
PHYSICAL REVIEW A 106, 032808 (2022)

Mapping of the magnetic field to correct systematic effects
in a neutron electric dipole moment experiment
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Experiments dedicated to the measurement of the electric dipole moment of the neutron require outstanding
control of the magnetic-field uniformity. The neutron electric dipole moment (nEDM) experiment at the Paul
Scherrer Institute uses a 199Hg co-magnetometer to precisely monitor temporal magnetic-field variations. This
co-magnetometer, in the presence of field nonuniformity, is, however, responsible for the largest systematic effect
of this measurement. To evaluate and correct that effect, offline measurements of the field nonuniformity were
performed during mapping campaigns in 2013, 2014, and 2017. We present the results of these campaigns, and
the improvement the correction of this effect brings to the neutron electric dipole moment measurement.

DOI: 10.1103/PhysRevA.106.032808

I. INTRODUCTION

Discovering a nonzero electric dipole moment (EDM)
of a simple spin-1/2 particle, like the neutron, would have
far-reaching implications. Indeed, the existence of such a
moment implies a violation of time-reversal invariance T, and
therefore a violation of CP symmetry, under the assumption
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that combined CPT symmetry holds [1]. The electroweak
theory of the standard model of particle physics predicts
tiny values for all subatomic particles’ EDMs, making them
background-free observables and ideal probes of new physics
beyond the standard model. The experimental search for the
neutron EDM has been an important research topic since the
early 1950s [2]. There has been an improvement of six orders
of magnitude in the measurement precision between the first
experiment [3] with a beam of neutrons and the most recent
measurement [4] performed at the ultracold neutron (UCN)
source [5] of the Paul Scherrer Institute (PSI) by the nEDM
Collaboration. However, the measured neutron EDM is still
compatible with zero:

dn = (0.0 ± 1.1stat ± 0.2sys) × 10−26 e cm. (1)

This result was obtained with a substantially refitted apparatus
originally developed by the Sussex/RAL/ILL Collaboration
[6], which had given the previous most stringent limit [7]

2469-9926/2022/106(3)/032808(19) 032808-1 ©2022 American Physical Society

https://orcid.org/0000-0002-5565-0807
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.032808&domain=pdf&date_stamp=2022-09-16
https://doi.org/10.1103/PhysRevA.106.032808


C. ABEL et al. PHYSICAL REVIEW A 106, 032808 (2022)

when running at the Institut Laue-Langevin (ILL). It was
moved to PSI in 2009, and was then comprehensively
upgraded and operated for several years, until autumn 2017.
As with almost all other contemporary or future nEDM
projects, the PSI nEDM experiment used ultracold neutrons
(UCN) stored in a bottle for hundreds of seconds. The bottle
was a cylindrical chamber of height H = 12 cm and radius
R = 23.5 cm. It sat coaxially in a stable and uniform vertical
magnetic field with a magnitude of B0 ≈ 1μT in which the
neutrons’ spins precessed at the Larmor frequency of nomi-
nally fn ≈ 30 Hz. An electric field E of 11 kV/cm was also
applied, either parallel or antiparallel to the magnetic field.

The experimental method deployed to search for a nEDM
is a precise measurement of the Larmor precession frequency
fn of the neutrons’ spins in the chamber with the Ramsey tech-
nique of (time)-separated oscillatory fields [8]. The EDM can
then be extracted from the difference of frequencies between
parallel and antiparallel fields, dn = π h̄( fn,↑↓ − fn,↑↑)/2E .
In these experiments, the control of the magnetic field is
the most important experimental challenge. Time fluctuations
of B0 must be monitored in real-time. For this reason, in
the experiment [4,6,7], spin-polarized 199Hg atoms filled the
precession chamber with the neutrons and were used as a
co-magnetometer. The drifts of the magnetic field were cor-
rected by using the time-averaged precession frequency of
the mercury atoms’ spins, fHg ≈ 7.6 Hz through the relation
fHg = γHgB0/(2π ), where γHg is the mercury gyromagnetic
ratio. To maintain neutron spin coherence over the Ramsey
cycle, a field uniformity better than 1 nT must be achieved
inside the chamber [9].

This article is the third episode of a trilogy of papers
dedicated to statistical and systematic uncertainties in nEDM
searches due to the nonuniformity (gradients) of the mag-
netic field. The first article [9] describes the effects of
magnetic-field nonuniformity for nEDM experiments. Field
inhomogeneities accelerate the depolarization of the neutrons,
causing a loss of statistical sensitivity. Simultaneously, they
also cause systematic shifts in the neutron or mercury spin-
precession frequency. The second paper explains how we limit
the sensitivity loss in the PSI experiment. This is achieved by
using an in situ magnetic-field homogenization strategy using
an array of 16 Cs magnetometers [10]. However, the unifor-
mity achieved thanks to this method was not enough to keep
the systematic effects sufficiently low. We had then to charac-
terize the magnetic-field nonuniformity in order to correct for
these effects. In this article, we present this characterization:
an offline mapping of the magnetic field. First, we summarize
the systematic effects induced by the nonuniformity that need
to be evaluated. Then, we will describe the experiment’s mag-
netic field and the mapping measurements. Finally, we will
detail the mapping analysis and present its results.

II. SYSTEMATIC EFFECTS RELATED TO FIELD
NONUNIFORMITY

Critical for the extraction of the nEDM from the difference
of precession frequencies fn of the stored neutrons exposed to
a positive and negative electric field is the control for coinci-
dental or correlated changes in the magnetic field B. For this
purpose B is monitored using the 199Hg co-magnetometer. The

largest systematic effect in this measurement, the so-called
false EDM effect, arises from the combination of motional
magnetic fields from the relativistic transformation of the
large electric field into the rest frame of the thermal mercury
atoms, which in the presence of a nonuniform magnetic field
causes a shift in precession frequency linear in E , the same
signature as a real electric dipole moment. Other frequency
shifts not linked to E do not directly cause a systematic effect,
they can indirectly interfere with the correction of the effect
and thus contribute to an overall systematic. A full overview
of all relevant systematic effects can be found in Table I of
Ref. [4].

The primary purpose of the offline field mapping measure-
ment detailed in this article is to measure the magnetic-field
nonuniformity over the precession-chamber volume. As ex-
plained in Ref. [9], we use a harmonic polynomial expansion
to describe the field. In cylindrical coordinates (ρ, φ, z), this
expansion can be written as follows:

�B(�r) =
∑
l,m

Gl,m

⎡⎢⎣�ρ,l,m(�r )

�φ,l,m(�r )

�z,l,m(�r )

⎤⎥⎦, (2)

where the functions ��l,m are products of a polynomial of
order l in ρ, z and a trigonometric function in mφ, and Gl,m

are the expansion coefficients, which will be called gradients
in the rest of this article. Expressions for the first eighty modes
in cylindrical coordinates, all modes l � 7, can be found in
Tables V to VII in Appendix A. Note that at each “order” l ,
polynomials with −l − 1 � m � +l + 1 exist.

Section II A discusses a frequency shift linear in E which
mimics the signature of an electric dipole moment sig-
nal. Section II B describes an effect independent of E , but
which must be controlled to enable our correction strategy.
In Section II C we describe an effect caused by vertical
magnetic-field gradients, independent of E , but which inverts
with the sign of B, which we make use of to elegantly elim-
inate the first effect described. Finally, a significant shift in
the measured frequencies caused by measuring in a rotating
reference frame on Earth, not related to the magnetic-field
homogeneity, but reversing in sign with B and therefore rel-
evant to our correction strategy, is described in Appendix C.

A. Mercury-induced false neutron electric dipole moment

The dominant systematic effect in the measurement of
the neutron EDM at PSI was the motional false EDM. It
is caused by the combination of nonuniformity of the mag-
netic field and a relativistic motional field experienced by
the particles. It induces a linear-in-electric-field frequency
shift, which is exactly the kind of signal a true neutron
EDM would produce. This shift has been extensively stud-
ied theoretically [11–20] and discussed more specifically for
the nEDM experiment at PSI in Ref. [9]. It can be split
in two components: a direct effect due to the neutron and
an indirect one from the mercury comagnetometer, which
enters the neutron EDM measurement by contaminating the
correction for magnetic-field drifts. Nevertheless, use of the
comagnetometer to control for random drifts in the magnetic
field (uncorrelated with E ) is required to achieve reasonable
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statistical sensitivity. The direct effect is in our case two orders
of magnitudes smaller than the indirect. It is implicitly ac-
counted for in the analysis described in Sec. II C. In contrast,
the effect from the mercury comagnetometer was and will be
a source of a large systematic effect and is calculated as

d false
n←Hg =

∣∣∣∣ γn

γHg

∣∣∣∣d false
Hg =

∣∣∣∣ γn

γHg

∣∣∣∣
(

− h̄γ 2
Hg

2c2
〈ρBρ〉

)
, (3)

where the angle brackets correspond to the volume average
over the precession chamber. Injecting the polynomial expan-
sion of Eq. (2) into this expression, it becomes

d false
n←Hg = − h̄|γnγHg|

2c2

∑
l,m

Gl,m〈ρ�ρ,l,m〉. (4)

In case of a cylindrical precession chamber of radius R and
height H , with the center of the cylinder being the coordinate
system origin, only the modes �ρ,l,0 with l odd contribute to
the false EDM, which can then be written up to order l = 7 as

d false
n←Hg = h̄|γnγHg|

8c2
R2

[
G1,0 − G3,0

(
R2

2
− H2

4

)
+ G5,0

(
5R4

16
− 5R2H2

12
+ H4

16

)
− G7,0

(
7R6

32
− 35R4H2

64
+ 7R2H4

32
− H6

64

)]
. (5)

B. Transverse inhomogeneity

Another effect which is related to magnetic gradients is
the transverse inhomogeneity. It induces a frequency shift
unrelated to the electric field which moves the frequency
ratio R = fn/ fHg by a fraction δT from its unperturbed value
|γn/γHg|. This effect arises from the difference in the behavior
of neutrons and mercury atoms. Ultracold neutrons fall into
the adiabatic regime of slow particles, v̄n ≈ 3 m/s, where the
typical rate of change of the magnetic field as the neutron
crosses the precession chamber is much lower than the Larmor
frequency. Mercury atoms fall into the nonadiabatic regime of
fast particles, v̄Hg ≈ 180 m/s, which cross the chamber many
times during each precession. This difference changes the way
the particles’ spins average the magnetic field, and therefore
their precession frequency. While the neutrons’ spins effec-
tively average 〈| �B|〉, the mercury spins follow |〈 �B〉|. The latter
always less than or equal to the former, increasing R. The
expression of the transverse shift is

δT =
〈
B2

T

〉
2B2

0

, (6)

where 〈B2
T〉 = 〈(Bx − 〈Bx〉)2 + (By − 〈By〉)2〉 is the transverse

inhomogeneity, which results from field gradients. An expres-
sion for this in terms of the expansion coefficients Gl,m is
given in Appendix B.

C. Gravitational shift and correction strategy

On top of the transverse inhomogeneity, there are several
other effects that can shift the ratio R. For the purpose of the
present discussion, we write the combination of these effects

as

R = fn

fHg
=

∣∣∣∣ γn

γHg

∣∣∣∣(1 + δgrav + δearth + δT + δother ). (7)

The terms correlated to the electric field are not taken into
account in this expression. We have already discussed the δT

shift in Sec. II B, while the shift δearth arises from the fact that
the experiment was performed in the rotating frame of the
earth and is not related to the inhomogeneity of the magnetic
field, see Appendix C. The last term δother accounts for small
(<10−29 e cm) shifts unrelated to field uniformity that are
discussed in Table I of Ref. [4] and will not be detailed here.
The first term δgrav is the dominant shift in Eq. (7) and is called
the gravitational shift. It is caused by the different centers of
mass of ultracold neutrons and mercury atoms,

δgrav = ±Ggrav〈z〉
|B0| . (8)

The sign ± refers to the direction of the magnetic field
B0, Ggrav is the so-called gravitational gradient and 〈z〉 is
the relative shift in the center of mass of the neutrons with
respect to the mercury, which is significantly nonzero and
negative: 〈z〉 = −0.39(3) cm [4]. Note that the center of mass
of mercury vapor coincides with the center of the precession
chamber; its gravitational offset is negligible. The term Ggrav

depends on the difference of the magnetic field averaged by
both populations and is a function of the gradients Gl,0 with l
odd. Details about the calculation of that term can be found in
Ref. [9]. It is based on the approximation of a neutron density
linear in z in the precession chamber. With a field expansion
up to order seven, the expression of Ggrav is given by the
following combination:

Ggrav =
[

G1,0 + G3,0

(
3H2

20
− 3R2

4

)
+ G5,0

(
3H4

112
− 3R2H2

8
+ 5R4

8

)
+ G7,0

(
H6

192
− 9R2H4

64
+ 21R4H2

32
− 35R6

64

)]
.

(9)

The strategy to correct the motional false EDM using the
gravitational shift is explained in Ref. [9] and its application
is detailed in Ref. [4]. It is an extension of the method used in
Ref. [7] and it will be briefly summarized hereafter. We fixed
a magnetic-field configuration with a chosen gravitational
gradient Ggrav applied, varied for each sequence of measure-
ments. A sequence was a series of consecutive measurements
of the neutrons’ precession frequency with a nominally fixed
magnetic-field configuration. An (anti-)parallel electric field
was applied in an “ABBA” pattern consisting of 28 single
measurements at one electric-field polarity, 8 measurements
without electric field, 56 measurements at the opposite polar-
ity, again 8 cycles at E = 0, and a return to the initial polarity
for 28 measurements, with each repetition taking around 10
hours. This was done to compensate for any (unintentional)
linear drifts in any experimental parameter. Per sequence, we
extracted one value of the measured electric dipole moment
and its statistical error. The cycles at E = 0 do not contribute
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directly to the EDM sensitivity but are necessary to set oper-
ation parameters in a way not biased by the blinding or any
E -dependant systematic effect. This measured EDM is then
the sum of the true neutron EDM and the mercury induced
false one from Eq. (5):

dmeas
n = d true

n + h̄|γnγHg|
8c2

R2(Ggrav + Ĝ), (10)

where Ggrav is separated out and the residual gradient Ĝ is
called the phantom gradient. It is defined as the sum of odd-l
order contributions once the Ggrav contribution is subtracted:

Ĝ = Ĝ3 + Ĝ5 + Ĝ7 + · · · , (11)

with

Ĝ3 = G3,0

(
H2

10
+ R2

4

)
, (12)

Ĝ5 = G5,0

(
H4

28
− R2H2

24
− 5R4

16

)
, (13)

Ĝ7 = G7,0

(
H6

96
− 5R2H4

64
− 7R4H2

64
+ 21R6

64

)
, (14)

obtained by subtracting Eq. (9) from Eq. (5). For each se-
quence, inserting Eq. (8) in Eq. (7), we also extract the
frequency ratio

R =
∣∣∣∣ γn

γHg

∣∣∣∣(1 + Ggrav〈z〉
B0

+ δearth + δT + δother

)
. (15)

We define the corrected quantities dcorr
n , Rcorr to be

dcorr
n = dmeas

n − h̄|γnγHg|
8c2

R2Ĝ (16)

and

Rcorr = R −
∣∣∣∣ γn

γHg

∣∣∣∣(δT + δearth ). (17)

Using the dependency of R on Ggrav, one can express a linear
dependency between dcorr

n and Rcorr as follows:

dcorr
n = d true

n + B0

h̄γ 2
Hg

8c2〈z〉R2

(
Rcorr −

∣∣∣∣ γn

γHg

∣∣∣∣), (18)

where R denotes the trap radius, and Rcorr the corrected fre-
quency ratio. With two sets of points (dcorr

n ,Rcorr ) for both B0

directions, one can fit both sets with a common and opposite
slope. At the crossing point (R×, d×), we get d× = d true

n and
R× = |γn/γHg|, free of the systematic effects described in this
section. Therefore, to obtain the systematic-free value of the
EDM, the quantities Ĝ and 〈B2

T 〉 are required for every EDM
measurement sequence. These quantities were extracted from
magnetic-field maps taken during the annual proton accelera-
tor and UCN source shutdown. δearth is the same in magnitude
for each measurement sequence, with the sign inverting de-
pending on the direction of B. It should be noted that, due to
the principle of the crossing point method, the corrections of
R have an impact on the nEDM measurement only if they are
different for the two directions of the B0 field.

FIG. 1. Side view of the B0 coil (red cables) and trimcoils (green,
yellow, and white cables) wound on the surface of the vacuum tank.

III. THE COIL SYSTEM

A. Setup description

As mentioned in Sec. I, in order to measure the neutron
EDM, a highly uniform magnetic field is required. In the PSI
experiment, many components were dedicated to the produc-
tion of such a field and to the reduction of its nonuniformity.
The main coil used to produce the B0 field (called the B0 coil)
was a cos θ coil of 54 turns wound around the surface of the
cylindrical vacuum tank of diameter D = 1100 mm and length
L = 1540 mm (see Fig. 1) to produce a vertical field. This coil
produced a field with a relative uniformity δB0/B0 ∼ 10−3

in the precession chamber, a cylinder of radius 23.5 cm and
height 12 cm with its axis pointing vertically, i.e., along z in
Fig. 2, mounted +2 cm vertically offset from the center of the
coil. The B0 coil was mounted within a passive magnetic
shield. The four layer shield made of mu-metal, a metal alloy
with high magnetic permeability, had a quasistatic shielding

FIG. 2. Simulation of the field generated by the B0 coil and a
four-layer mu-metal shield. The represented geometry is a quarter of
the complete volume. The external dimensions of the fourth (outer-
most) layer of the shield were Rsimu

MS4 = 0.98 m and H simu
MS4 = 2.79 m.

The coil’s windings are represented in red. The central volume, the
area of the heat map, is a cylinder of diameter 80 cm and height
50 cm, larger than the mapping volume.
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factor of 1500 to 14 000 for small perturbations (smaller than
1 μT), depending on the direction (x, y, or z). This factor
increases with the amplitude of the perturbation. Due to the
interaction of the field produced by the B0 coil with the inner-
most layer of the magnetic shield, 40% of the B0 field came
from the magnetization of the shield itself. As a result, shield
imperfections were a potential source of field nonuniformity.
The B0 coil in conjunction with the passive shield generated a
±1 μT field using a ±17 mA current.

Thirty-three correction coils were used to optimize the
magnetic-field homogeneity. They were also wound on the
vacuum tank, on top of the B0 coil (see Fig. 1). A homogeniza-
tion algorithm, detailed in Ref. [10], allowed the calculation of
the proper currents for each trimcoil for a given magnetic-field
configuration (nEDM sequence). Several “guiding” coils were
used to maintain the polarization of the neutrons’ spins as
they were transported to and from the precession chamber:
the nonuniformity they potentially caused had also to be taken
into account.

To keep the ambient external field as stable as possible,
we used three pairs of large rectangular coils in a Helmholtz
configuration surrounding the experiment. This system, called
the surrounding field compensation system (SFC), added an
additional “active” shielding factor of 5 to 50 at a bandwidth
from 1 to 500 mHz. A feedback algorithm dynamically ad-
justed the current through each of the six coils using the
readings of ten three-axis fluxgate magnetometers positioned
near the external layer of the passive shield. The setup and
performance of this system are described in detail in Ref. [21].

B. B0 coil simulations

To validate our understanding of and assumptions about
the system, simulations of a simplified geometry of the B0

coil and the passive shield were performed using the Ansys
Maxwell software, based on the finite-element method. A
quarter of the simulated geometry and the simulated field
is shown in Fig. 2. The coil was simulated as a set of 54
independent and perfectly parallel copper loops, with 2 cm
vertical spacing and a 17 mA current flowing through them. To
minimize the computation time, the section of each winding
was approximated as a closed rectangle. The relative magnetic
permeability of the mu-metal composing the shield was set
between μ = 10 000 and μ = 30 000. However, due to the
small thickness (2 mm) of the shield layers compared with
the scale of the whole simulation, the software had difficulties
to generate an adequate meshing and a thicker version of the
shield associated with a proportionally smaller value of its
permeability had to be used. The shield layers were simulated
with identical central holes of 20 cm diameter along the z axis.

Simulation results and mapping data were analyzed using
the same method in order to extract the field gradients (see
Sec. V). Due to the symmetries of the coil, and an astute
choice of the coordinate system only a few modes of the
magnetic field appear. The first one is the constant term,
G0,0, which was 1034.47 nT in the simulation at the nominal
current. Then, only modes with l and m strictly positive and
even appear. The simulated values and uncertainties for these
modes, up to order six, are listed in Table I. The uncertainties
were estimated by running several simulations with differ-

TABLE I. Ansys simulation values for the magnetic-field modes
for a B0 up configuration and their uncertainties.

Gsimu
l,m (pT/cml ) 	Gsimu

l,m (pT/cml )

G0,0 1034.47 × 103 5.08 × 103

G2,0 −9.26 0.14
G2,2 1.18 0.21
G4,0 −3.63 × 10−3 0.06 × 10−3

G4,2 1.37 × 10−3 0.01 × 10−3

G4,4 −8.66 × 10−5 0.14 × 10−5

G6,0 −1.16 × 10−6 0.02 × 10−6

G6,2 2.77 × 10−7 0.02 × 10−7

G6,4 −7.89 × 10−8 0.04 × 10−8

G6,6 8.89 × 10−9 0.16 × 10−9

ent parameter settings (meshing refinement, relative magnetic
permeability, and proportional changes of the shield thick-
ness). Although all uneven modes are in principle forbidden,
they actually do exist because of the nonperfect geometry of
the coil (for example coil connections, cable detours due to
holes in the vacuum tank, and nonsymmetrical holes in the
different layers of the shield). It turns out, nevertheless, that
they had small amplitudes compared with the even modes. A
comparison between the measured B0 field and the predicted
values for these modes will be discussed later.

IV. THE MAGNETIC-FIELD MAPPING

A. Magnetic-field mapper

The offline magnetic-field characterization was performed
regularly during the annual accelerator shutdown period (see
Sec. IV C) using an automated magnetic-field measurement
device, the so-called mapper. This mapper was installed in-
side the empty vacuum vessel, i.e., with the electrode stack
removed. It allowed the movement of a precise magnetic
sensor inside the vacuum vessel, as shown in Fig. 3. The fully

FIG. 3. Magnetic-field mapper installed in the empty vacuum
vessel. The fluxgate is inside the tube on the left, on which the
helical groove used for the calibration motion can be seen. The
inset illustrates the relative position of the three individual fluxgate
sensor axes, which are offset from each other by 20 mm in the radial
direction.
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TABLE II. Manufacturer specification of the mapper fluxgate
(Sensys FL3-2).

Characteristic Value

Measurement range ±2 μT
Accuracy ±0.5 %
Orthogonality <0.5◦

Zero drift <0.1 nT/K
Scaling temp. coeff. +20 ppm/K, typ.
Noise <20 pT/

√
Hz

Analog outputs 5.0 V/μT per sensor

sampled measurement volume was a cylinder of diameter
68 cm and height 32 cm.

The three stepper motors used for the sensor motion along
the ρ, φ, and z axes were located below the vacuum vessel,
outside the cylindrical magnetic shield. Every part of the
mapper inside the magnetic shield was made of nonmagnetic
materials (PEEK, POM, aluminum, ceramics, glass, etc.),
with all materials screened for magnetic contamination in
dedicated measurements using a sensitive SQUID (supercon-
ducting quantum interference device) magnetometer array at
the Berlin magnetically shielded room 2 (BMSR-2) at the
Physikalisch Technischen Bundesanstalt (PTB), Berlin. No
conductive surfaces were located close to the fluxgate sensor.
This precaution avoided both eddy currents induced by the
fluxgate excitation pulses and Johnson noise.

The z motion was performed using a linear column cou-
pled with a linear transducer, shifting up or down the whole
assembly from below. The φ motion was done by rotating the
central axis of the mapper about a pair of bearings mounted on
flanges at the top and bottom of the vacuum tank. Finally, the
ρ motion was performed using a rack and pinion connected to
a vertical axle within the lower shaft (coupled to the ρ motor)
and to the cart holding the sensor. The cart was guided along
the main plate using twelve nonmetallic radial bearing assem-
blies rolling against linear tracks to constrain all undesired
motion.

The z-axis position was read with a linear transducer.
Although the φ and ρ positions could be read using wire
potentiometers, the best accuracy was provided by counting
motor steps in an open-loop fashion. The sensor cart could
hold two different sensors:

i. a low-noise three-axis fluxgate magnetometer;
ii. a two-axis inclinometer (KELAG KAS901-51A).

As the inclinometer was slightly magnetic, it was only used to
perform mechanical characterization of the mapper and was
removed during magnetic map measurements.

The fluxgate used was a FL3-2 from Sensys, see Table II,
with three independent single axis detectors mounted along
the ρ axis spaced by 20 mm, as shown in the insert of Fig. 3.
The specifications for our fluxgate are listed in Table II. The
stated zero drift only accounts for temperature correlations.
It turned out that for measurements with an accuracy <1 nT,
other influences, like 1/ f noise, dominated the signal stability
in time. We also found zero offsets of the order 10 nT for
all three independent sensors after several years of use and
exposure to a variety of conditions. Subnanotesla accuracy
could be reached by an in situ zero-offset determination done

with the fluxgate mounted onto the mapper, using the same
electronics including cables and data-acquisition system. For
such a measurement, a special mechanism to rotate the flux-
gate tube about the ρ axis was used. It combined the helical
groove on the fluxgate seen in Fig. 3 with a pneumatically
moved index finger within the upper vertical axis. The next
section explains this key feature of the mapper in more detail.

B. Fluxgate zero-offset determination

A frequently used method to find the zero-offset for a
magnetic-field detector sensitive in only one spatial direction
is the measurement of the magnetic field at one point twice,
with the measuring direction reversed for the second mea-
surement. The magnetic-field value is canceled when the time
between the two measurements is short enough that a pos-
sible magnetic-field change is negligible. The average value
of both field readings is then the zero-offset. The accuracy
of such a method depends on the accuracy of the rotation
angle γ , which must be exactly 180 ◦ to reverse the measuring
direction. The influence of an uncertainty 	γ is proportional
to the background field strength transverse to the measuring
direction of the detector. Therefore, the highest accuracy for
the zero-offset is reached when the background field is small
and in the direction of the sensitive axis of the sensor. In
our case, since the mapper did not allow adjustment of the
single detectors in the fluxgate in three dimensions (3D) to
the maximal and minimal field reading, we used the center
of the magnetic shield for the zero-offset determination. We
observed that the absolute value of the field was lowest close
to the center when the shield was degaussed without a B0 field
applied. Indeed, when comparing the zero-offset measured
in the absence and presence of a B0 field, we observed a
significant effect. Without correction, the measured apparent
zero-offsets of the horizontal field sensors (ρ, φ) were of the
order of 1 nT due to the misalignment of the fluxgate axes into
the 1μT field into the vertical (z) direction. Comparison of
measurements taken in different field configurations (around
1μT at the center of the tank in each direction x, y, and z
successively) allowed the determination of these angles and
for this effect to be corrected.

For our fluxgate zero-offset determination, each single de-
tector was moved one by one to the central position and
readings were taken for the “normal” and the “reversed” flux-
gate orientation. In the reversed position, the fluxgate was
rotated by π around the radial axis, inverting the field readings
of the transverse and vertical detectors. To measure the offset
of the radial sensor and increase the accuracy of the deter-
mination for the transverse and radial sensors, measurements
were taken every 10 ◦ for a rotation around the vertical axis,
which lead to 36 pairs of opposing field measurements for the
transverse and vertical detectors and 18 (measured nominally
twice) for the radial one. These measurements are combined
to give the final determination of each fluxgate offset. To
be able to bring each sensor to the center of the coordinate
system to perform this measurement was an explicit design
requirement of the system. The necessary mapper movement
time to measure the positions for all three single detectors was
about five minutes. Repeating the zero-offset determination
immediately afterwards, in the real use scenario in a vertical
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FIG. 4. Recording of the field measured by the fluxgate every ten
seconds at the center of the coil to see the drifts of the three offsets.

±1μT field, leads to a reproducibility of about 30 pT in the
vertical sensor, 50 pT in the radial sensor, and 350 pT in the
transverse sensor. The poorer reproducibility for the trans-
verse axis is due to a small amount of play that developed in
the mechanism locking the fluxgate in the normal or reversed
orientation during the hundreds of zero-offset measurement
cycles taken during the 2017 mapping campaign, resulting in
a worsening of 	γ over time. This zero-offset measurement is
unique to our mapper and could be performed at any time. The
zero-offset determination procedure is in principle immune to
any magnetic field of the parts that are rotated together with
fluxgate and to the magnetic field of the fluxgate itself.

Figure 4 shows a typical behavior of the field readings
over a time period of 3 or 4 hours for the three fluxgate
channels with the fluxgate motionless at the center of the de-
gaussed shield. Such measurements were performed regularly
during the mapping campaigns. There is no strong correlation
between the different traces and the observed drift is about
300 pT. The temperature around the shield was controlled and
stable within ±0.1 K. Therefore, the temperature could only
account for ±10 pT (see the zero-drift coefficient in Table II).
Magnetic-field drifts as the dominant source could also be
excluded by reference measurements with Cs magnetometers.

C. Mapping campaigns

Three mapping campaigns were conducted in 2013, 2014,
and 2017 during which as many as 300 full maps were
recorded. A full map acquisition took between three and six
hours. This time corresponds to a measurement of the vecto-
rial magnetic field for a set of 90 rings (each with 38 points)
at five given heights (−18, −10, −2, 6, and 14 cm in the
precession chamber coordinate system, where z = 0 is at the
center of the chamber) and 18 radii (from 0 to 34 cm, spaced
by 2 cm each), as can be seen in Fig. 5. The 2 cm radial
spacing between each ring was chosen to match the spacing
between the three single-axis sensors contained within the
three-axis fluxgate, which is not necessary for the mapping
analysis presented here but useful to obtain a complete 3D
representation of the field. A full map was almost always pre-
ceded and followed by one or two zero-offset determination

FIG. 5. Bz field for a full map of the B0 coil. The axes are defined
as in Fig. 2.

maps to calibrate the fluxgate. Moreover, 40-minute record-
ings of the field were performed at the center of the chamber
following each degaussing cycle. These recordings allowed us
to check the drifts of the fluxgate offsets (see Sec. IV B) and
gave time for the fluxgate sensor and the passive magnetic
shield to stabilize.

During each mapping campaign, several kinds of maps
were taken:

i. B0 maps, with only the B0 coil powered with ±17 mA.
ii. Maps of the remnant field Brem, with all coil currents set

to zero.
iii. Trimcoil maps, with only one trimcoil powered with a

few mA current.
iv. Guiding coil maps, with only one guiding coil powered

with a few mA current.
v. Sequence maps, replicating real nEDM measurement

conditions. This included powering the trimcoils and guiding
coils as they were used during data acquisition.
Each time the state of the B0 coil was changed, the shield was
degaussed.

V. ANALYSIS OF A SINGLE FULL MAP

In this section, we describe the analysis method used for a
single map. There were two distinct analysis groups perform-
ing differently blinded analyses of the main neutron EDM
dataset. Due to the complex nature of the map analysis and
the critical impact it would have on the central value of the
reported neutron EDM result, both analysis groups developed
independent mapping analyses. The map measurements sup-
plied to each analysis group were not blinded, but numerical
comparisons between the groups were avoided until each
analysis was mature and effectively frozen. Both analyses
were complete and frozen before the unblinding of the main
neutron EDM result. More detailed descriptions of the map-
ping analyses can be found in Refs. [22,23]. In this article
we focus on the analysis procedure described in Ref. [23]
and used by the Western analysis group [24]; the method de-
scribed in Ref. [22] and used by the Eastern analysis group is
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essentially identical, with the exception that, in this analysis,
the harmonic decomposition described in Sec. V B is done
using a combined fit for all three axes simultaneously, and
a compensation for the radius-dependant misalignment which
will be described shortly is explicitly performed (though this
was ultimately found to be not necessary when measuring
typical nEDM configurations). The results of the two analysis
methods ultimately showed excellent agreement. The posi-
tions and the magnetic field will always be given in cylindrical
coordinates, as illustrated in Fig. 3. The correspondence with
the Cartesian coordinate system used in Ref. [9] and visible in
Fig. 2 is the following:⎧⎪⎪⎨⎪⎪⎩

ρ =
√

x2 + y2

φ = arctan(y/x)

z = z.

(19)

An important source of error is the possible misalignment of
the {coil + mapper + sensor axes} system. Indeed, if the
true vertical axis of the global coordinate system (defined by
gravity, and to which the precession chamber is well aligned
in normal operation) and the vertical axis of the mapper were
not perfectly aligned, or if the angles between the three axes
of the fluxgate were not exactly square, the three directions of
the field in the chamber would be mixed with each other when
measured by the mapper. A specific analysis method was
developed to reduce the impact of such potential misalign-
ment. We measured the vectorial magnetic field. Therefore,
we could independently extract the gradients Gl,m by analyz-
ing each of the three sensor directions: radial r̂, transverse
φ̂, and vertical ẑ. Let us consider the simple case of a small
angle α between the nominal and real axes of the fluxgate,
causing a component of the large vertical field to be captured
by the radial or transverse sensor. One can express the vertical
and horizontal field mixing effect of such a misalignment
as a function of α. Since �B0 was mainly aligned with the
mapper axis along ẑ (and the vertical z axis in the global
experiment coordinate system), the impact of the horizontal
field components Bh in the chamber on the measured vertical
z field (Bmeas

z ) could be neglected. The measured vertical and
horizontal fields are{

Bmeas
z = Bz cos α

Bmeas
h = Bh cos α + Bz sin α,

(20)

where “meas” denotes the field measured by the fluxgate
sensor, and “h” stands for horizontal (radial r̂ or transverse
φ̂) Since α is small, we can perform a Taylor expansion:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Bmeas
z = Bz

(
1 − α2

2

)
+ O(α3)

Bmeas
h = Bh

(
1 − α2

2

)
+ Bzα + O(α3).

(21)

It is obvious that the measured vertical field is much less
impacted by a possible misalignment angle α. This is most
relevant when considering field modes with order m = 0 due
to the relatively large size of the G0,0 term, corresponding to
the target homogeneous vertical field. Therefore, to extract the
Gl,0 gradients, only the vertical z sensor’s analysis is used.

The analysis of one direction of the field is divided into
several steps that we describe hereafter. This method was used
for all field directions individually. However, we detail it in the
next sections for the vertical z direction.

A. Ring-by-ring analysis

Due to the measurement pattern of a map, a full map can
be seen as a set of 90 rings (ρ and z fixed) of 37 points from
0 ◦ to 360 ◦ plus an additional point at 0 ◦ (see Fig. 5). The first
analysis step is analogous to a Fourier decomposition ring by
ring. For one ring i, since the radius ρi and height zi are fixed,
the magnetic field is simply a function of φ. We fit it with
a Fourier series as follows, using a simple χ2 fit, with the
Fourier coefficients am,z,i as parameters of the fit:

Bz(ρi, φ, zi ) =
∑
m�0

[am,z,i cos (mφ) + a−m,z,i sin (mφ)], (22)

where ρi and zi are respectively the radius and the height
of the ring i. The 38 points of a ring are treated equally.
To compute distinct weights for each point, we would need
to include the error due to the fluxgate offset drift. However,
we are not able to estimate that error a priori.

The Fourier fit step gave us a set of Fourier coefficients
am,z,i per ring i with their associated errors. These errors were
scaled with the factor (χ2

i /NDF )1/2, with NDF the number of
degrees of freedom of the fit, to take into account the quality
of each ring i for the next analysis step. An example of this
fit for a B0 map can be seen in Fig. 6(a). The fit was done up
to order |m| = 6 (13 coefficients). This limit was chosen for
several reasons:

i. The improvement of the fit residuals between order six
and order seven was not significant.

ii. The contribution of the order m = 7 to Ĝ was smaller
than the reproducibility of the degaussing process. As we
discuss in Sec. VI B, this is the limiting factor in the correction
of nEDM systematics.

iii. The contribution of the order m = 7 to 〈B2
T〉 was negli-

gible, being much less than the degaussing reproducibility for
this quantity.
We can compare the quality of a Fourier fit by looking at
the square root of the mean squared residual (rms residual).
These residuals are displayed in Fig. 6(b) for a B0 map. The
average value is around 20 pT, which is the same order of
magnitude as the variations of the fluxgate output over a
time similar to the duration of a ring measurement (80 s).
One can see that the fits of the external rings tend to be of
poorer quality. That may be explained by the higher-order
terms which grow very quickly at larger distances to the
center and are not so well fit. This effect is taken care of
by de-weighting the external rings in the next step of the
analysis.

B. Harmonic decomposition of the Fourier coefficients

After having extracted a set of Fourier coefficients for each
ring i, the second step of the analysis is to fit these coefficients
with the harmonic functions of the field expansion. Since we
already took care of the φ dependency of the field by fitting
the rings, we will now fit the coefficients with the expansion
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FIG. 6. Fit of the Bz field with a Fourier series up to order m = 6
for a B0 up map. In panel (a) is the fit for the ring ρ = 22 cm, z =
6 cm. In panel (b) are the square root of mean squared residuals of
all the rings. Each square corresponds to the rms residual after fitting
the ring at the position (ρ, z).

functions [see Eq. (2)] also freed from this dependency. As
mentioned in Sec. II, these functions can be expressed as the
product of a polynomial in (ρ, z) and a trigonometric function
in φ. As an example, in the case of the z direction:

�z,l,m(�r ) =
{

�̃z,l,m(ρ, z) cos (mφ) for m � 0

�̃z,l,m(ρ, z) sin (mφ) for m < 0.
(23)

We exploit this property of the harmonic functions when
expressed in cylindrical coordinates to fit the Fourier coeffi-
cients. The coefficient am,z is fit with a linear combination of
the �̃z,l,m for different values of l , with the order m being the
one related to the φ dependency. Similarly, a−m,z is fit with
a linear combination of �̃z,l,−m. Due to our choice of basis
fields, there is no “mixing” between terms of different m (i.e.,
different φ dependence). The fit of every Fourier coefficient
of a given order ±m can then be written as

am,z,i =
∑
l�0

Gl,m �̃z,l,m(ρi, zi ). (24)

This can be compared with Eqs. (2) and (22). For the Fourier
fit, we use a χ2 minimization. There are as many fits as the

0 10 20 30
 (cm)ρ

1033

1034

1035

1036

1037

1038

1039

1040

1041
310×

 (
pT

)
0,

z
a

z = 14 cm

z = 6 cm

z = -2 cm

z = -10 cm

z = -18 cm

83
25 883=

0NDF
z0,

2χ

FIG. 7. Fit of gradients Gl,0 to the Fourier coefficients a0,z for a
B0 up map. The index m = 0 denotes the field components without
φ dependence, which are responsible for the “phantom” fields con-
tributing to Ĝ. The colors represent the different values of the ring’s
height z, for the same fit. Each point represents the fitted a0,z of a
ring. Error bars are too small to be visible.

number of Fourier coefficients extracted from each ring in the
first step of the analysis. In Fig. 7, an example of such a fit
is shown. This is the fit of the order m = 0, which gives us
the gradients Gl,0 used to calculate Ĝ. The harmonic fits are
performed up to order l = 6, for the same reasons as used to
justify our choice of the largest m in the ring fit stage.

After the harmonic fits, we obtain 60, 54, and 49 gradi-
ents and their associated errors, respectively for the analysis
directions ρ, φ and z. As can be seen in Tables V to VII
in the Appendix, this difference in the number of extracted
coefficients is due to some gradients not producing a signal
in all three dimensions. For fits such as the one in Fig. 7, the
Fourier coefficients’ error bars are underestimated, therefore
the values of the χ2 are quite large. It turns out that this
underestimation of the error bars was due to the drifts of
the fluxgate’s offsets. As said in Sec. IV B, the drift of these
offsets was approximated as linear, but it can be seen in Fig. 4
that this was not always true. During the small duration of
a ring measurement (≈80 s), the impact of the drifts was very
limited and the errors coming from the Fourier fits were there-
fore not impacted. However, from one ring to another, with the
recording of one map taking several hours, this impact became
visible in the terms with m = 0. To take this into account, the
Fourier coefficient errors and therefore the gradients errors
were scaled with the factor (χ2/NDF )1/2, with NDF being
the number of degrees of freedom of this fit. The phantom
gradient Ĝ is calculated directly at this step for the z direction,
since it is a linear combination of gradients Gl,0 which come
from the same fit and are therefore correlated.

The last step of the analysis is the combination of the three
analysis axes, except for order m = 0, which is obtained from
the analysis of Bz only. This combination is a simple weighted
average of all axes (when available) for each gradient. After
this combination, for one map, we get the 61 gradients Gl,m

that we use to calculate 〈B2
T〉. The uncertainties obtained from
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that analysis then take into account the fit error and the non-
linear drifts of the fluxgate’s offsets. In the next section, we
present an overview of the systematic errors of the mapping
and their impact on the gradients.

C. Systematic errors

A variety of additional effects may bias the results of the
mapping, arising from mechanical imperfections in the con-
struction and installation of the mapper device. A few specific
classes of errors were considered.

First, the guiding rails along which the mapper cart moved
radially were found to be warped. This resulted in the mis-
alignment of several milliradians of the radial and transverse
sensors into the vertical direction. As such, the large verti-
cal magnetic field (Bz ≈ 1μT) caused large radius-dependent
false fields of several nanotesla in these sensors. This ob-
servation was validated by separate measurements using an
inclinometer mounted at the same position as the fluxgate,
as well as direct measurements of the rail profile using a
coordinate measurement machine.

This type of misalignment does not depend on φ, thus the
most affected field components are those with m = 0 due to
the predominance of G0,0 over all other terms. Such false
fields do not satisfy the Maxwell equations, therefore the field
decomposition basis chosen cannot describe them. Thus, in
order to evaluate the misalignment in situ, a fit of the magnetic
fields described by G0,0 to G6,0 and two misalignment angles
α and β (describing a rotation of the fluxgate about its r̂ and φ̂

axes, respectively) for each radius ρ to the Fourier coefficients
a0,ρ,φ,z was performed. These results were compatible with
the results of the inclinometer measurements and the measure-
ment of the rail profile, and the values of Gl,0 obtained were
compatible with those returned by the main analysis pathway
detailed in Sec. V. It was found that ignoring the components
a0,ρ and a0,φ in the standard analysis pathway was sufficient
to result in unbiased results with comparable precision, while
substantially reducing the complexity of the analysis.

Second, each of the three fluxgate sensors is specified to be
aligned along the nominal direction with a tolerance of 0.5 ◦.
In our case, trying to measure inhomogeneities in, and small
transverse components of, a large vertical field, this could
have also caused undesirable false fields to appear in the radial
and transverse fluxgate sensors, on the order of nanotesla.
Again the predominant contribution comes from the large G0,0

component. These false fields are then approximately constant
for each magnetic-field configuration, meaning they do not
cause errors in the estimation of the gradients. However, they
have to be considered in the analysis of fluxgate zero-offset
determination sequences performed in an offset field if ab-
solute values independent of the applied magnetic field are
required. Additionally, these angles become relevant when
taking a map of a magnetic field with the largest component
in the (horizontal) x̂ or ŷ direction.

Inaccuracies in the mapper positioning could also lead
to measurement error. Although each small stepper motor
step corresponded to a high positioning resolution of at least
50 μm, the real world performance was not proven to this
level. Deviation from linearity, a scaling error, or some sta-
tistical error in the φ position would lead to a poor fit at the

stage of the ring-by-ring Fourier fit. In the case of the ρ and z
positions, a poor fit would be observed at the next step when
the gradients Gl,m are fit to the coefficients am. The goodness
of fit in real data in the fits for terms m = 0 was sufficient
to exclude such systematic effects at a relevant level, and the
measurement uncertainty for the terms m = 0 much better ex-
plained by the aforementioned fluxgate drifts. Moreover, the
zero position of each of the three axes was relatively difficult
to determine and accurate to only approximately 0.5 mm. In
the case of the rotational axis of the mapper, any zero-position
error of φ will not affect the values obtained for 〈B2

T 〉 or Ĝ
due to the cylindrical symmetry of the precession chamber.
However, a zero-position error on the radial ρ or vertical axes
z could cause an anomalous reading, without substantially
impacting the goodness of fit.

To estimate the magnitude of this effect, the full analysis
of several real maps was repeated while adding a small offset
onto each recorded position. Considering the ρ coordinate,
it was found that adding an offset of +1 mm to all points
for a B0-up map would typically lead to a shift of around
+0.04 pT/cm in Ĝ and −0.02 nT2 in 〈B2

T 〉. Uncorrected, both
lead to a systematic shift in the measured nEDM value of less
than 2 × 10−28 e cm.

When the correction strategy described in Sec. II C is used
to correct the mercury induced false neutron EDM systematic
effect described in Sec. II A, data taken with both B0 field
directions are combined. Two lines with the same gradient
but opposite sign are fit to the corrected data of each field
direction, respectively, following Eq. (18). This yields the
“crossing lines” pictured in Fig. 4 of Ref. [4]. One can imagine
that some systematic error like an error in the measurement of
〈B2

T〉 shifting R in the same direction for both signs of B will
not affect the crossing point dX which gives the final corrected
nEDM value d true

n , only the crossing point RX will be shifted.
Meanwhile, some error causing a false EDM reading, for
example a systematic error in the determination of Ĝ, will
only cancel if the sign of the error is opposite for opposite
polarities of B.

Considering a B0-down map, we find the same values and
same signs for the same ρ offset as for a B0-up map. Thus,
any effect on 〈B2

T 〉 is canceled implicitly when evaluating
the neutron EDM. However, the crossing point R× would be
affected. The value arising from the neutron EDM crossing
lines analysis was compatible with a previous, independent
determination by the collaboration [25]. There is no such
cancellation in this case for the measurement of Ĝ. Both signs
of B will measure an EDM shifted in the same direction. The
effect on the measured neutron EDM will then be less than
2 × 10−28 e cm per mm of offset in the ρ value, due to the
effect on Ĝ.

For shifts in the z position, a similar effect can be observed.
For both B-field directions, up and down, injecting an offset
of +1 mm leads to a +0.2 pT/cm shift in Ĝ, and a shift
in 〈B2

T 〉 of +0.02 nT2. Again, although the effect on 〈B2
T 〉

will cancel, the final measured nEDM value would be shifted
by 1 × 10−27 e cm for an offset of 1 mm. We conservatively
estimate 1 mm to be the upper bound on any such shift in the
zero-position of the ρ and z axes, leading to an upper bound
on the final nEDM systematic error due to this effect of less
than 1 × 10−27 e cm.
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FIG. 8. Principle of the global analysis of all maps.

VI. GLOBAL ANALYSIS

Different kinds of maps were taken during the map-
ping campaigns. Each individual map was analyzed with
the method described in the previous section to obtain the
magnetic-field gradients. However, to check the quality of the
maps and therefore the reliability of the extracted gradients,
a global analysis of all maps was performed. A schematic
diagram of the global analysis is shown in Fig. 8 and its
different parts will be discussed in the following sections.

The field reproducibility and the mapping repeatability
were extracted from the global analysis of all the B0 maps.
These two sources of uncertainty of the mapping are defined
and discussed in the following section. With these maps we
also extracted the contribution of the B0 coil to the field
gradients in the precession chamber.

Using the trimcoil and guiding coil maps, we measured the
contribution to the gradients of each individual additional coil.
By combining the B0 coil gradients and those of the other
coils, we obtained a prediction of the field gradients for any
magnetic configuration.

A. Reproducibility and repeatability

Two important quantities to evaluate the mapping un-
certainties are the field reproducibility and the mapping
repeatability. The field reproducibility quantifies how repro-
ducible the magnetic state of the system is after applying a
standardized degaussing process. The mapping repeatability,
on the other hand, represents our ability to measure twice the
same field with the mapping and its analysis without changing
any magnetic conditions (no degaussing, identical currents,
etc.). A poor repeatability can be caused by measurement
imperfections such as drifts in time of the sensor offset or
small variances in misalignment angles. In principle, the anal-
ysis method aims to take such imperfections into account.
Unlike the reproducibility, the repeatability can therefore be
improved by improving either the measurement method or the
analysis.

Because the B0 field was the main contribution to the
magnetic field, only B0 maps were considered to evaluate the
reproducibility and the repeatability. In the following, we only
describe the extraction method for the gradient Ĝ, the method
being independent of any particular gradient. To extract the
Ĝ reproducibility, during each campaign, several groups of

B0 maps were recorded, with a degaussing of the shield in
between two groups. Each group consisted of a series of B0

maps taken without degaussing in between. The fluctuations
of the measured Ĝ between the different groups quantify the
reproducibility. However, a naïve method would be influenced
by the repeatability, which is responsible for the fluctuations
of the measured Ĝ between successive maps. The repeatability
was estimated by studying the Ĝ fluctuations within a group.
Both the field reproducibility and the mapping repeatability
were found to be independent of the polarity of the field.
Therefore, they could be extracted by considering all B0 maps
(taking into account the different central value for different
polarities).

Due to the different sizes of the groups, one to three maps
per group, there was no standard statistical model to estimate
the reproducibility σĜ and the repeatability τĜ. Therefore, we
derived estimators depending on the number and size of the
groups. First, we define the estimator of the average gradient
of a group i containing ni maps,

Ĝi = 1

ni

ni∑
j=1

Ĝi j . (25)

Then, using all groups average values with the deviation of the
gradient inside each group, we estimate the repeatability as

τ 2
Ĝ = 1

N − g

g∑
i=1

ni∑
j=1

(Ĝi j − Ĝi )
2, (26)

where N is the total number of maps and g is the number of
groups. With the group averages, we also estimate the global
average value of the gradient produced by the coil B0. This
global average will be useful to predict the gradient of a
magnetic configuration and is defined as

Ĝ = 1

N

g∑
i=1

niĜi = 1

N

g∑
i=1

ni∑
j=1

Ĝi j . (27)

Finally, from the deviation between the global and individual
averages, one can extract the reproducibility and subtract the
repeatability contribution as follows:

σ 2
Ĝ = 1

g

g∑
i=1

ni(Ĝi − Ĝ)2 − τ 2
Ĝ. (28)

The results of the mapping for the phantom gradient Ĝ and
the spread of the measurements can be seen in Fig. 9. No
maps from the 2013 campaign and only a part of the 2014
campaign maps were used to correct the nEDM data or for
this meta-analysis. This was due to the presence of magnetic
elements within the shield which were removed during the
2014 campaign. The decision to not use the maps recorded
before the removal of these elements was taken to avoid any
bias in the gradient estimations. However, it should be said
that these maps were studied, too, and confirm an excellent
reproducibility of the phantom gradient over the duration
of the different campaigns. The field reproducibility and
mapping repeatability were found to be σĜ = 0.56 pT/cm and
τĜ = 0.38 pT/cm, respectively. Note that the phantom
gradient produced by the B0 coil was very symmetric about
zero in up and down configurations, as shown in Fig. 9. For
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FIG. 9. Histogram of the values of Ĝ and its global averages
for all the B0 up (red) and down (blue) maps and the remnant
field (green) maps. The reproducibility and repeatability were only
calculated with the B0 maps.

the remnant field, this gradient was close to zero, which
was not the case for all the field coefficients. For the other
quantity of interest, the transverse inhomogeneity 〈B2

T 〉, the
reproducibility and the repeatability were σ〈B2

T〉 = 0.28 nT2

and τ〈B2
T〉 = 0.02 nT2.

The most important conclusion here is that the repeatability
of the mapping is better than the field reproducibility. It means
that the mapping uncertainty is not dominated by the perfor-
mance of the mapping measurement and analysis methods.
Indeed, although the degaussing procedure and the opening
and closing of the shield is already very reproducible, it still
dominates the field map precision.

Another relevant point to highlight is the comparison be-
tween the repeatability and the propagated error calculated
with the analysis method. The values of these quantities are
listed in Table III for Ĝ and 〈B2

T〉. On one hand, the re-
peatability quantifies all the uncertainties due to measurement
differences from one map recording to another; for example,
position errors or varying misalignments, or in particular drifts
of the fluxgate offset. On the other hand, the fit error 	xfit

also takes several other error sources into account, the obvious
one being a potential model incompleteness, since we only
consider field modes Gl,m with l � 7. As an example, some
complex fields caused by a local contamination or a deforma-
tion on the magnetic shield could be impossible to describe
with the limited set of coefficients to which we restrict our-
selves. One might think that the fit error (propagated from the
uncertainties on each Fourier coefficient am,{ρ,φ,z},i) should be

TABLE III. Reproducibility, repeatability, and fit error of Ĝ and
〈B2

T〉 calculated from a global analysis of the B0 maps. Reproducibil-
ity and repeatability are calculated by using formulas (28) and (26)
respectively.

x Units σx τx 	xfit

Ĝ pT/cm 0.56 0.38 0.19
〈B2

T〉 nT2 0.28 0.02 0.02

bigger than or at least equal to the repeatability. Nevertheless,
it is not the case for Ĝ, 〈B2

T〉, and for most of the generalized
gradients, as correlations occur because the fluxgate drifts are
slow. While each ring individually fits well suggesting a lower
uncertainty, considering the map as a whole the drift grows
large. We rescaled this fit error with the square root of the
reduced fit χ2 to allow us to take the error due to the fluxgate
drifts into account. We therefore use the repeatability (rather
than the error propagated from the fit) as our key metric of
the measurement uncertainty for parameters extracted from a
single map.

The global analysis of all B0 maps was also used to
compare the measurements with the simulations which is dis-
cussed in Sec. VII. In the following section, we discuss the
method to extract the value of the phantom gradient Ĝ and the
transverse inhomogeneity 〈B2

T〉 for each nEDM sequence.

B. Gradient reconstruction method

We identified two possible methods to obtain the gra-
dients from the mapping for each magnetic configuration
corresponding to a nEDM data-acquisition sequence. The first
option is to map all the different configurations used for EDM
measurements and extract the gradients from the analysis of
each individual map. The second method is to use the lin-
ear dependence of the field on the applied coil currents and
combine the analysis results of B0 maps, trimcoil maps, and
guiding coil maps to reconstruct the magnetic field. Once we
obtain the gradients with one of these methods, the calculation
of the transverse inhomogeneity 〈B2

T〉 is simply an application
of the formulas given in Appendix B. In this section, we will
briefly describe the global analysis of the coil maps, verify the
linearity to validate the second method, and then compare the
accuracy of both methods.

Unlike for the B0 coil, the currents used in the trimcoils
during the EDM sequences changed from one magnetic con-
figuration to another. Therefore, to obtain the contribution to
the gradients of each coil, the relation between the current
flowing through the coil and the field produced had to be
used. This relation is linear in the case where no ferromagnetic
material is present. In our case, the B0 coil was within a
large mu-metal shield which was responsible for 40% of the
B0 field. However, as the shield was far from the saturated
regime, the field produced should have been linear in the
coil currents. As we show below, our analysis proves that the
linearity assumption was valid.

For every coil (trimcoils and guiding coils), one to five
maps were taken with the coil powered with a current of 10 or
20 mA. Each time a coil map was taken, a map of the remnant
field Brem was recorded, too. Both maps were analyzed and
the gradients were extracted with the method described in
Sec. V. The remnant field gradients were subtracted from the
coil ones so that we consider only the field created by the coil.
The gradients thus obtained were then scaled with the value
of the current flowing through the coil in order to obtain the
gradients produced by 1 μA. Finally, when there were several
maps of one coil, we combined them after analyzing them all
by calculating the weighted mean.

With these coefficients and the results of the B0 maps
analysis, we are able to calculate the gradients of any
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magnetic-field configuration by using the linearity of the gra-
dients,

Ĝ = Ĝ↑or↓
B0

+
Ncoils∑

c

iĉgc, (29)

where Ĝ↑or↓
B0

is the average value of Ĝ measured in up or
down B0 maps, estimated with Eq. (27), Ncoils is the number
of additional coils, ic is the current, and ĝc is the gradient
produced by 1 μA in coil c.

To check the validity of this prediction method, we com-
pared the gradients extracted from the maps of the EDM
sequence configurations to their predicted values using the
linear superposition method. The results of this comparison
for the gradient Ĝ and for the transverse inhomogeneity 〈B2

T〉
are shown in Figs. 10(a) and 10(b). For both Ĝ and 〈B2

T〉,
one can see that the prediction and the measurement are in
good agreement. We can therefore validate the accuracy of the
prediction method, since it reliably reconstructs the measured
gradients. The mean square differences of the comparison are

〈(Ĝmeas − Ĝpred )2〉 = (0.80 pT/cm)2 (30)〈(〈
B2

T

〉meas − 〈
B2

T

〉pred)2〉 = (0.20 nT2)2. (31)

There are several contributions to these differences. The main
contribution for both Ĝ and 〈B2

T〉 is the B0 reproducibility
(0.56 pT/cm for Ĝ and 0.28 nT2 for 〈B2

T〉). On the one hand,
for the transverse inhomogeneity 〈B2

T〉, the mean square dif-
ference is a little smaller than the reproducibility. On the
other hand, we can see for the phantom gradient Ĝ that other
sources of error seem to contribute. One of them is the error
arising from the incorporation of the trimcoil and guiding coil
contributions to the prediction. To estimate the size of this
error, we did another specific comparison to eliminate the B0

reproducibility contribution. We compared the gradients of the
sequence maps subtracted from the gradients of B0 maps taken
in the same group of measurements (no shield degaussing)
with the prediction coming from the additional coils. For Ĝ,
the mean square difference of this second comparison was
(0.70 pT/cm)2. The quadratic contributions to this difference
are

i. The mapping method uncertainty, for which we take the
repeatability τĜ. It must be taken into account twice, once for
the sequence map and once for the B0 map: 2(0.38 pT/cm)2.

ii. The coils prediction error, which can be deduced from
the other contribution: (0.45 pT/cm)2.
One can see that the coil prediction error is the same order of
magnitude as the repeatability. However, it is still subdomi-
nant compared with the field reproducibility, which remains
the limiting uncertainty. We now have a full explanation of all
contributions to the uncertainties and can compare the accu-
racy of both methods to obtain the gradients for one magnetic
configuration.

As said in the beginning of this section, the two methods
to obtain the gradients for one nEDM sequence magnetic
configuration are

1. Extracting them by offline measurement of the same
magnetic-field configuration.

(a)

(b)

FIG. 10. Comparison of the measured and predicted values for
the maps of the nEDM sequence configurations. The green line is
the first bisector y = x. The rms written in the top left corner of each
plot is the mean square difference square root. (a) Comparison for
the gradient Ĝ. The large dots are the average values of the gradient
extracted from the analysis of the B0 maps, see Fig. 9. (b) Compari-
son for the transverse inhomogeneity 〈B2

T 〉. The 〈B2
T 〉 ∼ 15 nT2 point

in the upper right corner corresponds to the magnetic configuration
of one of the first nEDM data sequences, when the uniformity opti-
mization method [10] was not used yet.

2. Calculating them by combining individual offline mea-
surements of all the coils, B0 and all trim coils, contributing to
the generation of the field.
Since the largest systematic effect on the EDM result is due to
the gradient Ĝ, we compare the uncertainties for this gradient
to determine which method is more accurate. However, for
each individual gradient Gl,m, the uncertainty sources are the
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TABLE IV. Ansys simulation predicted value for the magnetic-field modes allowed by the symmetries of the B0 coil and comparison
with the measured values. The value 	GB0 pred

l,m here corresponds to the error on the prediction of the gradient produced by B0 when in up

configuration and is 	GB0 pred
l,m = [(σ 2

Gl,m
+ τ 2

Gl,m
)/N↑]1/2.

Gmeas
l,m 	GB0 pred

l,m

Mode (pT/cml ) (pT/cml )
|Gsimu

l,m −Gmeas
l,m |

Gmeas
l,m

G0,0 1034.15 ×103 0.23 × 103 0.03%
G2,0 −7.62 0.06 21.46%
G2,2 2.24 0.02 47.55%
G4,0 −4.03 ×10−3 0.09 × 10−3 9.97%
G4,2 1.59 ×10−3 0.01 × 10−3 13.67%
G4,4 −1.10 ×10−4 0.03 × 10−4 21.13%
G6,0 −1.35 ×10−6 0.05 × 10−6 13.48%
G6,2 2.57 ×10−7 0.04 × 10−7 8.07%
G6,4 −1.03 ×10−7 0.02 × 10−7 23.09%
G6,6 −1.49 ×10−8 0.12 × 10−8 166.22%

same, so the uncertainty expressions are identical in form. The
expressions of the uncertainty are, for the first method,

(	Ĝmeas(1))2 = σ 2
Ĝ + σ 2

Ĝ + τ 2
Ĝ, (32)

and for the second method,

(	Ĝpred(2))2 = σ 2
Ĝ + σ 2

Ĝ
+ τ 2

Ĝ

N↑or↓ +
∑

c

(ic	Ĝc)2. (33)

As the shield is opened and degaussed between neutron
data acquisition and mapping measurements, the field repro-
ducibility is the largest contribution to the prediction error and
is unavoidable. This is the first term, and the same in each
expression.

For the first method, the second contribution to Eq. (32)
is again the B0 field reproducibility. Since this method uses
the analysis of one map, the reproducibility error has to be
taken into account again. The last term is then simply the
uncertainty coming from the mapping analysis of one map: the
mapping repeatability τĜ. With the second method, the other
contributions to the uncertainty in Eq. (33) are the errors on
the prediction accuracy. The two last terms are the respective
uncertainties of the terms of Eq. (29).

The B0 field reproducibility is the main contribution among
all these terms. Therefore, one can see from the expressions
(32) and (33) that, if all other contributions are negligible,
the uncertainty coming from the first method 	Ĝmeas(1) is
bigger than the one from the second method, 	Ĝpred(2), by
a factor

√
2. It turns out that the other terms are in fact not

negligible but 	Ĝmeas(1) is still bigger than 	Ĝpred(2). We
therefore chose the second method to predict the gradients of
all the nEDM sequence magnetic configurations. This has the
additional benefit that any anomalous maps would be easily
identified and removed from the analysis. Indeed, with the
second method, all B0 and coil maps were measured multiple
times. Contrastingly, most of the 22 nEDM data sequence
base configurations (as defined in Ref. [4], optimized field
configurations used for data acquisition that were modified
only by adding small well characterized vertical gradients up
to around |	G1,0| � 30 pT/cm) were mapped only once.

VII. COMPARISON WITH SIMULATIONS

As said in Sec. VI A, the global analysis method of the
B0 maps can be applied to compare the results of the mea-
surements with the simulations. The values of the gradients
for the allowed modes, their measurement uncertainties, and a
relative difference with the simulation are listed in Table IV.
These measured gradients can be compared with those sim-
ulated in Table I. One can see that the uniform mode G0,0

is very well predicted (0.03%) by the simulations. The other
allowed modes are predicted within 20% of agreement with
the measurement, except for the G2,2 and G6,6 modes. For
this last mode, it can be explained by the precision of the
analysis method. Indeed, since the analysis is performed up
to order l = 6 and m = 6, the order G6,6 is less constrained
in the harmonic fit step of the analysis and is also influenced
by higher-order components that are not fitted separately.
Concerning the other modes, for both the simulation and the
measurement, the uncertainties cannot explain the differences.
By changing the parameters of the simulation, its numerical
precision can be estimated, and this also does not provide
an explanation. We therefore assume that the difference is
due to the simplification of the system geometry (perfectly
symmetric coil and shield, small shield holes ignored, etc.).
However, what is to remember is that we are able to predict
very accurately the uniform term for a field produced by a
coil in a multiple-layer shield and obtain the magnitude of the
higher-order allowed modes of the field.

VIII. DISCUSSION

A. Electric dipole moment corrections

In this section we discuss how the magnetic corrections af-
fect the analysis and result of the nEDM measurement. In total
99 nEDM measurement sequences were used in the analysis.
For each of these sequences, we correct the measured ratio
R with 〈B2

T〉 and the measured EDM dn with the phantom Ĝ,
using Eqs. (6) and (10), respectively. Then, all these sequences
are analyzed together, and the apparent nEDM dcorr

n and Rcorr

found in each sequence are fit to Eq. (18) to account for the
gravitational shift δgrav and the fraction of the mercury induced
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FIG. 11. Predicted values of Ĝ and the corresponding corrections
of dn for the 99 nEDM measurement sequences.

false EDM proportional to Ggrav. Since for a fixed Ggrav the
sign of δgrav inverts while the sign of d false

n←Hg does not, this fit
can be visualized as fitting a pair of lines of opposite, fixed,
slope (see Fig. 4 in Ref. [10]). Where the two lines cross, it
can be inferred that Ggrav = 0, and so these two effects are
eliminated. As such, this step is sometimes referred to as the
“crossing lines” or “crossing point” analysis.

As detailed in Sec. II C, the corrections affect the ratio
R. Therefore, the corrections coming from the transverse
inhomogeneity 〈B2

T〉 shift the crossing point nEDM value if
they are different for each polarity of the B0 field. If these
shifts are the same for both signs of B0, then the crossing
point R will be affected, but the crossing point dn will not
be affected. In each of the sequences, a correction between
2 × 10−7 and 175 × 10−7 was subtracted from the measured
ratio R. After this procedure, the crossing point was shifted
by (0 ± 5) × 10−28 e cm, where the uncertainty given reflects
the overall systematic uncertainty from the correction of the
shift due to 〈B2

T〉. The correction of 〈B2
T〉 thus did not impact

the value of the measured nEDM. However, it marginally
improved the quality of the crossing point fit, corresponding
to a reduction in χ2 of 4%.

The values of the magnetic-field related corrections of dn

coming from the predicted gradient Ĝ for the 99 sequences
can be seen in Fig. 11. One can see that the values of Ĝ
for the sequences are different from those produced by the
B0 coil alone. Since we used the trimcoils to compensate
small inhomogeneities in the B0 field (using the optimization
technique described in Ref. [10] after each degaussing) and
also to produce a particular value of the gradient Ggrav for each
measurement sequence, a unique value of Ĝ was calculated
for each sequence. The values of the Ĝ corrections on some
sequences can reach up to seven times the global statistical
uncertainty of the EDM. Once we took all Ĝ corrections into
account, the shift of the crossing point value was (69 ± 10) ×
10−28 e cm. This shift of the nEDM measurement is about
60% of the nEDM statistical error and is the largest systematic
effect. The uncertainty from that effect is the biggest source of
systematic error in Ref. [4].

B. Conclusion

We discussed the offline measurement of the magnetic-
field nonuniformity for the most sensitive neutron EDM
measurement [4] and compared two methods for a calculation
of mandatory systematic corrections [see Eqs. (29) and (33)].
As explained in Sec. II, the predicted values of the gradient Ĝ
and the transverse inhomogeneity 〈B2

T〉 are needed to correct
the values of dn and R for the crossing point method. The ex-
planation of this method and its result can be found in Ref. [4].

This paper concludes the trilogy of articles [9,10] de-
scribing the effects, control and correction of magnetic-field
nonuniformity in a neutron EDM measurement experiment.
The experience gained, the knowledge acquired, and the
techniques developed during experiments using the single
chamber nEDM will be extremely valuable for future experi-
ments, such as the n2EDM experiment at PSI [26].
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APPENDIX A: HARMONIC POLYNOMIALS IN
CYLINDRICAL COORDINATES

It is useful to derive the expressions of the harmonic
modes in cylindrical coordinates (ρ, φ, z) since this coordi-
nate system is the most relevant for the mapping analysis. The
polynomials can be obtained by deriving the formula of the
magnetic potential cited in Ref. [9]:

�l,m = Cl,m(φ)rlP|m|
l (cos θ ), (A1)

where Pm
l are the associated Legendre polynomials and

Cl,m(φ) = (l − 1)!(−2)|m|

(l + |m|)! cos (mφ) for m � 0,

Cl,m(φ) = (l − 1)!(−2)|m|

(l + |m|)! sin (|m|φ) for m < 0. (A2)
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TABLE V. The basis of harmonic polynomials sorted by order in cylindrical coordinates, to order l = 0 to l = 4.

l m �ρ �φ �z

0 −1 sin φ cos φ 0
0 0 0 0 1
0 1 cos φ − sin φ 0
1 −2 ρ sin 2φ ρ cos 2φ 0
1 −1 z sin φ z cos φ ρ sin φ

1 0 − 1
2 ρ 0 z

1 1 z cos φ −z sin φ ρ cos φ

1 2 ρ cos 2φ −ρ sin 2φ 0
2 −3 ρ2 sin 3φ ρ2 cos 3φ 0
2 −2 2ρz sin 2φ 2ρz cos 2φ ρ2 sin 2φ

2 −1 1
4 (4z2 − 3ρ2) sin φ 1

4 (4z2 − ρ2) cos φ 2ρz sin φ

2 0 −ρz 0 − 1
2 ρ2 + z2

2 1 1
4 (4z2 − 3ρ2) cos φ 1

4 (ρ2 − 4z2) sin φ 2ρz cos φ

2 2 2ρz cos 2φ −2ρz sin 2φ ρ2 cos 2φ

2 3 ρ2 cos 3φ −ρ2 sin 3φ 0
3 −4 ρ3 sin 4φ ρ3 cos 4φ 0
3 −3 3ρ2z sin 3φ 3ρ2z cos 3φ ρ3 sin 3φ

3 −2 ρ(3z2 − ρ2) sin 2φ 1
2 ρ(6z2 − ρ2) cos 2φ 3ρ2z sin 2φ

3 −1 1
4 z(4z2 − 9ρ2) sin φ 1

4 z(4z2 − 3ρ2) cos φ ρ(3z2 − 3
4 ρ2) sin φ

3 0 3
8 ρ(ρ2 − 4z2) 0 1

2 z(2z2 − 3ρ2)
3 1 1

4 z(4z2 − 9ρ2) cos φ 1
4 z(3ρ2 − 4z2) sin φ ρ(3z2 − 3

4 ρ2) cos φ

3 2 ρ(3z2 − ρ2) cos 2φ 1
2 ρ(ρ2 − 6z2) sin 2φ 3ρ2z cos 2φ

3 3 3ρ2z cos 3φ −3ρ2z sin 3φ ρ3 cos 3φ

3 4 ρ3 cos 4φ −ρ3 sin 4φ 0
4 −5 ρ4 sin 5φ ρ4 cos 5φ 0
4 −4 4ρ3z sin 4φ 4ρ3z cos 4φ ρ4 sin 4φ

4 −3 1
4 (24ρ2z2 − 5ρ4) sin 3φ 3

4 (8ρ2z2 − ρ4) cos 3φ 4ρ3z sin 3φ

4 −2 4(ρz3 − ρ3z) sin 2φ 2(2ρz3 − ρ3z) cos 2φ (6ρ2z2 − ρ4) sin 2φ

4 −1 1
8 (8z4 − 36ρ2z2 + 5ρ4) sin φ 1

8 (8z4 − 12ρ2z2 + ρ4) cos φ (4ρz3 − 3ρ3z) sin φ

4 0 1
2 (3ρ3z − 4ρz3) 0 1

8 (8z4 − 24ρ2z2 + 3ρ4)
4 1 1

8 (8z4 − 36ρ2z2 + 5ρ4) cos φ − 1
8 (8z4 − 12ρ2z2 + ρ4) sin φ (4ρz3 − 3ρ3z) cos φ

4 2 4(ρz3 − ρ3z) cos 2φ −2(2ρz3 − ρ3z) sin 2φ (6ρ2z2 − ρ4) cos 2φ

4 3 1
4 (24ρ2z2 − 5ρ4) cos 3φ − 3

4 (8ρ2z2 − ρ4) sin 3φ 4ρ3z cos 3φ

4 4 4ρ3z cos 4φ −4ρ3z sin 4φ ρ4 cos 4φ

4 5 ρ4 cos 5φ −ρ4 sin 5φ 0

The radial, azimuthal, and vertical components, respectively,
of the mode l, m are then given by

�ρ,l,m = ∂ρ�l+1,m, (A3)

�φ,l,m = 1

ρ
∂φ�l+1,m, (A4)

�z,l,m = ∂z�l+1,m, (A5)

and are listed up to order seven in Tables V, VI and VII.

APPENDIX B: TRANSVERSE INHOMOGENEITY

In this Appendix we give the expression for the averaged
squared transverse field inhomogeneity,〈

B2
T

〉 = 〈(Bx − 〈Bx〉)2 + (By − 〈By〉)2〉, (B1)

in terms of the generalized gradients Gl,m up to order l = 4
for a cylindrical precession chamber of radius R and height
H . Note that in the analysis, all contributions up to order

l = 6 were considered, having being derived using a computer
algebra program, although they are too large to reasonably
include here and contribute little to the discussion. It can
be expressed as a sum of several contributions, one being
the contributions of l order modes and the other being the
contributions of interferences between modes with different
order l and same φ dependence m:

〈
B2

T

〉 = 〈
B2

T

〉
1O + 〈

B2
T

〉
2O + 〈

B2
T

〉
3O + 〈

B2
T

〉
4O

+ 〈
B2

T

〉
3I1 + 〈

B2
T

〉
4I2. (B2)

The linear-order contribution is

〈
B2

T

〉
1O =R2

2

(
G2

1,−2 + G2
1,2 + 1

4
G2

1,0

)
+H2

12

(
G2

1,−1 + G2
1,1

)
.

(B3)
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TABLE VI. The basis of harmonic polynomials sorted by order in cylindrical coordinates, from order l = 5 to l = 6.

l m �ρ �φ �z

5 −6 ρ5 sin 6φ ρ5 cos 6φ 0
5 −5 5ρ4z sin 5φ 5ρ4z cos 5φ ρ5 sin 5φ

5 −4 1
2 (20ρ3z2 − 3ρ5) sin 4φ ρ3(10z2 − ρ2) cos 4φ 5ρ4z sin 4φ

5 −3 5
4 (8ρ2z3 − 5ρ4z) sin 3φ 5

4 (8ρ2z3 − 3ρ4z) cos 3φ 5
4 (8ρ3z2 − ρ5) sin 3φ

5 −2 5
16 (16ρz4 − 32ρ3z2 + 3ρ5) sin 2φ 5

16 (16ρz4 − 16ρ3z2 + ρ5) cos 2φ 5(2ρ2z3 − ρ4z) sin 2φ

5 −1 1
8 (8z5 − 60ρ2z3 + 25ρ4z) sin φ 1

8 (8z5 − 20ρ2z3 + 5ρ4z) cos φ 5
8 (8ρz4 − 12ρ3z2 + ρ5) sin φ

5 0 5
16 (−8ρz4 + 12ρ3z2 − ρ5) 0 1

8 (8z5 − 40ρ2z3 + 15ρ4z)
5 1 1

8 (8z5 − 60ρ2z3 + 25ρ4z) cos φ − 1
8 (8z5 − 20ρ2z3 + 5ρ4z) sin φ 5

8 (8ρz4 − 12ρ3z2 + ρ5) cos φ

5 2 5
16 (16ρz4 − 32ρ3z2 + 3ρ5) cos 2φ − 5

16 (16ρz4 − 16ρ3z2 + ρ5) sin 2φ 5(2ρ2z3 − ρ4z) cos 2φ

5 3 5
4 (8ρ2z3 − 5ρ4z) cos 3φ − 5

4 (8ρ2z3 − 3ρ4z) sin 3φ 5
4 (8ρ3z2 − ρ5) cos 3φ

5 4 1
2 (20ρ3z2 − 3ρ5) cos 4φ −ρ3(10z2 − ρ2) sin 4φ 5ρ4 cos 4φz

5 5 5ρ4z cos 5φ −5ρ4z sin 5φ ρ5 cos 5φ

5 6 ρ5 cos 6φ −ρ5 sin 6φ 0
6 −7 ρ6 sin 7φ ρ6 cos 7φ 0
6 −6 6ρ5z sin 6φ 6ρ5z cos 6φ ρ6 sin 6φ

6 −5 1
4 ρ4(60z2 − 7ρ2) sin 5φ 5

4 ρ4(12z2 − ρ2) cos 5φ 6ρ5z sin 5φ

6 −4 ρ3z(20z2 − 9ρ2) cos 4φ 2ρ3z(10z2 − 3ρ2) cos 4φ 3
2 ρ4(10z2 − ρ2) sin 4φ

6 −3 3
16 ρ2(80z4 − 100ρ2z2 + 7ρ4) cos 3φ 3

16 ρ2(80z4 − 60ρ2z2 + 3ρ4) cos 3φ 5
2 ρ3z(8z2 − 3ρ2) sin 3φ

6 −2 1
8 ρz(48z4 − 160ρ2z2 + 45ρ4) cos 2φ 1

8 ρz(48z4 − 80ρ2z2 + 15ρ4) cos 2φ 15
16 ρ2(16z4 − 16ρ2z2 + ρ4) sin 2φ

6 −1 1
64 (64z6 − 720ρ2z4 + 600ρ4z2 − 35ρ6) cos φ 1

64 (64z6 − 240ρ2z4 + 120ρ4z2 − 5ρ6) cos φ 3
4 ρz(8z4 − 20ρ2z2 + 5ρ4) sin φ

6 0 3
8 ρ(−8z5 + 20ρ2z3 − 5ρ4z) 0 1

16 (16z6 − 120ρ2z4 + 90ρ4z2 − 5ρ6)
6 1 1

64 (64z6 − 720ρ2z4 + 600ρ4z2 − 35ρ6) sin φ − 1
64 (64z6 − 240ρ2z4 + 120ρ4z2 − 5ρ6) sin φ 3

4 ρz(8z4 − 20ρ2z2 + 5ρ4) cos φ

6 2 1
8 ρz(48z4 − 160ρ2z2 + 45ρ4) sin 2φ − 1

8 ρz(48z4 − 80ρ2z2 + 15ρ4) sin 2φ 15
16 ρ2(16z4 − 16ρ2z2 + ρ4) cos 2φ

6 3 3
16 ρ2(80z4 − 100ρ2z2 + 7ρ4) sin 3φ − 3

16 ρ2(80z4 − 60ρ2z2 + 3ρ4) sin 3φ 5
2 ρ3z(8z2 − 3ρ2) cos 3φ

6 4 ρ3z(20z2 − 9ρ2) sin 4φ −2ρ3z(10z2 − 3ρ2) sin 4φ 3
2 ρ4(10z2 − ρ2) cos 4φ

6 5 1
4 ρ4(60z2 − 7ρ2) cos 5φ − 5

4 ρ4(12z2 − ρ2) sin 5φ 6ρ5z cos 5φ

6 6 6ρ5z cos 6φ −6ρ5z sin 6φ ρ6 cos 6φ

6 7 ρ6 cos 7φ −ρ6 sin 7φ 0

TABLE VII. The basis of harmonic polynomials sorted by order in cylindrical coordinates of order l = 7.

l m �ρ �φ �z

7 −8 ρ7 sin 8φ ρ7 cos 8φ 0

7 −7 7ρ6z sin 7φ 7ρ6z cos 7φ ρ7 sin 7φ

7 −6 ρ5(21z2 − 2ρ2 ) sin 6φ 3
2 ρ5(14z2 − ρ2 ) cos 6φ 7ρ6z sin 6φ

7 −5 7
4 ρ4z(20z2 − 7ρ2 ) sin 5φ 35

4 ρ4z(4z2 − ρ2 ) cos 5φ 7
4 ρ5(12z2 − ρ2 ) sin 5φ

7 −4 7
4 ρ3(20z4 − 18ρ2z2 + ρ4 ) sin 4φ 7

8 ρ3(40z4 − 24ρ2z2 + 3ρ4 ) cos 4φ 7
2 ρ4z(10z2 − 3ρ2 ) sin 4φ

7 −3 7
16 ρ2z(48z4 − 100ρ2z2 + 21ρ4 ) sin 3φ 21

16 ρ2z(16z4 − 20ρ2z2 + 3ρ4 ) cos 3φ 7
16 ρ3(80z4 − 60ρ2z2 + 3ρ4 ) sin 3φ

7 −2 7
16 ρ(16z6 − 80ρ2z4 + 45ρ4z2 − 2ρ6 ) sin 2φ 7

32 ρ(32z6 − 80ρ2z4 + 30ρ4z2 − ρ6 ) cos 2φ 7
16 ρ2z(48z4 − 80ρ2z2 + 15ρ4 ) sin 2φ

7 −1 1
64 z(64z6 − 1008ρ2z4 + 1400ρ4z2 − 245ρ6 ) sin φ 1

64 z(64z6 − 336ρ2z4 + 280ρ4z2 − 35ρ6 ) cos φ 7
64 ρ(64z6 − 240ρ2z4 + 120ρ4z2 − 5ρ6 ) sin φ

7 0 7
128 ρ(−64z6 + 240ρ2z4 − 120ρ4z2 + 5ρ6 ) 0 1

16 z(16z6 − 168ρ2z4 + 210ρ4z2 − 35ρ6 )

7 1 1
64 z(64z6 − 1008ρ2z4 + 1400ρ4z2 − 245ρ6 ) cos φ − 1

64 z(64z6 − 336ρ2z4 + 280ρ4z2 − 35ρ6 ) sin φ 7
64 ρ(64z6 − 240ρ2z4 + 120ρ4z2 − 5ρ6 ) cos φ

7 2 7
16 ρ(16z6 − 80ρ2z4 + 45ρ4z2 − 2ρ6 ) cos 2φ − 7

32 ρ(32z6 − 80ρ2z4 + 30ρ4z2 − ρ6 ) sin 2φ 7
16 ρ2z(48z4 − 80ρ2z2 + 15ρ4 ) cos 2φ

7 3 7
16 ρ2z(48z4 − 100ρ2z2 + 21ρ4 ) cos 3φ − 21

16 ρ2z(16z4 − 20ρ2z2 + 3ρ4 ) sin 3φ 7
16 ρ3(80z4 − 60ρ2z2 + 3ρ4 ) cos 3φ

7 4 7
4 ρ3(20z4 − 18ρ2z2 + ρ4 ) cos 4φ − 7

8 ρ3(40z4 − 24ρ2z2 + 3ρ4 ) sin 4φ 7
2 ρ4z(10z2 − 3ρ2 ) cos 4φ

7 5 7
4 ρ4z(20z2 − 7ρ2 ) cos 5φ − 35

4 ρ4z(4z2 − ρ2 ) sin 5φ 7
4 ρ5(12z2 − ρ2 ) cos 5φ

7 6 ρ5(21z2 − 2ρ2 ) cos 6φ − 3
2 ρ5(14z2 − ρ2 ) sin 6φ 7ρ6z cos 6φ

7 7 7ρ6z cos 7φ −7ρ6z sin 7φ ρ7 cos 7φ

7 8 ρ7 cos 8φ −ρ7 sin 8φ 0
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The quadratic-order contribution is

〈
B2

T

〉
2O = R4

3

(
G2

2,−3 + G2
2,3

)
+ R2H2

12

(
2G2

2,−2 + 2G2
2,2 + 1

2
G2

2,0

)
+

(
R4

24
+ H4

180

)(
G2

2,−1 + G2
2,1

)
. (B4)

The cubic-order contribution is

〈
B2

T

〉
3O = R6

4

(
G2

3,−4 + G2
3,4

) + R4H2

4

(
G2

3,−3 + G2
3,3

)
+

(
5R6

32
− R4H2

8
+ 9R2H4

160

)(
G2

3,−2 + G2
3,2

)
+

(
5R4H2

64
− 3R2H4

160
+ H6

448

)(
G2

3,−1 + G2
3,1

)
+

(
9R6

256
− R4H2

32
+ 9R2H4

640

)
G2

3,0. (B5)

The fourth-order contribution is

〈
B2

T

〉
4O = R8

5

(
G2

4,−5 + G2
4,5

) + R6H2

3

(
G2

4,−4 + G2
4,4

)
+ 1

4

(
17R8

20
− R6H2 + 3R4H4

5

)(
G2

4,−3 + G2
4,3

)
+ 1

2

(
5R6H2

12
− R4H4

5
+ R2H6

28

)(
G2

4,−2 + G2
4,2

)
+ 1

8

(
R8

5
− R6H2

4
+ R4H4

4
− R2H6

35
+ H8

450

)

×
(

G2
4,−1

+G2
4,1

)
+ 1

8

(
3R6H2

8
− R4H4

5
+ R2H6

28

)
G2

4,0.

(B6)

Finally, there are the interference terms, one between the
linear and cubic modes and another between quadratic and

fourth orders. Note that the odd l modes do not interfere with
the even ones.〈

B2
T

〉
3I1 =

(
−R4

2
+ R2H2

4

)
(G1,−2G3,−2 + G1,2G3,2)

+
(

−R2H2

8
+ H4

40

)
(G1,−1G3,−1 + G1,1G3,1)

+1

4

(
−R4

2
+ R2H2

4

)
(G1,0G3,0). (B7)

〈
B2

T

〉
4I2 =

(
−R6

2
+ R4H2

3

)
(G2,−3G4,−3 + G2,3G4,3)

+
(

−R4H2

3
+ R2H4

10

)
(G2,−2G4,−2 + G2,2G4,2)

+ 1

4

(
−R6

4
+ R4H2

6
− R2H4

15
+ H6

105

)(
G2,−1G4,−1

+ G2,1G4,1

)

+ 1

4

(
−R4H2

3
+ R2H4

10

)
G2,0G4,0.

(B8)

APPENDIX C: EARTH’S ROTATION

Although not strictly related to the inhomogeneity of the
magnetic field, one effect relevant to the correction strat-
egy arises from the Earth’s rotation [27]. The neutron EDM
measurement took place at the Paul Scherrer Institute in
Switzerland. The main B0 magnetic field pointed approxi-
mately up or down, as defined by gravity. As such, there
was an angle between the Earth’s rotational axis and the
quantization axis of the system of θ = 42.4833◦. Thus, the
neutron EDM measurement was effectively taken in a rotating
reference frame, effectively shifting the measured neutron
and mercury frequencies, and thus R. The correction can be
computed as

δearth = ∓
(

fearth

fn
+ fearth

fHg

)
cos θ. (C1)

The shift is opposite for each direction of B0. While this
does not directly cause a false-EDM-like systematic effect
because the frequency shift does not depend on the electric
field direction, if not considered it can bias the correction
strategy described in Sec. II C to produce an error of the order
−2.6 × 10−26 e cm.
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