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Atomic clocks highly sensitive to the variation of the fine-structure
constant based on Hf II, Hf IV, and W VI ions
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We demonstrate that several metastable excited states in Hf II, Hf IV, and W VI ions may be good clock states
since they are sufficiently long-living and are not sensitive to the perturbations. The cooling electric dipole (E1)
transition is available for Hf II, while sympathetic cooling is possible for Hf IV and W VI using Ca+ or Sr+

ions. Energy levels; Landé g factors; transition amplitudes for electric dipole (E1), electric quadrupole (E2),
and magnetic dipole (M1) transitions; lifetimes; and electric quadrupole moments for Hf II, Hf IV, and W VI

ions are investigated using a combination of several methods of relativistic many-body calculations including
the configuration interaction (CI), linearized coupled-cluster single-doubles (SD), and many-body perturbation
theory (CI + SD), and also the configuration interaction with perturbation theory (CIPT). Scalar polarizabilities
of the ground states and the clock states have been calculated to determine the blackbody radiation (BBR)
shifts. We have found that the relative BBR shifts for these transitions range between 10−16 and 10−18. A linear
combination of two clock transition frequencies allows one to further suppress BBR. Several 5d-6s single-
electron clock transitions ensure high sensitivity of the transition frequencies to the variation of the fine-structure
constant α and may be used to search for dark matter producing this variation of α. The enhancement coefficient
for the α variation reaches K = 8.3. Six stable isotopes of Hf and five stable isotopes in W allow one to make
King plots and study its nonlinearities in order to put limits on the new interactions mediated by scalar particles
or other mechanisms.
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I. INTRODUCTION

Atomic clocks possess a high degree of accuracy, allowing
them to be used for a wide variety of scientific and industrial
applications. In recent years, the optical lattice atomic clock
and the ion clock both have been significantly enhanced to
achieve uncertainties or stabilities of 10−18 [1–8].

Due to the high accuracy of the frequency measurement of
optical clock transitions, these transitions can be used not only
to ensure timekeeping but also to search for new physics, such
as local Lorentz invariance violation, time variation of the fun-
damental constants (α = e2/h̄c), and other phenomena which
go beyond the standard model (see, e.g., Refs. [1,3,6,7,9–14]).

Most of operating optical clocks use the 1S0 to 3P0 transi-
tion between states of the ns2

1/2 and ns1/2np1/2 configurations.
These transitions have low sensitivity to variation of the fine-
structure constant [15,16]. It was shown in Refs. [12,13] that
maximum sensitivity to the α variation corresponds to the
maximum change in the total angular momentum j of the
equivalent single-electron transitions. However, the above-
mentioned transitions are the ns1/2 to np1/2 transitions with
� j = 0. It was suggested in Refs. [12,13,17] to use transitions
between states of different configurations. The most promi-
nent example of this kind among operating optical clocks is
the clock based on the Yb+ ion, in which the 4 f7/2-6s1/2 and
6s1/2-5d5/2 transitions are used for timekeeping and constrain-
ing of the time variation of the fine-structure constant [18–20].

A number of the promising transitions were studied in earlier
works [17,21–23]. In the present paper we continue the search
for promising candidates and study the s-d and d3/2-d5/2 clock
transitions in Hf II, Hf IV, and W VI. An important advantage
of these systems is the existence of a sufficiently large number
of stable isotopes of Hf and W. Hf has six stable isotopes,
including four isotopes with zero nuclear spin (this includes a
long-living 174Hf isotope with a lifetime of ∼2 × 1015 years
and a natural abundance of 0.16%). W has five stable isotopes
with three zero nuclear spin isotopes. This allows the use
of the isotopes in the search for nonlinearities of the King
plot. The minimal requirements for this include having four
stable isotopes and two transitions where high accuracy of
the measurements is possible. This is the case for both Hf
and W. The study of the nonlinearity may help to obtain
information on nuclear structure and put constraints on new
interactions mediated by scalar particles [24,25]. In addition,
the Hf II ion has three metastable states, making it possible
to construct two independent combinations of the frequencies
of the clock transitions with suppressed blackbody radiation
shift. Measuring one such combined frequency against the
other over a long period of time is a highly sensitive tool for
the search of the time variation of the fine-structure constant.

We provide a detailed analysis of the electronic char-
acteristics of certain low-lying states of these systems. We
use the CI + SD (configuration interaction with single-double
coupled-cluster [26]) and the CIPT (configuration interaction
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with perturbation theory [27]) methods for our calculations.
Our studies investigate the energy levels; Landé g factors;
transition amplitudes; E1, M1, and E2 transitions for the
low-lying states; lifetimes; and quadrupole moments. Using
the technique described in Ref. [28], we also calculate the
scalar polarizabilities of the ground and excited clock states
in order to determine the blackbody radiation (BBR) shifts.
The sensitivity to the variation of the fine-structure constant
is estimated by calculating excitation energies with different
values of α in the computer codes. We demonstrate that the
considered clocks are good candidates for very accurate time-
keeping and are sensitive to new physics.

II. METHOD OF CALCULATION

A. Calculation of energy levels

The Hf II, Hf IV, W VI ions have similar electron structure
with the [1s2, . . . , 5s25p64 f 14] closed-shell core and three
valence electrons in Hf II and one valence electron in Hf IV

and W VI. The calculations are performed by combining the
configuration interaction (CI) technique with the linearized
single-double coupled-cluster (SD) method, as described in
Ref. [26]. We start with the relativistic Hartree-Fock (RHF)
calculations for the closed-shell core, which corresponds to
the V N−M approximation [29]. Here N is the total number of
electrons in an atom or ion, and M is the number of valence
electrons (M = 3 for Hf II and M = 1 for Hf IV and W VI).
The RHF Hamiltonian has the following form:

ĤRHF = cα · p + (β − 1)mc2 + Vnuc(r) + Vcore(r), (1)

where c is the speed of light, α and β are the Dirac matrices,
p is the electron momentum, m is the electron mass, Vnuc

is the nuclear potential obtained by integrating the Fermi
distribution of nuclear charge density, and Vcore(r) is the
self-consistent RHF potential created by the electrons of the
closed-shell core.

The B-spline method is used to construct the set of single-
electron basis states [30,31]. The states are defined as linear
combinations of B-splines which are eigenstates of the RHF
Hamiltonian (1). Forty B-splines of the order 9 are calculated
within a box of radius Rmax = 40aB (where aB represents
Bohr’s radius) and an orbital angular momentum of 0 � l �
6. It was found that this choice of parameters leads to the
basis which is sufficiently saturated for the low-lying states
of interest. Further increase in the values of lmax and Rmax

and the number of B-splines leads to negligible change in the
results. The basis states are used for solving the linearized SD
equations and for generating the many-electron states for CI
calculations.

The SD equations for the core have the following form
[26,32]:

(εa − εm)ρma

=
∑

bn

g̃mbanρnb +
∑
bnr

gmbnr ρ̃nrab −
∑
bcn

gbcanρ̃mnbc,

(εa + εb − εm − εn)ρmnab

= gmnab +
∑
cd

gcdabρmncd +
∑

rs

gmnrsρrsab

+
∑

r

gmnrbρra −
∑

c

gcnabρmc +
∑

rc

g̃cnrbρ̃mrac

+
∑

r

gnmraρrb −
∑

c

gcmbaρnc +
∑

rc

g̃cmraρ̃nrbc. (2)

Here parameters g are Coulomb integrals,

gmnab =
∫∫

ψ†
m(r1)ψ†

n (r2)
e2

r12
ψa(r1)ψb(r2)dr1dr2,

and parameters ε are the single-electron Hartree-Fock en-
ergies. The coefficients ρma and ρmnab are the expansion
coefficients for the atomic wave function which are to be
found by solving the equations iteratively.

The tilde above g or ρ means the sum of direct and ex-
change terms, e.g.,

ρ̃nrbc = ρnrbc − ρnrcb.

Indexes a, b, and c numerate states in the atomic core; indexes
m, n, r, and s numerate states above the core; and indexes i
and j numerate any state.

The SD equations for valence states are obtained from
Eq. (2) by replacing the core index a by the valence index
v, removing the term

∑
r gmnrbρrv which has only valence

excitations, and replacing εa by ε0. The energy parameter
ε0 is fixed and relates to the valence state of interest. It is
convenient to introduce the correlation operators �̂1 and �̂2,
which describe the correlation interaction of external electrons
with the core. Using the SD equations for valence states one
can write

〈v|�̂1|m〉 = (ε0 − εm)ρmv (3)

and

qmnvw = gmnvw

+
∑
cd

gcdvwρmncd −
∑

c

(gcnvwρmc + gcmwvρnc)

+
∑

rc

(gcnrwρ̃mrvc + gcmrvρ̃nrwc + gcnwrρmrvc

+gcmvrρnrwc − gcmwrρnrcv − gcnvrρmrcw )

≡ gmnvw + 〈mn|�̂2|vw〉. (4)

The one-electron �1 operator represents the correlation
interaction between valence electrons and electrons in the
core [33]. The two-electron �2 operator is interpreted as the
screening of Coulomb interaction between valence electrons
by core electrons [34].

The CI Hamiltonian with the �1 and �2 operators included
is

Ĥ eff =
M∑

i=1

(ĤRHF + �1)i +
M∑

i< j

(
e2

|ri − r j | + �2i j

)
. (5)

Here summation goes over valance electrons, i and j numerate
valence electrons, and e is the electron charge. The size of the
CI matrix is huge if the number of valence electrons is large
(M � 3). In calculations for Hf II we use the CIPT technique
[27] for dramatic increase of the efficiency of the calculations
at the cost of very little sacrifice in the accuracy of the results.
This is achieved by constructing the CI matrix for the Neff ’s
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lowest (on the energy scale) many-electron basis state and
treating the other states perturbatively. The CI matrix in the
CIPT method has the form

〈i|HCI| j〉 → 〈i|HCI| j〉 +
∑

k

〈i|HCI|k〉〈k|HCI| j〉
E − Ek

. (6)

Here i, j � Neff , Neff < k � Ntotal, Ek = 〈k|HCI|k〉, and E is
the energy of the state of interest. Since Neff � Ntotal the
task of matrix diagonalization is significantly simplified (see
Ref. [27] for details).

The Landé g factors for low-lying states are investigated in
all systems. These factors are calculated as expectation values
of the magnetic dipole (M1) operator and are compared with
the nonrelativistic expression

g(J, L, S) = 1 + J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)
, (7)

where S is the total spin and L is the total angular momentum
for the valence electrons, and J is the corresponding total
momentum (J = L + S). This comparison of g factors helps
in the level identification.

B. Calculation of transition amplitudes and lifetimes

The time-dependent Hartree-Fock (TDHF) method [which
corresponds to the well-known random-phase approximation
(RPA)] is used to compute transition amplitudes. The RPA
equation for the core can be written as

(ĤRHF − εc)δψc = −(
f̂ + δV f

core

)
ψc. (8)

The operator f̂ refers to an external field. The index c denotes
single-electron states in the core, ψc is a single-electron wave
function, δψc is a correction to the state c due to an external
field, and δV f

core is the correction to the self-consistent RHF
potential caused by the change of all core states in the external
field (see, e.g., Ref. [33]). The RPA equation (8) is solved self-
consistently for all states in the core. The transition amplitudes
are found by calculating matrix elements between states a and
b by the formula

Aab = 〈b| f̂ + δV f
core|a〉. (9)

Here, |a〉 and |b〉 are the many-electron wave functions calcu-
lated with the CI method described above.

In this study, electric dipole (E1), electric quadrupole (E2),
and magnetic dipole (M1) rates are taken into account, and
they are calculated according to the following equations (in
atomic units):

(Tab)E1,M1 = 4

3
(αω)3

(
A2

ab

)
E1,M1

2Jb + 1
, (10)

(Tab)E2 = 1

15
(αω)5

(
A2

ab

)
E2

2Jb + 1
. (11)

Here α is the fine-structure constant (α ≈ 1
137 ), ωab is the

frequency of the transition, Aab is the transition amplitude (9),
and Jb is the total angular momentum of the upper state b. Note
that magnetic amplitudes (Aab)M1 contain the Bohr magneton
μB (μB = α/2 ≈ 3.65 × 10−3 in atomic units).

The lifetimes τb of each excited state b, expressed in sec-
onds, can be found as follows:

τb = 2.41 × 10−17

/ ∑
a

Tab, (12)

where the summation goes over all possible transitions to
lower states a.

III. RESULTS

A. Energy levels, Landé g factors, transition
amplitudes, and lifetimes

The results for energy levels, g factors, and lifetimes of
low-lying states of Hf II, Hf IV, and W VI are presented in
Table I and compared with available experimental data. The
data in the table indicate excellent agreement between theory
and experiment. In most states, the deviations of the calculated
energies from the observed values are within 1000 cm−1. The
agreement is also good between calculated and experimental g
factors of Hf II, where experimental data are available. This is
important for correct identification of the states. One notice-
able exemption refers to states 12 and 13 where the difference
between theory and experiment is significant. These states
have the same parity and total momentum J , and the energy
interval between them is small (∼1000 cm−1). This means
that the states are strongly mixed. Note that the sums of the
theoretical and experimental g factors of these states are very
close. This indicates that the two-level mixing approximation
works very well for this pair of states. In principle, mixing
coefficients can be corrected using experimental g factors.
See the discussion of the sensitivity of the clock states to the
variation of the fine-structure constant (Sec. III D).

Table I presents one odd state for each ion. These are the
lowest odd states which are connected to the ground state
by the electric dipole (E1) transition. These transitions can
be used for cooling, at least in principle. However, the only
transition in the Hf II ion is in the ultraviolet region (wave-
length is 356 nm), where lasers are available. A more realistic
option for Hf IV and W VI ions is to use sympathetic cooling
[36,37]. It is done by co-trapping the ions with other ions
(which are called “logic” ions) with a close charge-to-mass
ratio for which laser cooling is possible. The Ca+ ion seems
to be a good logic ion for W VI, while either Ca+ or Sr+ can
be used for Hf IV.

Our results for transition amplitudes and transition proba-
bilities, together with experimental data and earlier calculated
results, where available, are shown in Table II. We consider
only those low-lying states which are connected to clock or
cooling states through electric dipole (E1), magnetic dipole
(M1), or electric quadrupole (E2) transitions. Comparing our
results on the transition rates with those from previous studies,
we find good agreement. Note that experimental values of
the frequencies from the NIST database have been used to
calculate transition probabilities.

Based on the transition rates displayed in Table II, we
derived the lifetimes of the excited states (clock and cooling
states) of all the atomic systems using Eq. (12) and we present
them in Table I. The lifetimes of the states presented in the
table were calculated with taking into account all possible
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TABLE I. Excitation energies (E ), Landé g factors, and lifetimes (τ ) for the first excited states of Hf II, Hf IV, and W VI. Possible clock
states are indicated by bold state numbers. Odd states can be used for cooling.

E (cm−1) g factor τ

No. Conf. Term J Present Expt. Present NIST [35] Present Ref.

Hf II [35] [39]Expt.

1 5d6s2 2D 3/2 0 0 0.793 0.787
2 5d6s2 2D 5/2 3054 3050.88 1.175 1.173 3.23 s
3 5d26s 4F 3/2 3578 3644.65 0.415 0.425 66.6 s
4 5d26s 4F 5/2 4312 4904.85 1.055 1.052 9.7 s
5 5d26s 4P 1/2 11675 11951.70 2.653 2.598
6 5d26s 2F 5/2 11783 12070.46 0.901 0.964
7 5d26s 4P 3/2 11781 12920.94 1.694 1.664
8 5d26s 4P 5/2 12581 13485.56 1.467 1.410
9 5d26s 2D 3/2 13836 14359.42 1.075 1.034
10 5d26s 2P 1/2 13995 15254.29 0.690 0.737
11 5d26s 2D 5/2 17352 17368.87 1.200 1.273
12 5d26s 2P 3/2 17199 17830.34 0.670 1.122
13 5d3 4F 3/2 18528 18897.64 0.839 0.446
14 5d3 4F 5/2 18284 20134.94 1.118 1.030
15 5d3 4P 1/2 24773 26996.51 2.610 2.58
16 5d3 4P 3/2 25797 27285.13 1.697 1.643
17 5d6s6p 4F o 3/2 28580 28068.79 0.516 0.512 40.3 ns 39.4 ± 0.2 ns

Hf IV [38]

1 5d 2D 3/2 0 0 0.800
2 5d 2D 5/2 4721 4692 1.200 0.90 s
3 6s 2S 1/2 17530 18380 2.000 0.321 s
4 6p 2Po 1/2 66611 67039 0.667 0.78 ns

W VI [35] [40]Theo.

1 5d 2D 3/2 0 0 0.800
2 5d 2D 5/2 8726 8709.3 1.200 0.14 s 0.14 s
3 6s 2S 1/2 78316 79431.3 2.000
4 6p 2Po 1/2 146912 147553.1 0.667 0.18 ns 0.184 ns

transitions to lower states. The results show consistency with
previous studies.

B. Polarizabilities and blackbody radiation shifts

Scalar polarizability is one of the key properties of atoms
that sets their chemical characteristics. For establishing op-
tical clocks, the values of the static and dynamic scalar
polarizabilities should be taken into account. Scalar polariz-
abilities provide the value of the blackbody radiation (BBR)
shift of the clock state frequency, which is a primary source of
uncertainty for a clock.

The scalar polarizability α0v of an atomic system in state v

can be expressed as a sum over a complete set of states n (these
states are constructed using the B-spline technique described
above; the use of the B-splines ensures the completeness of
the basis):

α0v = 2

3(2Jv + 1)

∑
n

A2
vn

En − Ev

. (13)

Here Jv is the total angular momentum of state v, and Avn

is the electric dipole transition amplitude (reduced matrix
element). Notations v and n refer to the many-electron atomic
states. It is convenient to present the polarizability as a sum of

two terms, the polarizability of the closed-shell core and the
contribution from the valence electrons. The polarizability of
the core is given in the RPA approximation by

α0core = 2

3

∑
cn

〈c||d̂ + δV d
core||n〉〈n||d̂||c〉

En − Ec
. (14)

Here summation over c goes over core states, summation over
n is over a complete set of single-electron basis states, d̂ =
−er is the E1 operator in the length form, δV d

core is the core
polarization correction to the E1 operator [see Eq. (9)]. Note
that the RPA correction goes only into one of the two reduced
matrix elements in Eq. (14) [41].

For the calculation of the valence contribution to the polar-
izabilities of the ground and clock states of Hf II we apply the
technique developed in Ref. [28] for atoms or ions with open
shells. The method relies on Eq. (13) and the Dalgarno-Lewis
approach [42], which reduces the summation in Eq. (13) to
the solving of the matrix equation (see Refs. [28,42] for more
details). For Hf IV and W VI, which both have only one exter-
nal electron above closed shells, we use direct summation in
Eq. (13) over the complete set of single-electron basis states.

There is also a core-valence contribution to the polariz-
abilities which comes from the fact that calculation of the
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TABLE II. Transition amplitudes (A, in a.u.) and transition probabilities (T , in s−1 ) evaluated with NIST frequencies for some low states.
5.67[−3] means 5.67 × 10−3, etc.

ω, NIST [35] Present Ref.

Transition Type (cm−1) (a.u.) A (a.u.) T (s−1) T (s−1)

Hf II [39]Expt.

2-1 M1 3050.88 0.0139 5.67[−3] 0.309
2-1 E2 3050.88 0.0139 −0.309 4.697[−7]
3-1 M1 3644.65 0.0166 −7.49[−4] 1.375[−2]
3-1 E2 3644.65 0.0166 0.265 1.259[−6]
3-2 M1 593.7 0.0027 3.53[−3] 1.318[−3]
3-2 E2 593.7 0.0027 0.341 0.241[−9]
4-1 M1 4904.85 0.0223 −7.54[−4] 2.261[−2]
4-1 E2 4904.85 0.0223 −0.420 9.325[−6]
4-2 M1 1853.97 0.0084 −1.63[−3] 5.743[−3]
4-2 E2 1853.97 0.0084 −0.259 2.734[−8]
4-3 M1 1260.2 0.0057 1.05[−2] 7.497[−2]
4-3 E2 1260.2 0.0057 1.56 1.439[−7]
17-1 E1 28068.79 0.1279 1.200 16.11[6] 17.6[6] ± 0.9
17-2 E1 25017.91 0.1140 −0.068 3.674[4]
17-3 E1 24424.14 0.1113 1.024 7.728[6] 7.0[6] ± 0.4
17-4 E1 23163.94 0.1055 0.016 1.660[3]
17-5 E1 16117.09 0.0734 0.068 9.712[3] 2.1[4] ± 0.003
17-6 E1 15998.33 0.0729 0.522 0.565[6] 0.50[6] ± 0.09
17-7 E1 15147.85 0.0690 0.110 0.021[6]
17-8 E1 14583.23 0.0664 0.128 0.026[6] 0.060[6] ± 0.011
17-9 E1 13709.37 0.0625 0.030 0.012[5]
17-10 E1 12814.5 0.0584 −0.301 0.096[6] 0.054[6] ± 0.011
17-11 E1 10699.92 0.0488 0.224 0.031[6]
17-12 E1 10238.45 0.0466 0.517 0.145[6]
17-13 E1 9171.15 0.0418 0.342 0.046[6] 0.081[6] ± 0.019
17-14 E1 7933.85 0.0361 −0.265 0.018[6]
17-15 E1 1072.28 0.0049 −0.069 2.964
17-16 E1 783.66 0.0036 0.023 0.127

Hf IV

2-1 M1 4692 0.0214 −5.66[−3] 1.115
2-1 E2 4692 0.0214 −2.43 2.501[−4]
3-1 M1 18380 0.0837 2.22[−6] 3.091[−5]
3-1 E2 18380 0.0837 4.40 2.267
3-2 E2 13688 0.0624 −5.62 0.850
4-1 E1 67039 0.3055 1.62 7.996[8]
4-3 E1 48659 0.2217 2.04 4.860[8]

W VI [40]Theo.

2-1 M1 8709.3 0.0397 −5.65[−3] 7.126 7.12
2-1 E2 8709.3 0.0397 −1.60 2.400[−3] 2.54[−3]
4-1 E1 147553.1 0.6723 1.18 4.529[9]
4-3 E1 68121.8 0.3104 1.70 9.218[8]

core polarizabilities is affected by valence electrons via Pauli
blocking. We include this contribution by omitting in the sum-
mation over n in Eq. (14) states occupied by valence electrons.

The present results for the polarizabilities of the ground
states and clock states for all considered atomic systems are
shown in Table III. According to the calculations, clock states
of all atomic systems have polarizabilities similar to those
of their ground states, with the notable exception of the Hf
IV third excited state, where this difference is approximately
14 a3

b. This is because of the difference in the electronic

configurations. The external electron in the ground state is
in the 5d3/2 state, while in the clock state it is in the 6s1/2

state.
By using the values of scalar polarizability, we can fig-

ure out the BBR shift of a clock state at 300 K. The BBR
shift in Hz is determined by the following expression (see,
e.g., Ref. [8]):

δωBBR = −8.611 × 10−3
( T

300 K

)4

�α0, (15)
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TABLE III. Scalar static polarizabilities of the ground states, α0(GS), and clock states, α0(CS), and BBR frequency shifts for the clock
transition. δωBBR/ω is the fractional contribution of the BBR shift; where ω is the clock transition frequency. Total means total scalar
polarizability (core + valence).

Clock α0(GS)
(
units of a3

B

)
α0(CS)

(
units of a3

B

)
BBR (T = 300 K)

transition Core Valence Total Core Valence Total �α0 δωBBR (Hz) ω (Hz) δωBBR/ω

Hf II

2-1 2.72 48.04 50.76 2.72 43.22 45.94 −4.93 0.043 1.093[14] 3.9[−16]
3-1 2.72 48.04 50.76 2.61 40.10 42.71 −8.05 0.070 1.093[14] 6.4[−16]
4-1 2.72 48.04 50.76 2.61 42.84 45.45 −5.31 0.046 1.470[14] 3.2[−16]

Hf IV

2-1 3.06 2.86 5.92 2.98 2.86 5.85 −0.07 0.60[−3] 1.404[14] 4.3[−18]
3-1 3.06 2.86 5.92 3.13 16.84 19.97 14.05 −0.12 5.510[14] −2.2[-16]

W VI

2-1 1.96 0.76 2.73 1.92 0.75 2.66 −0.07 0.60[−3] 2.611[14] 2.3[−18]

where T is a temperature in K (e.g., room-temperature T =
300 K), �α0 = α0(CS) − α0(GS) is the difference between
the clock state and the ground-state polarizabilities presented
in atomic units. The BBR shifts for clock states investigated
in this paper are presented in Table III. The relative BBR
shifts in the 2-1 transition in Hf IV and the 2-1 transition
in W VI are among the smallest considered so far, they are
4.3 × 10−18 and 2.3 × 10−18 respectively, while BBR shifts
in other transitions are ∼10−16, similar to BBR shifts in other
atomic clocks (see, e.g., Refs. [23,43–46]). A linear combina-
tion of two clock transition frequencies allows one to cancel
BBR shifts [47].

C. Electric quadrupole moments

As is discussed above, the search for clock transitions
sensitive to the variation of the fine-structure constant leads
us to transitions with large changes of the total momentum of
the equivalent singe-electron transitions. As a consequence,
at least one of the states may have a relatively large value of
the total momentum J (e.g., J > 1). This means that the state
is sensitive to the electric quadrupole shift. Therefore, it is
important to know the value of this shift. The corresponding
term in the Hamiltonian is (see, e.g., Ref. [48])

HQ =
−1∑

q=1

(−1)q∇E (2)
q �̂−q. (16)

The tensor ∇E (2)
q is the external electric field gradient at the

position of the system, �q describes the electric-quadrupole
operator, and �̂q = |e|r2C(2)

q , the same as for E2 transitions.
The electric quadrupole moment � is defined as the expec-

tation value of �0 for the extended state:

� = 〈nJJ|�̂0|nJJ〉

≡ 〈J‖�̂‖J〉
√

J (2J − 1)

(2J + 3)(2J + 1)(J + 1)
, (17)

where 〈J‖�̂‖J〉 is the reduced matrix element (ME) of the
electric quadrupole operator. We compute the values of �

using the CI + SD and RPA methods described in the previous
section.

In Table IV we display the reduced ME of the electric
quadrupole operator and the quadrupole moment � values
for all considered states. The quadrupole momentum of the
ground state of Hf II is anomalously small. This is due to the
mixing between states of the 6s25d and 6s5d2 configurations
leading to strong cancellation between terms proportional
to the 〈5d3/2||�̂||5d3/2〉 ME and terms proportional to the
〈6s1/2||�̂||5d3/2〉 ME. Strong cancellation is probably acci-
dental, which means that the result is likely to be not very
stable and may vary significantly under variation of the com-
putation procedure. In states where the 6s5d2 configuration
dominates, the value of the quadrupole moment is not sup-
pressed and stable. This means that the uncertainty of the
calculated values of the quadrupole moment is of the order
of the quadrupole moment itself in cases when it is small (first
two lines of Table IV). For larger values of � the absolute
uncertainty might be similar while the relative uncertainty is
much smaller. The values of the quadrupole moments for both
excited clock states are almost the same. In the case of the

TABLE IV. Quadrupole moment (�, in a.u.) of the ground state
and the considered optical clock states.

No. Conf. Term J E (cm−1) ME (a.u.) �

〈J‖�̂‖J〉
Hf II

1 5d6s2 2D 3/2 0 −2.910[−2] −6.507[−3]
2 5d6s2 2D 5/2 3050.88 −5.806[−1] −1.415[−1]
3 5d26s 4F 3/2 3644.65 −1.797 −0.401
4 5d26s 4F 5/2 4904.85 −1.621 −0.395

Hf IV

1 5d 2D 3/2 0 −3.608 −0.807
2 5d 2D 5/2 4692 −4.956 −1.210

W VI

1 5d 2D 3/2 0 −2.381 −0.532
2 5d 2D 5/2 8709.3 −3.263 −0.796
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Hf IV ion, the difference between the values in the ground
state and in the excited state is much smaller than that in
the Hf+ ion. The quadrupole moment in the ground state is
about 1.5 times larger than that in the first excited state. This is
because both states (the ground and the excited) have the same
electron configuration. Note that the quadrupole moment of
the second excited state (6s 2S1/2) is zero because the total
angular momentum J is 1/2. The W VI ion has differences
similar to those in the Hf IV ion.

It is worth noting that the quadrupole shift in odd isotopes
of Hf II and Hf IV (177Hf, I = 7/2, and 179Hf, I = 9/2) can be
totally avoided when working with specific hyperfine compo-
nents of the states, namely, substates with F = 3 and Fz = 2,
since �E ∼ 3F 2

z − F (F + 1). Such substates exist for both
ground and clock states in both isotopes. Another way of sup-
pressing the quadrupole shift is by averaging over transitions
between different hyperfine or Zeeman components [21,48].
Averaging over Zeeman components should work for even
isotopes too.

D. Sensitivity of the clock transitions
to the variation of the fine-structure constant

It has been shown that optical atomic clock transitions can
be used to search for the time variation of the fine-structure
constant α [12,13,16]. The frequencies of these transitions
depend differently on α. By comparing the ratio of two clock
frequencies over long periods of time, one can link any pos-
sible change in the ratio of frequencies to the time variation
of α. The ratio of frequencies does not depend on the units
one uses. In atomic units, dependence of the optical transition
frequencies appears to be due to the relativistic corrections
proportional to α2. Therefore, we present the frequency as

ω = ω0 + q
[( α

α0

)2
− 1

]
, (18)

where α0 and ω0 are the present-day values of the fine-
structure constant and the frequency of the transition, and
q is the sensitivity coefficient which comes from the atomic
calculations [12,13,16]. The rate of the variation of ω1/ω2 is

ω̇1

ω1
− ω̇2

ω2
= (K1 − K2)

α̇

α
. (19)

The dimensionless value K = 2q/ω is often called the en-
hancement factor. We use the computer codes to calculate q
and K by performing calculations of the frequencies with dif-
ferent values of α and calculating the derivative numerically
as

q = ω(δ) − ω(−δ)

2δ
, (20)

where δ = (α/α0)2 − 1 [see Eq. (18)]. In order to achieve
linear behavior, the value of δ must be small; however, it must
be large enough to suppress numerical noise. Most accurate
results can be obtained by using δ = 0.01. The calculated
values of q and K for all considered clock transitions are
summarized in Table V. We see that all values of the en-
hancement coefficient K are significantly bigger than 1. The
enhancement factor for the 2-1 interval is 3.65. This is the

TABLE V. Sensitivity of clock transitions to variation of the fine-
structure constant (q, K).

No. Conf. Term J ω (cm−1) q (cm−1) K

Hf II

2 5d6s2 2D 5/2 3050.88 5631 3.65
3 5d26s 4F 3/2 3644.65 15060 8.30
4 5d26s 4F 5/2 4904.85 15002 6.16

Hf IV

2 5d 2D 5/2 4692 4342 1.85
3 6s 2S 1/2 18380 −24268 −2.64

W VI

2 5d 2D 5/2 8709.3 8609 1.98

fine-structure interval and under normal circumstances the
interval ∝ (Zα)2 and K = 2. Here the factor is significantly
larger due to strong mixing of the upper state with the states
of the 5d26s configuration. Note that values of K are positive,
with only one negative K factor for the 5d3/2-6s1/2 transition
in the Hf IV ion. Indeed, the simple analytical estimate per-
formed in Refs. [12,13] indicates that the transition from a
lower j orbital in the ground state to a higher j orbital gives
a positive K while the transition from a higher j orbital to a
lower j orbital gives a negative K .

It was shown in Ref. [47] that having two clock transitions
in one atom or ion allows one to construct a “synthetic”
frequency which is not sensitive to the BBR shift. They also
proposed a realization of the method with the use of an
optical frequency comb generator stabilized to both clock fre-
quencies. The synthetic frequency is generated as one of the
components of the comb spectrum (see Ref. [47] for details).

Using such frequencies may benefit the search for the time
variation of the fine-structure constant. The Hf II ion has
three clock transitions. This means that one can contract two
independent “synthetic” frequencies nonsensitive to the BBR
shift. Measuring one such frequency against the other over
a long period of time allows highly sensitive search for the
variation of the fine-structure constant. Following Ref. [47]
we write a synthetic frequency as

ωi j = ωi − εi jω j, (21)

where εi j = �α0i/�α0 j . Since BBR shift ∝ �α0 [see
Eq. (15)], the synthetic frequency (21) is not sensitive to it. If
the fine-structure constant α varies in time, then the synthetic
frequency varies as

ω̇i j

ωi j
= Kiωi − εi jKjω j

ωi − εi jω j

α̇

α
≡ Ki j

α̇

α
. (22)

Table VI shows three possible synthetic frequencies for Hf II.
Any two of these frequencies can be used for searching of the
time variation of the fine-structure constant. For example, if
the ω32 and ω42 frequencies are used, then

ω̇32

ω32
− ω̇42

ω42
= −20

α̇

α
. (23)
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TABLE VI. Synthetic frequencies of Hf II clock transitions and
their sensitivity to variation of the fine-structure constant. Indexes i
and j correspond to the clock transitions from state number i or j
(see Table I) to the ground state.

i j εi j ωi j (cm−1) Ki j

3 2 1.633 1336.86 −9.03
4 2 1.077 1618.83 11.26
4 3 0.660 2500.66 4.10

The combinations of frequencies which are not sensitive to the
BBR shift turn out to be very sensitive to the time variation of
the fine-structure constant.

IV. CONCLUSIONS

Metastable states of Hf II, Hf IV, and W VI ions are stud-
ied as candidates for high-accuracy optical clocks which are
highly sensitive to the variation of the fine-structure con-
stant α. Slow drift and oscillating variation of α may be
due to the interaction between the scalar dark matter field
and electromagnetic field [49–52]. The Yukawa-type scalar
field affecting α may also be produced by massive bodies
[53]. Transient α variation may be produced by the passing
of macroscopic forms of dark matter such as Bose stars and
topological defects [54].

Six stable isotopes of Hf and five stable isotopes of
W, as well as several clock transitions in Hf and W
ions, make it possible to make King plots and study their
nonlinearities in order to put limits on the new interac-
tions mediated by scalar particles or other mechanisms
[24,25].

Energy levels, lifetimes, transition rates, scalar polarizabil-
ities of the clock and ground states, and BBR shifts have
been calculated, and the possibility for high accuracy of the
timekeeping has been demonstrated. The studied transitions
correspond to the s-d or d-s transitions between single-
electron states.

The sensitivity coefficients K to α variation have been cal-
culated and found to be among the highest compared to other
operating or prospective atomic optical clocks. We found that
constructing synthetic frequencies with suppressed sensitivity
to the BBR shift leads to further increase in sensitivity to the
variation of the fine-structure constant.
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