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Ground- and excited-rovibrational-state properties of weakly bound helium-silver
triatomic molecules
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Ground and excited-rovibrational states of weakly bound triatomic molecules containing two helium and
one silver atoms are investigated. We consider three systems, 4He - 4He -Ag, 3He - 4He -Ag, and 3He - 3He -Ag.
The three-atom Schrödinger equation is solved in hyperspherical coordinates using the potential-energy surface
represented as the addition of He-He and He-Ag pair interaction potentials. We compute the energy levels and
analyze the structural properties by considering averaged pair distances and bond angles, one-dimensional pair
and angle distribution functions, and two-dimensional pair-pair and angle-angle distribution functions. All the
He-He-Ag bound states are found to possess similar characteristics, displaying obtuse isosceles (4He2Ag and
3He2Ag) or scalene (3He 4HeAg) triangle configurations where the He-Ag distances are nearly fixed and the Ag
bond angle is variable.
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I. INTRODUCTION

Triatomic systems containing helium have attracted much
interest in the past decades due to the possibility of observing
unique quantum properties like the Efimov effect [1–4]. One
of the best candidates for this phenomenon is the 4He trimer,
4He3, whose excited state is of Efimov character [5,6]. The
first successful experiments on the 4He trimer excited state
were reported in Ref. [7]. The 4He trimer and its isotopes
have therefore been the subject of most extensive theoretical
study, see the pioneering paper in Ref. [8] and the subsequent
papers in Refs. [5,8–11]. The 4He trimer is found to support
two weakly bound states while its isotope, 3He 4He2, is shown
to support only one loosely bound state [9]. In addition to
the helium trimers studied so far, there exist other interesting
examples of weakly bound triatomic molecules. The He2Li
systems, as well as other He-He-alkali-metal systems, are also
known to support weakly bound states, and were studied by
several authors [12–22]. The He2Ca systems were investi-
gated by Gou and Li [23] and López-Durán et al. [24,25]. The
ground and excited-rovibrational states of such weakly bound
molecules are found to extend far into the classically forbid-
den regions, allowing for testing “universality” predicted for
these “quantum halo states” [18].

Triatomic molecules formed with two He atoms and an
impurity can also be interpreted as extreme limiting cases of
large helium droplets [26–29]. The shifts of the electronic
transition lines with respect to the isolated atom determine
the location of the impurity attached to a droplet. The is-
sue of establishing solvation instead of surface location for
an impurity atom in a helium droplet is, therefore, of great
importance to further understand the behavior of the spectro-
scopic observations as a function of the droplet’s size. While
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most atomic and molecular impurities are found to reside in
the interior [30], it is well established that, according to the
model of Ref. [31], alkali-metal atoms preferentially reside
in a “dimple” at the surface of the droplets for both helium
isotopes [28,32]. It was also established that Ca atoms re-
side on the surface of superfluid boson helium nanodroplets
[33], in agreement with density functional theory [34]. On
the other hand, silver atoms are shown to be attracted to the
helium enough to locate inside the boson helium droplets
[35], although they move to the surface and desorb [36–38]
after photoexcitation Ag(5p 2PJ ) ← Ag(5s 2S1/2). Therefore,
a knowledge of the precise preferred location of the impurity
with respect to the surrounding pair of He atoms in the tri-
atomic system is expected to provide some insights into the
intrinsic nature of their interaction with the rare gas. Lastly,
such triatomic systems are also relevant to buffer-gas experi-
ments performed on cold molecules by Brahms et al. [39], in
which the AgHe molecular species was observed to form via
three-body recombination Ag + He + He → AgHe + He.

This work is along the lines of previous investigations
which dealt with weakly bound triatomic helium-helium-
impurity systems. We study in detail the ground and excited-
rovibrational states of helium-helium-silver molecules. Three
systems, 4He - 4He -Ag, 3He - 4He -Ag, and 3He - 3He -Ag, are
considered with different total angular momenta J and
parities �. For 3He - 3He -Ag, the spatial wave function
is assumed to be symmetric under the exchange of the
two 3He atoms, corresponding with their singlet nuclear
spin state I3He3He = 0. The three-atom Schrödinger equa-
tion in hyperspherical coordinates is solved by using an
expansion of the wave function on the adiabatic channel
functions at fixed finite-element-method-discrete-variable-
representation (FEM-DVR) grid points [40] together with the
potential-energy surface represented as the addition of He-He
and He-Ag pair interaction potentials. We calculate the energy
levels and analyze the structural properties by considering
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averaged pair distances and bond angles, one-dimensional
(1D) pair and angle distribution functions, and two-
dimensional (2D) pair-pair and angle-angle distribution func-
tions.

The organization of this paper is as follows. Section II
presents the theoretical approach. In Sec III, we discuss the
results and analyses of the systems under study. We finally
conclude and summarize in Sec IV.

II. METHOD

The Schrödinger equation is solved for three interacting
atoms in hyperspherical coordinates [41] using the slow vari-
able discretization (SVD) approach [42–44]. After separation
of the center-of-mass motion, the three-body problem can be
described using a modified version of Whitten-Smith’s demo-
cratic hyperspherical coordinates (R,�) ≡ (R, θ, ϕ, α, β, γ )
[45,46]. The Euler angles (α, β, γ ) describe the orientation
of the body-fixed frame in space. The hyperradius R char-
acterizes the global size of the triatomic system, while the
two hyperangles (θ, ϕ) specify the shape of the molecular
triangle. The hyperangle θ is defined in the range [0, π/2],
with θ = 0 and π/2 corresponding, respectively, with equilat-
eral and collinear triangles. The hyperangle ϕ is restricted to
the range [0, 2π ], after we required the wave function to be
single-valued. The hyperangle ϕ can be further restricted to
the range [0, π ] in the case of two identical atoms contained
in the system.

Using a rescaled wave function ψ = R5/2�, with � be-
ing the usual solution, the Schrödinger equation for the
three atoms interacting through the potential-energy surface
V (R, θ, ϕ) is given by[

− h̄2

2μ

∂2

∂R2
+ ̂2

2μR2
+ 15h̄2

8μR2
+ V (R, θ, ϕ)

]
ψ (R,�)

= Eψ (R,�), (1)

where

̂2 = − 4h̄2

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+ 4

sin2 θ

(
ih̄

∂

∂ϕ
− cos θ

Jz

2

)2

+ 2J2
x

1 − sin θ
+ 2J2

y

1 + sin θ
+ J2

z (2)

is the squared grand angular momentum operator, (Jx, Jy, Jz )
the body-fixed frame (x, y, z) components of the total angular
momentum J, and

μ =
√

m1m2m3

m1 + m2 + m3
(3)

the three-body reduced mass with mi being the atoms’ respec-
tive masses.

In solving the Schrödinger Eq. (1), we expand the wave
function ψ on a product basis [42]

ψ (R,�) =
∑
ν,l

cνlχl (R)�ν (Rl ; �), (4)

where �ν are the channel functions labeled ν (ν = 1, 2, . . . ,),
which will be defined below. The cνl are the expansion co-
efficients, and χl (R) represent the FEM-DVR basis functions

[40], which are obtained from sets of Lobatto shape functions
on a grid of hyperradial points Rl in the range [Rmin, Rmax].
The grid points and the associated weights (Rl , ωl ) are gener-
ated by dividing the range with a set of N grid points and by
dividing each interval again with shifting and scaling of the
Mth-order Gauss-Lobatto quadrature [47]. The total number
of hyperradial grid points amounts to L = (M − 1)(N − 1) +
1 with any two repeated points being merged into one single
point.

The channel functions �ν (ν = 1, . . . , νmax) in Eq. (4) are
solutions of the adiabatic Schrödinger equation[

2

2μR2
+ 15h̄2

8μR2
+ V (R, θ, ϕ)

]
�ν (R; �) = Uν (R)�ν (R; �),

(5)
and are needed only at the hyperradial grid points R = Rl .
The adiabatic hyperspherical potential curves Uν (R) contain
useful information to gain insight into the energetic structure
of the three-body system. Equation (5) is solved by expand-
ing the channel function on the normalized Wigner functions
D̃J

KM (α, β, γ ) = [(2J + 1)/8π ]1/2DJ
KM (α, β, γ ):

�JM�
ν (R; �) =

∑
K

φJ�
Kν (R; θ, ϕ)D̃J

KM (α, β, γ ), (6)

where K , denoting the projection of J on a body-fixed axis,
takes on the integer values that satisfy −J � K � K and � =
(−1)K . For a system comprising three nonidentical atoms, the
solution of the adiabatic Eq. (5) must satisfy the boundary
conditions

(−1)KφKν (R; θ, 0) = φKν (R; θ, 2π ), (7)

(−1)K ∂φKν

∂ϕ

∣∣∣∣
ϕ=0

= ∂φKν

∂ϕ

∣∣∣∣
ϕ=2π

. (8)

On the other hand, for a system containing two identical atoms
for which the wave function is symmetric under exchange,
the permutation symmetry can be taken into account via the
boundary conditions

(−1)J+Kφ−Kν (R; θ, 0) = φKν (R; θ, 0), (9)

(−1)J+K+1 ∂φ−Kν

∂ϕ

∣∣∣∣
ϕ=0

= ∂φKν

∂ϕ

∣∣∣∣
ϕ=0

, (10)

(−1)Jφ−Kν (R; θ, π ) = φKν (R; θ, π ), (11)

(−1)J+1 ∂φ−Kν

∂ϕ

∣∣∣∣
ϕ=π

= ∂φKν

∂ϕ

∣∣∣∣
ϕ=π

, (12)

and the hyperangle ϕ is now restricted to the range [0, π ].
The φKν (R; θ, ϕ) in Eq. (6) is expanded on a direct product of
fifth-order basis splines [48] in θ and ϕ generated from Nθ and
Nϕ mesh points, respectively.

Inserting ψ of Eq. (4) into the Schrödinger Eq. (1), we
obtain a set of hyperradial coupled-channel equations∑

ν ′

∑
l ′

[Tll ′Oνl,ν ′l ′ + Uν (Rl )δνν ′δll ′ ]cν ′l ′ = Ecνl , (13)

where Oνl,ν ′l ′ = ∫
d��ν (Rl ; �)�ν ′ (Rl ′ ; �) are the overlap

matrix elements between adiabatic channels defined at dif-
ferent hyperradial points R = Rl and R = Rl ′ , and Tll ′ are
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TABLE I. Bound-state energies and s-wave scattering lengths a
for the He-He and He-Ag systems.

l εv=0,l (K) εv=0,l (a.u.) a (Å) a (a.u.)

4He 4He 0 −1.310 −4.148 × 10−9 100 189
3He 4He 0 − − −17.6 −33.3
3He 3He 0 – – −7.16 −13.5
4HeAg 0 −3.248 −1.028 × 10−5 0.33 0.17

1 −2.805 −0.883 × 10−6 – –
2 −1.938 −6.136 × 10−6 – –
3 −0.691 −2.188 × 10−6 – –

3HeAg 0 −2.510 −7.948 × 10−6 7.93 4.20
1 −1.969 −6.234 × 10−6 – –
2 −0.928 −2.938 × 10−6 – –

the hyperradial kinetic energy matrix elements given in
Refs. [40,43]. The hyperradial Hamiltonian matrix Hνl,ν ′l ′ =
Tll ′Oνl,ν ′l ′ + Uν (Rl )δνν ′δll ′ possesses a symmetric banded
structure due to the characteristic of the FEM-DVR basis, so
that one can easily numerically solve the coupled Eqs. (13).

The potential-energy surface V (R, θ, ϕ) in Eq. (1) is repre-
sented as the addition of three pair-interaction potentials

V (R, θ, ϕ) = vHeAg(r12) + vHeHe(r23) + vHeAg(r31), (14)

where ri j are the interatomic distances, expressed in our coor-
dinate system as

ri j = 2−1/2di jR[1 + sin θ cos(ϕ + ϕi j )]
1/2, (15)

with ϕ12 = 2 tan−1(m2/μ), ϕ23 = 0 ϕ31 = −2 tan−1(m3/μ),
and the di j coefficients are given by

di j =
[

mk (mi + mj )

μ(m1 + m2 + m3)

]1/2

, (16)

where (i jk) is a cyclic permutation of (123). For the He-
He interaction, a variety of potentials are proposed in the
literature, but here we adopt the most widely used LM2M2
representation developed by Aziz and Slaman [49]. This in-
teraction potential supports one 4He2 zero angular momentum
l = 0 bound state with the energy level being ε

4He4He
v=0,l=0 =

−1.310 × 10−3K, while there exists no bound state for the
isotopes 4He 3He and 3He2. For the He-Ag interaction, we
adopt the analytical form proposed by Xie et al. in Ref. [50],
obtained by fitting the best AgHe potential data of Gardner
et al. [51]. This potential is found to support one 4HeAg
bound state each for l = 0, 1, 2, and 3, and one 3HeAg bound
state each for l = 0, 1, and 2. Table I presents the bound-state
energies (in a.u. and Kelvin) as well as the relevant s-wave
scattering lengths (in a.u. and Å) calculated using the R-matrix
propagation method [52]. In particular, the s-wave scattering
lengths of 3,4He -Ag are found to be much smaller than that
of 4He - 4He. Figure 1 shows these interaction potentials and
the supported bound states’ wave functions. We notice that
the He-Ag wave functions are much more “compact” than the
4He - 4He, implying the more tightly binding nature between
helium and silver.
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FIG. 1. He-He and He-Ag interaction potentials and the
4He - 4He, 4He -Ag, and 3He -Ag bound-state wave functions with
angular momentum l supported by these potentials.

III. RESULTS

We calculated the adiabatic hyperspherical potential curves
Uν (R) and channel functions �ν (R; �) for the 4He2Ag,
3He 4HeAg, and 3He2Ag systems with different total angular
momenta J and parities �. We show here only the J� =
0+ adiabatic hyperspherical potential curves. Figures 2(a)
presents the 20 lowest 0+ adiabatic hyperspherical potential
curves Uν (R) (ν = 1, 2, . . . , 20) as functions of the hyper-
radius R for 4He2Ag. The bound-state energy levels, which
will be calculated below, are indicated by horizontal lines.
The lowest ν = 1 potential curve corresponds asymptotically
to one 4He atom and the Ag atom bound in the zero two-
body angular momentum l = 0 state with the other 4He atom
far away, approaching the 4HeAg(v = 0, l = 0) + 4He dis-
sociation threshold, ε

4HeAg
v=0,l=0 = −3.248 K as R → ∞. The

second lowest ν = 2 potential curve corresponds asymptoti-
cally to the l = 1 4HeAg bound state and the other 4He atom
far away, approaching 4HeAg(v = 0, l = 1) + 4He dissocia-
tion threshold, ε

4HeAg
v=0,l=1 = −2.805 K as R → ∞. In the same

way, the ν = 3, 4, and 5 potential curves are considered to
be the 4HeAg(v = 0, l = 2) + 4He, 4HeAg(v = 0, l = 3) +
4He, and 4He2(v = 0, l = 0)+Ag dissociation channels, re-
spectively. The other ν � 6 potential curves represent the
three-body continuum and approach the three-body disso-
ciation threshold Uν (R) → 0 at large R. Figure 2(b) shows
the 0+ adiabatic hyperspherical potential curves as functions
of the hyperradius R for 3He 4HeAg. The lowest ν = 1 and
second lowest ν = 2 potential curves represent, respectively,

032802-3



HIROYA SUNO PHYSICAL REVIEW A 106, 032802 (2022)

-15

-10

-5

0

5

10

U
ν(R

) 
(K

)

-15

-10

-5

0

5

U
ν(R

) 
(K

)

10 20 30 40 50
R (a.u.)

-15

-10

-5

0

5

U
ν(R

) 
(K

)

(a)
4
He

2
Ag (J

Π
=0

+
)

(b)
3
He

4
HeAg (J

Π
=0

+
)

ν=1

ν=20

ν=1

ν=20

(c)
3
He

2
Ag (J

Π
=0

+
)

ν=1

ν=20

FIG. 2. The 20 lowest 0+ adiabatic hyperspherical potential
curves Uν (R) (ν = 1, 2, . . . , 20) as functions of the hyperradius R
for (a) 4He2Ag, (b) 3He 4HeAg, and (c) 3He2Ag. The horizontal lines
indicate the bound-state energy levels.

the 4HeAg(v = 0, l = 0) + 3He and 3HeAg(v = 0, l = 0) +
4He dissociation channels, and the other higher potential
curves can be identified in the same manner. The potential
curves for 3He2Ag, shown in Fig. 2(c), can be analyzed sim-
ilarly. We checked the convergence of the potential curves
by computing them with different numbers of hyperangular
basis-splines mesh points and found that (Nθ , Nϕ ) = (200, 80)
are sufficient to obtain about six digits of accuracy for several
tens of the lowest potential curves.

The coupled-channel hyperradial Eqs. (13) are numerically
solved with the sum over ν truncated at ν = νmax to obtain
bound-state energies. In practice, at most νmax ≈ 60 channels

and the maximum number of hyperradial FEM-DVR grid
points L ≈ 250 for 7 � R � 100 a.u., are sufficient for four
digits of accuracy for these ground and excited-rovibrational
energy levels. For all the triatomic systems under study,
we find bound states only for the “parity-favored” cases,
i.e., � = (−1)J , while no bound state was seen to exist for
the “parity-unfavored” cases, � = (−1)J+1. We show the
4He2Ag, 3He 4HeAg, and 3He2Ag bound-state energy levels
only for J� = 0+, 1−, and 2+ in Table II, where the bound
states are labeled by the total angular momentum J , the parity
�, and the vibrational quantum number v. We mention here
that there still exist bound states with higher “parity-favored”
angular momenta and parities, J � 3 and � = (−1)J , for all
these triatomic isotopic species.

The averaged pair distances and bond angles are given,
respectively, by

〈ri j〉 =
∫

dR
∫

d�ψ (R,�)∗ri jψ (R,�), (17)

and

〈ϑ j〉 =
∫

dR
∫

d�ψ (R,�)∗ cos−1
r2

i j + r2
jk − r2

ki

2ri jr jk
ψ (R,�),

(18)
where (i jk) is a cyclic permutation of (123). Table III
presents these averaged values for the J� = 0+, 1−, and 2+
bound states of 4He2Ag, 3He 4HeAg, and 3He2Ag. For all
the 4He2Ag bound states, the averaged 4He -Ag distance is
found to be around 10.5 a.u., somewhat smaller than the
averaged 4He - 4He distance, which is between about 12 to
16 a.u.. Similarly, the Ag bond angle is found to be, in
general, larger than the 4He bond angles, which can be ex-
plained from the fact that the 4He -Ag diatomic subsystem is
more tightly bound than the 4He - 4He subsystem; see Fig. 1.
These averaged pair distances and bond angles suggest that
the 4He2Ag bound states all present obtuse isosceles triangle
configurations. The 3He 4HeAg and 3He2 bound states can be
analyzed in a similar manner: the 3He 4HeAg bound states
show scalene triangles with 〈r4HeAg〉 � 〈r3HeAg〉 < 〈r3He4He〉
or 〈ϑ3He〉 � 〈ϑ4He〉 < 〈ϑAg〉, while the 3He2Ag bound states
present again obtuse isosceles triangles with 〈r3HeAg〉 <

〈r3He3He〉 or 〈ϑ3He〉 < 〈ϑAg〉.
To gain more insight into the structure of these triatomic

systems, we analyze the 1D pair and angle distribution func-
tions which can be calculated from the three-dimensional (3D)

TABLE II. Bound-state energies for the 4He2Ag, 3He 4HeAg, and 3He2Ag complexes. The energies are given in units of Kelvin and
are relative to the three-body dissociation threshold. The bound states are labeled by the total angular momentum J , the parity �, and the
vibrational quantum number v.

4He2Ag 3He 4HeAg 3He2Ag

v J� = 0+ 1− 2+ 0+ 1− 2+ 0+ 1− 2+

0 −6.739 −6.353 −5.823 −5.909 −5.329 −4.352 −5.115 −4.569 −4.014
1 −5.670 −4.612 −5.305 −4.743 −3.558 −3.834 −2.619 −3.445
2 −3.496 −4.119
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TABLE III. Average values of the pair distances (in atomic
units) and the bond angles (in radians) for 4He2Ag, 3He 4HeAg, and
3He2Ag.

J� v 〈r4HeAg〉 〈r3HeAg〉 〈rHeHe〉 〈ϑAg〉 〈ϑ4He〉 〈ϑ3He〉
4He2Ag 0+ 0 10.44 13.00 0.45π 0.28π

1 10.58 16.07 0.61π 0.19π

2 11.33 15.26 0.53π 0.24π

1− 0 10.48 11.60 0.38π 0.31π

1 10.76 15.41 0.54π 0.23π

2+ 0 10.55 12.81 0.43π 0.28π

1 10.61 15.80 0.58π 0.21π

2 10.68 14.70 0.52π 0.24π
3He 4HeAg 0+ 0 10.44 10.94 14.09 0.48π 0.27π 0.25π

1 10.58 11.22 16.05 0.59π 0.22π 0.20π

1− 0 10.44 11.15 14.08 0.47π 0.28π 0.25π

2+ 0 10.62 11.25 15.92 0.56π 0.23π 0.21π

1 10.10 11.06 13.50 0.45π 0.29π 0.26π
3He2Ag 0+ 0 10.94 14.95 0.50π 0.25π

1 11.24 16.18 0.57π 0.21π

1− 0 11.04 13.02 0.41π 0.30π

1 11.76 15.16 0.47π 0.27π

2+ 0 11.15 15.52 0.52π 0.24π

1 11.37 15.62 0.52π 0.24π

probability density function defined by

D(R, θ, ϕ) =
∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ sin 2θ |ψ (R,�)|2.

(19)
We calculate the interparticle distances r12, r23, and r31 us-
ing Eq. (15) for each R, θ , and ϕ and sort the probability
D(R, θ, ϕ) into the pair distribution function P(r), normalized
as

∫ ∞
0 P(r)dr = 1. The angle distribution function P(ϑ ) can

be obtained similarly, by sorting the probability as a function
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FIG. 3. Pair distributions P(r) in the left column and angle dis-
tributions P(ϑ ) in the right column for the 4He2Ag ground and
excited-rovibrational states. The bound states are labeled as (J�, v),
with J , �, and v being, respectively, the total angular momentum,
the parity, and the vibrational quantum number.

0

0.04

0.08

0.12

P
(r

) 
(a

.u
.)

(0
+
,0)

(0
+
,1)

(1
-
,0)

(2
+
,0)

(2
+
,1)

0

0.1

0.2

P
(r

) 
(a

.u
.)

0 10 20 30 40
r (a.u.)

0

0.1

0.2

P
(r

) 
(a

.u
.)

0

0.5

1

1.5

2

P
(ϑ

)

0

0.5

1

1.5

P
(ϑ

)

0 0.2 0.4 0.6 0.8 1
ϑ/π (rad)

0

0.4

0.8

P
(ϑ

)

r=r
3He4He

r=r
4HeAg

ϑ=ϑ
4He

ϑ=ϑ
3He

ϑ=ϑ
Ag

r=r
3HeAg

FIG. 4. Pair distributions P(r) in the left column and angle dis-
tributions P(ϑ ) in the right column for the 3He 4HeAg ground and
excited-rovibrational states.

of the bond angle ϑ j = cos−1[(r2
i j + r2

jk − r2
kl )/(2ri jr jk )], and

normalizing as
∫ π

0 P(ϑ )dϑ = 1. The 1D distribution func-
tions for the ground and several excited-rovibrational states of
4He2Ag, 3He 4HeAg, and 3He2Ag are shown, respectively, in
Figs. 3, 4, and 5, where the bound states are labeled (J�, v).
All the pair and angle distribution functions display similar
characteristics: the He-He pair distribution functions show
one or two broad peaks up to r � 25 a.u., then decay and
vanish at r ≈ 35 a.u., while the He-Ag pair distribution func-
tions peaks narrowly only once at around 10 a.u., decay, and
vanish at r ≈ 20 a.u. The He bond angle distributions present
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FIG. 6. Pair-pair distributions P(rHeHe, rHeAg) in the top row and angle-angle distributions P(ϑHe, ϑAg) in the bottom row for 4He2Ag. From
the left to the right (J�, v) = (0+, 0), (0+, 1), (0+, 2), and (1−, 0) states are presented.

one or several narrow peaks up to ϑ � 0.4π and vanish at
ϑ ≈ 0.7π -0.8π radians, whereas the Ag bond distribution
functions extend all the way from ϑ = 0 to π , displaying one
or several broad maxima. From these pair and angle distribu-
tion functions, we can expect that the He-He-Ag complexes
display various geometrical configurations with the He-Ag
distances kept nearly fixed at some small distances and the
Ag bond angle variable, which are close to obtuse isosceles
triangles. These features can also be seen from the 2D pair-
pair and angle-angel distribution functions, P(rHeHe, rHeAg)
and P(ϑHe, ϑAg), calculated by sorting two distances and two
angles from the 3D function (19), which are presented in
Fig. 6 for selected bound states of 4He2Ag. The silver atom
may locate preferably, not exactly but close to the line joining
the two helium atoms. However, these He-He-Ag geometrical
configurations are thought to be less variable than those shown
by the helium trimers He3 [53], or the helium-helium-alkali-
metal molecules [20], which are characterized by their very
floppy nature. This difference stems from the fact that alkali
atoms are much more loosely bound to the helium than are
silver atoms. The present study might also explain the differ-
ence in the impurity locations between alkali-metals (located
at the surface of) and silver atoms (located inside the helium
nanodroplets), as was discussed in Sec. I.

IV. SUMMARY

In this work, we studied theoretically weakly bound tri-
atomic He2Ag molecules. Three different isotopic systems

4He2Ag, 3He 4HeAg, and 3He2Ag, were considered with dif-
ferent total angular momenta J and parities �. We calculated
the energetics as well as the structural properties such as
the 1D and 2D distribution functions. All the bound states
are found to display similar structures: the helium and silver
atoms are a little tightly bound at some nearly fixed distances,
whereas the two helium atoms are more loosely bound at some
variable distances to each other, with the He bond angles being
more acute than the Ag bond angle. The silver atom may
locate preferably, not exactly but very close to the line joining
the two helium atoms, rather than outside them. Although still
qualified as weakly bound species, these bound states can be
considered simpler than the extremely floppy He3 or He2Li
bound states due to the rather tight nature of the He-Ag inter-
action. The triatomic complexes containing helium and other
coinage metals, gold and copper, are other interesting subjects
of study. Our further goal is to simulate, within our three-body
hyperspherical formalism, the three-body collision processes
Ag + He + He ↔ AgHe + He, relevant to the buffer-gas ex-
periments mentioned above in this work.
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