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Molecular photoelectron spectra are commonly obtained theoretically in Fermi’s Golden Rule framework,
where the stationary continuum wave function is represented by slowly converging series such as the celebrated
partial wave expansion. In this paper, we employ an alternative approach to address the photoionization cross
section. While it gives the same cross section as the Golden Rule, this method follows a different route and has
a number of advantages. The cross section is computed directly from the probability current density having the
(conjugated) Dyson orbital as its source. With this, one arrives at an intuitive interpretation of the photoionization
process and avoids employing a long expansion series since the continuum solution is transition-specific and thus
unique. We expect this methodology to be particularly beneficial in the case of complexly shaped and delocalized
Dyson orbitals.
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I. INTRODUCTION

Photoelectron spectroscopy deserves the right to be named
one of the most powerful and popular tools in physics,
chemistry, and material science [1,2]. During the decades
after its experimental establishment, many theoretical meth-
ods were suggested, ranging from the simplistic Koopmans’
theorem to the involved multichannel scattering formalism
[3–11]. Most of the weak-field approaches follow the first-
order perturbative description, calculating the ionization cross
sections based on Fermi’s Golden Rule (FGR)

σ ∝
∑

F

∣∣〈�N
F (k)

∣∣ Ĥint

∣∣�N
I

〉∣∣2
δ(ω̃ − EF + EI ) (1)

for the transition between the N-electron initial bound |�N
I 〉

and final continuum |�N
F (k)〉 states with energies EI and EF .

Ĥint is the interaction Hamiltonian, ω̃ is the incoming photon
energy, and k = |k| is the photoelectron momentum. Note that
atomic units are used throughout the article. Although Eq. (1)
looks simple, the construction of the proper continuum final
states is sophisticated [10,11] since one needs to consider
infinitely many reference states sharing the same value of k
[12]. For instance, the continuum wave function is commonly
expanded in terms of a large number of partial waves [6,7,13]
and their radial dependencies are attained by solving a large
system of radial Schrödinger equations. However, the cross
section often slowly converges with respect to the maximum
angular momentum.

In contrast, in this article, we develop a frequency-
domain method refraining from the use of FGR. Employing a
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driven-type Schrödinger equation (SE) [14,15], the photoion-
ization cross sections can be computed using a physically
intuitive picture where an electron is transferred from its ini-
tial state [Dyson orbital (DO)] to an outgoing continuum wave
that reaches the detector [16]. Thus, the conceptual way of
calculating the continuum wave function and cross section dif-
fers from the most widely used approaches, suggesting several
advantages. In particular, our approach produces a single wave
function for a given k value where all the transition-specific
information is encoded, as opposed to FGR. Therefore, this
method can be especially beneficial when the Dyson orbital or
molecular (scattering) potential has a complex angular struc-
ture or is delocalized, which would otherwise require long
expansions of the photoelectron function.

II. THEORY

The proposed formalism is based on the first-order pertur-
bation theory [17] and involves concepts regarded in other
[16,18,19] and similar [14,15] contexts. To set the stage, let
us consider a light pulse impinging a molecule and leading to
the expelling of an electron, which is measured by a detector
at a considerable distance from the target (see Fig. 1). We
assume an ε-polarized unimodal electromagnetic field with
the vector potential A(r, t ) = Aεeik̃·r−iω̃t + c.c. and employ
the time-dependent perturbation theory. Unlike FGR, we will
directly concern ourselves with the probability current density
of the photoelectron at the detector.

For an N-electron system with the wave function �(r̄, t ),
the current density reads (neglecting magnetic interactions)

j(r̄, t ) =
N∑
u

[Im{�∗(r̄, t )∇u�(r̄, t )} + Â(ru, t )|�(r̄, t )|2],
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FIG. 1. A pictorial view of the method, Eq. (6), to obtain the continuum electron function ϕ(k, r1) as implemented within an (in)finite
element (finite element method (FEM) augmented with infinite elements (InFEM)) framework. It is demonstrated on the example of the H2O
molecule. The lower part displays the electrostatic potential V ESP

F (r1) in the molecular plane (gray surface), the molecule with its Dyson orbital
(1b1) in the center, the sphere surrounding FEM domain (with grid points), infinite elements (half rays), and the photoelectron function ϕ(k, r1).
(a) The 2D cut of the real part of ϕ(k, r1) in the plane spanned by one of the O–H bonds and the polarization vector ε. (b) The radial part of the
Dyson orbital, r1�

DO, serving as a source term, the real and imaginary parts of r1ϕ(k, r1), and the probability current r2
1 j̄ · nr1 , see Eq. (10),

along the polarization axis. (c) the computed 1b1-ionization cross section of water σ (ω̃) and asymmetry parameter β (solid blue curves) as
compared to experimental data (crosses (×) [20], squares (�) [21], circles (©) [22], and triangles (�) [23]). Shown are also the theoretical
results digitized from Moitra et al. [24] (dashed red curves).

where r̄ = (r1, . . . , rN ). It naturally partitions according to
the orders of perturbation theory if one inserts the expansion
�(r̄, t ) = � (0)(r̄, t ) + � (1)(r̄, t ) + · · · . Since � (0)(r̄, t ) is the
initial bound state’s wave function �

(0)
I , it vanishes exponen-

tially at ru → ∞ (u = 1, . . . , N ) [25]. On the contrary, the
final wave function �N

F (r̄, t ) does not vanish at the detector
(r1 → ∞) if it contains a continuum orbital ϕ(k, r1). (Here,
we implied without loss of generality that the continuum
electron corresponds to r1.) Analyzing the perturbative con-
tributions to the current, one sees that all terms apart from
� (1)∗(r̄, t )∇� (1)(r̄, t ) vanish at r1 → ∞ when other elec-
trons 2, . . . , N stay confined close to their distribution in the
initial bound state �

(0)
I . Therefore, up to the second order

in perturbation theory, the probability current density at the
detector is dictated by the first-order correction to the wave
function

j(r̄, t )
r1→∞−−−−→

ru 	=1<∞

N∑
u

Im{� (1)∗(r̄, t )∇u�
(1)(r̄, t )}. (2)

This wave function obeys the well-known equation from the
time-dependent perturbation theory

(Ĥ (0)(r̄) − ω)� (1)(r̄) = −iAeik̃rε ·
N∑
u

∇u�
(0)(r̄) (3)

with ω = E (0)
I + ω̃ and satisfies Sommerfeld’s radiative

boundary condition [26]

r1

(
∂

∂r1
− ik

)
� (1)(r̄)

r1→∞−−−→ 0. (4)

Next, we assume � (1)(r̄) to have the form of the anti-
symmetrized product of the ionic bound state �N−1

F and the
continuum electron orbital ϕ(k, r1)

� (1)(r̄) = A{ϕ(k, r1)�N−1
F (r2, . . . , rN )}. (5)

Thus, we limit ourselves with the single-channel scattering,
neglect autoionization, and assume the sharp value of the
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photoelectron’s momentum k; these limitations can be lifted
leading to a more complicated formalism.

Further, we make use of the well-established Dyson orbital
concept [4]. Inserting expression (5) in Eq. (3), multiplying
it with �

N−1,†
F (r2, . . . , rN ), and integrating over the bound

electron coordinates r2, . . . , rN , one obtains the following
working equation for ϕ(k, r1) in the velocity gauge:

(
T̂ + V̂ ESP

F +V̂X + Ŵ − k2

2

)
ϕ(k, r1)

= −iAε · (∇�DO
IF + �̃

DO
IF

)
. (6)

This equation represents an inhomogeneous (driven) variant
of the usual SE (T̂ + V̂ ESP

F +V̂X + Ŵ − k2/2)ϕ(k, r1) = 0 for
the motion of an electron with the total energy k2/2 in the
effective mean-field electrostatic potential (ESP) of the final
state V̂ ESP

F ; the later equation is commonly considered to de-
termine continuum orbitals. The nonlocal operators V̂X and Ŵ
account for the interaction of the photoelectron with the bound
electrons of the ion beyond the action of mean-field potential
V̂ ESP

F , i.e., they correspond to the exchange and correlation.
However, Eq. (6) has an essential difference from the homoge-
neous SE due to the presence of inhomogeneous terms. These
terms include the gradient of the DO and the conjugate DO,
�̃

DO
IF , which can be expressed in terms of initial state orbitals

{φ j}

�DO
IF =

∑
q

〈
�N−1

F

∣∣ âq

∣∣�N
I

〉
φq,

�̃
DO
IF =

∑
pqs

〈
�N−1

F

∣∣ â†
pâqâs

∣∣�N
I

〉 〈φp| ∇ |φq〉 φs. (7)

The inhomogeneity serves as a source of probability current
due to the dipole transition from the DO to ϕ(k, r1), and
dictates the shape of the later, Fig. 1(b). Here, the boundary
condition, Eq. (4), enforces the proper relation between the
real and imaginary parts of ϕ(k, r1). All results shown in the
present work are obtained with the length-gauge expression
and omitting the operators VX and Ŵ

(
T̂ + V̂ ESP

F − k2

2

)
ϕ(k, r1) = iω̃Aε · (

r̂1�
DO
IF + �̃

DO,r
IF

)
. (8)

Thus our results correspond to the usual level of DO theory
when including the conjugate DO.

The ϕ(k, r1) obtained from Eq. (6) can be used to calculate
the photoelectron probability current far from the molecule,
while the other electrons stay unobserved. Thus, we compute
the reduced current

j̄(r1) =
∫

dr2 . . . drN j(r̄)
r1→∞−−−→ Im{ϕ∗(k, r1)∇ϕ(k, r1)},

(9)
which is used to estimate the differential cross section as

dσ

d�
= lim

r1→∞ 2π
r2

1nr1 · j̄(r1)

cω̃A2
(10)

with the radial unit vector nr1 .

III. NUMERICAL PROCEDURE

The implementation used in this work utilizes space parti-
tioning to solve the unbounded photoelectron wave problem,
Eq. (8), with boundary conditions Eq. (4). The inner region
has an approximately ellipsoidal shape and encompasses the
domain where the highly molecule-specific source terms and
the short-range potential are nonvanishing. In this region, the
photoelectron is represented by second-order tetrahedral finite
elements (FEM), see Fig. 1. The outer region accounts for the
long-range Coulomb potential and implements the outgoing
boundary conditions using infinite elements (InFEM) [27,28].
The InFEM represents a layer of elements that extend from
the outer surface of the FEM region in the radial direction up
to infinity. Thereby, one makes use of the known asymptotic
behavior of the solution [29] by using element-wise basis
(trial) functions of the form

χi(r) = χb(r⊥) P(2,0)
n

(
1

r

)
exp {ikr + i Z

k ln r}
r

, (11)

where χb(r⊥) is a polynomial in two “angular” directions,
P(2,0)

n (x) is a radial Jacobi polynomial of order n [30], and Z
is the net charge of the ionized system. These basis functions
naturally incorporate the outgoing boundary conditions and
thus represent a very powerful technique to address outgoing
wave problems.

Our implementation makes intensive use of the LIBMESH

numerical library [31] and utilizes infinite elements of the
Astley-Leis form [32,33], which are modified to account for
the Coulombic tail of the potential. While finite elements
in the FEM region provide a versatile basis due to their
low order, they are not efficient for accurately describing
highly oscillating functions. To reduce the computational ef-
fort, we multiply the FEM basis with an oscillatory function
depending on the “local” kinetic energy, see the Appendix.
The FEM mesh used for the calculation is constructed as a
Delaunay tetrahedralization using the TETGEN library [34].
The generating set of points forms ellipsoidal layers around
the atoms, cutting off the overlapping atomic regions. The
distance between points is estimated according to the spatial
gradient of the bound-state orbitals and kinetic energy. After
solving the eigensystem, we refine the mesh adaptively, using
Kelly’s error estimate [35].

The initial and ionic bound states are computed with
GAUSSIAN 16 [36], using the aug-cc-pV5Z basis [37–40]
with the optimally tuned LC-BLYP functional. The func-
tional is adjusted in a nonempirical way to better reproduce
photoionization-related quantities according to the protocol
described in Ref. [41]. The obtained range-separation param-
eters are α = 0.0, ω = 0.59 (a.u.)−1 for argon and α = 0.05,
ω = 0.50 (a.u.)−1 for the H2O molecule. The (3s)−1 excited
state of the Ar+ ion and the (1b2)−1 and (3a1)−1 states of the
H2O+ ion are calculated with Tamm-Dancoff approximation
to time-dependent DFT. The electrostatic potential V̂ ESP

F is
obtained by solving the Poisson equation with FEM.

IV. RESULTS

Neglecting for simplicity the VX and Ŵ terms, i.e., using
Eq. (8), the formalism is applied to two prototypical systems:
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FIG. 2. Computed cross sections and asymmetry parameters
(blue solid lines) for the (a) 1b2 and (b) 3a1 ionization of the water
molecule. Experimental data: squares (�) [21]; circles (©) [22];
triangles (�) [23]. Dashed red lines: Theoretical results digitized
from Moitra et al., Ref. [24], see text for details.

the 3s and 3p ionization of atomic argon and the 1b1, 1b2, and
3a1 ionization of the water molecule.

The cross section of water 1b1 ionization is given in
Fig. 1(c). Overall, our result reproduces the form of the ex-
perimental cross section and is in good agreement for photon
energies above 20 eV (kinetic energy >7 eV). The cross
section in the region of the maximum at about 15 eV is
underestimated by 10%. Note, however, that the experimental
data are not always in accord with each other, especially in
the low kinetic energy region. The asymmetry β-parameter
displayed in the lower tier of Fig. 1(c) is also well reproduced.
In addition to our results, the calculations of Moitra et al.
[24] are shown for comparison. These data are also obtained
with density functional theory (DFT), but treating all electrons
on the same footing, i.e., exchange and correlation between
the photoelectron and bound orbitals are included at the DFT
level.

The cross sections and β parameters for the other two tran-
sitions of water are shown in Fig. 2. Although at low kinetic
energies the cross sections are notably overestimated by a
factor of 3 for the 1b2 ionization [Fig. 2(a)] and by a factor

FIG. 3. Computed cross section for the argon (a) 3p and (b) 3s
ionization as compared to experimental data. In panel (b), the total
spherically averaged theoretical cross section (blue solid curve) is de-
composed in its polarization components (εy dash-dotted green line
and coinciding εx and εz dashed orange and red lines). Experimental
data from Refs. [45–48].

of 2 for the 3a1 [Fig. 2(b)], they converge to the experimental
values for larger kinetic or photon energies. The β parameters
in both cases reasonably reproduce the experiment.

The discrepancies observed for the cross sections at max-
ima can be connected to the implicit inclusion of only some of
the intrachannel couplings via the DFT treatment and neglect
of the bound-continuum exchange and interchannel couplings
[42]. Similar behavior can still be observed when correlation
effects are treated on the higher level [24] (dashed red curves),
but at lower kinetic energies. In the case of 1b1 ionization, one
considers a neutral-ground-state to ionized-ground-state tran-
sition and can expect better reproducibility of the experiment
as both states result from the self-consistent DFT treatment.
In contrast, (1b2)−1 and (3a1)−1 final states are treated with
the linear-response Tamm-Dancoff method and may lack im-
portant intrachannel interactions. The later consideration and
neglect of Ŵ and V̂X terms in Eq. (8) explain larger deviations
at low kinetic energies for these two transitions.

The data for the 3p ionization of the Ar atom are displayed
in Fig. 3(a). The results demonstrate similar trends to those
discussed for water, with the cross section at low kinetic ener-
gies being overestimated. The effects causing the dips due to
Rydberg resonances and the Cooper minimum, barely visible
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at about 47 eV in the experiment, are not included in our
model due to the ansatz of Eq. (5). Note that the dependence
of the β parameter on photon energy is not well reproduced.
To get this dependence correctly would require the inclusion
of exchange effects [24].

The results for argon 3s ionization are shown in Fig. 3(b)
and agree reasonably well with the experimental data. They
display a Cooper minimum which occurs at slightly lower
photon energies than in the experiment, but more importantly,
the cross section at minimum is nonzero. This deficiency can
be attributed to the broken-symmetry character of the ionic
ground-state Kohn-Sham solution due to orbital relaxation,
making different 3p orbitals of argon nondegenerate. This
leads to different contributions of the conjugate DO Carte-
sian components [dashed and dash-dotted curves in Fig. 3(b)]
to the cross section. Thus, the total result represents the
average of the qualitatively correct behavior for the y polar-
ization of the incoming photon, having a minimum around
47 eV and spurious x and z components with the minimum
at 35 eV and no rise of the cross section for small kinetic
energies. Finally, we note that the presence and position
of the Cooper minimum in the Ar 3s ionization cross sec-
tion poses a challenge for theory [43]. Depending on the
applied methodology, different authors ascribed it to the influ-
ence of intrachannel [24], interchannel [42], or exchange [44]
interactions.

V. DISCUSSION

The suggested method represents a reformulation of the
FGR approach and it can be shown that both theories produce
identical cross sections [12,49]. Nevertheless, the working
equations and boundary conditions are different. While for
FGR, the homogeneous SE and scattering boundaries [10,11]
are used, in our approach, the inhomogeneous (driven-type)
SE with the outgoing boundary of Eq. (4) is employed. Thus,
the continuum wave functions in both approaches have dif-
ferent properties and should be interpreted differently. For
instance, the well-known optical theorem [12] loses its sense
for our formulation as we have no ingoing electron wave and,
thus, no forward scattering direction.

As illustrated in Fig. 4, both theories use the same ingre-
dients but vary in the recipes to obtain the cross section. In
the FGR [Fig. 4(a)], one solely uses final-state-specific terms
(V̂ ESP

F , correlation, and exchange) to obtain a large number
of continuum functions ψlm(k, r1). Since they do not contain
information on the initial state |�N

I 〉 and the details of light-
matter interaction (Ĥint), they are unspecific to the particular
transition triggered by a particular pulse. These solutions en
masse could be suitable for various individual ionization chan-
nels I → F, l, m which often lie outside our interest. Only
at the stage of taking the overlap, 〈�DO

IF | Ĥint |ψlm(k, r1)〉,
Fig. 4(a), their contributions to the cross section are sorted
out according to their relevance.

In contrast, in our approach, the equation determining
ϕ(k, r1) contains both V̂ ESP

F as well as transition-specific in-
formation entering via inhomogeneous terms, see Eq. (6).
Therefore, one avoids the need for possibly slowly converging
expansions. Instead, ϕ(k, r1) is uniquely determined both in
its shape and normalization by the set of I, F, k, and the

∞l

m

FGR

(a)

(b)

FIG. 4. Schematic illustrating the relation between (b) the devel-
oped approach to the standard procedure based on (a) the FGR and
the respective pathways to obtain the cross section.

form of Ĥint. Thus, one obtains a unique solution for a given
k which, in terms of the partial wave expansion, inherently
incorporates the proper combination of the contributions with
different l and m. For instance, in water 1b1 ionization, the
wave function computed for k2/2 = 37.2 eV and a polar-
ization normal to the molecular plane, which is shown in
Fig. 1(a), represents the superposition of s and d waves dis-
torted by the molecular potential.

To understand the present framework, one recalls that the
DO has a physical sense of the photoelectron’s quasiparticle
wave function “before” ionization. In the proposed formalism,
it plays the role of a source for the outgoing electron wave
which reaches the detector at r1 → ∞. Thus, the suggested
method provides a more intuitive interpretation of the pho-
toionization process than FGR, which formulates the cross
section in the form of an overlap, Eq. (1).

To comply with the proposed picture of an outgoing wave
one needs to ensure a proper boundary condition. In that
sense, infinite elements are vital for the practical imple-
mentation as they not only incorporate outgoing boundary,
Eq. (4), but allow for easy evaluation of the probability cur-
rent at r1 → ∞: in the infinite-element ansatz, Eq. (11), the
only contribution to j̄(r1) surviving at r1 → ∞ is due to the
lowest-order (constant) term of Pn(1/r). Several alternative
techniques implementing the outgoing boundary conditions
are available, e.g., complex absorbing potentials [50]. How-
ever, they require the diligent choice of parameters, with the
proposed formalism being free from such need. Moreover,
evaluating the asymptotic photocurrent requires large simula-
tion boxes when applied together with absorbing boundaries.

Finally, we note that the partial-wave expansion is a tech-
nical aspect of solving the SE and can also be employed for its
driven inhomogeneous variant [15,19,51]. In such a scheme,
one requires to solve possibly many radial [one-dimensional
(1D)] equations that are nontrivially coupled due to the non-
spherical potential [7]. As we show here, one can succeed
without such expansion, solving the three-dimensional (3D)
equation as a whole. Due to the involvement of infinite el-
ements and augmenting with oscillator functions (see the
Appendix), one can select the finite element region to be small
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and coarse, keeping, despite inherently cubic growth with
the simulation box size, the computational demand relatively
modest.

VI. CONCLUSION

To conclude, this article suggests an alternative perspec-
tive on the theoretical approach to photoelectron spectra.
It is based on the well-known expressions from the first-
order time-dependent perturbation theory formulated in the
form of driven SE. The generic N-electron problem is
reduced to an effective one-electron equation using the
Dyson orbital concept. The presented approach provides
a natural interpretation of the photoionization process re-
garding the source and outflow of the electron’s wave.
Notably, we do not employ Fermi’s Golden Rule and
compute the photocurrent directly. Further, the formalism
provides a unique photoelectron function and does not in-
volve partial-wave expansion. Note, however, that the present
methodology is applicable only when monochromatic light is
involved, thus, leaving aside ionization by ultrashort pulses
(the situation which would require an explicit time-domain
treatment).

For illustration, formalism is applied to the computation
of cross sections and asymmetry parameters for the valence
ionization of the argon atom and water molecule. However,
we foresee this approach be beneficial for systems with very
delocalized or complexly shaped DOs, e.g., in 1D or two-
dimensional (2D) systems or for molecules adsorbed and
substantially altered by surfaces or affected by the near-field
effects. These perspectives will require further development
of the formalism.
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APPENDIX: OSCILLATOR FUNCTION

The oscillator function in the FEM region recovers the
oscillation of the photoelectron function allowing for finite
element sizes exceeding the wavelength. It is unity O(|r −
r0|) = 1 if |r − r0| < a0, i.e., in the inner region where the
photoelectron wave experiences substantial interference due
to contributions from different atoms. In the outer region
|r − r0| > a1, it oscillates according to the local momentum

ploc =
√

2(Etot + V ESP
F (r))

O(|r − r0|) = exp [iploc|r − r0|]. (A1)

In the region a0 < |r − r0| < a1, the smooth transition is en-
sured by the function s(x) = (6x2 − 15x + 10)x3

O(|r − r0|) = exp

[
is

( |r − r0|
a1 − a0

)
ploc|r − r0|

]
. (A2)

Here r0 is the origin; parameters a0 and a1 are selected to en-
compass the molecular region and ensure a smooth transition
to the outer region. For molecular systems, ellipsoidal shapes
of the regions are used, making a0 and a1 angular-dependent.
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