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Ab initio quantum theory of mass defect and time dilation in trapped-ion optical clocks
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We derive a Hamiltonian for the external and internal dynamics of an electromagnetically bound, charged
two-particle system in external electromagnetic and gravitational fields, including leading-order relativistic
corrections. We apply this Hamiltonian to describe the relativistic coupling of the external and internal dynamics
of cold ions in Paul traps, including the effects of micromotion, excess micromotion, and trap imperfections. This
provides a systematic and fully quantum-mechanical treatment of relativistic frequency shifts in atomic clocks
based on single trapped ions. Our approach reproduces well-known formulas for the second-order Doppler shift
for thermal states, which were previously derived on the basis of semiclassical arguments. We complement and
clarify recent discussions in the literature of the role of time dilation and mass defect in ion clocks.
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I. INTRODUCTION

Optical ion clocks [1] have shown systematic uncertainties
below 10−18 [2]. This fulfills an early prediction of Dehmelt
[3] and achieves an important milestone on the way towards a
possible redefinition of the SI second [4]. Clocks at this level
of uncertainty open the way to many applications, such as
relativistic geodesy [5–11], tests of general relativity [12–14],
and explorations of physics beyond the standard model [15].
At the same time, systematic relativistic frequency shifts and
their uncertainty play a significant and even dominant role
[16–22]. This concerns in particular the special-relativistic
second-order Doppler shift −v2/2c2, which accounts for mov-
ing clocks ticking slower than stationary clocks, and the
general-relativistic gravitational redshift [1]. Both shifts can
be seen as an effect of time dilation, which occurs when the
proper time measured by the clock atom along its world line is
Lorentz transformed into the reference frame of the laboratory
or that of another distant clock. This reasoning is entirely
correct and rigorous, but implicitly assumes a semiclassical
approach in which the center of mass motion of the atom is
ascribed a classical world line and only its internal (electronic)
degree of freedom is treated quantum mechanically.

An alternative perspective can be gained by placing not
time dilation but the mass defect, i.e., the equivalence of
internal (binding) energy and external (kinematic as well as
gravitational) mass, at the center of reasoning [23]. Already
from treatments of the Mössbauer effect [24,25], it is known
that the mass defect gives rise to a frequency shift of internal
transitions that is equivalent to the second-order Doppler ef-
fect. In the context of ion clocks, this equivalence was pointed
out recently in [26]. The advantage of this perspective is that
the mass defect can be represented by a simple Hamiltonian
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coupling between electronic and center of mass (c.m.) de-
grees of freedom (DOFs), which is treated as a relativistic
perturbation to the standard Hamiltonian of nonrelativistic
quantum optics. The basic formulas of the known relativistic
corrections can then be reproduced on the grounds of this per-
turbed Hamiltonian, as shown in [27,28]. Treatments based on
the mass defect, however, also led to considerations of possi-
ble new types of systematic shifts [27] and alleged fundamen-
tal limits on the accuracy of atomic clocks [29], beyond what
is known from time dilation. Apart from these disparities,
approaches relying on the mass defect have not yet obtained
a rigorous treatment of the micromotion and excess micromo-
tion, which are known to play an important role in relativistic
frequency shifts in trapped ion clocks [16,20]. Moreover,
while these approaches have the potential to provide a fully
quantum-theoretic picture of relativistic shifts, there does not
appear to be a self-contained derivation of the perturbed
Hamiltonian that covers the case of a trapped ion to date.

We set out here to give a systematic derivation of the
Hamiltonian for an ion in external electromagnetic and grav-
itational fields, including relativistic corrections involving
external and internal DOFs, building on [30,31]. We apply this
Hamiltonian to the context of an ion clock and give a rigorous
quantum-mechanical derivation of the relativistic frequency
shifts. Including the effects of micromotion and excess mi-
cromotion in the framework of Floquet theory [32–36], we
reproduce, for the special case of thermal states of motion,
the shifts known from [16,20]. Further frequency shifts or
fundamental limitations do not arise.

The derivation of the Hamiltonian closely follows that in
[30,31] and merely extends this work to composite systems
with nonvanishing total charge. Starting from the classical
Lagrangian of an electromagnetically bound two-particle sys-
tem, this derivation establishes the mass defect as the only
relevant relativistic correction to the standard quantum-optical
Hamiltonian which couples c.m. and internal DOFs. The
thus corrected Hamiltonian strictly refers to the laboratory
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frame and completely covers all relativistic frequency shifts.
A further correction of time dilation is unnecessary. The
quantum-mechanical description developed here also covers
the effects of zero-point fluctuation as well as arbitrary other
quantum states of motion. We hope that the logic developed
here will prove useful also in other, more complex systems,
such as multi-ion clocks or optical lattice clocks, to obtain a
stringent analysis of special and general relativistic effects.

The article is organized as follows. In Sec. II we treat
the derivation of the approximate relativistic Hamiltonian.
Building on this, we apply the Hamiltonian in Sec. III to the
problem of a single ion in a Paul trap and draw conclusions
regarding systematic shifts in frequency metrology. We sum-
marize in Sec. IV.

II. HAMILTONIAN OF A CHARGED COMPOSITE
SYSTEM IN EXTERNAL ELECTROMAGNETIC

AND GRAVITATIONAL FIELDS

In this section we summarize the derivation of the Hamil-
tonian for an ion coupled to external electromagnetic and
gravitational fields including first-order relativistic correc-
tions. Special focus is put on relativistic coupling of internal
(relative) and external (c.m.) DOFs. We adopt the model of
Sonnleitner and Barnett [30] for a hydrogenlike atomic ion
as an electromagnetically bound two-body system composed
of a core (charge e1 and coordinates r1) and an electron (e2

and r2). In contrast to Sonnleitner and Barnett, we allow
for a nonvanishing net charge Q = e1 + e2 �= 0 and take into
account a nonzero gravitational field. For the latter we follow
the treatment of Schwartz and Giulini [31], who extended the
calculation from Sonnleitner and Barnett by a weak gravita-
tional background field described by the Eddington-Robertson
parametrized post-Newtonian (PPN) metric, thus covering
first-order relativistic corrections to the Minkowski metric.
The notation used in this section corresponds to that of [31].
In the following, we only present the most important steps
and results of the calculation. We present the main differences
between our work and the aforementioned derivations in Ap-
pendix A.

We note that the mass defect Hamiltonian can be derived
also on other grounds, based, e.g., on effective field theory
for composite systems [23,37] or on approaches to formalize
time dilation within quantum theory [38,39]. The account of
[30,31] that we follow here proceeds in the spirit of con-
ventional atomic structure calculations and has the benefit of
systematically providing all relevant relativistic corrections,
not just the mass defect. Relativistic corrections due to spin
are not covered here, however, and would require suitable
extensions of treatments of composite particles based on the
Dirac equation along the lines of [40,41].

A. Classical Lagrangian and quantization of a composite system

Our starting point is the classical Lagrangian for two parti-
cles interacting with the electromagnetic field

L = −
∑
i=1,2

mic
√

−gμν (ri )ṙ
μ
i ṙν

i

+
∫

d3r
√

−g(r)

(
Jμ(r)Aμ(r) − 1

4μ0
Fμν (r)Fμν (r)

)
. (1)

Here the first line gives the Lagrangian for the point particles
and the terms in the second line represent the interaction
of the electromagnetic field and the particles and the La-
grangian of the electromagnetic field, respectively, which is
obtained by minimally coupling the special-relativistic action
for electromagnetism to a general space-time metric [31]. We
use four-vector notation, with gμν (r) being the metric tensor,
g(r) its determinant, Jμ(r) the electric four-current, Aμ(r) the
electromagnetic four-potential, and Fμν (r) the field strength
tensor. Bold symbols denote three-vectors. The Eddington-
Robertson metric is defined with respect to the Minkowski
metric as the background structure and has the form [31]

g00(r) = −1 − 2
φ(r)

c2
− 2β

φ2(r)

c4
+ O(c−6),

g j j (r) = 1 − 2γ
φ(r)

c2
+ O(c−4) ( j = 1, 2, 3). (2)

All off-diagonal components vanish for a flat background met-
ric up to O(c−5). The scalar Newtonian potential is denoted
by φ(r). We include here also the Eddington-Robertson pa-
rameters β and γ , which account for possible deviations from
general relativity and fulfill β = γ = 1 in general relativity.

Following [31], the Lagrangian (1) is written in the
Coulomb gauge and expanded in inverse powers of c, main-
taining terms up to second order. The corresponding classical
Hamiltonian function is quantized canonically, which yields
the approximately relativistic Hamiltonian operator for two
charged particles minimally coupled to the electromagnetic
field

Ĥ =
∑
i=1,2

( ˆ̄p2
i

2mi
+ miφ(r̂i ) + ei�(r̂i )

)
+ e1e2

4πε0

1

r̂

− e1e2

16πε0c2m1m2

(
ˆ̄p1 · 1

r̂
ˆ̄p2 + ( ˆ̄p1 · r̂)

1

r̂3
(r̂ · ˆ̄p2)

+ (1 ↔ 2)

)

+
∑
i=1,2

(
− ˆ̄p4

i

8m3
i c2

+ 2γ + 1

2mic2
ˆ̄pi · φ(r̂i ) ˆ̄pi

+ (2β − 1)
miφ

2(r̂i )

2c2
+ (γ + 1)φ(r̂i )

e1e2

8πε0c2r̂

)
. (3)

We define ˆ̄pi = p̂i − eiÂ⊥(r̂i ), r̂ = r̂1 − r̂2, and r̂ = |r̂|.
The electromagnetic three-potential Â⊥(r̂) (transverse in the
Coulomb gauge) and the electric potential �(r̂) are taken
as classical variables describing externally applied fields.1

We refer the reader to [31] for a comprehensive derivation
of this result. The first line in Eq. (3) is the nonrelativistic
Hamiltonian; the following lines give the dominant relativistic
corrections.

1This has to be understood in the sense of a mean-field treatment
with respect to an externally applied electromagnetic field. The ef-
fects of the radiation reaction such as spontaneous emission or Lamb
shifts are lost in this approximation.
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B. Hamiltonian for internal and external DOFs

The Hamiltonian (3) is now subjected to a Power-
Zienau-Woolley transformation to change to the multipolar
representation of the light-particle interaction. Without rela-
tivistic corrections, the resulting Hamiltonian can be separated
into terms referring to internal and external DOFs correspond-
ing to c.m. and relative coordinates. However, with relativistic
corrections, these coordinates no longer separate the two
DOF fully, so after this change relativistic variants of these
coordinates have to be introduced. Since a system’s energy
content is part of its inertia, the proper way to discuss this
problem should be to express the Hamiltonian in the center of
energy frame, but this is not a canonical transformation, as is
explained in [30]. Nevertheless, there exists a choice of coor-
dinates via a canonical transformation that allows separation
of c.m. and relative dynamics up to our order of approxima-
tion, as shown by Close and Osborn [42] for the case of neutral
systems Q = 0. We can show that this transformation can be
generalized to the case Q �= 0 (see Appendix A) and these will
be the coordinates that we will use from now on.

In terms of these coordinates the Hamiltonian can be writ-
ten as

Ĥ = Ĥc.m. + Ĥint + Ĥat-EMF + Ĥmetric + Ĥmass defect, (4)

where Ĥc.m. refers to c.m. and Ĥint to internal DOF only. The
interaction of the atom with the external electromagnetic field
is described by Ĥat-EMF. The relativistic coupling of internal
and c.m. dynamics is covered by the two terms Ĥmetric and
Ĥmass defect. In the following we will give the explicit form of
all these terms in the relevant limit m1 � m2.

The first contribution in (4) is the c.m. Hamiltonian

Ĥc.m.(M ) = Ĥ (0)
c.m. + Ĥ (1)

c.m., (5)

given by

Ĥ (0)
c.m. =

ˆ̄P2

2M
+ Mφ(R̂), (6)

Ĥ (1)
c.m. = − 1

2Mc2

(
ˆ̄P2

2M

)2

+ 2γ + 1

2Mc2
ˆ̄P · φ(R̂) ˆ̄P

+(2β − 1)
M(φ(R̂))2

2c2
, (7)

which are the nonrelativistic c.m. Hamiltonian and the lead-
ing relativistic corrections, respectively. We define the total
rest mass M = m1 + m2 and ˆ̄P = P̂ − QÂ⊥(R̂). The explicit
definition of the relativistically corrected c.m. variables R and
P are given in Eq. (A1). The c.m. Hamiltonian in Eq. (5) cor-
responds simply to the approximately relativistic Hamiltonian
for a charged point particle of mass M in a gravitational field,
minimally coupled to the electromagnetic field. For later use
the c.m. Hamiltonian in Eq. (5) is written in the form Ĥc.m.(M )
with the total mass M as an argument.

The second contribution in Eq. (4) is the Hamiltonian of
the internal DOF

Ĥint = Ĥ (0)
int + Ĥ (1)

int , (8)

where

Ĥ (0)
int = p̂2

2μ
+ e1e2

4πε0

1

r̂
, (9)

Ĥ (1)
int = − 1

2μc2

(
p̂2

2μ

)2

+ e1e2

4πε0

1

2μMc2

(
p̂ · 1

r̂
p̂ + (p̂ · r̂)

1

r̂3
(r̂ · p̂)

)
(10)

are the nonrelativistic Hamiltonian comprising the kinetic en-
ergy and Coulomb energy and their lowest-order relativistic
corrections, respectively. Here p̂ is the momentum associated
with r̂ and μ is the reduced mass. Diagonalization of this
Hamiltonian determines the electronic energy levels of the
atom. Of course, in a complete description, other well-known
relativistic corrections (e.g., concerning spin) will contribute
to this Hamiltonian too. In the following, we assume these to
be taken into account in the diagonalization of Ĥint .

The interaction of the atom with the electromagnetic field
in the dipole approximation is given by

Ĥat-EMF = Q �(R̂) − d̂ · E(R̂)

+ 1

2M
{ ˆ̄P · [d̂ × B(R̂)] + H.c.} + Ĥother, (11)

where d̂ = ∑
i=1,2 ei(r̂i − R̂) is the electric dipole moment.

The first line includes the electric potential and dipole energy
and the second line represents the minimally coupled Röntgen
term [43]. We suppress here further contributions involving
the electromagnetic fields in Ĥother which are given explicitly
in Appendix A and are not effective in the configuration of a
Paul trap.

Finally, the last two terms of Eq. (4), Ĥmetric and Ĥmass defect,
describe the relativistic coupling of c.m. and internal DOF and
thus are the pivotal points of the following discussion. The
first of these two terms is

Ĥmetric = γ
φ(R̂)

c2

(
2

p̂2

2μ
+ e1e2

4πε0

1

r̂

)
. (12)

It is of metric origin and a consequence of space-time curva-
ture, as is evident already from its proportionality to the PPN
parameter γ in the Eddington-Robertson metric in Eq. (2). We
remind the reader that γ = 1 in general relativity. More for-
mally, the term follows when the Hamiltonian for the internal
DOF is written in terms of distances measured with respect to
the metric given in Eq. (2) and expanded up to O(c−4),

g−1
i j (R̂) p̂i p̂ j

2μ
+ e1e2

4πε0

1√
gi j (R̂)r̂i r̂ j

� Ĥ (0)
int + Ĥmetric.

Here summations run only over the spatial indices i, j =
1, 2, 3. We refer to the recent work of Zych et al. [44] for a
more detailed discussion and references to previous literature
discussing the metric correction Ĥmetric.

As a consequence of the virial theorem, the metric correc-
tion (12) turns out to be purely off-diagonal in the basis of
stationary states with respect to the internal Hamiltonian Ĥint
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in Eq. (8). This can be inferred from the identity

i

h̄
[r̂ · p̂, Hint] = 2

p̂2

2μ
+ e1e2

4πε0

1

r̂
+ O(c−2). (13)

Since the average of the left-hand side with respect to eigen-
states of Ĥint vanishes, the same holds for the right-hand
side and thus also for Eq. (12). Further constraints on the
off-diagonal matrix elements can be concluded from noting
that Ĥmetric is rotationally invariant. We do not go into further
detail on this since the off-diagonal form of the metric term
makes it ineffective as far as energy-nondegenerate states are
concerned. For this case it can be neglected in a rotating-wave
approximation with corrections scaling as c−4.

The second term describing relativistic coupling of c.m.
and internal DOF is

Ĥmass defect =
(

Mφ(R̂) −
ˆ̄P2

2M

)
⊗ Ĥ (0)

int

Mc2
. (14)

It can be interpreted as a result of the mass defect of the c.m.
DOF due to the binding energy of the internal DOF. This
interpretation is supported formally by the observation that, up
to correction of O(c−4), the term Ĥmass defect can be absorbed
in the c.m. Hamiltonian

Ĥc.m.(M ) + Ĥmass defect � Ĥc.m.

(
M + Ĥint

c2

)
. (15)

We remind the reader that Ĥc.m.(M ) is defined as a function of
M in Eq. (5). Thus the c.m. mass M is effectively corrected
by the mass defect and replaced by M + Ĥint

c2 . We note that the
expression on the right-hand side of Eq. (15) is often used as
a justification of the mass defect term on the left-hand side as,
e.g., in the context of ion clocks [26–28]. We would like to
stress that it is the left-hand side of Eq. (15) that justifies the
right-hand side in order c−2, which is derived ab initio from
Eq. (1) following [31].

When Â⊥(R̂) = 0 an alternative and no less justified inter-
pretation of Ĥmass defect is that of a shift of the internal energies
due to the gravitational redshift and due to the second-order
Doppler effect, as is evident from

Ĥint + Ĥmass defect � Ĥint ⊗
(

1 − V̂2

2c2
+ φ(R̂)

c2

)
, (16)

up to O(c−4), where V̂ corresponds to the velocity of the c.m.
These corrections are often added on a semiclassical basis
as a result of time dilation when transforming from the c.m.
rest frame to the laboratory frame [1]. We emphasize that
the relativistic correction (14) thus accounts equally and fully
for the time dilation due to the gravitational redshift and the
second-order Doppler effect.

In the following, it will be useful to rewrite this in the form

Ĥint + Ĥmass defect � Ĥint ⊗
(

1 + 1

c2

∂Ĥc.m.(M )

∂M

)

= h̄ω0

2
σ̂z ⊗

(
1 + δν̂

ν0

)
, (17)

which is also valid in the presence of a magnetic vector poten-
tial. In the last step we performed a two-level approximation
by restricting the description to two stationary bound states |g〉

and |e〉 with (negative binding) energies hνg and hνe, respec-
tively, and a transition frequency ω0 = 2πν0 = 2π (νe − νg).
In these eigenstates and energies, we consider the relativistic
corrections from Eq. (10) already included. We defined the
operator corresponding to the fractional frequency shift

δν̂

ν0
= 1

c2

∂Ĥc.m.(M )

∂M
(18)

and implicitly absorbed a constant energy offset in the internal
Hamiltonian. In the next section we will show that relativistic
corrections due to coupling of internal and external DOFs
in precision spectroscopy and frequency metrology can be
discussed entirely on the basis of the fractional frequency shift
operator in Eq. (18).

III. RELATIVISTIC COUPLING OF INTERNAL
AND EXTERNAL DOFS IN ION CLOCKS

In this section we consider an optical clock based on a
single ion in a Paul trap. That means we have to apply the
relativistically corrected Hamiltonian in Eq. (4) to the specific
case of a charged composite particle subject to several external
fields: first an external time-dependent electric potential real-
izing the confinement �(R̂, t ), second a weak gravitational
field φ(R̂), and third pulsed laser fields E(R̂, t ) driving the
internal transition. In a Paul trap there is no vector potential,
so we can replace ˆ̄P by P̂ in Eq. (4). The resulting Hamiltonian
for a Paul trap including the relevant relativistic corrections is

Ĥ = Ĥc.m.(M ) + h̄ω0

2
σ̂z

(
1 + δν̂

ν0

)
− d̂ · E(R̂, t ), (19)

where the fractional frequency shift is given in Eq. (18), and
we collect all terms referring to the c.m. DOF in

Ĥc.m.(M, t ) = P̂2

2M
+ Mφ(R̂) + Q �(R̂, t ). (20)

Here we neglect or suppress the following relativistic correc-
tions. (i) Terms in Eq. (7) affecting the c.m. DOF only are
negligible for the small c.m. velocities of a cold ion and will
affect the internal DOF in order 1/c4 only. (ii) In contrast,
the corresponding terms of the internal DOF in Eq. (10) are
significant and contribute to its fine structure. We consider
these terms to be absorbed in the internal states and energies.
(iii) The metric term in Eq. (12) is dropped in a rotating-
wave approximation, as explained earlier. (iv) The Röntgen
term in the atom-field interaction (11) scales as P/Mc and is
negligible for a cold ion. Furthermore, it merely rescales the
Rabi frequency of the pulses in a Ramsey interrogation (to
be discussed in the next section) and will be compensated by
their proper calibration.

A. Ramsey spectroscopy

For frequency spectroscopy, we treat a Ramsey interroga-
tion scheme [45] which amounts to a sequence of unitary evo-
lutions |ψout〉 = ÛR(ωLTR)Û (TR)ÛR(0)|ψin〉, where |ψout(in)〉
is the final (initial) state of internal and external DOF. For
now, we consider pure states without loss of generality. Here
ÛR(ϕ) denotes the unitary during a Ramsey laser pulse, where
ϕ is the laser phase with respect to the atomic reference. Since
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such a pulse can be considered instantaneous compared to
the duration TR of the Ramsey interrogation time, we neglect
the mass defect during a Ramsey pulse. Therefore, ÛR(ϕ) =
exp[−i π

2 (− cos ϕσ̂y + sin ϕσ̂x )] and the laser phase in the sec-
ond Ramsey pulse is ϕ = ωLTR. During Ramsey interrogation,
the ion evolves in the dark according to Û (TR) = exp[−iĤTR]
with the Hamiltonian in Eq. (19) where E(R̂, t ) = 0. In Ap-
pendix B we provide details on how this is evaluated.

After the second Ramsey pulse, the ion’s internal state pop-
ulation σ̂z is measured with average 〈σ out

z 〉 = 〈ψout|σ̂z|ψout〉
and deviation �σ out

z . For repeated measurements at a partic-
ular value of the detuning �L = ω0 − ωL the variance of the
inferred frequency deviation of the clock laser from the atomic
reference follows as

(�ω)2 =
(
�σ out

z

)2∣∣ ∂〈σ out
z 〉

∂ω

∣∣2 = cos2[(�L + 〈δω̂〉)TR]�σ 2
z

〈σz〉2T 2
R sin2[(�L + 〈δω̂〉)TR]

+ sin2[(�L + 〈δω̂〉)TR]�σ 2
y + T 2

R u2 sin2(�LTR)

〈σz〉2T 2
R sin2[(�L + 〈δω̂〉)TR]

.

(21)

This formula generalizes Eq. (20) from Ref. [45] for the mass
defect. We define the mass defect (time dilation) shift in an-
gular frequency δω̂ = 2πδν̂ and the variance associated with
the mass defect u2 = 〈δω̂2〉 − 〈δω̂〉2. Averages in Eq. (21)
concerning the internal DOF are taken with respect to the
initial state |ψin〉. In standard Ramsey spectroscopy, 〈σz〉 =
−1 and therefore �σ 2

z = 0 and �σ 2
y = 1. Furthermore, the

expression for the inferred frequency deviation holds in lead-
ing (quadratic) order of the mass defect shift in both the
numerator and denominator of Eq. (21). Averages of ω̂ have
to be understood with respect to the c.m. state, averaged over
the interrogation time in the interaction picture with respect
to the c.m. Hamiltonian, that is, Eq. (20). This time average
makes a nontrivial contribution only when the c.m. is in a
nonstationary state and drops out when it is in a stationary,
e.g., thermal, state.

Equation (21) implies that the Ramsey resonance curve
is shifted by 〈δω̂〉 and exhibits a projection noise slightly
increased by u. Thus, in order to evaluate the magnitude and
relevance of these effects it is sufficient to consider the statis-
tics of the operator corresponding to the fractional frequency
shift in Eq. (18) with respect to a given c.m. state. We note
that the Feynman-Hellmann theorem can be conveniently used
when evaluating the average systematic frequency shift with
respect to an eigenstate |ψ〉 of the c.m. Hamiltonian with
eigenenergy Eψ (M ),

〈
δν̂

ν0

〉
ψ

= 1

c2

∂Eψ (M )

∂M
. (22)

B. Quantum theory of an ion trap

For a rigorous discussion of the statistics of the fractional
frequency shift, we briefly recapitulate the quantum theory of
an ideal Paul trap following closely the notation of Leibfried
et al. [33] and adapting the quantum-mechanical treatment by
Glauber [32]. Further below we will consider also corrections

to the potentials in an ideal Paul trap (such as spurious dc
electric fields and gravitational sack).

The potentials of a Paul trap contain direct current and al-
ternating current components �(R̂, t ) = �dc(R̂) + �ac(R̂, t ),
which at the trap center have the form of quadrupole fields

�dc(R̂) + �ac(R̂, t ) = 1
2 R̂T U R̂ + 1

2 cos(�t )R̂T Ũ R̂. (23)

Here � corresponds to the trap frequency and U and Ũ are
the dc and ac components of the quadrupole field tensors,
respectively, and therefore correspond in general to symmetric
traceless matrices. For an ideal trap geometry they are di-
agonal, U = U0diag(α1, α2, α3) and Ũ = Ũ0diag(α′

1, α
′
2, α

′
3)

with dimensionless coefficients αi and α′
i . The resulting c.m.

Hamiltonian (neglecting gravity for the moment)

Ĥc.m.(M, t ) = P̂2

2M
+ Q�(R̂, t ) (24)

is explicitly time dependent and periodic with period T =
2π/�. We assume a stable trap configuration which supports
quasistationary eigenenergy states |n, t〉 satisfying the gener-
alized eigenvalue problem [34–36]

[Ĥc.m.(M, t ) − ih̄∂t ]|n, t〉 = En(M )|n, t〉. (25)

For the reader’s convenience we summarize the solution of
this eigenvalue problem in Appendix C. The states |n, t〉 la-
beled by n = (n1, n2, n3) are T -periodic Fock states whose
time dependence accounts for the micromotion. The corre-
sponding eigenenergies are

En(M ) =
3∑

i=1

h̄ωi(M )(ni + 1
2 ). (26)

The motional eigenfrequencies, or trapping frequencies, are

ωi(M ) = �βi (M )
2 , where β2

i (M ) � 𝒶i(M ) + 𝓆
2
i (M )
2 is deter-

mined by the dimensionless Mathieu parameters 𝒶i(M ) =
4QU0αi

M�2 and 𝓆i(M ) = 2QŨ0α
′
i

M�2 in lowest order |𝒶i|,𝓆2
i � 1.

In the following, it will be important to note that the gen-
eralized Hamiltonian on the left-hand side of Eq. (25) has to
be considered as acting on an enlarged Hilbert space HT =
L2(R3) ⊗ T , where T is the space of T -periodic functions of
time. We take care to construct the quasienergy eigenstates
|n, t〉 within this space. As shown in Appendix C, the Fock
states are generated in the usual way by acting on a ground
state |0, t〉 ∈ HT with creation operators which are adjoint to
the annihilation operators

âi(t ) = ie−iωit

√
2h̄Mωi

[ui(t )P̂i − Mu̇i(t )R̂i]. (27)

This expression is given in lowest order |𝒶i|,𝓆2
i � 1. Here

both e−iωit ui(t ) � [1 + 𝓆i
2 cos(�t )]/(1 + 𝓆i

2 ) and e−iωit u̇i(t )
are T -periodic functions. These operators obey equal-
time bosonic commutation relations [âi(t ), â†

j (t )] = δi j . The
ground state is determined by âi(t )|0, t〉 = 0 for i = 1, 2, 3.
We refer the reader to Appendix C for details.

When evaluating the effects of relativistic corrections it
will be necessary to calculate matrix elements of T -periodic
operators with respect to T -periodic states. The corresponding
scalar products have to be understood within the enlarged
Hilbert space HT and therefore involve a time average over
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one period T . In order to indicate this explicitly, we write this
scalar product as 〈〈ψ |ϕ〉〉 = 1

T

∫ T
0 dt〈ψ (t )|ϕ(t )〉 for |ψ〉, |ϕ〉 ∈

HT , where 〈ψ (t )|ϕ(t )〉 is the usual scalar product in L2(R3).
Accordingly, the average of an operator A(t ) with respect to a
state |ψ〉 ∈ HT has to be understood as

〈〈A〉〉ψ = 1

T

∫ T

0
dt〈ψ (t )|A(t )|ψ (t )〉, (28)

where 〈ψ (t )|A(t )|ψ (t )〉 is the average value in L2(R3).

C. Fractional frequency shift due to mass defect:
Second-order Doppler effect

We are now ready to evaluate the fractional frequency shift
(18) due to the mass defect for a given c.m. state. Here we will
consider in particular Fock states |n, t〉 and thermal mixtures
of Fock states at (pseudo)temperatures Ti for motion along
axis i. However, the treatment is general and can be applied
just as well to any other quantum state. In view of Eqs. (24)
and (18), the fractional frequency shift of a trapped ion is
entirely due to its kinetic c.m. energy since

δν̂

ν0
= − K̂

Mc2
, K̂ = P̂2

2M
. (29)

The operator for the kinetic energy can be expressed in terms
of creation and annihilation operators by inversion of Eq. (27).
In this way, mean values and uncertainties can be easily eval-
uated and the only integrals that remain to be calculated are
those over the period T of micromotion.

For the average fractional shift due to a c.m. Fock state
|n, t〉, the Feynman-Hellmann theorem can be applied. With
Eqs. (22) and (26) we find〈〈

δν̂

ν0

〉〉
n

= −
3∑

i=1

h̄ωi
(
ni + 1

2

)
2Mc2

(
1 + 𝓆

2
i

2𝒶i + 𝓆2
i

)
, (30)

in leading order of 𝒶i and 𝓆
2
i . We refer the reader to Ap-

pendix C for remarks on how this expansion is technically
performed here and in all subsequent formulas. Here the first
term corresponds to the secular motion and the last one to
the micromotion. The fractional shift for a thermal state with
average occupation numbers n̄ = (n̄1, n̄2, n̄3) will have the
same form as Eq. (30) where the Fock state number ni is
replaced by n̄i = 1/[exp[ h̄ωi

kBTi
] − 1]. In the high-temperature

limit n̄i ≈ kBTi
h̄ωi

we arrive at

〈〈
δν̂

ν0

〉〉
n̄

= −
3∑

i=1

kBTi

Mc2

𝒶i + 𝓆
2
i

2𝒶i + 𝓆2
i

. (31)

This recovers the result of Berkeland et al. [16] [cf. the first
term on the right-hand side of Eq. (30)] on the second-order
Doppler (time-dilation) shift for a thermal state. In the oppo-
site limit kBTi � h̄ωi, zero-point fluctuations in both secular
and micromotion in the quantum ground state still cause a
fractional shift, as follows from Eq. (30) for ni = 0. Calcu-
lating the average of Eq. (29) directly, that is, 〈〈δν̂/ν0〉〉 =
−〈〈K̂〉〉/Mc2, using the algebra of creation and annihilation
operators defined in Eq. (27) yields the same result in leading
order of 𝒶i and 𝓆2

i .

So far, we considered an ideal quadrupole potential for the
trap in the form of Eq. (23). In reality, various deviations from
this ideal geometry will occur and impact the second-order
Doppler shift. In the following sections we will consider addi-
tional linear potentials due to uncompensated dc electric fields
(Sec. III D) and gravity (Sec. III E), as well as spurious electric
quadrupole fields (Sec. III G).

D. Fractional frequency shift due to dc forces
and excess micromotion

Here we consider an additional linear dc electric potential
due to uncompensated stray fields [16] causing so-called ex-
cess micromotion. We include such a spurious potential by
adding to the c.m. Hamiltonian a perturbation

Ĥdc = −QEdc · R̂, (32)

where Edc = (Edc,1, Edc,2, Edc,3) is the dc electric field at the
trap center.

This problem can still be solved exactly. Just as in the pre-
vious sections, we assume a stable trap configuration which
supports quasistationary eigenenergy states |n, t〉dc satisfying
the generalized eigenvalue problem

[Ĥc.m.(M, t ) − ih̄∂t + Ĥdc]|n, t〉dc = Edc
n (M )|n, t〉dc. (33)

The modified creation operators generating the Fock states
|n, t〉dc are derived in Appendix C. The modified eigenen-
ergies are Edc

n (M ) = En(M ) + Edc(M ), where the energy
correction due to the dc field does not depend on the Fock
number n and is given by

Edc(M ) = −
3∑

i=1

4E2
dc,iQ

2

M
[
2𝒶i(M ) + 𝓆2

i (M )
]
�2

. (34)

We note that this result can also be found by accounting
for the perturbation in Eq. (32) in second-order perturbation
theory. This is due to the fact that the perturbation (32) is time
independent and linear in position and the unperturbed Hamil-
tonian is quadratic in position and momentum. Therefore, the
exact energy eigenstates are suitably displaced Fock states and
the quasienergies will be shifted by a constant quadratic in the
perturbation.

Thus, the dc electric field causes a fractional frequency
shift due to the excess micromotion that can be evaluated as
before using the Feynman-Hellmann theorem. On top of the
thermal shift in Eq. (30), the dc field adds a shift〈〈

δν̂

ν0

〉〉
dc

= 1

c2

∂Edc(M )

∂M

= −
3∑

i=1

(
2𝓆iEdc,iQ

Mc
(
2𝒶i + 𝓆2

i

)
�

)2

(35)

and reproduces again the result of Berkeland et al. [16]. Here
we have used the notation 〈〈 〉〉dc, which emphasizes that the
contribution is the same for all Fock states, independent of the
index n. The fractional frequency shift of a trapped ion in this
case is still entirely due to its kinetic c.m. energy as shown in
Eq. (29). With the modified creation and annihilation opera-
tors one can easily verify Eq. (35) via 〈〈δν̂/ν0〉〉 = −〈〈K̂〉〉/Mc2

in leading order of 𝒶i and 𝓆2
i .
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E. Fractional frequency shift due to gravity

In this section we consider a contribution to the fractional
frequency shift due to an interplay between position fluctu-
ations and gravitational redshift, as discussed in [28]. The
coupling to the gravitational field is described by adding to
the c.m. Hamiltonian

Ĥg = Mφ(R̂), (36)

where we approximate the gravitational potential in linear
order φ(R̂) = φ0 + g · R̂. Here φ0 is the gravitational po-
tential at the trap center and g = (g1, g2, g3). In this linear
approximation, the effect of gravity can again be taken into
account with the accordingly modified creation operators [cf.
Eq. (C10)].

Including gravity, the fractional frequency shift of a
trapped ion is due to both its kinetic c.m. energy and the
contribution due to gravity. On top of the thermal shift in
Eq. (30), gravity adds a shift

δν̂

ν0
= − K̂

Mc2
+ φ0 + g · R̂

c2
. (37)

This follows from Eqs. (18), (24), and (36). In this case we
can write the fractional frequency shift as 〈〈 δν̂

ν0
〉〉 = 〈〈 δν̂

ν0
〉〉n +

〈〈 δν̂
ν0

〉〉g, where the first contribution is given in Eq. (30) and

〈〈
δν̂

ν0

〉〉
g

= −
3∑

i=1

4𝒶i + 3𝓆2
i

4𝒶i + 2𝓆2
i

g2
i

ω2
i c2

+ φ0

c2
. (38)

Here we have used the notation 〈〈 〉〉g to denote the shift due
to gravity. Due to the linearity in R̂ of the second term in
Eq. (37), this shift is affecting all Fock states in the same
way and therefore is independent of temperature for thermal
states. In the case of a dc harmonic confinement 𝓆i → 0
and neglecting the background redshift φ0 = 0, we recover
the result of Haustein et al. [28]. The results from the two
preceding sections can be easily combined to take into account
both the dc forces and gravity, which will lead to some cross
terms between the two effects as shown in Appendix C.

It is noteworthy that the fractional frequency shift due to
the kinetic energy (30) grows linearly with the trap frequency
(corresponding to an increased kinetic energy for tighter trap-
ping), while the trap-dependent contribution due to gravity
(38) decreases quadratically with the trap frequency due to a
decreased fluctuation in position and therefore also in poten-
tial energy. The trade-off with respect to the trap frequency
has been discussed and optimized by Haustein et al. [28]
in order to minimize the fractional frequency shift. For the
parameter regime of a conventional ion trap, the redshift term
(38) will be smaller than the second-order Doppler shift (30)
(see Fig. 1). With the present formulas, it is straightforward to
extend this discussion to account for micromotion. The results
are unwieldy and will be reported elsewhere [46].

F. Variance of the fractional frequency shift

In the preceding section we considered the average frac-
tional frequency shift which enters the inferred frequency
deviation in Eq. (21) as a systematic shift of the Ram-
sey resonance curves. Now we will address the role of the

FIG. 1. Redshift g2

ω2
i c2 (red dotted line) and total fractional fre-

quency shift, i.e., redshift plus second-order Doppler shift
h̄ωi (n̄+ 1

2 )

2Mc2 ,
for n̄ = 0 (solid lines) and n̄ = 1 (dashed lines) for Al+ (thick blue
lines), Yb+ (thin green lines), and neutral Sr (thick orange lines)
versus trapping frequency ωi. We consider here a static confinement
𝓆i = 0 for simplicity.

uncertainty in the frequency shift u2 = 〈δω̂2〉 − 〈δω̂〉2, which
has been suggested [29] to pose a fundamental limitation to
the precision of an optical clock. For the case of standard
Ramsey interrogation (where 〈σz〉 = −1 and therefore �σ 2

z =
0 and �σ 2

y = 1) and taking into account N independent inter-
rogations, Eq. (21) can be rewritten for the inferred relative
frequency deviation(

�ω

ω0

)2

= 1

N

(
1

ω2
0T 2

R

+ u2

ω2
0

)
, (39)

which holds to leading order in u2. The first term on the right-
hand side is the projection noise and the second term accounts
for the variance of the fractional frequency shift due to the
mass defect.

By means of the ladder operators (27), it is straightforward
to evaluate the latter, and we find for a thermal c.m. state

u2

ω2
0

= 〈〈K̂2〉〉n̄ − 〈〈K̂〉〉2
n̄

M2
0 c4

=
3∑

i=1

2

(
h̄ωi

(
n̄i + 1

2

)
2Mc2

)2

×
[(

1 + 𝓆
2
i

2𝒶i + 𝓆2
i

)2

+ 3

4

𝓆
4
i(

2𝒶i + 𝓆2
i

)2

]
. (40)

This expression is given in leading order of Mathieu param-
eters, taking into account one order more than in other cases
as we are showing a variance and not the standard deviation.
The standard deviation associated with this variance can be
interpreted as the quantum fluctuations of the kinetic energy
�K̂/Mc2. For evaluating the second moment of the kinetic
energy it is convenient to use 〈P̂4〉n̄ = 3〈P̂2〉2

n̄ for Gaussian
statistics. Note that this identity only holds for the average in
L2(R3), as the statistics with respect to time are non-Gaussian.
We caution that the fractional frequency uncertainty for a c.m.
Fock state (which is non-Gaussian) looks slightly different
but can still be easily evaluated by means of creation and
annihilation operators.
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It is interesting to consider in Eq. (40) the contribu-
tions along different directions i in the limit of a pure
dc or ac potential. For a dc potential 𝓆i = 0, one finds
for a thermal c.m. state that the standard deviation in the
direction i corresponds to

√
2 times the fractional fre-

quency shift in the same direction. This agrees with the
expectation that without micromotion the Gaussian statistics
entails a variance Var(K̂ )i = 2〈〈K̂i〉〉2 for the kinetic energy
along this direction. For a pure ac potential 𝒶i = 0, one
finds instead a standard deviation in the direction i of the
fractional frequency shift of

√
19/8 times the fractional fre-

quency shift in the same direction. The slight increase in
comparison to a dc potential is due to micromotion. In
the same way, the uncertainty in the fractional frequency shift
can be evaluated for the contribution of the excess micromo-
tion (35).

The standard deviation of the fractional frequency shift
u/ω0 implied by Eq. (40) has the same order of magnitude as
the average second-order Doppler fractional frequency shift.
However, in order to resolve the latter, a large number of
measurements N is required to average down the projection
noise [first term in Eq. (39)] to the level of the systematic
second-order Doppler shift. It is important to note that in the
same course the uncertainty of the second-order Doppler shift
is suppressed by N . Thus, its contribution to Eq. (39) should
not be misinterpreted to imply a fundamental limit to the
stability of an ion clock. Rather, the standard deviation of the
fractional frequency shift should be considered as a (relatively
small) correction to the quantum projection noise of a single
measurement on a two-level system. However, it does imply a
limit to the short-term stability.

G. Effect of additional quadrupole fields

Finally, we address the effect of a spurious electric
quadrupole field. Yudin and Taichenachev [27] suggested that
an additional quadrupole field beyond the ideal dc and ac
potentials in Eq. (23), in interplay with the mass defect, could
lead to systematic shifts that have not been considered before.
Compared to Eq. (23), an additional quadrupole electric field
can manifest itself in a shift of the minima between the ac
and dc potentials, a change in their curvature, and/or a shift in
their axes.

In order to take this into account, we choose, without loss
of generality, the origin of our coordinates to coincide with
the zero point of the ac contribution and the coordinate basis
to be aligned with its axes, i.e., with the eigenvectors of Ũ
in Eq. (23). This leaves the ac contribution unchanged from
the previous sections. The total (intended and accidental) dc
potential is now expressed in an expansion around the origin,

�dc(R̂) = �dc(0̂) + Edc · R̂ + 1
2 R̂T U R̂, (41)

where Ui j = ∂2�dc(0̂)
∂Ri∂Rj

and 0̂ stands for the center of the ac

potential. The �dc(0̂) will be a constant shift in the Hamilto-
nian and therefore will have no effect. The linear component
can be interpreted as a contribution to the spurious Edc field
studied before in Sec. III D. Finally, without loss of generality
we write U = U0diag(α1, α2, α3) + W , with dimensionless
coefficients αi and a purely off-diagonal perturbation W . The

diagonal terms determine the potential curvatures and hence
the effective trap frequencies, as in the previous sections. A
calibration of the second-order Doppler effect, based on trap
spectroscopy and thermometry of the c.m. motion, will thus
properly account for potential deviations of the αi from their
nominal values. It is these changes that were discussed in
[27] in a perturbative account. We thus agree with Yudin and
Taichenachev that a change in potential curvature can enter the
systematics in relevant magnitude, but notice that these effects
are already taken into account in the operational calibration of
an ion clock in the context of the second-order Doppler effect.

It remains to discuss the effect of axes misalignments. For
this, we treat the nondiagonal correction as a perturbation to
the Hamiltonian (24),

Ĥoff-diag = QR̂T W R̂. (42)

Assuming for simplicity a nondegenerate spectrum of mo-
tional eigenfrequencies ωi, we can employ nondegenerate
perturbation theory [36] in order to evaluate the corrections
to the energy levels of quasistationary states |n, t〉 in Eq. (26).
Expressing the position operator R̂ in terms of creation and
annihilation operators, it follows immediately (due to the off-
diagonal nature of W ) that the first-order correction vanishes
〈〈Ĥoff-diag〉〉n = 0. Of course, the eigenstates will change. In the
case of nominal degeneracies in the trap frequencies the off
diagonal terms can be treated as a perturbation on the level
of the Mathieu equation, following the treatment shown by
Landa et al. [47]. This will lead to a lifting of the degeneracies,
which will again be accounted for in the trap calibration.

IV. CONCLUSION

In this article we have presented a systematic and fully
quantum-mechanical treatment of relativistic frequency shifts
in atomic clocks based on trapped ions. We started by deriv-
ing an approximate relativistic Hamiltonian for the center of
mass and internal dynamics of an electromagnetically bound,
charged two-particle system in external electromagnetic and
gravitational fields. We applied this Hamiltonian to an ion
in a Paul trap, including the effects of micromotion, excess
micromotion, and trap imperfections. We recovered results
known from semiclassical treatments based on time-dilation
arguments. The Hamiltonian ab initio treatment given here
avoids the need for ad hoc arguments based on time-dilation
or mass-defect corrections. It provides a solid basis for ap-
plications to more complicated systems, such as atom clocks
based on ion crystals as well as neutral lattice clocks. It would
be desirable to account for spin, along the lines of [40,41] but
taking into account the gravitational field.
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APPENDIX A: HAMILTONIAN FOR IONS IN EXTERNAL
ELECTROMAGNETIC FIELDS WITH FIRST-ORDER

RELATIVISTIC CORRECTIONS

The derivation in Sec. II follows the one by Sonnleitner
and Barnett [30] and Schwartz and Giulini [31]. In this Ap-
pendix we highlight the main differences in the derivation
with respect to these works and show the terms that are ob-
tained for a charged composite particle system instead of a
neutral one. Apart from the differences highlighted here, the
steps of the calculations are the same and are not affected
by having Q �= 0. For details of the calculations, we refer the
reader to [30,31] as well as to [42,48]. The textbooks [49–51]
are useful sources for these types of calculations.

One of the main differences arises during the separation
of c.m. and relative DOF involved in passing from Eq. (3) to
Eq. (4). As explained in the main text, the definitions of in-
ternal and external coordinates, c.m. coordinate R̂ = (m1r1 +
m2r2)/M, and relative coordinate r̂ = r̂2 − r̂1 with respective
momenta P̂ and p̂, need to be adjusted in order to account
for relativistic corrections. Suitable canonical transformations
have been introduced by Close and Osborn [42] and employed
in [30] for neutral systems. For a composite system with net
charge Q �= 0, we generalize this transformation by seeking
coordinates ˆ̃R and ˆ̃r with respective momenta ˆ̃P and ˆ̃p which
fulfill

R̂ = ˆ̃R + m1 − m2

2M2c2

[( ˆ̃p2

2μ
ˆ̃r + H.c.

)
+ e1e2

4πε0 ˆ̃r
ˆ̃r
]

− 1

4M2c2
[(ˆ̃r · ˆ̃P′) ˆ̃p + ( ˆ̃P′ · ˆ̃p)ˆ̃r + H.c.],

P̂ = ˆ̃P + f ( ˆ̃R, ˆ̃P, ˆ̃r, ˆ̃p),

r̂ = ˆ̃r + m1 − m2

2μM2c2
[(ˆ̃r · ˆ̃P′) ˆ̃p + H.c.] −

ˆ̃r · ˆ̃P′

2M2c2
ˆ̃P′,

p̂ = ˆ̃p +
ˆ̃p · ˆ̃P′

2M2c2
ˆ̃P′ − m1 − m2

2M2c2

[
ˆ̃p2

μ

ˆ̃P′

+ e1e2

4πε0

(
1
ˆ̃r

ˆ̃P′ −
ˆ̃P′ · ˆ̃r

ˆ̃r3
ˆ̃r

)]
. (A1)

Here we include a minimal coupling of the c.m. DOF to the
electromagnetic field ˆ̃P′ = ˆ̃P − QÂ⊥( ˆ̃R). In order to still have
a canonical transformation, the definition of the c.m. mo-
mentum involves an ansatz function f ( ˆ̃R, ˆ̃P, ˆ̃r, ˆ̃p). Enforcing
canonical commutation relations [ ˆ̃Rk,

ˆ̃Pl ] = [ˆ̃rk, ˆ̃pl ] = ih̄δkl

and [ ˆ̃Rk, ˆ̃rl ] = [ ˆ̃Rk, ˆ̃pl ] = [ ˆ̃Pk, ˆ̃pl ] = [ ˆ̃Pk, ˆ̃rl ] = 0, we find

f ( ˆ̃R, ˆ̃P, ˆ̃r, ˆ̃p)

= m1 − m2

2M2c2
Q

[(
ˆ̃p2

2μ
∇ ˆ̃R

[ˆ̃r · Â⊥( ˆ̃R)] + H.c.

)

+ e1e2

4πε0 ˆ̃r
∇ ˆ̃R

[ˆ̃r · Â⊥( ˆ̃R)]

]

− Q

4M2c2
{ˆ̃r · ˆ̃P′∇ ˆ̃R

[ ˆ̃p · Â⊥( ˆ̃R)]

+ ˆ̃P′ · ˆ̃p∇ ˆ̃R
[ˆ̃r · Â⊥( ˆ̃R)] + H.c.}. (A2)

In principle, every function g( ˆ̃R, ˆ̃P, ˆ̃r, ˆ̃p) = f ( ˆ̃R, ˆ̃P, ˆ̃r, ˆ̃p) +
h( ˆ̃R) that fulfills ∂h j

ˆ̃Ri
− ∂hi

ˆ̃R j
= 0 is also a suitable choice be-

sides f . We choose h to be zero in order to reproduce for Q =
0 the coordinates used in [30]. In the main text we used the
notation of the usual c.m. coordinates to refer to the relativistic
corrected ones. The only difference is that the vector potential
Â⊥(R̂) and the scalar Newtonian potential φ(R̂) should be
evaluated at the nonrelativistic c.m., but as both change slowly
over the size of the atom, this correction is negligible and we
can use the relativistic corrected variables instead.

Another major difference arises in the atom-field inter-
action Hamiltonian (11). In the main text we suppressed a
number of terms which are collected in

Ĥother = 1

8μ
[d̂ × B̂(R̂)]2 + μQ2

8M2
[r̂ × B̂(R̂)]2

− m1 − m2

4m1m2
{p̂ · [d̂ × B̂(R̂)] + H.c.}

+ Q

4M
{p̂ · [r̂ × B̂(R̂)] + H.c.}

− Q(m1 − m2)

4M2
[d̂ × B̂(R̂)] · [r̂ × B̂(R̂)]. (A3)

The Hamiltonian Ĥother collects all terms which arise from the
magnetic field B̂. The Q-dependent terms can be interpreted
as modifying the electric dipole d̂ by d̂′ = d̂ + (μ/M )Qr̂ in
the limit m1 � m2. They cancel the implicit Q dependence
of d̂ such that d̂′ is equal to the dipole moment of a neutral
atom (if m1 � m2) [52]. Terms contributing also for neutral
systems (Q = 0) are reported and discussed in [48].

APPENDIX B: TIME EVOLUTION
IN RAMSEY SPECTROSCOPY

In this Appendix we evaluate the time evolution of the
internal operators according to the Hamiltonian in Eq. (19)
during the free evolution time, that is, with E(R̂, t ) = 0. In the
Heisenberg picture, the vector of Pauli operators �̂σ evolves as

d

dt
�̂σ (t ) = [ω0 + δω̂(t )]

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠ �̂σ (t ) (B1)

and the mass defect operator fulfills

d

dt
δω̂(t ) = − i

h̄
[Ĥc.m., δω̂(t )], (B2)
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where Ĥc.m. is given in Eq. (20). The solution of this equa-
tion will be denoted by δω̂(t ) and is independent of the
internal DOFs.

We define a time-averaged mass defect operator

δω̂ = 1

TR

∫ TR

0
dt δω̂(t ), (B3)

by which the Pauli vector at the end of the Ramsey sequence
in first order of the mass defect can be expressed as

�̂σ (TR) = Rz(ω0TR)

⎡
⎣1 + TRδω̂

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠
⎤
⎦ �̂σ (0)

� Rz((ω0 + δω̂)TR) �̂σ (0). (B4)

Here Rz(θ ) is the matrix corresponding to a rotation around
the z axis by an angle θ . The second line holds to first order
in the mass defect and should be understood as shorthand
notation for the first line.

The complete Ramsey sequence is given by

�̂σout = Û †
R (0)Û †(TR)Û †

R (ωLTR) �̂σinÛR(ωLTR)Û (TR)ÛR(0)

= R�n
(π

2

)
Rz((ω0 + δω̂)TR)R−y

(π

2

)
�̂σin

= Rz(ωLTR)R−y

(π

2

)
Rz((ω0 − ωL + δω̂)TR)

× R−y

(π

2

)
�̂σin, (B5)

where �n = − cos(ωLTR)σ̂y + sin(ωLTR)σ̂x. From here it is
straightforward to derive Eq. (21). When taking averages, we
assume an initial product state of internal and c.m. DOFs.
Moreover, for the stationary c.m. states considered here, the
time average of the mass defect Hamiltonian drops out.

APPENDIX C: QUANTUM THEORY OF ION TRAPS

1. Quasienergy eigenproblem

Here we provide details on the solution to the generalized
eigenvalue problem in Eq. (25) for the particular case of a Paul
trap. Assuming that the potential is separable, it is sufficient to
discuss the one-dimensional problem. The treatment follows
the one of Glauber [32], which is summarized in [33]. The
main deviation from these treatments is that we strive to iden-
tify T -periodic creation and annihilation operators in order to
ensure that all states are elements of the enlarged Hilbert space
HT .

We consider the (zeroth-order) Hamiltonian

Ĥ (0)(t ) = P̂2

2m
+ m

2
W (t )X̂ 2, (C1)

with a real periodic function W (t + T ) = W (t ). Specifically,
we have W (t ) = 𝒶− 2𝓆 cos(�t ), where 𝒶 and 𝓆 denote the
so-called Mathieu parameters. First, we consider the equa-
tion ü(t ) = −W (t )u(t ). By the Floquet theorem, solutions can
be constructed of the form

u(t ) = eiμtv(t ), (C2)

where 0 � μ < � and v(t + T ) = v(t ). Following [33], we
write this as μ = β�

2 and v(t ) = ∑∞
n=−∞ C2nein�t . In order to

relate with the main text, we have to set μ = ωi. The real-
valued coefficients β and C2n can be determined as in [33].

We also adopt the normalization condition u(0) =∑
n C2n = 1, which implies for the time derivative u̇(0) = iν,

ν = �
∑

n C2n(β/2 + n). Here u∗(t ) is also a linearly
independent solution, which is likewise assumed to be
normalized u∗(0) = 1 so that u̇∗(0) = −iν. The Wronskian
w = u(t )u̇∗(t ) − u∗(t )u̇(t ) is time independent, since ẇ =
u(t )ü∗(t )−u∗(t )ü(t ) = −W (t )u(t )u∗(t )+W (t )u∗(t )u(t ) = 0.
Thus, w = u(0)u̇∗(0) − u∗(0)u̇(0) is fixed by the initial
conditions for the linearly independent solutions in u(t ) and
u∗(t ). For the specific choice made above, we thus have for
all times u(t )u̇∗(t ) − u∗(t )u̇(t ) = −2iν. In lowest order of the
Mathieu parameters we find (cf. [33])

β �
√
𝒶+ 𝓆2

2
, v(t ) � 1 + 𝓆

2 cos(�t )

1 + 𝓆

2

, ν � μ.

Based on this solution, we define the explicitly time-
dependent operator (in the Schrödinger picture)

â(t ) = ie−iμt

√
2h̄mν

[u(t )P̂ − mu̇(t )X̂ ], (C3)

which effectively depends on the functions v(t ) and v̇(t ) only
and therefore is by construction periodic in time with period
T . Here ν is a frequency which will be chosen later. Note that
for t = 0 this corresponds to the expression for the annihila-
tion operator for a harmonic oscillator with frequency ν, that
is, â(0) = √mν

2h̄ X̂ + i 1√
2h̄mν

P̂.
Due to the constant value of the Wronskian, â(t ) and

its adjoint operator â†(t ) satisfy bosonic commutation rela-
tions at equal times [â(t ), â†(t )] = 1. The operator â(t ) has
a unique (up to a global phase) eigenstate |0, t〉 of eigen-
value 0, â(t )|0, t〉 = 0, which can be constructed by projecting
this equation into the position representation [ih̄u(t )∂x +
mu̇(t )x]〈x|0, t〉 = 0, giving the normalized solution

〈x|0, t〉 =
(mν

π h̄

)1/4 eiμt/2

u(t )1/2
exp

[
im

2h̄

u̇(t )

u(t )
x2

]

=
(mν

π h̄

)1/4 1

v(t )1/2
exp

[
−μm

2h̄

(
1 − i

μ

v̇(t )

v(t )

)
x2

]
.

(C4)

The global phase in (C4) is chosen so as to make the state
|0, t〉 periodic with period T and have |0, t〉 ∈ T ⊗ H. The
periodicity is evident in the second line. Using Eq. (C4), it
can be shown by direct calculation that

[Ĥ (0)(t ) − ih̄∂t ]|0, t〉 = E0|0, t〉, E0 = h̄μ

2
. (C5)

We easily verify that the creation and annihilation op-
erators satisfy eigenoperator equations with respect to the
generalized Hamiltonian

[Ĥ (0)(t ) − ih̄∂t , â(t )] = −h̄μa(t ), (C6a)

[Ĥ (0)(t ) − ih̄∂t , â†(t )] = h̄μa†(t ). (C6b)

The bosonic commutation relation and the commutators in
(C6) are identical to those of a time-independent harmonic
oscillator. Thus, the same algebra used there can be applied
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here to show that

[Ĥ (0)(t ) − ih̄∂t ]|n, t〉 = En|n, t〉,

En = h̄μ
(
n + 1

2

)
, |n, t〉 = 1√

n!
[a†(t )]n|0, t〉.

Here it is crucial to have constructed the annihilation operators
to be T periodic, as otherwise the Fock states would not be
proper elements of HT . Note that the quasienergy eigenvalues
should respect En < h̄�, which will be violated for some n.
However, for the physically relevant case where μ � �, that
is, β � 1, this is of no concern practically.

2. Ion trap with linear potential

In order to study both the cases of dc forces and gravity, we
will consider now a trap potential with a linear potential −FX̂
such that the generalized Hamiltonian is

Ĥ (t ) = Ĥ (0) − FX̂ − ih̄∂t . (C7)

We seek operators of the form

b̂(t ) = â(t ) + α(t ), (C8)

which fulfill the eigenoperator equation [Ĥ (t ), b̂(t )] =
−h̄μ̄b̂(t ), with a T -periodic function α(t ) and a new eigen-
frequency μ̄ to be determined. In order for α(t ) not to be
an operator, we find that μ̄ = μ. Therefore, the differential
equation that α(t ) needs to obey is

α̇(t ) + iμα(t ) = − iFe−iμt u(t )√
2h̄mν

= − iFv(t )√
2h̄mν

. (C9)

Imposing T periodicity on α(t ), we find in lowest order of the
Mathieu parameters

α(t ) = − F√
2h̄mν

[
μ

μ2 − �2
e−iμt u(t )

− 1

1 + 𝓆

2

1

μ(μ2 − �2)

(
�2 + i

𝓆

2
μ� sin(�t )

)]
.

(C10)

With this solution we have determined the eigenoperator of
the trap potential including a linear force. In the main text, this
formalism is applied for each Cartesian direction i where we
need to use the replacement F → Fi and μ → ωi = βi�/2.
In the case of gravity and a spurious Edc field this will corre-
spond to Fi = QEdc,i − Mgi. This will lead to a total fractional
frequency shift of〈〈

δν̂

ν0

〉〉
=
〈〈

δν̂

ν0

〉〉
n

+
3∑

i=1

8gi(QEdc,i − Mgi )

M�2c2
(
2𝒶i + 𝓆2

i

)
−
(

2(QEdc,i − Mgi )𝓆i

Mc
(
2𝒶i + 𝓆2

i

)
�

)2

. (C11)

In evaluating this and similar expressions in the main text,
it is necessary to deal with fractions of polynomials in 𝒶 and
𝓆. In order to simplify these expressions, we associated a
small parameter ε via the substitution 𝒶 → ε2

𝒶 and 𝓆 → ε𝓆,
assuming 𝓆2, |𝒶| � 1. Finally, we performed a Taylor expan-
sion of the rational function in terms of ε and maintained the
relevant contributions.
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