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Bethe stopping-power formula and its corrections
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The classical and quantum theories leading to the asymptotic Bethe formula of the stopping power of
matter for charged particles heavier than the electron are briefly reviewed. Models and approximations for
the practical calculation of various corrections that extend the validity range of the formula are described.
The asymptotic formula and the associated shell correction were determined previously from an extensive
database of atomic generalized oscillator strengths, calculated for an independent-electron model with the
Dirac-Hartree-Fock-Slater (DHFS) self-consistent potential, with due account for relativistic departures from
the Bethe sum rule. The nonrelativistic Bloch correction is extended to the relativistic domain by means of
the Lindhard-Sørensen formulation, and an accurate parametrization for point projectiles with small charges is
proposed. The density-effect correction and the Barkas correction are obtained from a semiempirical model of
the optical oscillator strength (OOS), built from the calculated DHFS contributions of inner electron subshells
plus the OOS of outer-shell electrons represented by an analytical expression, which is determined by the
composition, mass density, and empirical mean excitation energy, or I value of the material. Inclusion of the shell,
density-effect, Lindhard-Sørensen, and Barkas corrections into the asymptotic formula leads to the corrected
Bethe formula. A general strategy is proposed to determine the stopping power in terms of only the I value of the
material. It is shown that, with the empirical I values recommended in Report 37 of the International Commission
on Radiation Units and Measurements, the stopping powers calculated numerically from the corrected formula
are in close agreement with available measurements of the stopping power of elemental materials for protons
and alpha particles with energies higher than 0.75 and 5 MeV, respectively.
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I. INTRODUCTION

A fast charged particle in matter loses energy through in-
teractions of different kinds, namely, (1) inelastic collisions,
i.e., interactions that produce electronic excitations of the ma-
terial (electronic stopping); (2) elastic collisions, which cause
the recoil of the target atom (nuclear stopping); and (3) the
emission of bremsstrahlung, or breaking radiation (radiative
stopping). The present paper is focused on the electronic
stopping of materials for charged particles heavier than the
electron with kinetic energies up to about ten times their rest
energy, for which the effect of nuclear stopping is small and
that of radiative stopping is negligible.

The theory of electronic stopping has attracted a good
deal of interest for longer than a century. Its main result is
the celebrated Bethe formula for the stopping power, which
gives the average energy loss per unit path length of the
projectile. In principle, the Bethe formula is asymptotic, i.e.,
valid for projectiles with sufficiently high kinetic energy, and
applicable only to thin atomic or molecular gases. Various
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correction terms need to be introduced to extend the validity
of the formula down to intermediate energies and to dense
materials. The present paper is intended to present in a unified
manner the basic theoretical considerations leading to the
Bethe formula and to its corrections, to identify the empirical
information necessary for quantitative purposes, and to assess
the range of validity of the formula by comparison with mea-
sured stopping-power data.

A summary description is given of the various derivations
of the Bethe formula, following essentially the historical order
in which they were developed. The classical approach of Bohr
[1,2], slightly modified to account for relativistic kinematics,
is presented in Sec. II. Section III deals with the quantum
perturbation method of Bethe [3,4]. The classical and quan-
tum approaches are consistent, in the sense that they lead to
the same stopping-power formula for low-density materials,
in which the characteristics of the medium enter through a
pair of parameters, the average electron density, and the mean
excitation energy I , which is defined as an integral property of
the optical oscillator strength (OOS).

The quantum theory of stopping is based on the relativistic
plane-wave Born approximation (PWBA), a first-order pertur-
bative approach, which is described, e.g., by Fano [5]. The
central result from the PWBA (Sec. III) for collisions with
individual atoms or molecules is a closed expression for the
doubly differential cross section (DDCS, differential in the
energy loss W and the recoil energy Q) in terms of kinemat-
ical factors and the longitudinal and transverse generalized
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oscillator strengths (GOSs). The stopping-power formula is
obtained from considerations based on (1) the global features
of the GOSs; (2) the Bethe sum rule, which asserts that the
integral over the energy loss of the GOS with a fixed value
of Q equals the number of bound electrons in the target atom
or molecule, irrespective of the Q value; and (3) the assump-
tion that the energy of the projectile is sufficiently high to
permit the simplification of certain integrals of the GOS. Orig-
inally, PWBA calculations were performed analytically by
using simple hydrogenic atomic models (see, e.g., Ref. [6]).
These calculations provided qualitative knowledge on the
GOS of atomic and molecular targets, and allowed the for-
mal derivation of the Bethe formula. Calculations with more
elaborated atomic models, which require massive numerical
computations, have been possible only since the 1990’s. A
systematic calculation of the GOSs for the electron subshells
of neutral atoms in their ground-state configuration, based
on the independent-electron model with the self-consistent
Dirac-Hartree-Fock-Slater (DHFS) potential, was performed
by Bote and Salvat [7] and by Salvat et al. [8]. The numerical
GOSs exhibit a well-known departure from the Bethe sum
rule caused by relativistic effects. Proper consideration of this
departure implies a formal modification of the asymptotic for-
mula for the stopping cross section, and it allows determining
an atomic shell correction that, when added to the asymptotic
formula, reproduces the stopping cross section obtained by
numerical integration of the DDCS [8]. As the main contribu-
tions to the shell correction originate from excitations of inner
electron subshells, which are expected to be described real-
istically by the DHFS model, the shell correction calculated
for free atoms should also be approximately valid for dense
materials and compounds.

Fermi [9] noted that the stopping power of a dense material
for fast charged particles is smaller than that of a thin gas of
the same composition due to the dielectric polarization of the
medium caused by the electromagnetic field of the projectile.
The semiclassical dielectric formulation [9–11] sketched in
Sec. IV, which is shown to be equivalent to the quantum for-
mulation for low-density materials, allows deriving a generic
method for computing the density-effect correction to the
stopping power in terms of the OOS of the material. In the
case of high-energy projectiles, the dielectric polarization can
be accounted for by adding a correction term to the asymptotic
Bethe formula [12,13].

The validity of the formula can be extended to lower ener-
gies by adding additional correction terms. At intermediate
energies, a correction is required to account for the differ-
ence between the stopping power predicted by the asymptotic
formula and the result from a numerical integration of the
DDCS obtained from the PWBA. This is the shell correction
mentioned above. Bloch [14] pointed out that the classical
calculation by Bohr would be more reliable than the PWBA
for slow heavy projectiles, and derived a correction term to the
nonrelativistic Bethe formula which yields stopping powers
that approach the values obtained from Bohr’s formula when
the latter is superior. The Bloch nonrelativistic correction is
introduced in Sec. V by following the derivation of Lindhard
and Sørensen [15], which allows extending the correction to
the relativistic domain. Finally, observed small differences
between the stopping powers for particles with the same

speeds and masses but opposite charges are accounted for by
the so-called Barkas-effect correction, which is described in
Sec. VI as a modification of Bohr’s classical formulation for
the distant interactions by introducing (to lowest order) the
spatial variation of the electric field of the projectile within
the volume swept by the oscillating target electrons [16,17].

The corrected Bethe formula, obtained by combining the
asymptotic formula for the stopping cross section of indi-
vidual atoms or molecules, the DHFS shell correction, the
density-effect correction, the Lindhard-Sørensen correction,
and the Barkas correction, is presented in Sec. VII. Because
the density-effect and Barkas corrections are calculated from
the OOS of the material, in Sec. VIII we consider various
alternative models of the OOS and justify the use of an
empirical OOS model based on atomic subshell OOSs cal-
culated with the DHFS potential. With that empirical OOS,
the corrected Bethe formula contains only two parameters:
the effective mean excitation energy I ′

0, and the cutoff impact
parameter a for distant interactions, which determines the
Barkas correction.

The consistency of the theory is analyzed in Sec. IX by
comparing the predictions of the corrected Bethe formula with
experimental data. For this purpose we use measured stopping
powers for protons and alpha particles taken from the ex-
haustive International Atomic Energy Agency (IAEA) online
database [18] on “Electronic Stopping Power of Matter for
Ions” [19]. A preliminary comparison of measured stopping
powers and the prediction of the corrected Bethe formula,
with the DHFS-model OOS and parameters estimated from
empirical arguments, indicated that the formula is valid (i.e.,
it yields the approximate energy dependence of the measured
stopping powers) for protons and alphas with kinetic energies
higher than about 0.75 and 5 MeV, respectively.

An attempt to obtain the parameters I ′
0 and a by fitting

the measurements leads to the conclusion that experimental
uncertainties hide the tendency needed for an unambiguous
fit. In that situation, we relaxed our requirements by con-
sidering that the I ′

0 parameter can be identified with the
empirical I values recommended in the International Commis-
sion on Radiation Units and Measurements (ICRU) Report 37
[20], which were determined using information from multiple
sources, and by estimating the value of the cutoff impact pa-
rameter a empirically on the basis of the limited information
gained from the fits. With these parameters, we found gen-
erally good agreement between the corrected Bethe formula
and the experiments in the energy range where the formula
is expected to be valid. We present a graphical comparison of
the IAEA stopping powers with the prediction of the corrected
Bethe formula for 18 elements for which enough experimental
information in the relevant energy range was available for
both protons and alphas. A similar comparison for all the
other elements included in the IAEA database is given in the
Supplemental Material [21], which confirms that results from
the corrected Bethe formula obtained with the proposed
calculation scheme are consistent with experimental stopping-
power data. The document ends with a few concluding
comments given in Sec. X. A computer program that cal-
culates the stopping power of arbitrary materials for point
charged particles from the corrected Bethe formula, together
with the required database of DHFS-model OOSs and atomic

032809-2



BETHE STOPPING-POWER FORMULA AND ITS … PHYSICAL REVIEW A 106, 032809 (2022)

shell corrections, is provided as part of the Supplemental
Material [21].

For concreteness, we limit the presentation of the theory
to homogeneous elemental materials, although, with minor
modifications, the corrected Bethe formula [Eq. (128)] is also
valid for alloys and compounds. We consider a fast charged
projectile (mass M1 � me and charge Z1e, with me and e
denoting the electron mass and the elementary charge, re-
spectively) that moves with kinetic energy E in an elemental
material of atomic number Z with N atoms per unit volume.
To cover the energy range of interest, relativistic kinematics
is used thorough the text. We recall that the kinetic energy E
and the magnitude p of the linear momentum of the projectile
can be expressed as

E = (γ − 1)M1c2, p = βγ M1c, (1)

where

β = v

c
=

√
γ 2 − 1

γ 2
=

√
E (E + 2M1c2)

(E + M1c2)2
(2)

is the projectile’s velocity v in units of the speed of light c,
and

γ =
√

1

1 − β2
= E + M1c2

M1c2
(3)

is the total energy of the projectile in units of its rest energy.
Notice that

cp =
√

E (E + 2M1c2). (4)

Each inelastic interaction involves a certain energy transfer
W from the projectile to the medium. Inelastic “collisions”
are characterized by the atomic energy-loss differential cross
section (DCS), dσ/dW , from which we can calculate the
atomic total cross section, σ (0), and the stopping cross section,
σ (1), as integrals of the DCS:

σ (n) =
∫ E

0
W n dσ

dW
dW. (5)

The stopping power S is defined as the average energy loss per
unit path length s of the projectile. It can be evaluated as the
ratio of the average energy loss in a collision,

〈W 〉 =
∫ E

0
W

1

σ (0)

dσ

dW
dW, (6)

and the mean free path for inelastic interactions, λ =
(Nσ (0) )−1, that is,

S ≡ − dE

ds
= 〈W 〉

λ
= Nσ (1). (7)

Very often the terms “stopping power” and “stopping cross
section” are used interchangeably.

II. CLASSICAL THEORY OF STOPPING

The first formula for the electronic stopping power was
derived by Bohr [1,2] from purely classical arguments. Bohr’s
approach is not only of historical interest, for it is also the
basis of the derivation of the Lindhard-Sørensen and Barkas
corrections (see Secs. V and VI).

The starting point of Bohr’s calculation was the DCS for
classical nonrelativistic collisions of a projectile moving with
velocity v with an electron at rest, assuming that they interact
through the Coulomb force. In the center-of-mass (c.m.) frame
these binary collisions are described by the Rutherford DCS:

dσcl

d�
=

(
Z1e2

2mev2

)2 1

sin4(θ/2)
, (8)

where v is the relative velocity and θ is the scattering angle
in the c.m. frame. The angle θ and the impact parameter b
(defined as the distance from the initial position of the target
electron to the undisturbed straight trajectory of the projectile)
are related by

sin2(θ/2) = (Z1e2/mev
2)2

b2 + (Z1e2/mev2)2
. (9)

The Rutherford DCS is valid (i.e., coincident with the DCS
obtained from an exact quantum calculation) when the abso-
lute value of the Sommerfeld parameter

η ≡ Z1e2

h̄v
(10)

is much larger than unity [22]. h̄ = h/(2π ) is the reduced
Plank constant.

As a consequence of disregarding relativistic effects,
Bohr’s original formula misses part of the relativistic terms
in the Bethe formula, Eq. (40) below (see, e.g., Ref. [23]).
To get the correct relativistic form of the stopping-power
formula, we slightly modify Bohr’s reasoning by following
an argument first proposed by Fermi and further developed by
Jackson and McCarthy [17]. We limit our considerations to
projectiles much heavier than the electron (M1 � me), so that
the c.m. frame practically coincides with the rest frame of the
projectile, and the velocity of the electron in the c.m. frame
is � −v. As discussed by Jackson and McCarthy, the c.m.
DCS is essentially the same as the DCS for scattering of an
electron that moves with speed v in the Coulomb potential of
the projectile; this approach is also adopted by Lindhard and
Sørensen [15]. The scattering of an electron by a fixed-point
charge Z1e is described by the Mott DCS [24,25], which is
obtained from the exact solution of the Dirac equation for the
Coulomb potential. We consider the McKinley and Feshbach
[26] expansion of the Mott DCS:

dσM2

d�
=

(
Z1e2

2vp

)2 1

sin4(θ/2)
{1 − β2 sin2(θ/2)

+πZ1αβ sin(θ/2) [1 − sin(θ/2)]}, (11)

where p = βγ mec is the momentum of an electron moving
with the speed of the projectile, and α = e2/h̄c ≈ 1/137 is the
fine-structure constant. The relativistic correction that is miss-
ing in Bohr’s stopping-power formula is obtained by using
relativistic kinematics and by replacing the Rutherford DCS
(8) with the two first terms in Eq. (11):

dσM1

d�
=

(
Z1e2

2vp

)2 1

sin4(θ/2)
[1 − β2 sin2(θ/2)]. (12)

This expression is also obtained from the Born approxima-
tion for spin- 1

2 particles (see, e.g., Ref. [25]). Since the spin
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correction, −β2 sin2(θ/2), decreases in magnitude when the
scattering angle decreases, the equality (9) with the electron
relativistic mass γ me,

sin2(θ/2) = (Z1e2/γ mev
2)2

b2 + (Z1e2/γ mev2)2
, (13)

still holds valid for impact parameters that are sufficiently
large (i.e., for small scattering angles in the c.m. frame).

After the binary collision, the target electron recoils with
the kinetic energy

W = Wmax sin2(θ/2) = Wmax
1 − cos θ

2
, (14)

where

Wmax = 2β2γ 2 mec2

1 + 2(me/M1)γ + (me/M1)2

� 2β2γ 2 mec2 (15)

is the largest allowed energy transfer in a collision. Hence, the
energy-loss DCS for collisions with an electron at rest is

dσM1

dW
= 2π sin θ dθ

dW

dσM1

d�

= 2πZ2
1 e4

mev2

1

W 2

(
1 − β2 W

Wmax

)
, (16)

which differs from the DCS adopted by Bohr in that (1)
v = βc is the relativistic velocity and (2) it includes the spin
correction. Equations (13) and (14) imply the following rela-
tionship between the energy loss and the impact parameter b:

W (b) = Wmax
b2

min

b2 + b2
min

(17)

with

bmin = Z1e2

β2γ mec2
. (18)

Bohr noticed that bound electrons with large impact pa-
rameters would feel the electric field of the projectile varying
slowly with time and, consequently, they would respond adi-
abatically (that is, their orbits would stretch slowly as the
projectile approaches and gently return to their original shapes
when the projectile moves away) without absorbing any en-
ergy (see, e.g., Ref. [27]). This feature sets an upper adiabatic
limit, bad, to the impact parameters of electrons that effectively
contribute to the stopping. The precise value of bad can only
be determined from a comparison of calculated results with
available experimental data.

A. Close collisions

The contribution to the stopping power of electrons with
impact parameter less than a certain cutoff value a (assumed
to be less than bad) is given by

Scl,b<a = NZ
∫ Wmax

W (a)
W

dσM1

dW
dW

= 2πZ2
1 e4

mev2
NZ

[
ln W − β2 W

Wmax

]Wmax

W (a)
. (19)

For projectiles with sufficiently large velocities, we can select
a value of the cutoff impact parameter a such that a � bmin

[see Eq. (18)], and write

Scl,b<a = 2πZ2
1 e4

mev2
NZ

[
2 ln

(
a

γ mev
2

|Z1|e2

)
− β2

]

= 4πZ2
1 e4

mev2
NZ

[
ln

(
a

mev
2

|Z1|e2

)
+ 1

2
ln γ 2 − 1

2
β2

]
.

(20)

The first term in this expression coincides with Bohr’s non-
relativistic result; the second and third terms give the correct
relativistic correction obtained from the PWBA [see Eq. (40)].

B. Distant interactions

The need for determining the adiabatic impact parame-
ter bad is avoided if the contribution of distant interactions
with b > a is calculated by treating the electrons as classical
oscillators. The energy transferred to a harmonically bound
electron at a distance b from the trajectory of the passing
projectile is given by [Eq. (13.31) of Ref. [11]]

W (b, ω) = 2Z2
1 e4

mev2

1

b2

[
ξ 2K2

1 (ξ ) + 1

γ 2
ξ 2K2

0 (ξ )

]
, (21)

where ω is the binding angular frequency of the oscillator,
Kn(x) are modified Bessel functions of orders n = 0 and 1
[28], and

ξ = ωb

γ v
. (22)

In the derivation of Eq. (21), it is assumed that the electric
field of the projectile is uniform over the volume swept by the
trajectory of the oscillating electron, similarly to the dipole ap-
proximation employed in atomic physics (see, e.g., Ref. [29]).

A basic ingredient of the classical theory is the oscillator
strength density, df (ω)/dω. The quantity [df (ω)/dω] dω is
defined as the number of atomic electrons having harmonic
binding frequency ω in the interval (ω,ω + dω). Naturally,
the oscillator strength density is assumed to satisfy the sum
rule ∫ ∞

0

df (ω)

dω
dω = Z. (23)

The contribution to the stopping power of oscillators with
impact parameters larger than a given cutoff value a is

Scl,b>a = 2πN
∫ ∞

0
dω

df (ω)

dω

∫ ∞

a
W (b, ω) b db

= 4πZ2
1 e4

mev2
N

∫ ∞

0
dω

df (ω)

dω

×
∫ ∞

ξa

[
K2

1 (ξ ) + 1

γ 2
K2

0 (ξ )

]
ξ dξ (24)

with ξa = ωa/(γ v). Since the integrand decreases rapidly to
zero for large b, the upper limit of the second integral has been
set to ∞. The integral over ξ can be solved in closed form
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giving [Eq. (13.35) of Ref. [11]]

Scl,b>a = 4πZ2
1 e4

mev2
N

∫ ∞

0
dω

df (ω)

dω
[ξaK1(ξa)K0(ξa)

− v2

2c2
ξ 2

a

[
K2

1 (ξa) − K2
0 (ξa)

]]
. (25)

In situations of practical interest with high-energy particles
(see below) ξa 
 1 and we can use the small-argument forms
of the Bessel functions [28] to simplify the last expression.
We have

Scl,b>a = 4πZ2
1 e4

mev2
N

∫ ∞

0
dω

df (ω)

dω

×
[

ln

(
2 exp(−g)γ v

aω

)
− v2

2c2

]
, (26)

where g = 0.5772 is Euler’s constant. Using the sum rule (23),
we can write

Scl,b>a = 4πZ2
1 e4

mev2
N Z

[
ln

(
2 exp(−g) v

aω

)

+1

2
ln γ 2 − 1

2
β2

]
, (27)

where ω is an average binding frequency defined by

ln ω = 1

Z

∫ ∞

0
ln(ω)

df (ω)

dω
dω. (28)

The classical stopping power Scl is the sum of contributions
from close and distant collisions:

Scl = Scl,b<a + Scl,b>a.

We thus obtain the classical high-energy (asymptotic) formula

SBohr = 4πZ2
1 e4

mev2
N Z

[
ln

(
2 exp(−g) mev

3

|Z1| e2 ω

)

+ ln γ 2 − β2

]
, (29)

which, aside from the contribution of close collisions to
the relativistic correction [= 1

2 (ln γ 2 − β2)], coincides with
Bohr’s classical stopping-power formula. It is interesting to
observe that the only characteristics of the material entering
this formula are the total average electron density NZ and the
average binding frequency ω.

III. THE QUANTUM THEORY OF BETHE

The nonrelativistic quantum theory of inelastic collisions
of charged projectiles with atoms was first formulated by
Bethe [3] on the basis of the PWBA, in which the projec-
tile states are represented as plane waves and the interaction
between the projectile and the target electrons is treated as
a perturbation to first order. The theory was subsequently
extended to the relativistic domain by Bethe [4] and Møller
[30]. General considerations [6] indicate that the PWBA is
expected to be valid (i.e., giving results in agreement with
those from an exact quantum calculation) when Zα 
 β.

In its original form, the relativistic Bethe theory considers
inelastic collisions of a projectile with initial kinetic energy E
and linear momentum p with a neutral atom of the element of
atomic number Z in its ground state. Let E ′ and p′ denote the
kinetic energy and momentum of the projectile after the colli-
sion. The effect of the interaction on the projectile is described
by a DDCS that depends on the energy loss W = E − E ′ and
the polar scattering angle θ , i.e., the angle between p and p′. A
reformulation of the theory by Fano [5], using electromagnetic
potentials in the Coulomb gauge (see, e.g., Ref. [11]), shows
that the DDCS takes a more intelligible form when the polar
scattering angle is replaced with the recoil energy Q defined as
the kinetic energy of an electron with linear momentum equal
to the momentum transfer h̄q = p − p′, i.e., such that

Q(Q + 2mec2) ≡ (ch̄q)2

= c2(p2 + p′2 − 2pp′ cos θ ) (30)

or

Q =
√

(ch̄q)2 + m2
ec4 − mec2. (31)

For a given energy loss W , the allowed values of Q lie in the
interval (Q−, Q+) with

Q± =
√

(cp ± cp′)2 + m2
ec4 − mec2. (32)

For projectiles with high energy and W 
 E ,

Q− � W 2

2β2 mec2
. (33)

The DCS obtained from the PWBA can be expressed as (see Refs. [5,8])

d2σ

dQ dW
= 2πZ2

1 e4

mev2

[
2mec2

W Q(Q + 2mec2)

df (Q,W )

dW
+ β2

(
1 − W 2

β2Q(Q + 2mec2)

)
2mec2W

[Q(Q + 2mec2) − W 2]2

dg(Q,W )

dW

]
, (34)

where the functions df (Q,W )/dW and dg(Q,W )/dW are,
respectively, the longitudinal and transverse GOSs, which are
defined in terms of matrix elements of the effective interaction
Hamiltonian (see Ref. [5]) between initial and final states of
the projectile and the target atom. The longitudinal GOS ac-
counts for the response of the target atom to the instantaneous
Coulomb potential of the projectile, while the transverse DCS
describes the effect of transverse interactions (i.e., exchange

of virtual photons between the projectile and the atom). The
contribution of transverse interactions vanishes in the nonrel-
ativistic limit (c → ∞, β → 0), in which the DDCS reduces
to

d2σ

dQ dW
= 2πZ2

1 e4

mev
2
NR

1

W Q

dfNR(Q,W )

dW
, (35)

with the nonrelativistic speed of the projectile, v2
NR = 2E/M1.
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Although the nonrelativistic GOS of the hydrogen atom
and one-electron ions can be expressed in closed analytical
form [6], relativistic GOSs have to be calculated numer-
ically. The most elaborate calculations available [8] are
based on a relativistic independent-electron model, in which
atomic states are represented as single Slater determinants
built with one-electron orbitals that are solutions of the
Dirac equation with the DHFS self-consistent potential for
the ground-state configuration of the target atom (see, e.g.,
Ref. [31]). This atomic model is hereafter referred to as
the DHFS model. The GOSs obtained from it are expressed
as sums of contributions from the electron subshells of the
ground-state configuration, that is,

df (Q,W )

dW
=

∑
i

dfi(Q,W )

dW
,

dg(Q,W )

dW
=

∑
i

dgi(Q,W )

dW
. (36)

The GOSs dfi(Q,W )/dW and dgi(Q,W )/dW of the ith sub-
shell with ionization energy Ui can be calculated to high
numerical accuracy. They consist of a continuum of energy
transfers W higher than Ui, which correspond to transitions
of individual electrons to final orbitals with positive energy
(ionization), and a set of discrete resonances with excitation
energies below Ui that represent excitations of electrons to
bound orbitals. Salvat et al. [8] used a computer code devel-
oped by Bote and Salvat [7] to generate a complete database of
GOSs for all the subshells of the ground-state configurations
of neutral atoms of the elements from hydrogen (Z = 1) to
einsteinium (Z = 99). These calculated GOSs are expected to
provide a realistic description of the response of electrons in
inner subshells, but not for the outer subshells, which are sen-
sitive to electron-correlation effects (neglected by the DHFS
model) and, for compounds and condensed materials, to the
state of aggregation.

The graphical representation of the GOS as a function of Q
and W is called the Bethe surface [6]. A conspicuous feature
of the Bethe surface is that, for Q larger than about 10Ui, the
subshell GOS reduces to a ridge, the Bethe ridge, that peaks
near the line W = Q. In collisions with large momentum
transfers, or with recoil energies much larger than the ioniza-
tion energy Ui, the effect of binding is small and the target
electrons react as if they were free and at rest. Under these
circumstances, the subshell GOSs can be approximated as

dfi(Q,W )

dW
� fi δ(Q − W ),

dgi(Q,W )

dW
� fi δ(Q − W ), (37a)

where fi is the number of electrons in the ith subshell. In
the optical limit, Q = 0, both the longitudinal and transverse
GOSs reduce to the OOS:

df (0,W )

dW
= dg(0,W )

dW
= df (W )

dW
. (37b)

In the nonrelativistic theory, the GOS satisfies the Bethe sum
rule ∫ ∞

0

dfNR(Q,W )

dW
dW = Z ∀Q, (37c)

which at Q = 0 reduces to the dipole (or Thomas-Reiche-
Kuhn) sum rule [29]. Relativistic GOSs present small
departures from the Bethe sum rule that are disregarded in
most generic studies (see Sec. VII).

Integration of the DDCS over recoil energies yields the
energy-loss DCS:

dσ

dW
=

∫ Q+

Q−

d2σ

dQ dW
dQ =

∑
i

dσi

dW
. (38)

For sufficiently large recoil energies, the approximations (37a)
are applicable and the subshell energy-loss DCS reduces to

dσi

dW
= fi

2πZ2
1 e4

mev2

1

W 2

×
(

1 − β2 W

Wmax
+ 1 − β2

2M2
1 c4

W 2

)
, (39)

where Wmax is the maximum energy transfer in a collision with
free electrons at rest, which is given by Eq. (15). The total
cross section, σ (0), and the stopping cross section, σ (1), are
obtained as integrals of the energy-loss DCS [see Eq. (5)].

The global properties of the GOSs, Eqs. (37), allow de-
riving asymptotic formulas, valid for high-energy projectiles,
for the total cross section and the stopping cross section (see,
e.g., Ref. [5]). The asymptotic formula for the stopping cross
section is known as the Bethe formula, which reads

σ
(1)
as,Bethe = 2πZ2

1 e4

mev2
2Z

[
ln

(
2mev

2

I

)

+ ln γ 2 − β2 + 1

2
f (γ )

]
(40)

with the mean excitation energy I defined by

ln I = 1

Z

∫ ∞

0
ln W

df (W )

dW
dW, (41)

and

f (γ ) = ln(R) +
(

me

M1

γ 2 − 1

γ
R

)2

, (42a)

where

R = [1 + (me/M1)2 + 2(me/M1)γ ]−1. (42b)

For particles much heavier than the electron, the quantity R is
close to unity and f (γ ) � 0. We point out that the derivation
of the formula (40) [5] makes explicit use of the Bethe sum
rule (37c).

Because of the simplifications introduced in the derivation
of the asymptotic formula (40), when the kinetic energy of the
projectile is not large enough, the values given by that formula
differ from the “exact” stopping cross section obtained by
integrating the energy-loss DCS. The difference determines
the shell correction, C/Z , which is defined in such a way that
the corrected Bethe formula

σ
(1)
Bethe = 4πZ2

1 e4

mev2
Z

[
ln

(
2mev

2

I

)

+ ln γ 2 − β2 + 1

2
f (γ ) − C(γ )

Z

]
(43)
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reproduces the calculated σ (1) values. Salvat et al. [8] have
determined the shell correction for neutral atoms of the el-
ements with Z = 1–99 and projectile protons with energies
up to 1010 eV by using the GOSs calculated by means of
the DHFS model. It is worth noticing that the stopping cross
section obtained from the PWBA is determined by the speed
and the squared charge of the projectile; it does not depend
on either the mass or the sign of the charge of the projectile.
This feature implies that the shell correction, considered as a
function of γ , is valid for any kind of charged projectile much
heavier than the electron. Electrons and positrons are affected
by exchange and annihilation-recreation effects, which mod-
ify the terms f (γ ) and C/Z in the Bethe formula (see, e.g.,
Ref. [20]).

IV. SEMICLASSICAL DIELECTRIC THEORY

As indicated above, the PWBA describes inelastic in-
teractions of the projectile with a free atom, that is, the
asymptotic formula gives the stopping power, S = Nσ (1),
of a low-density elemental gas. The stopping power of a

condensed medium differs from that of a gas of the same
composition because (1) the presence of neighboring atoms
alters the wave functions of weakly bound and free electrons
(aggregation effects) and (2) the material gets polarized by
the electromagnetic field of the moving projectile (Fermi’s
density effect). A convenient framework for computing the
stopping power of a condensed material is provided by the
classical dielectric formalism [10,32], in which the mate-
rial is described as a homogeneous and isotropic dielectric
medium.

If the projectile charge is positive (negative), it attracts the
electrons (nuclei) and repels the nuclei (electrons), polariz-
ing the atoms of the medium. As the projectile is moving
fast, the polarization is stronger behind the projectile than in
front of it. This inhomogeneous polarization gives rise to an
induced electric field E ind that, in turn, produces a stopping
force Z1eE ind on the projectile. The stopping power, i.e., the
average energy loss per unit path length, can then be iden-
tified with that force. Following Lindhard [10] the stopping
power obtained from the classical dielectric approach can be
expressed as

Sdiel = 2Z2
1 e4

πv2

∫ ∞

0
ω dω

∫ ∞

ω/v

dq

q

[
Im

( −1

ε (L)(q, ω)

)
+ β2

(
1 − ω2

β2c2q2

)
Im

(
1

1 − (ω/cq)2 ε (T)(q, ω)

)]
, (44)

where ε (L)(q, ω) and ε (T)(q, ω) are, respectively, the longitu-
dinal and transverse dielectric functions of the material, which
depend on the wave number q and the angular frequency ω of
the electromagnetic field. In the optical limit (q = 0), the two
dielectric functions reduce to the optical dielectric function,
ε(ω):

ε (L)(0, ω) = ε (T)(0, ω) = ε(ω). (45)

The classical dielectric approach describes the slowing
down of a swift charged particle as a continuous process,
while in reality the energy loss is the result of multiple discrete
interactions. Semiclassical arguments (see, e.g., Ref. [11]) in-
dicate that the variables ω and q, which are introduced merely
as variables of Fourier transformations, can be assigned a
physical meaning by considering that W = h̄ω and h̄q repre-
sent, respectively, the energy loss and the momentum transfer

in one interaction. In accordance with this interpretation, these
variables are subject to the constraints of energy and linear
momentum conservation. This semiclassical picture consti-
tutes the link between the classical dielectric and quantum
formulations. Indeed, in the case of thin atomic gases the
dielectric formalism should be consistent with the results from
PWBA calculations.

Let us express Sdiel in terms of the single-interaction vari-
ables Q [Eq. (31)] and W = h̄ω. Assuming that W 
 E , the
lower limit of the integral over Q is [see Eq. (33)]√

(ch̄ ω/v)2 − m2
ec4 − mec2 � W 2

2mec2β2
� Q−. (46)

In addition, the upper limits of the integrals can be replaced
with Wmax and Q+, respectively, because the integrand tends to
zero at large W or Q and, hence, it practically vanishes outside
the kinematically allowed domain. We can thus write

Sdiel = N 2πZ2
1 e4

mev2

2Z

π (h̄�p)2

∫ Wmax

0
dW W

∫ Q+

Q−
dQ

2(Q + mec2)

Q(Q + 2mec2)

[
Im

( −1

ε (L)(Q,W )

)

+β2

(
1 − W 2

β2Q(Q + 2mec2

)
Im

(
1 − W 2

Q(Q + 2mec2)
ε (T)(Q,W )

)−1
]
, (47)

where

�p =
√

4π NZ
e2

me
(48)

is the plasma resonance frequency of an electron gas with the average electron density NZ of the medium.
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To reveal the connection between the PWBA and the dielectric theory, we consider a low-density gas, for which Re(ε (L,T)) � 1
and Im(ε (L,T)) 
 1. The semiclassical expression (47) of the stopping power for such a material simplifies to

Sdiel,0 = N 2πZ2
1 e4

mev2

2Z

π (h̄�p)2

∫ Wmax

0
dW W

∫ Q+

Q−
dQ

2(Q + mec2)

Q(Q + 2mec2)

[
Im

( −1

ε (L)(Q,W )

)

+β2

(
1 − W 2

β2Q(Q + 2mec2)

)
W 2Q(Q + 2mec2)

[Q(Q + 2mec2) − W 2]2 Im

( −1

ε (T)(Q,W )

)]
. (49)

We recall that in the PWBA, and in other quantal formulations, the stopping power is obtained as the following integral of the
DDCS:

S = N
∫ Wmax

0
dW W

∫ Q+

Q−
dQ

d2σ

dQ dW
. (50)

The similarity of these two expressions allows inferring the following formula for the semiclassical DDCS:

d2σdiel,0

dQ dW
= 2πZ2

1 e4

mev2

2Z

π (h̄�p)2

2(Q + mec2)

Q(Q + 2mec2)

[
Im

( −1

ε (L)(Q,W )

)

+β2

(
1 − W 2

β2Q(Q + 2mec2)

)
W 2 Q(Q + 2mec2)

[Q(Q + 2mec2) − W 2]2 Im

( −1

ε (T)(Q,W )

)]
. (51)

Now, making the identifications

df (Q,W )

dW
= W

2Z

π (h̄�p)2
Im

( −1

ε (L)(Q,W )

)
(52a)

and

dg(Q,W )

dW
= W

2Z

π (h̄�p)2
Im

( −1

ε (T)(Q,W )

)
, (52b)

we can write

d2σdiel,0

dQ dW
= 2πZ2

1 e4

mev2

[
2(Q + mec2)

W Q(Q + 2mec2)

df (Q,W )

dW

+β2

(
1 − W 2

β2Q(Q + 2mec2)

)
2mec2 W 2

[Q(Q + 2mec2) − W 2]2

dg(Q,W )

dW

]
. (53)

As this DDCS decreases rapidly with Q, we can replace the factor Q + mec2 in the numerator with mec2, and obtain a formula
for the semiclassical DDCS that is identical to the result (34) from the relativistic PWBA.

Because the extension of the PWBA to dense materials is not feasible, we assume that the equivalence of the quantum
perturbation theory and the semiclassical dielectric formalism, which we have just verified for thin gases, also holds for any
amorphous material. Defining the longitudinal and transverse GOSs according to Eqs. (52), the semiclassical DDCS can be
expressed as

d2σdiel

dQ dW
= d2σdiel,0

dQ dW
+ d2(�σ )pol

dQ dW
. (54)

The first term on the right-hand side represents the DDCS of an ideal “unpolarizable” material, in which the electromagnetic
field of the projectile is the same as in vacuum. This term is formally identical to the result from the PWBA, except for the fact
that now the GOSs pertain to the material. The second term,

d2(�σ )pol

dQ dW
≡ d2σdiel

dQ dW
− d2σdiel,0

dQ dW
= 2πZ2

1 e4

mev2

2Z

π (h̄�p)2

2mec2

Q(Q + 2mec2)
β2

(
1 − W 2

β2Q(Q + 2mec2)

)

×
[

Im

(
1 − W 2

Q(Q + 2mec2)
ε (T)(Q,W )

)−1

− W 2 Q(Q + 2mec2)

[Q(Q + 2mec2) − W 2]2 Im

( −1

εT(Q,W )

)]
, (55)

can be regarded as a correction accounting for the effect of the dielectric polarization of the medium, the Fermi density effect.
The polarization correction is appreciable only for fast projectiles, with velocity v comparable to c (see Fig. 7 below), for

which Q− � W 2/(2mec2β2) is much smaller than W (Q− � 1 eV for W � 1 keV). Because the polarization correction (55)
almost diverges at Q−, the relevant recoil energies are small and, consequently, we can replace the dielectric functions on the
right-hand side of Eq. (55) with their values at Q = 0. Thus, the polarization effect alters the DDCS only for low-Q transverse
interactions and the correction is completely determined by the optical dielectric function. Heretofore, all calculations of the
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density effect have utilized this approximation (see, e.g., Refs. [5,33,34]). With the Q dependence of the dielectric functions
removed, Eq. (55) becomes

d2(�σ )pol

dQ dW
= 2πZ2

1 e4

mev2

2Z

π (h̄�p)2

2(Q + mec2)

Q(Q + 2mec2)
β2

(
1 − W 2

β2Q(Q + 2mec2)

)

×
[

Im

(
1 − W 2

Q(Q + 2mec2)
ε(W )

)−1

− W 2 Q(Q + 2mec2)

[Q(Q + 2mec2) − W 2]2 Im

( −1

ε(W )

)]
. (56)

Since this expression decreases rapidly with Q, the polariza-
tion correction to the stopping power can be calculated as

(�S)pol = N
∫ Wmax

0
dW W

∫ ∞

Q−
dQ

d2(�σ )pol

dQ dW
, (57)

where we have replaced the upper limit of the integral, Q+,
with infinity. Notice that, for projectiles with sufficiently high
energies, the integrand decreases rapidly with W , and the
upper limit Wmax of the integral can be replaced with ∞.

Fano [12] derived a compact formula for the high-energy
density-effect correction to the stopping power by using con-
tour integration in the complex plane. He showed that

(�S)pol = − 2πZ2
1 e4

mev2
N Z δF (58)

where δF is the density effect correction, which can be calcu-
lated as [13]

δF ≡ 1

Z

∫ ∞

0

df (W )

dW
ln

(
1 + L2

W 2

)
dW − L2

h̄2�2
p

(1 − β2),

(59)
where L is the positive root of the equation

F (L) ≡ 1

Z
h̄2�2

p

∫ ∞

0

1

W 2 + L2

df (W )

dW
dW = 1 − β2. (60)

The function F (L) decreases monotonically with L, and
hence, the root L(β2) exists only when 1 − β2 < F (0); oth-
erwise it is δF = 0. Therefore, the function L(β2) starts with
zero at β2 = 1 − F (0) and grows monotonically with increas-
ing β2.

The stopping cross section of the unpolarizable medium
for high-energy projectiles is given by the Bethe formula
(43). The stopping cross section of the polarizable material
is obtained by adding the density-effect correction:

σ
(1)
Bethe = 2πZ2

1 e4

mev2
2Z

[
ln

(
2mev

2

I

)

+ ln γ 2 − β2 + 1

2
f (γ ) − C(γ )

Z
− 1

2
δF

]
. (61)

Because the density-effect correction is significant only for
projectiles with high energies (see Fig. 7 below), the value
obtained from the formula (59) can also be used when the
energy of the projectile is low or moderate.

V. THE BLOCH AND LINDHARD-SØRENSEN
CORRECTIONS

As mentioned above, the Bohr stopping-power formula,
Eq. (29),

SBohr = 4πZ2
1 e4

mev2
N Z

[
ln

(
2 exp(−g) mev

3

|Z1| e2 ω

)

+ ln γ 2 − β2

]
, (62)

is expected to be valid when

|η| = |Z1|e2

h̄v
= |Z1|α

β
� 1. (63)

On the other hand, the Bethe stopping-power formula (40),
neglecting the term f (γ ) that is negligible for heavy projec-
tiles,

SBethe = 4πZ2
1 e4

mev2
NZ

[
ln

(
2mev

2

I

)

+ ln γ 2 − β2

]
, (64)

is the result from the PWBA, a first-order perturbation
calculation, or from the equivalent semiclassical dielectric
formalism, which are expected to be valid when [6]

Zα 
 β. (65)

Identifying Bohr’s oscillator strength density with the OOS,

df (ω)

dω
= h̄

df (W )

dW
, (66)

we see that the average binding energy h̄ω of the classical os-
cillators [Eq. (28)] and the mean excitation energy I [Eq. (41)]
coincide. Then the Bohr and Bethe formulas are seen to differ
only in their logarithmic terms:

LBohr = ln

(
2 exp(−g) mev

3h̄

|Z1| e2 I

)
, (67a)

LBethe = ln

(
2mev

2

I

)
. (67b)

The difference

LBohr − LBethe = ln

(
exp(−g)

|η|
)

(68)

is determined by the Sommerfeld parameter η and the Euler
constant. The relativistic terms, ln γ 2 − β2, in Eqs. (62) and
(64), which have equal contributions from close collisions and
distant interactions, vanish in a nonrelativistic approach.
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Bloch [14] noticed that the classical nonrelativistic result is
more accurate than the perturbative quantum calculation when
η2 � 1, and he derived a correction to the Bethe formula that
practically reproduces Bohr’s formula when η2 � 1 and is
negligible for small values of η2. The following derivation
of the nonrelativistic Bloch correction is due to Lindhard and
Sørensen [15].

If we adhere to the classical view, in which all energy
transfers are assumed to be caused by collisions with elec-
trons, and assume that the scattering angle θ in the c.m. frame
and the energy transfer W are related by Eq. (14), W (b) =
Wmax sin2[θ (b)/2], the stopping power can be calculated as

Scl = NZ
∫

W (b) 2πb db

= NZ Wmax

∫ bad

0
sin2[θ (b)/2] 2πb db, (69)

where Wmax = 2β2γ 2mec2 is the maximum energy transfer in
a collision. Noticing that the classical DCS can be expressed
as

dσ

d�
= 2πb db

d�
(70)

and recalling the definition of the transport cross section (in
the c.m. frame, identified here with the reference frame of the
projectile),

σtr =
∫

(1 − cos θ )
dσ

d�
d�

= 4π

∫ ∞

0
sin2[θ (b)/2] b db, (71)

we see that the integral in Eq. (69) represents the contribu-
tion to the transport cross section of collisions with impact
parameters up to the adiabatic cutoff bad. It is then natural to
introduce the quantity

σ cl
tr (bad ) ≡ 4π

∫ bad

0
sin2[(θ (b)/2] b db. (72)

In order to put into evidence the relationship with the quan-
tum description of the collision process, we replace the impact
parameter b with the angular momentum �h̄ = γ βmec b of the
electron in the frame of the projectile, and write

σ cl
tr (�ad ) = 4π

m2
ev

2

∫ �ad

0
sin2[(θ (�)/2] � d� (73)

with �ad = γ βmec bad/h̄ and

sin2[θ (�)/2] = (Z1e2/β2γ mec2)2

(�h̄/βγ mec)2 + (Z1e2/β2γ mec2)2

= η2

�2 + η2
. (74)

We thus have

σ cl
tr (�ad ) = 4πZ2

1 e4

m2
ev

4

∫ �ad

0

�

�2 + η2
d�, (75)

and we can express the classical stopping power as

Scl = NZ
Wmax

2
σ cl

tr (�ad ) = 4πZ2
1 e4

mev2
NZ Lcl

tr (76)

with

Lcl
tr =

∫ �ad

0

�

�2 + η2
d� = 1

2
ln

(
�2

ad + η2

η2

)

� ln

(
�ad

η

)
. (77)

Upon comparison with the Bohr logarithm, Eq. (67a), we con-
clude that the classical-collision approach yields the correct
result if the adiabatic cutoff �ad is taken to be

�ad = 2 exp(−g) mev
2

I
. (78)

Lindhard and Sørensen [15] considered the analogous
calculation of the stopping power based on the transport
cross section obtained from the exact quantum description
of (nonrelativistic) Coulomb scattering. The transport cross
section for Coulomb scattering can be written as [35]

σ
qu
tr = 4π h̄2

m2
ev

2

∞∑
�=0

(� + 1) sin2(�� − ��+1) (79)

with the Coulomb phase shifts

�� = arg �(� + 1 − iη). (80)

The property

��+1 = �� + arctan(−η/�) (81)

implies that

sin2(�� − ��+1) = η2

(� + 1)2 + η2
(82)

and, consequently,

σ
qu
tr = 4π h̄2

m2
ev

2
η2

∞∑
�=0

� + 1

(� + 1)2 + η2

= 4πZ2
1 e4

m2
ev

4

∞∑
�=0

� + 1

(� + 1)2 + η2
. (83)

Comparison with Eq. (75) shows that the quantity

Lqu
tr ≡

∞∑
�=0

� + 1

(� + 1)2 + η2
(84)

is analogous to the classical logarithm Lcl
tr , Eq. (77).

Since the Bethe theory is based on a perturbative approach,
which is valid for η 
 1, we can disregard η2 in expression
(84) and write

Lpert
tr ≡

�′
ad∑

�=0

1

� + 1
�

∫ �′
ad

1

d�

�
= ln (�′

ad ). (85)

The corresponding adiabatic cutoff, �′
ad, is now determined

by identifying the quantity (85) with the Bethe logarithm,
Eq. (67b). The desired correction is obtained as the difference

Z2
1 LNR

2 ≡ Lqu
tr − Lpert

tr

=
∞∑

�=0

� + 1

(� + 1)2 + η2
−

�′
ad∑

�=0

1

� + 1
. (86)
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Provided η is not too large (i.e., for projectiles with moderate
and high speeds), the difference of the unrestricted summa-
tions converges rapidly, and we introduce a negligible error
by setting

Z2
1 LNR

2 =
∞∑

�=0

(
� + 1

(� + 1)2 + η2
− 1

� + 1

)

= −η2
∞∑

n=1

1

n(n2 + η2)
. (87)

This is the Bloch nonrelativistic correction to the Bethe stop-
ping logarithm. The corrected formula

SBethe-Bloch = 4πZ2
1 e4

mev2
NZ

[
ln

(
2mev

2

I

)

+ ln γ 2 − β2 + Z2
1 LNR

2

]
(88)

is known as the Bethe-Bloch formula.
Lindhard and Sørensen [15] extended the nonrelativistic

calculation of the Bloch correction to account for relativistic
effects. They replaced the nonrelativistic transport cross sec-
tion (71) with its relativistic generalization expressed in terms
of the Dirac–Coulomb phase shifts instead of the Schrödinger-
Coulomb phase shifts, which amounts to using the correct
relativistic theory of elastic collisions of electrons with point-
like charged projectiles. The relativistic form of the Bloch
correction was derived as the difference between the exact
[24] transport cross section and its perturbative expansion.
This procedure is justified only for low and intermediate ener-
gies, say up to E ≈ 10M1c2. At higher energies, the finite size
of the charge distribution of the projectile becomes relevant,
and one should modify the theory by replacing the Dirac-
Coulomb phase shifts with the corresponding phase shifts for
scattering of electrons by the projectile’s finite-size charge
distribution. While the Dirac-Coulomb phase shifts admit an
analytical expression, the relativistic phase shifts for scat-
tering of electrons by other potentials have to be calculated
numerically.

The stopping-power formula with the Lindhard-Sørensen
correction reads

S = 4πZ2
1 e4

mev2
NZ

[
ln

(
2mev

2

I

)

+ ln γ 2 − β2 + �LLS

]
. (89)

We have performed numerical calculations of the Lindhard-
Sørensen relativistic correction �LLS for projectiles of charge
Z1e by using the RADIAL subroutines of Salvat and Fernández-
Varea [31], for both pointlike and finite-size spherical
projectiles. The results for pointlike projectiles with small
charges (|Z1| � 2) and energies less than 102M1c2 are closely
approximated by the following analytical expression:

�LLS
point =

(
1 + A

1 + 1.92 (γ − 1)1.41
− A

)
Z2

1 LNR
2 , (90)

where γ − 1 = E/(M1c2), and A = 180.20 for Z1 = +1 (pro-
tons, deuterons, tritons, and antimuons), A = −178.34 for

FIG. 1. Lindhard-Sørensen correction for pointlike projectiles
with the indicated charge numbers calculated numerically from
the Dirac-Coulomb phase shifts (solid curves) and values obtained
from the empirical formula (90) (dashed curves). The dotted curves
represent the nonrelativistic Bloch correction, Eq. (87), which is
proportional to Z2

1 .

Z1 = −1 (antiprotons and muons), A = 90.59 for Z1 = +2
(alphas), and A = −88.73 for Z1 = −2. Values from this
empirical formula are compared with numerical results cal-
culated for pointlike projectiles with Z1 = ±1 and ±2 in
Fig. 1, the absolute differences being normally less than about
5 × 10−4.

Although the correction (90) reduces to the Bloch form,
Z2

1 LNR
2 , for slow projectiles, it also accounts for part of the

Z3
1 and higher-order relativistic corrections. As noted by Lind-

hard and Sørensen [15], the angular momenta that give sizable
contributions to the correction �LLS correspond to impact pa-
rameters much smaller than the atomic radii. Therefore, in the
following we consider that the Lindhard-Sørensen correction
effectively accounts for the Barkas or Z3

1 correction for close
collisions.

VI. THE BARKAS CORRECTION

The Bethe and Bethe-Bloch formulas are even in Z1 and,
consequently, they predict the same stopping power for par-
ticles and their antiparticles. However, there is experimental
evidence of appreciable differences between the stopping
powers for particles with the same masses and opposite
charges. The origin of these differences is called the Barkas
effect, which introduces a correction term proportional to Z3

1
in the Bethe formula. In principle, the part of the Barkas effect
arising from close collisions is already accounted for by the
Lindhard-Sørensen correction. In the following we describe
the relativistic calculation of the Barkas-effect correction for
distant interactions by Jackson and McCarthy [17], which
parallels a nonrelativistic formulation by Ashley et al. [16].
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In the derivation of Bohr’s stopping-power formula, distant
interactions were described by assuming that the electric field
of the projectile was constant within the volume swept by
each bound target electron. Ashley et al. [16] went a step
further and considered the variation of the electric field with
the position of the oscillating electron to first order. The calcu-
lation of Ashley et al., extended to the relativistic domain by
Jackson and McCarthy [17], gives the following expression
for the energy transferred to an oscillator having the binding
frequency ω and placed at a distance b from the trajectory of
the projectile:

W (b, ω) = 2Z2
1 e4

mev2

1

b2

[
ξ 2K2

1 (ξ ) + 1

γ 2
ξ 2K2

0 (ξ )

]
+ 2Z3

1 e6

m2
ev

3

× 1

b4ω j

[
−ξK1(ξ )G1(ξ ) + 1

γ 2
ξK0(ξ )G0(ξ )

]
,

(91)

where ξ = ωb/(γ v),

G1(ξ ) =
∫ ∞

−∞
dx

cos(ξx)

(1 + x2)5/2

×[(x2 − 2)F1(ξ, x) − 3x F2(ξ, x)], (92a)

and

G0(ξ ) =
∫ ∞

−∞
dx

sin(ξx)

(1 + x2)5/2

×[3x F1(ξ, x) − (1 − 2x2) F2(ξ, x)], (92b)

with

F1(ξ, x) =
∫ y

−∞

sin[ξ (x − y)]

(1 + y2)3/2
dy (93a)

and

F2(ξ, y) =
∫ x

−∞

y sin[ξ (x − y)]

(1 + y2)3/2
dy. (93b)

The first term in expression (91) is the known zeroth-order
result, given by Eq. (21), and the second term represents the
Barkas-effect correction.

The classical stopping power of distant oscillators, with
impact parameters larger than the cutoff value a, is

SB
cl,b>a = 2πN

∫ ∞

0
dω

df (ω)

dω

∫ ∞

a
W (b, ω) b db

= Scl,b>a + �Scl,b>a. (94)

The contribution of the zeroth-order term is given by Eq. (25),
and that of the Z3

1 term is

�Scl,b>a = 2πN
∫ ∞

0
dω

df (ω)

dω

∫ ∞

a
db b

{
2Z3

1 e6

m2
ev

3

× 1

b4ω

[
−ξK1(ξ )G1(ξ ) + 1

γ 2
ξK0(ξ )G0(ξ )

]}

= 4π Z3
1 e6

γ 2m2
ev

5
N

∫ ∞

0
dω

df (ω)

dω
ω

×
[

I1(ξa) + 1

γ 2
I2(ξa)

]
(95)

FIG. 2. Calculated I1(ξ ) and I2(ξ ) functions, Eqs. (96), as func-
tions of the dimensionless variable ξ = ωa/γ v.

with

I1(ξa) = −
∫ ∞

ξa

1

ξ 2
K1(ξ ) G1(ξ ) dξ (96a)

and

I2(ξa) =
∫ ∞

ξa

1

ξ 2
K0(ξ ) G0(ξ ) dξ, (96b)

where ξa = ωa/(γ v).
Because we have been unable to find published numeri-

cal tables, we have computed the functions I1(ξa) and I2(ξa)
numerically as follows. First, the functions G1(ξ ) and G0(ξ )
were evaluated from their expressions (92) by using an
adaptive 20-point Gauss-Legendre quadrature method, for a
suitably spaced grid of ξ values. Then the integrals I1(ξa) and
I2(ξa) were computed from Eqs. (96), with G1(ξ ) and G0(ξ )
replaced with their interpolating cubic splines, by using the
adaptive Gauss-Legendre method. The numerical results are
generally accurate to four or five digits, and they are displayed
in Fig. 2 for ξ � 1. Finally, to facilitate numerical calcula-
tions, the tabulated functions have been fitted by analytical
expressions that approximate the numerical results with an
accuracy better than 0.1% for ξ from 0 to ≈15.

The Barkas correction to the stopping power of distant
oscillators is

�Scl,b>a = 4π Z2
1 e4

mev2
NZ �LB(a) (97)

where �LB(a), the correction to the stopping logarithm, ex-
pressed in terms of the energy loss W , is

�LB(a) = Z1α

γ 2β3mec2

1

Z

∫ Wmax

0
dW

df (W )

dW

× W

[
I1(ξ ) + 1

γ 2
I2(ξ )

]
, (98)

032809-12



BETHE STOPPING-POWER FORMULA AND ITS … PHYSICAL REVIEW A 106, 032809 (2022)

with ξ = Wa/(γ vh̄). Notice that the upper limit of the integral
has been replaced with Wmax, because larger energy transfers
are not permitted.

The derivation of the Bohr formula, Eq. (29), shows that
the dependence on the cutoff impact parameter a is removed
when adding the contributions to the stopping power of close
collisions and distant interactions. Unfortunately, the Barkas
correction, Eq. (98), does depend on a, which thus becomes an
essential parameter of the theory that can only be estimated
from qualitative arguments [17,36]. Lindhard [36], based on
considerations of stopping by an electron gas, proposed using
a value of the order of the impact parameter that corresponds
to an angular momentum equal to h̄, namely,

a = exp(−g)
h̄

mev
, (99)

where g is the Euler constant, and exp(−g) = 0.5616. Notice
that this a value is independent of the energy transfer. In the
case of protons in aluminium, Ashley [37] found that the
calculated correction to the stopping power with Lindhard’s
a value agrees reasonably with experimental results. Because
of the approximate character of the Barkas correction, it is
expedient to allow a certain flexibility and define the cutoff
impact parameter as

a = CB exp(−g)
h̄

mev
, (100)

where CB is a dimensionless constant, of the order of unity,
to be determined empirically. A systematic comparison with
results from measurements of the stopping power of elemental
materials for protons and alphas in the IAEA database indi-
cates that a value of CB between 1 and 10 (increasing roughly
with Z) yields stopping powers in reasonable agreement with
the experiments.

VII. THE CORRECTED BETHE FORMULA

Adding to the formula (43) the density-effect correction
[Eq. (59)], the Lindhard-Sørensen correction [approximated
by the parametrization (90)] and the Barkas correction
[Eq. (98)], we obtain the corrected Bethe formula for the
stopping power:

S = 4πZ2
1 e4

mev2
NZ

[
ln

(
2mev

2

I

)
+ ln γ 2 − β2

+ 1

2
f (γ ) − C(γ )

Z
− 1

2
δF + �LLS + �LB(a)

]
. (101)

The mean excitation energy I , the density-effect, and the
Barkas corrections are determined by the OOS of the material.
The formula (101), with the appropriate I value and with these
corrections evaluated from a suitable OOS, is considered to
provide realistic values of the stopping power of elemental
and compound materials for fast charged projectiles. In the
past, however, due to the lack of precise knowledge about
the shell correction, the term C/Z had to be obtained from
approximations or derived from a fit to experimental data (see,
e.g., Refs. [38,39]).

Recent calculations of inelastic collisions of charged pro-
jectiles with free atoms by Salvat et al. [8] have disclosed a

limitation of the Bethe formula, which originates from the
fact that the relativistic GOSs do not obey the Bethe sum rule
[40–43], and the functions

S0(Q) ≡
∫ ∞

0

df (Q,W )

dW
dW (102)

and

T0(Q) ≡
∫ ∞

0

dg(Q,W )

dW
dW (103)

vary with Q. In the optical (Q = 0) limit,

S0(0) = T0(0) = Z[1 − �], (104)

where �, the relativistic departure from the dipole sum rule,
is negligible for hydrogen (Z = 1) and increases nearly mono-
tonically with Z being ≈0.025 for einsteinium (Z = 99). For
sufficiently large Q, where the GOSs reduce to the Bethe
ridge, both S0(Q) and T0(Q) tend to Z , i.e., the Bethe sum
rule is fulfilled. Although the relativistic departure is relatively
small, it adds an extra term to the stopping-power formula and,
more important, it leads to a definition of the mean excitation
energy different from the conventional one, Eq. (41).

Salvat et al. [8] have performed systematic calculations of
the total, stopping, and energy-straggling cross section, for all
atoms (Z = 1–99) and projectile protons with kinetic energies
from 1 keV up to 100 GeV by using the DHFS model. They
also derived asymptotic formulas that approximate these cal-
culated cross sections when the kinetic energy of the projectile
is sufficiently high. The asymptotic formula for the stopping
cross section reads

σ (1)
as = 2πZ2

1 e4

mev2

{
[S0 + Z][ln(β2γ 2) − β2]

+ 2 S0 ln

(
2mec2

I0

)
+ D0 + Z f (γ )

}
(105)

where

S0 = S0(0) =
∫ ∞

0

df (W )

dW
dW (106)

is the dipole sum,

ln I0 = 1

S0

∫ ∞

0
ln W

df (W )

dW
dW, (107)

f (γ ) = ln(R) +
(

me

M

γ 2 − 1

γ
R

)2

, (108)

and the dimensionless parameter D0 is defined as an integral
of the longitudinal GOS. Figure 3 shows the values of the
parameter S0 obtained from the numerical OOSs of neutral
atoms computed with the DHFS potential. The value of D0

obtained from the corresponding longitudinal GOS is ≈5 ×
10−4 Z2.

It is interesting to compare the formula (105) with the
conventional Bethe formula, Eq. (40) with the mean exci-
tation energy I defined by Eq. (41), for the stopping cross
section of free atoms [23,38,39]. The derivation of the Bethe
formula (see, e.g., Ref. [5]) makes explicit use of the Bethe
sum rule [S0(Q) = Z], which is assumed to hold for any
Q. Consequently, the formula (40) is strictly valid only for
light elements, for which relativistic deviations from the sum
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FIG. 3. Values of the dipole sum S0 calculated from the numeri-
cal OOSs of neutral atoms (DHFS model). For the sake of clarity, the
ratio S0/Z is plotted vs Z . From Salvat et al. [8].

rule are small and do not modify appreciably the calculated
stopping cross sections.

The asymptotic formula (105) can be expressed similarly
to the Bethe formula (40):

σ (1)
as = 2πZ2

1 e4

mev2
2Z

{
ln

(
2mev

2

I ′
0

)
+ ln γ 2 − β2 + 1

2
f (γ )

+ S0 − Z

2Z
[ln(β2γ 2) − β2]

}
, (109)

where we have grouped the energy-independent terms by in-
troducing the “modified” mean excitation energy I ′

0 defined by

ln

(
2mec2

I ′
0

)
= S0

Z
ln

(
2mec2

I0

)
+ D0

2Z
. (110)

Evidently, Eq. (109) reduces to the Bethe formula when S0 =
Z (the OOS satisfies the dipole sum rule) and D0 = 0. Under
these circumstances, we also have I ′

0 = I0 = I . Although the
relativistic departure from the Bethe sum rule is small in
magnitude, about 2.5% for einsteinium (Z = 99), the relative
difference between the calculated I0 and I ′

0 values is relevant,
of the order of 15% for Z = 99 [8].

Salvat et al. [8] also determined the shell correction,
C(γ )/Z , for atoms from the difference between the stopping
cross section calculated numerically (by integration of the
energy-loss DCS obtained from GOSs computed with the
DHFS potential) and the asymptotic formula (109). As men-
tioned in the Introduction, since the main contributions to
the shell correction originate from inner electron subshells,
which are assumed to be described accurately by the DHFS
model, the shell correction calculated for free DHFS atoms
is expected to be applicable also to dense materials and com-
pounds.

Hence, at least for elemental materials, one can account for
the relativistic departure from the Bethe sum rule by adopting
the asymptotic formula (109) for the stopping cross section of
the unpolarizable material. Addition of the shell, density-
effect, Lindhard-Sørensen, and Barkas corrections yields the

corrected Bethe formula for the stopping power:

S = 4πZ2
1 e4

mev2
NZ

{
ln

(
2mev

2

I ′
0

)
+ ln γ 2 − β2 + 1

2
f (γ )

+ S0 − Z

2Z
[ln(β2γ 2) − β2] − C(γ )

Z

− 1

2
δF + �LLS + �LB(a)

}
. (111)

Naturally, if the “modified” mean excitation energy I ′
0 is con-

sidered as an adjustable parameter, and we define the modified
shell correction

C′
0(γ )

Z
= Z − S0

2Z
[ln(β2γ 2) − β2] + C(γ )

Z
, (112)

the formula (111) takes the same form as the corrected Bethe
formula (101).

VIII. OPTICAL OSCILLATOR STRENGTHS
OF MATERIALS

As indicated above, the OOS,

F (W ) ≡ df (W )

dW
= W

2Z

π (h̄�p)2
Im

( −1

ε(W )

)
, (113)

determines the mean excitation energy I , the density-effect
correction δF, and the Barkas correction �LB. The OOS is also
the basis of the so-called optical-data models of the GOS that
are used for computing reliable interaction data for electrons
and positrons (see Refs. [44,45] and references therein) and
in Monte Carlo simulations [46]. These models start from an
empirical OOS to build the longitudinal GOS (or the dielec-
tric function) for Q > 0 by using an “extension” algorithm,
usually based on the free-electron gas theory [45,47–49].

In principle, the most reliable OOSs of materials are ob-
tained from experimental information on optical constants.
The required information can be inferred from measure-
ments with monochromatized synchrotron radiation (see,
e.g., Ref. [50]). The main source of measured optical data
is the Handbook of Optical Constants of Solids [51–53],
which includes tables of optical constants for a number of
metals, semiconductors, and insulators. These tables con-
tain the refractive index n(W ) and the extinction coefficient
κ (W ) measured with different methods, frequently by various
groups and with various degrees of accuracy. They cover a
range of excitation energies W = h̄ω from about 10−3 eV up
to an upper energy that depends on the material, typically
about 100 eV. The real and imaginary parts of the optical
dielectric function, ε(W ) = ε1(W ) + i ε2(W ), are

ε1(W ) = n2(W ) − κ2(W ), (114a)

ε2(W ) = 2 n(W ) κ (W ), (114b)

and the OOS is obtained from Eq. (113):

df (W )

dW
= W

2Z

π (h̄�p)2

ε2(W )

ε2
1 (W ) + ε2

2 (W )
. (115)

Alternatively, empirical OOSs of solids can be derived from
electron energy-loss measurements (see, e.g., Ref. [54]). For
solids for which experimental information is not available,
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approximate OOSs could be obtained from density-functional
theory calculations [55]. The tables of photon interaction co-
efficients of Henke et al. [56,57], which were derived from
a compilation of experimental data and calculations, cover
the energy range from 30 eV to 30 keV for the elements
with Z = 1 to 92. Because empirical information is available
only for limited energy ranges, it must be complemented with
atomic OOSs calculated from a realistic model.

It is worth mentioning that composite OOSs derived from
measured optical data are affected by experimental uncertain-
ties. As a consequence, the intermediate dielectric function
may not comply with the principle of causality [11,58], which
requires that the real and imaginary parts of the optical energy-
loss function ε−1(W ) satisfy the Kramers–Kronig relations,

Re

(
1

ε(W )

)
= 1 − 2

π
P

∫ ∞

0

W ′

W ′2 − W 2
Im

( −1

ε(W )

)
dW ′

(116a)

and

Im

( −1

ε(W )

)
= 2W

π
P

∫ ∞

0

1

W ′2 − W 2

×
[

Re

(
1

ε(W )

)
− 1

]
dW ′, (116b)

where P indicates the principal value of the integral. When
these relations are not approximately satisfied, the OOS ob-
tained from the input optical data is not reliable.

As the OOS of a specific material may not be available,
simple approximate models are frequently employed in cal-
culations. One of these is the statistical model of Lindhard
and Scharff [59], which is used, e.g., by Ashley et al. [16],
by Jackson and McCarthy [17], and in the ICRU Report 49
[39]. The basis of the model is the local-plasma approximation
(LPA) which applies to a system of bound electrons charac-
terized by the electron density ρ(r) (number of electrons per
unit volume); it is assumed that electrons at r react to external
electromagnetic fields in the same way as if they were in a
homogeneous electron gas of density ρ(r). The OOS resulting
from the LPA can be expressed as [60]

FLPA(W ) =
∫

dr ρ(r) δ{W − τ h̄ωp[ρ(r)]} (117)

where

h̄ωp(ρ) = h̄
√

4πρe2/me (118)

is the plasma resonance energy of an electron gas with density
ρ. The parameter τ , which defines a rescaling of the energy
axis, is introduced empirically with the purpose of ensuring
that the OOS (118) yields, through the definition (41), the
empirical value of the mean excitation energy I . Qualitative
considerations [59,61] indicate that the value of τ should be
between 1 and 2. The statistical model combines the LPA with
the electron density of the Thomas-Fermi atom, which may be
approximated as [62]

ρ(r) = Z

4πb2r
[3.6 exp(−6 r/b) + 0.792 exp(−1.2 r/b)

+0.0315 exp(−0.3 r/b)], (119)

where b = 0.885 34a0Z−1/3 is the Thomas-Fermi radius, and
a0 is the Bohr radius. Although the statistical model is useful
to estimate global stopping properties of elemental materials,
it is too schematic to be employed for quantitative purposes. It
is worth mentioning that a shell-local LPA, applied to electron
densities of individual electron shells, yields realistic stopping
powers for nonrelativistic ions (see Ref. [63] and references
therein).

A convenient approach is to use the OOSs (i.e., the GOS at
Q = 0) calculated from the DHFS model of the atom, which
we have extracted from our database of subshell GOSs [8].
Let F ion

i (Z;W ) denote the calculated OOS for transitions of
individual electrons in the ith subshell of the atom to final
orbitals with positive energy (ionization). Because the sub-
shell ionization energies Ui obtained from the DHFS potential
differ slightly from the experimental ionization energies, the
subshell OOS is shifted in energy to the correct (empirical)
ionization energies given by Carlson [64]. For the purposes
of stopping calculations, excitations to bound atomic levels
(a series of discrete resonances with energies below Ui) must
be taken into account to ensure that the resulting OOS does
preserve the dipole sum. Because the fine details of the exci-
tation spectrum are not important, the contribution of discrete
excitations to the OOS has been represented approximately by
extending the ionization OOS to excitation energies below the
ionization threshold. Explicitly, the OOS of the ith subshell is
described as

Fi(Z;W ) =
⎧⎨
⎩

F ion
i (Z;W ) if Ui � W ,

F ion
i (Z;Ui ) if U ′

i � W < Ui,
0 if W < U ′

i ,
(120)

with the cutoff energy U ′
i such that the product (Ui −

U ′
i )F ion

a (Z;Ui ) equals the sum of OOSs for excitations to
discrete levels. For the outmost subshells the cutoff energy so
defined may be less than 0.5Ui; in this case, the recipe (120)
is modified by setting U ′

i � 0.5Ui, and defining the constant
OOS in the interval (U ′

i ,Ui ) so that the subshell contribution
to the dipole sum is preserved.

In the case of a monoatomic gas of the element with atomic
number Z , the OOS can be approximated in terms of the
subshell OOSs in the database as

Fatom(Z;W ) =
∑

i

Fi(Z;W ), (121)

where the summation runs over the various electron subshells
of the atom in its ground-state configuration. As indicated
above, this atomic OOS deviates slightly from the dipole sum
rule because of relativistic effects. Since the dipole sum rule
is instrumental in the derivation of the Bethe stopping-power
formula (40), and the relativistic departure is small, the OOS
is renormalized to fulfill that sum rule. In addition, to en-
sure agreement of stopping powers obtained from the Bethe
formula with measurements, we shall rescale the excitation
energies so as to reproduce the empirical value of the mean
excitation energy I , Eq. (41). That is, we consider the OOS

F (Z;W ) = a1a2Fatom(Z; a2 W ) (122)
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with the constants a1 and a2 determined from the conditions

Z =
∫ ∞

0
F (Z;W ) dW = a1

∫ ∞

0
Fatom(Z;W ′) dW ′, (123a)

where W ′ = a2W , and

ln I = 1

Z

∫ ∞

0
ln W F (Z;W ) dW

= 1

Z
a1

∫ ∞

0
ln(W ′/a2) Fatom(Z;W ′) dW ′

= − ln a2 + a1

Z

∫ ∞

0
ln W ′ Fatom(Z;W ′) dW ′.

(123b)

The recipe given by Eqs. (122) and (123) is not suited for
compounds and condensed materials, because the wave func-
tions of electrons in outer subshells are strongly affected by
atomic aggregation. In addition, the presence of neighboring
atoms modifies the final-state orbitals of the active electron
[65]. The contributions from inner subshells with binding
energies Ui larger than a certain threshold value Wth of the
order of 50 eV are relatively insensitive to aggregation and
may be approximated by the free-atom form (121). The OOS
of electrons in outer subshells with binding energies Ui < Wth

will be represented as the OOS of a single classical damped
oscillator with resonance energy Wr and damping constant �.
In the case of insulators and semiconductors, an energy gap
Wg may be introduced. Explicitly, we set

Fout (W ) = Cout

W
√

W 2 − W 2
g(

W 2
r + W 2

g − W 2
)2 + �2

(
W 2 − W 2

g

)
× �(W − Wg) �(UK,max − W ), (124)

where Cout is a normalization constant and �(x) is the Heav-
iside step function (=1 if x > 0, and = 0 otherwise). The
OOS of the oscillator is truncated at the largest binding energy
UK,max of the K shells of the elements present to prevent a tail
that would dominate over the atomic OOSs at very large W s.
The model OOS is obtained as

F (W ) = Fout (W ) +
∑

i

Fi(Z;W ) �(W − Wth ), (125)

where the summation runs over the inner subshells. Notice
that the OOSs of inner subshells are truncated at Wth. The
constant Cout is determined by requiring that the dipole sum
rule is satisfied, i.e.,∫ UK,max

Wg

Fout (W ) dW = Z −
∫ ∞

Wth

(∑
i

Fi(Z;W )

)
dW

= fout, (126)

and the resonance energy Wr is set equal to the plasma res-
onance energy of an electron gas with the average density
of electrons in outer subshells (including contributions from
truncated inner subshells):

Wr = h̄
√

4πN foute2/me. (127)

The gap energy Wg is defined by the user, possibly guided
by experimental information; for conductors, Wg = 0. Finally

FIG. 4. Optical oscillator strengths of silicon and gold. ODM:
solid curves, experimental optical data, complemented with DHFS
calculated OOS of inner subshells. DHFS: dotted curves, atomic
DHFS model with outer-shell electrons represented by a single os-
cillator. LPA-TFM: dashed curves, LPA with Thomas-Fermi-Molière
density (119).

the damping constant � is fixed by requiring that the OOS
yields the empirical I value of the material, as given, e.g., in
the ICRU Report 37 [20]. The resulting OOS has a realistic
appearance for large energy transfers W , it satisfies the f -sum
rule, and it yields the adopted empirical I value.

Figure 4 displays empirical OOSs of solid silicon and gold
determined from experimental optical data (as described in
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FIG. 5. Density-effect correction δF for charged projectiles in
solid silicon and gold calculated from the optical-data OOS (solid
curves) and from the DHFS-model OOS (dashed curves), as a func-
tion of the reduced kinetic energy of the projectile.

Ref. [45]), obtained from the LPA with the Thomas-Fermi-
Molière electron density (119), and calculated from the DHFS
model [Eq. (125)]. The OOS for both the LPA and the DHFS
model were required to reproduce the empirical I values
recommended in Ref. [20] (ISi = 173 eV, IAu = 790 eV); the
energy gap for silicon was Wg = 1.75 eV. It is worth noticing
that, since experimental optical data are available only for en-
ergy transfers up to a finite value, they are complemented with
DHFS-model values for higher W . The OOSs derived from
DHFS-model calculations agree closely with those obtained
from optical data, except at low W where the simplicity of
the one-oscillator model gets manifest. The OOSs calculated
from the LPA are seen to differ markedly from the optical-data
OOS, despite the fact that they have been repeatedly used in
calculations of the Barkas correction [16,17,39].

As shown in Fig. 5, the density-effect corrections, Eq. (59),
calculated from the OOS built with optical data and from
the DHFS-model OOS, differ appreciably for projectiles with
small and moderate energies, but the difference reduces when
the energy of the projectile increases. In practice, these differ-
ences have a negligible impact on the resulting stopping power
because the density-effect correction is significant only when
the energy of the projectile is higher than ≈M1c2 (see Fig. 7
below).

In order to assess the dependence of the Barkas correction,
Eq. (98), on the adopted OOS, �LB(a) values for protons
in gold, calculated from the OOSs shown in Fig. 4 for the
indicated values of the parameter CB, are displayed in Fig. 6 as
functions of the kinetic energy E of the projectile. Evidently,
the magnitude of the correction decreases when CB increases.
For energies below about 1 MeV, the corrections calculated
from the three OOS models differ appreciably because of
the rather different shapes of the OOSs. When the energy of
the projectile increases, the difference between results from
the optical-data and the DHFS-model OOSs decreases and
becomes negligible for energies higher than about 10 MeV,
quite independently of the atomic number. The LPA and

FIG. 6. Barkas correction for protons in gold, calculated from the
OOSs displayed in Fig. 4, for the indicated values of the parameter
CB, Eq. (100), as a function of the proton energy. Optical-data OOS,
solid curves; LPA OOS, dashed curves; DHFS-model OOS, dotted
curves.

the optical-data OOSs yield similar results for elements with
low atomic numbers, although for heavy elements the LPA
tends to overestimate the correction in a range of intermediate
energies.

The similarity between the empirical OOS built from op-
tical data and the OOS obtained from the DHFS model,
combined with their near equivalence in calculations of the
Barkas correction for high-energy projectiles, justifies the
adoption of the DHFS model as the “default” OOS in practical
evaluations. In what follows we shall calculate the density-
effect and Barkas corrections from the DHFS-model OOSs, as
defined by Eq. (122) or (125), with the empirical value of the
mean excitation energy I recommended in the ICRU Report
37 [20].

IX. COMPARISON WITH EXPERIMENTAL DATA

The corrected Bethe formula, Eqs. (111) and (112),

S = 4πZ2
1 e4

mev2
NZ

{
ln

(
2mev

2

I ′
0

)
+ ln γ 2 − β2 + 1

2
f (γ )

−C′
0(γ )

Z
− 1

2
δF + �LLS + �LB(a)

}
, (128)

is expected to provide a consistent theoretical basis for calcu-
lating the stopping power of a material for charged projectiles
with sufficiently high energies. Assuming that our numerical
calculations with the DHFS-model GOSs [8] provide real-
istic values of the effective shell correction, C′

0(γ )/Z , and
that the density-effect and the Barkas corrections obtained
from the adopted (DHFS-model) OOS are accurate, the only
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FIG. 7. Bethe logarithmic term L0, Eq. (129), and correction
terms in the corrected Bethe formula for protons in solid gold, cal-
culated from the DHFS-model OOSs shown in Fig. 4, as functions
of the kinetic energy of the projectile. The black curve is the sum
of terms within the curly braces in Eq. (128). The dashed curves
represent negative values.

parameters that remain undefined are the mean excitation
energy I ′

0, which is strongly affected by uncertainties in the
OOS, and the cutoff impact parameter a (or, equivalently, CB),
which is not determined by the theory. In principle, these two
parameters could be obtained by numerical fitting to available
experimental stopping-power data.

Before attempting further evaluations, it is convenient to
get a feel of the relative importance of the various terms in
the formula (128). The dominant contribution comes from the
“logarithmic” term

L0 = ln

(
2mev

2

I ′
0

)
+ ln γ 2 − β2, (129)

which depends on the mean excitation energy I ′
0. Figure 7

displays the various terms in the curly braces of Eq. (128),
for protons in gold, calculated with I ′

0 = 790 eV, the em-
pirical I value given in the ICRU Report 37 [20], and
CB = max{1, Z/10} (see below). Notice that the shell and
the density-effect corrections, considered as functions of the
speed of the projectile, are independent of the projectile kind.
The shell correction dominates for protons with energy in the
interval between about 1 and 100 MeV. The Barkas correction
is roughly proportional to (and has the sign of) the particle
charge. It is larger for alphas than for protons, by a factor of
about 2 at intermediate energies.

In order to elucidate the possibility of determining the
parameters I ′

0 and CB from experimental data, we consider
the IAEA stopping-power database of elemental materials for
protons and alpha particles [19]. Initially, we transformed the
measured stopping powers Sexp by isolating the terms in the

corrected Bethe formula (128) that contain the parameters to
be fitted. Specifically, we considered the reduced quantity

Sred ≡ Sexp

(
4πZ2

1 e4

mev2
NZ

)−1

−
[

ln

(
2mev

2

IICRU

)

+ ln γ 2 − β2 + 1

2
f (γ ) − C′

0(γ )

Z
− 1

2
δF + �LLS

]

= ln

(
IICRU

I ′
0

)
+ �LB(a), (130)

where IICRU are the I values recommended in the ICRU Report
37 [20], which were determined by combining information
from multiple sources and are expected to be fairly realistic.
Evidently, varying the value of I ′

0 amounts to a constant shift
of the Sred vs E curve; the only dependence of Sred on the
energy of the projectile is associated to the Barkas correc-
tion. The latter is calculated from the formula (98) with the
DHFS-model OOS and the cutoff impact parameter given by
Eq. (100), by considering the constant CB as the parameter
to be fitted. It should be mentioned that the availability of
a supposedly reliable shell correction [8] largely simplifies
the fitting process. Previous similar attempts [38,39] faced
the problem of lacking information on the shell correction,
which was left out of the reduced stopping power, and had to
be either included in the fitting process or estimated from the
LPA or from hydrogenic models.

It is worth recalling that the Bethe formula is not expected
to work for projectiles with low energies, at which the PWBA
loses reliability. Indeed, the formula (128) yields negative
(i.e., manifestly incorrect) values of the stopping power for
low-energy projectiles (see Fig. 7). Guided by a tentative
comparison of results from the present calculation scheme
with experimental stopping-power data in the IAEA database
we concluded that the corrected Bethe formula (128) is valid
for energies higher than a cutoff value Ecut � 0.75 MeV for
protons and � 5 MeV for alphas, because its predictions
seem to depart from the trend of experimental data at lower
energies. Consequently, only Sred values for energies higher
than Ecut were used for fitting the parameters I ′

0 and CB.
For the few materials for which there are enough stopping-

power measurements available at energies higher than Ecut, a
plot of their reduced values Sred, Eq. (130), vs the kinetic en-
ergy of the projectile allows assessing the possibility of the fit.
Ideally Sred should be a continuous function of the projectile’s
kinetic energy. In practice, however, the experimental data
yield a highly scattered cloud of reduced stopping powers,
indicating that experimental uncertainties translate into large
fluctuations of Sred that may invalidate the fit. The situation
is illustrated in Fig. 8, that displays the “experimental” Sred

values for protons in aluminium, copper, silver, and gold,
which are the materials for which measured data are more
abundant. A similar situation is found for other elements and
also for alpha particles. We have determined the parameters I ′

0
and CB from a least-squares fit of the function

G(E ) = ln

(
IICRU

I ′
0

)
+ �LB(a) (131)

to the Sred values corresponding to the measured stopping
powers in the IAEA database with energies higher than Ecut.
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FIG. 8. Reduced stopping powers of solid aluminium, copper,
silver, and gold for protons. Special symbols are values derived from
the stopping powers in the IAEA database, with data from each
source designated by the same symbol. The solid curves represent
the function G(E ) obtained with the fitted values of I ′

0 and CB.

The fitting procedure consisted in minimizing the function

χ2
1 (I ′

0,CB) ≡
∑

k

[G(Ek ) − Sred(Ek )]2, (132)

where Ek denote the energies of data available for each el-
ement and projectile kind, by means of the simplex method
of Nelder and Mead [66], which was modified to restrict the
variable domains. The calculation yielded the values of I ′

0 and
CB at a relative minimum, with I ′

0 in the restricted interval
(IICRU − �IICRU, IICRU + �IICRU), where �IICRU is the esti-

mated uncertainty of the IICRU value taken from the ICRU
Report 37 [20], and with CB ∈ (0.5, 10).

With the parameters resulting from the fit, the corrected
Bethe formula was found to approximate the measured stop-
ping powers satisfactorily for projectiles with energies higher
than Ecut. Although the fit was judged to be uncertain due to
experimental uncertainties, it revealed that the CB parameter
should increase with the atomic number of the medium, i.e.,
that the effect of the Barkas correction decreases when Z
increases, becoming imperceptible for large Z (see Fig. 8). It
was estimated that the value

CB = max{1, Z/10} (133)

is appropriate for practical calculations. In the comparisons of
calculated and measured stopping powers reported below, we
use this CB value and we set I ′

0 = IICRU, which is considered
to be the most realistic value available.

In order to delineate the tendency of the measured stopping
powers at low energies, and also to validate the corrected
Bethe formula at intermediate energies, we parametrize the
stopping power for low-energy projectiles by using the em-
pirical formula adopted in the ICRU Report 49 [39], and
attributed there to Andersen and Ziegler:

Slow(E ) = sl (T ) sh(T )

sl (T ) + sh(T )
(134)

with

sl (T ) = a1T a2 (135a)

and

sh(T ) = a3

T
ln

(
1 + a4

T
+ a5T

)
(135b)

where a1, ..., a5 are adjustable parameters. The variable T is
the kinetic energy E of the projectile in units of keV for pro-
tons and in units of MeV for alphas. The parameters ai were
determined from a least-squares fit of the function (134) to
the stopping powers Sexp(Ek ) given in the IAEA database with
Ek ∈ (10 keV, 2Ecut). They were obtained, for each material
and projectile kind, by minimizing the function

χ2
2 (a1, . . . , a5) =

∑
k

[Slow(Ek ) − Sexp(Ek )]2 (136)

where the summation is over the data with energies Ek in
the considered interval. The minimization was performed by
using the simplex method of Nelder and Mead [66]. As the
parametrization (134) is used here merely as a visual device,
we have not attempted to set a table of the fitted parameters
and to devise suitable interpolations or extrapolations to other
elements.

Generally, the fitted formula (134) and the corrected Bethe
formula (with I ′

0 = IICRU and CB = max{1, Z/10}) do not
yield the same values at Ecut. To obtain a continuous function
of the projectile’s kinetic energy E , with a gradual transition
from the low-E fit to the high-energy Bethe formula (128), we
set

S(E ) =
⎧⎨
⎩

Slow(E ) if E � Ecut,
Smix(E ) if Ecut < E � 2Ecut,
ScB(E ) if E > 2Ecut,

(137)
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with

Smix(E ) =
[
1 −

( E

Ecut
− 1

)(
1 − ScB(2Ecut )

Slow(2Ecut )

)]
Slow(E ) (138)

where ScB(E ) is the value obtained from the corrected Bethe
formula (128).

Figure 9 shows a comparison of stopping powers calcu-
lated from the composite function (137) and measured values
in the IAEA database for protons and alphas, limited to those
elemental materials for which there were enough data with ki-
netic energies above Ecut to make the comparison meaningful
for both protons and alphas. The IAEA data are displayed as
special sky-blue symbols, different for each separate source,
and the result from expression (137) is represented as a solid
curve. The dashed red vertical line at the energy Ecut/2 in-
dicates the start of the plot of the corrected Bethe formula
(shown as a dashed red curve), which is seen to be effectively
valid for energies larger than Ecut. The low-energy formula
(134) is displayed as a blue dashed curve up to the energy
2Ecut (indicated by the blue dashed vertical line), the double
of the upper limit of the interval considered in the fit, to
reveal either the consistency or the difference between its
extrapolation and the corrected Bethe formula. It is seen that
the low-energy and the Bethe formulas generally differ little
in the interval (Ecut, 2Ecut) affected by their joining, Eq. (137).

The results displayed in Fig. 9 show that there is close
agreement between the predictions of the corrected Bethe
formula (with I ′

0 = IICRU and CB = max{1, Z/10}) and the
measurements for E > Ecut. Further comparisons shown in
the documentation of the Supplemental Material [21] reveal
similar agreement for the other elemental materials in the
IAEA database, for which the variety of available experi-
mental data is more limited. This general agreement gives
support to our calculation scheme of the Barkas correction
(and the density-effect correction) from the semiempirical
DHFS-model OOS, and justifies the consistency of the theory.
The fact that the corrected Bethe formula is effectively deter-
mined by a single parameter, the mean excitation energy I ′

0,
which can be identified with the I values recommended in the
ICRU Report 37 [20], makes the present approach particularly
amenable for practical uses.

Although the previous analysis has been limited to elemen-
tal materials, it can readily be generalized to compounds (and
mixtures) by using the additivity approximation, i.e., by as-
suming that the molecular cross section can be approximated
as the sum of atomic cross sections of the atoms in a molecule.
Let us consider a compound the molecules of which consist
of n j atoms of the element of atomic number Zj . According
to the additivity approximation, the OOS of a molecule is the
sum of the OOSs of its atoms and, consequently, the I value
of the compound is given by

Z ln I =
∑

j

n jZ j ln(I j ) with Z =
∑

j

n jZ j, (139)

where I j denotes the mean excitation energy of the element
with atomic number Zj . Since the additivity approximation
neglects the effect of aggregation on the atomic OOSs, the I
value resulting from Eq. (139) may differ appreciably from
the “true” mean excitation energy of the material. A better es-
timate of the I value can only be obtained either from stopping

measurements or from knowledge of the optical dielectric
function of the material. The DHFS-model OOS of the com-
pound material can be built as described in Sec. VIII, with the
OOS of inner subshells (with Ui > Wth) obtained by adding
the contributions of the various elements present weighted
by their corresponding stoichiometric indices, ni, plus the
outer-electron contribution described by the oscillator OOS,
Eq. (124). The shell correction of the compound is obtained
as the weighted sum of the DHFS atomic shell corrections.
Naturally, the Lindhard-Sørensen correction is independent of
the material composition. The density-effect and the Barkas
corrections are calculated from the DHFS-model OOS of the
compound. The cutoff impact parameter a, which determines
the Barkas correction, may be estimated from Eq. (100) with

CB = max{1, Z/10} with Z = Z

(∑
j

n j

)−1

. (140)

To test the reliability of the corrected Bethe formula for
compounds, with its corrections evaluated by following the
proposed scheme, we consider the case of water, a compound
of basic interest in dosimetry studies. In the calculation we
use the empirical value of the mean excitation energy recom-
mended in the ICRU Report 90 [67], I ′

0 = 78 eV. Figure 10
compares experimental stopping cross sections (per molecule)
of ice and liquid water given in the IAEA database for pro-
tons and alpha particles with the predictions of the corrected
Bethe formula (128) and with the low-energy fits (134). This
comparison indicates that the corrected Bethe formula, as im-
plemented in the present calculations, provides reliable results
also for compounds.

X. SUMMARY AND CONCLUDING COMMENTS

We have presented the theory of electronic stopping of
materials for fast charged particles, which leads to the
Bethe formula and its corrections. We have set an accurate
parametrization of the Lindhard-Sørensen correction for point
projectiles, as an extension of the familiar Bloch correction,
and we have computed accurately and parametrized the func-
tions I1(ξ ) and I2(ξ ) that enter into the calculation of the
Barkas correction. On the basis of a complete database of
atomic GOSs, calculated from an independent-electron model
with the DHFS self-consistent potential, modifications of the
Bethe formula were introduced to account for relativistic de-
partures from the Bethe sum rule, and atomic shell corrections
were calculated for all the elements with Z = 1–99 [8]. Since
the largest contribution to the shell correction comes from the
innermost electron subshells, these DHFS shell corrections
are assumed to be applicable also to molecules and dense
materials.

A simple empirical method has been devised to build
the OOSs of arbitrary materials from the subshell OOSs
obtained from DHFS calculations for free atoms [8]. The
resulting OOS model is determined by a single parameter, the
mean excitation energy. After verifying that the details of the
adopted OOS model have a minor impact on the Barkas and
density-effect corrections, we have analyzed the possibility of
obtaining the basic parameters of the theory, I ′

0 and CB, by
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FIG. 9. Comparison of experimental stopping cross sections (per atom) from the IAEA database (symbols) with results from the composite
formula (137) for protons (top) and alphas (bottom) in noble gases (left) and in elemental solids (center and right). For the sake of clarity, the
displayed stopping cross sections are multiplied by the indicated powers of 10. Other details are described in the text.
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FIG. 10. Comparison of stopping cross sections (per molecule)
calculated from the corrected Bethe formula for protons and alpha
particles in liquid water with experimental data from the IAEA
database, for both ice and liquid water. Details are the same as in
Fig. 9.

fitting to experimental data, and concluded that such a process
is unreliable because of experimental uncertainties.

We have verified that the corrected Bethe formula is valid
for protons and alpha particles with kinetic energies higher
than Ecut = 0.75 MeV for protons and = 5 MeV for alphas.
An unexpected result from the present paper is the find-
ing that the Bethe formula, with the DHFS shell correction,
the Lindhard-Sørensen correction, and the Barkas and the
density-effect corrections calculated from the semiempirical
DHFS-model OOS, provides results in close agreement with
measured stopping powers of elemental materials from the
IAEA database when I ′

0 is set equal to the empirical I val-
ues recommended in the ICRU Report 37 [20] and CB =
max{1, Z/10}. The natural extension of this prescription to
compounds, based on the additivity approximation, is ex-
pected to be equally reliable, provided a realistic I value is
known for the material. In the important case of water, the
corrected Bethe formula, with the value I ′

0 = 78 eV recom-
mended in the ICRU Report 90 [67], has been shown to

yield results in acceptable agreement with the measurements
included in the IAEA database.

The dependence of the corrected Bethe formula on a sin-
gle parameter is an attractive characteristic of the proposed
approach. However, the usefulness of the formula rests on the
availability of a realistic I value for the considered material.
Although the I values recommended in the ICRU Report 37
[20] for the elements seem to be reliable enough, this pa-
rameter may not be available for other materials. It is worth
keeping in mind that the I value is strongly dependent on
the OOS for low-W excitations, which is determined not
only by the composition but also by the structure (aggrega-
tion state) of the material. For this reason, in the case of
compounds, the additivity approximation, Eq. (139), is not
expected to give reliable I values. Although empirical consid-
erations may be helpful for estimating the I values of certain
compounds (see, e.g., Ref. [20]), this fundamental parameter
can only be determined unambiguously from measurements
of the stopping power, which are scarce and generally af-
fected by considerable uncertainties. The accuracy of practical
dosimetry calculations still depends heavily on the reliability
of available experimental stopping-power data.

A computer program implementing the present calculation
scheme is made available as part of the Supplemental Material
[21]. The program utilizes physical data and I values for
the elements Z = 1–99 and for 181 compounds and mixtures
taken from the database of the ESTAR program of Berger [68].
Although the I value assigned by the program is consistent
with the recommendations in the ICRU Report 37 [20], the
user has the option of changing it. The program also uses
atomic shell corrections and subshell OOSs calculated with
the DHFS potential, which are read from a numerical database
included in the distribution package.
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