correlation energy derived in [39,40] contains dependence on
the position vector r through the parameter rs, therefore it
cannot be identified as the expression for the total correlation

FIG. 2. Elastic e−-CO cross sections without closure (dashed line) and with closure (solid line). Stars, recommended elastic cross
sections of Itikawa [38].
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FIG. 3. Correlation energies, comparison of results for positron and electron. The positron results are from Ref. [40] (dashed curve). The
same energy shifted upwards by 0.203 a.u. is given by the dotted curve. Squares are results of the linear response theory [52].

energy [43] (independent of r)

Ec[n] =
∫

n(r)εc[n(r)] dr

but rather the positron correlation energy εc[n(r)]. Therefore
we believe that a correct use of results [39,40] should treat the
original expression for εcorr as the correlation potential. In fact
Jain [41] used both potentials for e+-Ar scattering and found
little difference between the two sets of calculations since the
two expressions are rather close to each other.

In Fig. 3 we compare positron and electron [48] correlation
energies as functions of the average-distance parameter rs.
The difference between the electron and positron correlation
potentials is striking. Whereas the big difference at high den-
sities (low rs) is justified, at higher rs, where the perturbation
theory becomes valid, polarization contributions for electron
and positron should be close to each other. In addition, another
calculation of the positron correlation potential by Gianturco
et al. [49], based on the density functional theory, gives results
substantially smaller (in the absolute magnitude). On the other
hand, Jain [41] states that the use of the electron polarization
potential for e+-Ar scattering produces much poorer results
than the potential derived from [39,40].

Returning to the original calculation of Arponen and Pa-
janne [39], we note that they calculate the ground-state
correlation energy for a positron in the electron gas. In the
low-density limit, that is, at rs → ∞, this corresponds to an
energy of Ps− which is −0.524 Ry = −0.262 a.u., and the re-
sult of Arponen and Pajanne, −0.522 Ry, virtually agrees with
the exact value. This certainly does not satisfy the condition
of the positron-molecule scattering problem where in the limit
of low electron density the correlation potential should go
to 0. It is apparent that the contribution to the correlation
energy leading to formation of Ps− should be excluded from
εcorr. It is not clear how to do this in a rigorous manner.
However, the analysis of Table II of Arponen and Pajanne
[39] suggests a way to improve Jain’s correlation potential.

The table presents the correlation energy in the first-order and
second-order Tamm-Dancoff approximation (TDA) [50,51]
and also the most accurate results obtained with the coherent-
state TDA. The last two include triple correlations and
therefore give the correct Ps− energy in the low-density limit
(high rs). The first-order TDA in this limit gives the energy
of the Ps ground state, −0.5 Ry. The difference between the
second-order TDA and the first-order TDA remains almost
constant at high densities (about 0.1 Ry) and then decreases to
0.022 Ry at large rs. This suggests that for the purpose of the
description of positron-molecule interaction at low rs the TDA
result should be shifted upward by a constant value of about
0.522 Ry. At larger rs the potential should be merged into the
electron polarization potential. In fact the value of the shift
should be somewhat lower than 0.522 Ry since the coherent-
state TDA result of Arponen and Pajanne exhibits a shallow
maximum at rs = 6.7 a.u. of an unknown origin. Therefore
we choose the value of the shift from the requirement that the
positron correlation energy joins smoothly with the electron
correlation energy at high rs. The shifted potential with the
value of the shift 0.406 Ry = 0.203 a.u. is presented in Fig. 3.
The linear response function calculations of Baldo and Pucci
[52] give the correlation energy which is somewhere between
the original results of Arponen and Pajanne and the modified
results used in the present calculations.

An alternative treatment of correlation and polariza-
tion in positron-atom and positron-molecule collisions in-
volves the polarized orbital method [53]. Several calcula-
tions [54–56] using this method have been performed, but
we are not aware of any comparisons between the two
methods.

Using the correlation potential constructed as described
above, we have calculated elastic cross sections for positron
scattering by CO, HCl, and LiF.

e+-HCl elastic scattering cross sections are presented in
Fig. 4, where we give comparison with Hamada and Sueoka
[35]. Agreement is not as good as for electrons, mainly
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FIG. 4. Positron-HCl elastic cross sections. Solid line, present calculations using the electron correlation potential; dashed line, using the
positron correlation potential; dotted line, using the modified positron correlation potential with a shift of 0.203 a.u.; squares, measured total
cross sections of Hamada and Sueoka [35].

because our cross section does not include the Ps forma-
tion channel which is opening at E = 5.94 eV. At higher
energies other inelastic channels are contributing as well.
The excitation and ionization channels can be taken into ac-
count by adding an absorption potential [57]. Although the
derivation of the absorption potential [57] is based on the
binary-encounter model, there were attempts [54,58,59] to
modify this model for inclusion of the Ps formation channel.
The approach is empirical, and its detailed discussion is be-
yond the scope of the present work.

e+-CO elastic scattering cross sections are presented in
Fig. 5 where we see results similar to the e+-HCl case. We
compare our results with the measurements of the total cross
section by Zecca et al. [60]. At low velocities the results
with the shifted positron correlation potential agree better with
the measurements than those with the nonmodified positron
correlation potential. Our results at intermediate velocities
(around 0.5 a.u.) are slightly lower than the measured val-
ues; however, there is some disagreement between various
measurements below the Ps formation threshold; see [60] and
references therein. For example, cross sections measured by
Sueoka and Hamada [61] are substantially lower than those
in [60]. In calculations of the Ps ionization cross section us-
ing the binary encounter model we have used the modified
positron correlation potential results.

Last, for this section we present our elastic e−-LiF and
e+-LiF cross sections compared with the electron scattering
measurements of Vušković et al. [62] in Fig. 6. Cross sec-
tions, both with and without closure, for e+-LiF scattering are
shown. It is apparent that higher partial waves are very impor-
tant in this case due to the large dipole moment of LiF. We
find good agreement between our e−-LiF cross sections and
the measured values, which were obtained by extrapolation
of the differential cross sections using the Born formula. Due

to the effect of the large dipole moment the electron and
positron scattering cross sections are almost identical.

III. PS IONIZATION

Apart from elastic scattering, the largest contribution to the
total cross section for positronium collisions is expected to be
Ps ionization (fragmentation) or break-up. In the present paper
we employ the binary encounter approximation to calculate
cross sections for Ps ionization [63,64]. We have previously
applied this approximation to calculate Ps ionization cross
sections in collision with rare gas atoms Ar, Kr and Xe [19]
which were in good agreement with previous calculations
using the impulse approximation [65]. The binary encounter
approximation for Ps ionization was extended to nonspherical
interactions and applied to Ps scattering by N2, O2, and CO2

in [7,8].
Briefly, the binary encounter approximation is based on

the assumption that the electron and positron in Ps interact
independently with the target molecule and the ionization
cross section due to either electron or positron collision may
be written as

σ±
ion = 1

vB
〈|v − vB|

∫
�E>I

dσ±〉, (8)

where vB is the relative collision velocity, v is the electron
(positron) velocity relative to the Ps center of mass, dσ±
is the differential cross section for e+ − B or e− − B elastic
scattering, and the integration is restricted by the angles which
result in the energy transfer to electron (positron) �E greater
than the Ps ionization potential I = 6.8 eV.

The ionization amplitude in the binary encounter ap-
proximation depends on the elastic differential cross sec-
tion through the body frame T -matrix elements, T m

ll ′ , in the
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FIG. 5. Positron-CO elastic cross sections. Solid line, present calculations using the electron correlation potential; dashed line, using the
positron correlation potential; dotted line, using the modified positron correlation potential with a shift of 0.203 a.u.; squares, measured total
cross sections of Zecca et al. [60].

fixed nuclei approximation for electron and positron scattering
by the target calculated as described in the previous section. In
the present calculations we have used lmax = 10 and mmax =
6. Unlike the elastic e− and e+ scattering cross sections the
Ps ionization cross sections are well converged by m = 6

since small scattering angles don’t contribute as significantly
to ionization.

In Fig. 7 we show our Ps ionization cross sections for
all three presently studied targets. The cross section is over-
all largest for LiF, somewhat smaller for HCl and smallest

FIG. 6. Elastic e−-LiF and e+-LiF cross sections. Solid line, positron scattering with closure; dotted line: electron scattering with closure;
dashed line electron scattering without closure. Squares are measured elastic cross sections of Vuskovic et al. [62].
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FIG. 7. Binary-encounter Ps ionization cross sections for collisions with CO (solid line), HCl (red dashed line) and LiF (blue dash-dot
line) as functions of Ps velocity.

for CO which aligns generally with the size of the elastic
e− and e+ cross sections for the same target. In particular,
due to the similarity between e−-LiF and e+-LiF cross sec-
tions the contribution of each (electron and positron) is about
the same, whereas for the other target molecules the positron
contribution is smaller.

IV. PS SCATTERING POTENTIALS

For elastic scattering of Ps by the presently considered
molecules we determine the scattering potentials in the same
way as was done for Ps-N2 scattering [7] as well as for Ps-O2

and Ps-CO2 [8]. In Ref. [25] we have derived expressions
for the exchange and correlation energies as functions of the
Fermi energy. In order to introduce the dependence of these
energies on the projectile position relative to the target we
determine the Fermi energy in terms of the charge density of
the ground state of the molecule. The Ps-molecule scattering
potentials obtained in this way are then expanded in Legendre
polynomials. The charge density for all molecules studied
here were calculated as described in Sec. II.

The correlation potential for Ps scattering at large distances
is matched smoothly with the van der Waals potential with a
cutoff of the form

VW (R) = − CW

(R2 + R2
c )3

, (9)

where R is the position of the center of Ps relative to the center
of mass of the molecule and Rc is a cutoff radius. The van
der Waals coefficient CW is determined by two effects in the

present case. The first is the London interaction which arises
due to the interaction between induced dipole moments of the
neutral Ps and the neutral molecule. The coefficient for this
term is calculated by using the London formula

C0 = 3I1I2α1α2

2(I1 + I2)
, (10)

where I1 and I2 are the ionization potentials of the target
molecule and Ps and α1 and α2 the spherical polarizabilities.

The second contribution is due to the Debye interaction
which arises due to the interaction between the permanent
dipole moment of the polar molecule and induced dipole
moment of Ps

C1 = 2D2αPs, (11)

where D is the permanent dipole moment of the polar
molecule and αPs = 36 a.u. is the polarizability of Ps. Both
of these interactions vary as 1/R6. The London and Debye
contributions are summed to give the total van der Waals
coefficient so that CW = C0 + C1.

For CO we use the polarizability α0 = 13.19 a.u. and
ionization potential of I = 0.515 a.u. giving C0 = 119.87
a.u. The dipole moment used for CO is 0.058 a.u. giving
C1 = 0.24 a.u. so that CW = 120.11 a.u. In this case the small
dipole moment of CO has a very small effect on the van
der Waals coefficient. The cutoff radius Rc was chosen from
the requirement that the FEG potential joins smoothly with
the potential of Eq. (8). This resulted in Rc = 0.98 a.u. and
the switching radius R = 4.06 a.u.
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FIG. 8. First two components of the total (exchange plus correlation) Ps-molecule scattering potential for (a) Ps-CO and (b) Ps-LiF at a Ps
velocity of 0.01 a.u. Solid line: λ = 0, red dashed line: λ = 1.

For HCl we use a polarizability of α0 = 17.0 a.u. and
ionization potential of I = 0.49 a.u. giving C0 = 151.97 a.u.
The dipole moment for HCl is still relatively small (0.46
a.u.), which leads to the still relatively small C1 = 15.24
a.u. so that CW = 167.21 a.u. and, as for CO, the van
der Waals interaction is dominated by the London interac-
tion. Again in order for the correlation potential to match
smoothly to the asymptotic form we have chosen a cutoff
radius of Rc = 1.01 a.u. and switch to the asymptotic form at
R = 4.09 a.u.

For LiF we use a polarizability of α0 = 10.9 a.u. and
ionization potential of I = 0.472 a.u. giving C0 = 96.20 a.u.
LiF has a much stronger dipole moment of 2.52 a.u. giving
C1 = 457.22 a.u. and CW = 553.42 a.u. so that in this case the
van der Waals coefficient is dominated by the Debye interac-
tion. In this case we have chosen a cutoff radius of Rc = 1.05
a.u. and for the spherical component λ = 0 switched from the
correlation potential to the asymptotic form at R = 3.06 a.u.

In Fig. 8(a) we show the first two components (λ = 0, 1)
of the Legendre expansion for the total Ps-CO potential (ex-
change plus correlation) for a Ps velocity of 0.01 a.u. We
note again that in the present case for heteronuclear polar
molecules there is no inversion symmetry and the λ = 1 com-
ponent is nonzero unlike the situation for a homonuclear target
molecule. In Fig. 8(b) we show the (λ = 0, 1) components
for the total Ps-LiF potential. The λ = 1 component is more
attractive in the case of LiF, but overall the potentials are
quite similar for both molecules despite the large difference
in dipole moments.

In Fig. 9 we show the first two components (λ = 0, 1) of
the Legendre expansion for the total Ps-HCl potential for a Ps
velocity of 0.01 a.u. In this case the λ = 0 component is more
dominant due to center of mass being located very close to the
Cl atom and the potential is generally stronger at small values
of R than that for CO and LiF.

V. ELASTIC AND TOTAL PS SCATTERING
CROSS SECTIONS

In Fig. 10 we present the calculated elastic and total (elastic
plus ionization) cross sections for Ps-CO scattering along
with the recommended total e−-CO cross sections of [38].
We compare Ps cross sections with the total electron cross
sections because the fact of similarity between electron and
Ps scattering was established for the total cross section. At
higher velocities the total Ps scattering cross section (elastic
plus ionization) is similar to the total electron scattering cross
section. Near the Ps ionization threshold (v = 0.5 a.u.) we see
resonance structures similar to those seen before for Ps-N2,
O2, and CO2 scattering [7,8].

In Fig. 11 we present the calculated elastic and total (elastic
plus ionization) cross sections for Ps-HCl scattering along
with the total e−-HCl cross sections of Hamada and Sueoka
[35]. Again we see a strong similarity between the total Ps
and e− cross sections. We note though that the similarity at
velocities below the ionization threshold (v = 0.5 a.u.) is not
due to the dipole moment which causes the e− cross section to
rise dramatically. In the Ps-HCl cross section the resonances
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FIG. 9. First two components of the total (exchange plus correlation) Ps-molecule scattering potential for Ps-HCl at a Ps velocity of 0.01
a.u. Solid line: λ = 0, red dashed line: λ = 1.

FIG. 10. Elastic Ps-CO (dashed line)and total Ps-CO (solid line) cross sections compared with recommended total e−-CO cross sec-
tions (crosses) of [38] as a function of projectile velocity.
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FIG. 11. Elastic Ps-HCl (dashed line)and total Ps-HCl (solid line) cross sections. Squares are experimental e−-HCl total cross sections of
Hamada and Sueoka [35].

appear at a lower Ps velocity than for CO and other nonpolar
molecules due to the more attractive Ps-HCl potential. The
resonances cause sharp peaks in the cross section at very low
Ps velocities.

Similarly to electron and positron scattering the projec-
tion of the Ps center of mass angular momentum on the
internuclear axis m is conserved and we can define partial
cross sections in terms of this quantum number. In Fig. 12
we present Ps-CO and Ps-HCl partial cross sections for m =
0, 1, 2. In both cases we see that the resonance structures are
mostly due to the m = 1 (� symmetry) and m = 2 (� sym-
metry) which is similar to our previous results for Ps-N2, O2,
and CO2 scattering [7,8]. However, For Ps-HCl, as mentioned
before these resonances appear at a lower velocity and the
magnitude of the m = 0 (� symmetry) partial cross section is
reduced.

In Fig. 13 we present the calculated elastic and total (elas-
tic plus ionization) cross sections for Ps-LiF scattering, and
in Fig. 14 we present our Ps-LiF partial cross sections for
m = 0, 1, 2. In this case we again see resonance structures
in the � and � symmetries although they are broader than
for CO and HCl. While the � partial cross section is small at
low velocities, overall the total Ps cross section is similar to
that for Ps-CO. The difference at low velocities is due to the
substantially larger van der Waals coefficient CW in the case
of Ps-LiF which arises due to the much larger dipole moment
of LiF and therefore stronger Ps-LiF Debye interaction. In
order to see this effect we have also plotted elastic Ps-LiF
cross sections in Fig. 13 for which we have neglected the
Debye interaction and used CW = C0 = 93.55 which is due

only to the London interaction. We see that when the Debye
interaction is neglected the cross section is reduced slightly at
higher velocities, but becomes larger and more similar to that
for Ps-CO near zero velocity. Thus the large dipole moment
of LiF only has a relatively small effect on the elastic Ps-LiF
cross section.

Last, and perhaps most importantly, we note that the to-
tal Ps-LiF scattering cross section is much smaller than the
the measured and calculated e−-LiF cross sections plotted in
Fig. 6. The difference is about an order of magnitude at the
same projectile velocities. While these cross sections include
only elastic and rotationally inelastic channels, we expect
them to be close to the total e−-LiF scattering cross section.
Since LiF has a large dipole moment, the strong dipole in-
teraction has a much bigger effect for e−-LiF scattering than
it does for Ps-LiF scattering, and we do not see a similarity
between the total cross sections in this case.

VI. CONCLUSION

We have calculated both elastic and Ps ionization cross
sections for Ps scattering by several polar molecules using
FEG and binary-encounter models. In order to obtain ion-
ization cross sections we have also performed calculations
using FEG gas models for electron and positron scattering by
these target molecules. For electron and positron scattering
we have studied the effect of higher partial waves and have
found it to be important to obtain cross sections that agree
with experiment for polar molecules.
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FIG. 12. Partial (a) Ps-CO and (b) Ps-HCl elastic scattering cross sections. Solid line: m = 0, red ashed line: m = 1 and blue dotted line:
m = 2, where m is the quantum number describing the projection of the Ps center of mass angular momentum on the internuclear axis.

FIG. 13. Elastic Ps-LiF (dashed line) and total Ps-LiF (solid line)cross sections. The dotted line is the elastic Ps-LiF cross section without
inclusion of the Debye interaction.
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FIG. 14. Partial Ps-LiF elastic scattering cross sections. Solid line: m = 0, red dashed line: m = 1 and blue dotted line: m = 2, where m is
the quantum number describing the projection of the Ps center of mass angular momentum on the internuclear axis.

As for the case of electron and positron scattering by
nonpolar molecules [7,8] the relatively simple FEG model
gives fairly good agreement with experimental elastic cross
sections.

In the case of elastic Ps scattering we see resonance struc-
tures near the Ps ionization threshold for all target molecules.
At velocities above the ionization threshold we see good
agreement between Ps scattering cross sections and electron
scattering cross sections for the targets with smaller dipole
moments, CO and HCl. However, we do not see such a sim-
ilarity for LiF, which suggests that the similarity between
electron and Ps scattering does not extend to highly polar
targets.

At low velocities there is no direct similarity between
electron and Ps scattering by the presently studied target
molecules. This is not necessarily surprising due to the very
different long-range behavior of the scattering potentials in the
two cases. In the case of Ps scattering the dipole moment has a

much weaker effect than in the case of electron scattering. As
for the nonpolar molecules we have studied before, we see res-
onance structures in Ps scattering for all of the molecules that
we have studied. For CO and LiF these resonance structures
occur near or just below the Ps ionization threshold while for
HCl they appear closer to zero velocity.

In the future we plan on extending the present model to
study Ps-H2O scattering for which experimental data is avail-
able. Also, we hope that the present results provide a basis to
study Ps scattering by a crystal LiF surface, which has also
been studied experimentally [66].
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