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of one-valence atomic systems: Application to Al and In
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We have developed a Fock-space relativistic coupled-cluster theory-based method for the calculation of elec-
tric dipole polarizability of one-valence atoms and ions. We employ this method to compute the ground-state and
spin-orbit coupled excited state electric dipole polarizability of Al and In. To check the quality of many-electron
wave functions, we also compute the excitation energies of some low-lying states of Al and In. The effects of the
Breit interaction and QED corrections from the Uehling potential and the self-energy are included to improve
the accuracy of α further. Our recommended values of the ground-state α for both atoms are in good agreement
with the previous theoretical results. From our computations, we find that more than 65% of contributions come
from the dipolar mixing of 3p(5p) with 3d (5d) and 4s(6s) electrons for Al(In). The largest Breit and QED
contributions are found to be 1.3% and 0.6%, respectively.
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I. INTRODUCTION

Group-13 elements are promising candidates for accurate
optical atomic clocks as they offer low fractional frequency
errors [1–5]. Recent experiments [6,7] on Al+ optical atomic
clock have achieved a low fractional frequency error of 9.4 ×
10−19 [6,7], which is, perhaps, the most accurate clock in
existence today. The electric dipole polarizability, α, of an
atom or ion is a key parameter in estimating the accuracy of
an atomic clock. It is used to estimate the blackbody radiation
shift, one of the dominant environment-induced frequency
shifts, in the transition frequencies of atoms and ions due to
the ac Stark effect. Since the measurement of α for individual
states is nontrivial [8], accurate values from precision theory
calculations play a crucial role in the development of new
frequency and time standards for atomic clocks. The other
potential implications of α include discrete symmetry viola-
tions in atoms and ions [9,10], condensates of dilute atomic
gases [11–13], high-harmonic generation and ultrafast pro-
cesses [14–17], and the search for variation in the fundamental
constants [18,19].

In this work, we have employed a Fock-space perturbed
relativistic coupled-cluster theory to compute the properties
of one-valence atomic systems in the external perturbations.
We employ this method to compute the α for the ground state,
2P1/2, and the spin-orbit (SO)-split excited state, 2P3/2, of Al
and In. The reason for choosing Al and In over the other
group-13 elements is that previous theoretical and experimen-
tal works have studied both elements extensively. This is a
basic and essential requirement to assess the potential applica-
tions and accuracy of our method. In the literature, α for 2P1/2
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and 2P3/2 states of Al and In have been calculated using dif-
ferent methods [20–25], including the coupled-cluster based
methods like ours. One common trend in the reported data is,
however, a large variation in the α values. For example, for the
2P1/2 state of Al, there is a difference of ≈ 10% in the smallest
[20] and the largest [25] reported α values. The same trend is
also observed in the experimental values [26–29]. The exper-
iment [27] reports ≈ 20% larger α than Ref. [26] for Al. It is
to be emphasized that, unlike the closed-shell atomic systems,
calculation of α for an open-shell system is a challenging
task and requires the inclusion of core-core, core-valence, and
valence-valence electrons correlations to the highest level of
accuracy. Moreover, the inclusion of correlation effects from
Breit interaction and QED corrections and the large basis sets
are essential to tune the accuracy further. The aim of the
present work is to fill this gap. We aim to develop a Fock-space
relativistic coupled-cluster theory-based method to accurately
account for an external perturbation in the properties calcu-
lation of one-valence atomic systems, compute the accurate
value of α for Al and In, and quantify the various electron
correlation effects embedded in the α of Al and In.

To test the accuracy of the wave functions, we have cal-
culated excitation energies of a few low-lying states of Al
and In using RCC theory. RCC is one of the most power-
ful many-body theories for atomic structure calculations. It
accounts for the electron correlation to all orders of residual
Coulomb interaction and has been used to calculate a plethora
of properties in atomic systems. The implementation of such
a theory and a FORTRAN code for the properties’ calculations
of closed-shell and one-valence atomic systems without ex-
ternal perturbation is reported in our previous work [30]. For
the properties’ calculation in the presence of external pertur-
bation, we reported a perturbed relativistic coupled-cluster
(PRCC) theory for closed-shell in [31,32] and references
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therein. One of the key merits of PRCC is that it does not
employ the sum-over-state [33,34] approach to incorporate the
effects of a perturbation. The summation over all the possible
intermediate states is subsumed in the perturbed cluster opera-
tors. Due to important prospects associated with α, it has been
computed using a variety of other many-body methods in the
literature. The review article by Mitroy et al. [35] provides
a summary of α for several atoms and ions computed using
different methods. The other reference which we found very
useful is Schwerdtfeger’s updated table of α for neutral atoms
[36]. The table provides an exhaustive list of references on
experimental and theoretical values of α for several neutral
atoms.

This paper is organized into five further sections. In Sec. II
we discuss the RCC and PRCC theories for one-valence
atomic systems where we derive the PRCC equations and
discuss in detail the contributing diagrams to each term. In
Sec. III we discuss the calculation of α using PRCC theory.
Here we provide some dominant diagrams contributing to α.
The basis set convergence and other calculational details are
discussed in Sec. IV. In Sec. V we analyze and present our
results of excitation energy and dipole polarizability. Unless
stated otherwise, all results and equations presented in this
paper are in atomic units (h̄ = me = e = 1/4πε0 = 1).

II. METHODOLOGY

A. One-valence RCC theory

The many-electron ground state wave function of a one-
valence atom or ion in the RCC theory is expressed as

|�v〉 = e(T (0)+S(0) ) |�v〉, (1)

where |�v〉 is the one-valence Dirac-Fock (DF) reference
state and is obtained by adding an electron to the closed-shell
reference state, |�v〉 = a†

v|�0〉. The operators T (0) and S(0)

are the coupled cluster (CC) operators which act within the
Hilbert spaces of the closed-shell and open-shell systems,
respectively. The ground state |�v〉 is the solution of the
eigenvalue equation

HDCB|�v〉 = Ev|�v〉, (2)

where HDCB is the Dirac-Coulomb-Breit no-virtual-pair
Hamiltonian and Ev is the exact energy of the one-valence
system. For an atom with Nelectrons, HDCB is

HDCB =
N∑

i=1

[cαi · pi + (βi − 1)c2 − VN (ri )]

+
∑
i< j

[
1

ri j
+ gB(ri j )

]
, (3)

where α and β are the Dirac matrices and VN (ri) is the
nuclear potential. The last two terms, 1/ri j and gB(ri j ), are
the Coulomb and Breit interactions, respectively. For Breit
interaction, we employ the expression [37]

gB(r12) = − 1

2r12

[
α1 · α2 + (α1 · r12)(α2 · r12)

r2
12

]
. (4)

The effects of the negative-energy continuum states are
avoided by employing a kinetically balanced finite Gaussian
basis [38,39].

In the RCC theory, the single and double excitations in-
corporate most of the electron correlation effects and provide
a good description of the properties. Therefore, we can ap-
proximate T (0) = T (0)

1 + T (0)
2 and S(0) = S(0)

1 + S(0)
2 , which is

referred to as the coupled cluster with single and double
(CCSD) approximation. These operators in the second quan-
tized notation are

T (0)
1 =

∑
ap

t p
a a†

paa, and T (0)
2 = 1

2!

∑
abpq

t pq
ab a†

pa†
qabaa, (5a)

S(0)
1 =

∑
p

sp
va†

pav, and S(0)
2 =

∑
apq

spq
vaa†

pa†
qaaav. (5b)

Here the indices ab . . . and pq . . . represent the core and
virtual orbitals, respectively, and t ···

··· and s···
··· are the cluster

amplitudes of the T and S operators, respectively. These
closed-shell and one-valence operators are obtained by solv-
ing a set of coupled nonlinear equations, and details are
discussed in our previous works [30,40,41]. In Ref. [30] we
have provided descriptions of the computational implemen-
tation of RCC theory for the properties calculations of the
closed-shell and one-valence systems without an external per-
turbation.

B. One-valence PRCC theory

In the presence of an external perturbation, the wave func-
tion and the energy of the system are modified. For the electric
dipole polarizability, the perturbation is due to the interaction
between the external electric field Eext and the induced electric
dipole moment of the system D. The interaction Hamiltonian
is H1 = −D · Eext. We refer the modified eigenstate as the
perturbed eigenstate, |�̃v〉, and the modified energy as the
perturbed energy, Ẽv . In the PRCC theory, |�̃v〉 is expressed
as

|�̃v〉 = eT (0)
[1 + λT(1) · Eext]

×[1 + S(0) + λS(1) · Eext]|�v〉, (6)

where λ is the perturbation parameter. The operators T(1) and
S(1) are referred to as the perturbed closed-shell and one-
valence cluster operators, respectively, and both are rank one
operators. The operator T(1) is obtained by solving a set of
coupled perturbed equations within the Hilbert space of the
occupied electrons. The details for its tensor representation
and the PRCC equations are discussed in our previous works
on the dipole polarizability of the closed-shell atomic systems
[31,42]. Here we discuss only the tensor representation and
PRCC equations of the open-shell cluster operator S(1).

Similar to the case of T (0) and S(0) operators, in the CCSD
approximation, we take S(1) = S(1)

1 + S(1)
2 . These are in the

second quantized notations,

S(1)
1 =

∑
p

ξ p
v C1(r̂)a†

pav, (7a)

S(1)
2 =

∑
apq

∑
lk

ξ pq
va (l, k)Cl (r̂1)Ck (r̂2)a†

pa†
qaaav. (7b)
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FIG. 1. Diagrammatic representations of T(1)
1 , T(1)

2 , S(1)
1 , and S(1)

2

perturbed cluster operators.

Here ξ ···
··· represents the cluster amplitude for the operator

S(1). The one-body operator S(1)
1 is an odd parity operator

and expressed in terms of a rank-one C-tensor. It satis-
fies the orbital-parity and orbital-triangular selection rules,
(−1)lv+lp = −1 and | jv − jp| � 1 � ( jv + jp), respectively.
The tensor structure of the two-body operator S(1)

2 involves

two C-tensors with ranks l and k associated with its two-
vertices. These two C-tensors are coupled to give a rank-one
operator, S(1)

2 . The allowed orbital-parity and and orbital-
triangular selections rules for S(1)

2 are (−1)lv+lp = −(−1)la+lq

and | jv − jp| � l � ( jv + jp), | ja − jq| � k � ( ja + jq), re-
spectively. The diagrammatic representations of T(1) and S(1)

are shown in Fig. 1.
In analogy with Eq. (2), |�̃v〉 is the solution of the eigen-

value equation

(HDCB + λH1)|�̃v〉 = Ẽv|�̃v〉; (8)

here, within the first-order time-independent perturbation the-
ory, the perturbed energy Ẽv ≡ Ev as the first-order correction
vanishes due to the odd parity nature of H1. Using Eq. (6) in
the eigenvalue equation (8) and by operating with e−T (0)

from
the left, retaining the terms first order in λ, we get

[e−T (0)
HDCBeT (0)

(S(1) · Eext ) + e−T (0)
HDCBeT (0)

(T(1) · Eext )(1 + S(0) ) + e−T (0)
H1eT (0)

(1 + S(0) )]|�v〉
= [Ev (S(1) · Eext ) + Ev (T(1) · Eext )(1 + S(0) )]|�v〉. (9)

Using the definition of the normal ordered Hamiltonian,
HN = HDCB − 〈�v|HDCB|�v〉, and dropping Eext for simplic-
ity from both sides of the equation, we can write

[H̄N S(1) + H̄N T(1)(1 + S(0) ) + H̄1(1 + S(0) )]|�v〉
= 
Ev[S(1) + T(1)(1 + S(0) )]|�v〉, (10)

where 
Ev,= Ev − 〈�v|HDCB|�v〉 is the correlation energy
of one-valence atom. H̄N = e−T (0)

HN eT (0)
is a similarity trans-

formed Hamiltonian. Using Wick’s theorem, it can be reduced

to

H̄N = HN + {HN T (0)} + 1

2!
{HN T (0)T (0)}

+ 1

3!
{HN T (0)T (0)T (0)} + 1

4!
{HN T (0)T (0)T (0)T (0)}

(11)

By projecting Eq. (10) with singly and doubly excited de-
terminants, 〈�p

v | and 〈�pq
va|, respectively, and using Wicks’s

theorem to remove the disconnected terms, we obtain the
PRCC coupled equations for singles and doubles as

〈�p
v |H̄1 + {H̄1S(0)} + {H̄N T(1)(1 + S(0) )} + {H̄N S(1)}�v〉 = E att

v 〈�p
v |S(1)

1 |�v〉, (12a)

〈�pq
va|H̄1 + {H̄1S(0)} + {H̄N T(1)(1 + S(0) )} + {H̄N S(1)}�v〉 = E att

v 〈�pq
va|S(1)

2 |�v〉. (12b)

Here E att
v is the attachment energy of the valence electron

and is expressed as E att
v = εv + 
Ev , where εv is the single-

particle energy. In deriving these equations we have used
the relations 〈�∗

v|T(1)|�v〉 = 0 and 〈�∗
v|T(1)S(0)|�v〉 = 0, as

they do not contribute, where ∗ represents the single and
doubly excited determinant. We solve these coupled nonlin-
ear equations using the Jacobi method. To remedy the slow
convergence of this method we employ direct inversion of the
iterated subspace [43].

C. Linearized PRCC

Equations (12a) and (12b) contain all the CC terms asso-
ciated with the PRCC equations of the one-valence system
and therefore provide an accurate description of the properties
of the system. However, solving these equations is compu-

tationally expensive due to the large number of many-body
diagrams arising from the contractions with multiple CC op-
erators. One simple approach to mitigate this is to retain
terms which are linear in the CC operators. This also provides
reliable results as in most of the cases the contribution from
the nonlinear terms is small. Retaining the terms linear in CC
operators, we can write Eqs. (12a) and (12b) as
〈
�p

v |H1 + {
H1T (0)

} + {
H1S(0)

} + {
HN T(1)

} + {
HN S(1)

}
�v

〉
= E att

v

〈
�p

v

∣∣S(1)
1

∣∣�v

〉
, (13a)〈

�pq
va

∣∣H1 + {
H1T (0)

} + {
H1S(0)

} + {
HN T(1)

} + {
HN S(1)

}
�v

〉
= E att

v

〈
�pq

va

∣∣S(1)
2

∣∣�v

〉
. (13b)

We refer to these equations as the linearized perturbed
coupled-cluster (LPRCC) equations. The LPRCC equations
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FIG. 2. Single and double PRCC diagrams contributing to the
term D̄ of Eqs. (12a) and (12b), respectively.

incorporate all the important many-body effects like random-
phase approximation and provide a good description of the
one-valence atomic or ionic properties in the presence of
perturbation.

D. PRCC diagrams

To solve the coupled-cluster amplitude Eqs.(12a) and
(12b), we have to evaluate all the possible terms arising from
each of the matrix elements in the equations. There are several
terms, and the bookkeeping is simplified with the many-body
Goldstone diagrammatic approach. In this section we describe
the Goldstone diagrams arising from the matrix elements, and
these are evaluated manually. It is, however, possible to iden-
tify diagrams computationally as well [44]. We have adopted
the manual approach for the convenience in evaluating the
angular factors. For simplicity, from here onwards, as should
be the case for α, we use D in place of H1.

1. D̄

For the one-valence system, from the definition of the sim-
ilarity transformed Hamiltonian in Eq. (11), using the CCSD
approximation we get

D̄ = D + DT (0)
1 + DT (0)

2 . (14)

The terms with two or higher orders of T (0) do not contribute
to the PRCC equation for a one-valence system. The first term,
D, is the bare dipole operator and contributes to the equa-
tion of S(1)

1 . The two remaining terms represent the contraction
with the unperturbed operator T (0) and contribute to the PRCC
equations of the S(1)

1 and S(1)
2 , respectively. In total, there are

three diagrams from D̄, and these are shown in Fig. 2. Using
the algebra of evaluating the Goldstone diagrams [45], we can
write the algebraic expressions of the diagrams as

〈D〉p
v + 〈DT (0)〉p

v = rpv −
∑

a

ravt p
a , (15a)

〈DT (0)〉pq
va = −

∑
b

rbvt qp
ab , (15b)

respectively. Here in atomic units D ≡ −r and ri j = 〈i|r| j〉
is the electronic part of the single-particle matrix element of
the dipole operator, and 〈· · · 〉p

v and 〈· · · 〉pq
vb represent the ma-

trix elements 〈�p
v | · · · |�v〉 and 〈�pq

va| · · · |�v〉, respectively.

2. D̄S(0)

Like the first term, consider the second term in Eqs. (12a)
and (12b). Expanding the similarity transformed operator D̄ in

FIG. 3. Single and double PRCC diagrams contributing to the
term D̄S(0) of PRCC Eqs. (12a) and (12b), respectively.

terms of T (0), we can write

D̄S(0) = DS(0)
1 + DS(0)

2 + DT (0)
1 S(0)

1 + DT (0)
2 S(0)

1

+DT (0)
1 S(0)

2 . (16)

The terms having higher than two orders of CC operators do
not contribute. The first three terms in the above equation con-
tribute to the PRCC equation of S(1)

1 and lead to four diagrams.
The diagrams are shown in Figs. 3(a)–(d). Except for the first
term, all the other terms contribute to the PRCC equation of
S(1)

2 . In total there are six diagrams from these terms, and
these are shown in Figs. 3(e)–(j). The corresponding algebraic
expressions are

〈DS(0)〉p
v + 〈DT (0)S(0)〉p

v

=
∑

q

rpqsq
v +

∑
aq

raq
(
spq
va − sqp

va − t p
a sq

v

)
, (17a)

〈DS(0)〉pq
va + 〈DT (0)S(0)〉pq

va

=
∑

r

(rprsqr
av + rqrspr

va) −
∑

b

rbaspq
vb

−
∑

br

rbr
(
t qp
ab sr

v + t r
a spq

vb + t q
b spr

va

)
. (17b)

This term is an important one in PRCC theory as it sub-
sumes the many-body effects of the core polarization.

3. H̄NT(1)

Unlike the previous two terms where the dipole operator
appears explicitly, in this term the effects of the perturbation
is embedded in a rank one operator, T(1). We can expand this
as

H̄N T(1) = HN T(1)+ HN T (0)T(1)+ 1

2
HN T (0)T (0)T(1). (18)
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FIG. 4. Single PRCC diagrams contributing to the term H̄N T(1)

of Eq. (12a).

Consider first the PRCC equation of the S(1)
1 . Only the first two

terms contribute. The PRCC diagrams from these terms are

obtained by invoking all the possible contractions between the
HN and CC operators. There are eight diagrams, and these are
shown in Fig. 4. We do not consider the diagrams arising from
the one-body part of HN . These do not contribute as we use
Dirac-Fock orbitals in our calculations. The algebraic expres-
sion of these diagrams are given in Eq. (19a). In the equation,
gi jkl represents the matrix element 〈i j|1/r12 + gB(r12)|kl〉 and
g̃i jkl ,= (gi jkl − gi jlk), is an antisymmetric matrix element.

In the PRCC equation of S(1)
2 , all the terms contribute and

lead to 29 diagrams. These diagrams are shown in Fig. 5. Like
in the case of S(1), we do not include the diagrams from the
one-body part of the HN . The algebraic expression of these
diagrams are given in Eq. (19b). In the equation we see the
emergence of a trend. The number of terms in this equation far
exceed those in S(1)

1 . This trend is there in the remaining
nonlinear terms as well:

〈HN T(1)〉p
v + 〈HN T (0)T(1)〉p

v =
∑

aq

g̃apqvτ
q
a +

∑
abq

[−g̃abqvτ
qp
ab + gabvq

(−t p
a τ

q
b + t q

a τ
p
b − t q

b τ p
a + t p

b τ q
a

)]
, (19a)

〈HN T(1)〉pq
va + 〈HN T (0)T(1)〉pq

va + 〈HN T (0)T (0)T(1)〉pq
va = −

∑
b

gbqvaτ
p
b +

∑
bc

gbcvaτ
pq
bc −

∑
br

[
gbpvrτ

rq
ba + gbqvr

(
τ

pr
ba

+τ
p
b t r

a + t p
b τ r

a

)] +
∑

bc

gbcva
(
τ

p
b tq

c + t q
b τ q

c

) +
∑
bcr

gbcvr
(−t pq

ba τ r
c + t qr

abτ p
c + t pr

ba τ q
c + t pq

bc τ r
a + t pq

ca τ r
b − t rq

caτ
p
b + t rq

acτ
p
b

−τ
pq
ba t r

c + τ
qr
ab t p

c + τ
pr
ba tq

c + τ
pq
bc t r

a + τ pq
ca t r

b − τ rq
ca t p

b + τ rq
ac t p

b + τ r
a t p

b tq
c + τ q

c t p
b tq

b + τ
p
b t r

a

)
. (19b)

FIG. 5. Double PRCC diagrams contributing to the term H̄N T(1) of Eq. (12b).
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FIG. 6. Single PRCC diagrams contributing to the terms H̄N T(1)S(0) (a) and H̄N S(1) (b) of Eq. (12a).

4. H̄NT(1)S(0)

This term involves one each of the perturbed and unperturbed CC operators T(1) and S(0), respectively, and the term contributes
to the nonlinear PRCC equation. By expanding H̄N , we obtain

H̄N T(1)S(0) = HN T(1)S(0) + HN T (0)T(1)S(0). (20)

The higher order terms will not contribute. As to be expected, several diagrams arise from this term due to various possible
contractions between HN and CC operators. For the PRCC equation of S(1)

1 , there are 14 diagrams from this term, and these are
are shown in the left panel of Fig. 6. The algebraic expressions of these diagrams are given in Eq. (21):

〈
HN T(1)S(0)

〉p

v
+ 〈

HN T (0)T(1)S(0)
〉p

v
=

∑
aqr

gapqr
(
τ q

a sr
v − τ r

a sq
v

) +
∑
aqbr

gabqr
[
sr
v

(−τ
qp
ab + τ

pq
ab

) + τ q
a sr p

bv + τ
q
b sr p

av − τ q
a spr

bv

+ τ p
a sqr

bv − τ
p
b sqr

av + τ
q
b spr

av + (−τ
p
b tq

a − τ q
a t p

b + τ
q
b t p

a + τ p
a tq

b

)
sr
v

]
, (21)

〈
HN T(1)S(0)

〉pq

va + 〈
HN T (0)T(1)S(0)

〉pq

va =
∑

rs

gpqrsτ
s
asr

v −
∑

rb

(
gpbraτ

q
b + gqbarτ

p
b

)
sr
v +

∑
sbr

gpbsr
[
ss
v (τ rq

ba − τ
rq
ab ) − sr

v (τ qs
ab + τ

sp
ab )

]

+
∑
cbr

gcbarτ
qp
cb sr

v +
∑
brs

gbprs(s
sq
vaτ

r
b − srq

vaτ
s
b − sqs

bvτ
r
a − srs

avτ
q
b − spr

bvτ
s
a − ssp

bvτ
r
a + sav

spτ
r
b

− sva
rs τ

p
b + sr p

bvτ
s
a − sr p

avτ
s
b ) +

∑
cbr

gcbar
[
spr

bvτ
q
c − sqp

cv τ r
b + sr p

cvτ
q
b + sqp

bvτ
r
c − sr p

bvτ
q
c + srq

vcτ
p
b

]

+
∑
bcrs

gbcrs
[
ssp

cvτ
qr
ab + sr p

cvτ
qs
ab − ssp

cvτ
rq
ab + sqp

cv τ rs
ab + ssp

avτ
qr
bc − sps

cvτ
qr
ab + srs

cvτ
qp
ab

+ sr p
vcτ

qs
ab + ssp

vcτ
rq
ab − srs

vcτ
qp
ab − ssp

avτ
rq
bc − sqp

cv τ rs
ba

]
, (22)
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FIG. 7. Double PRCC diagrams contributing to the terms HN T(1)S(0) (left panel) and HN T (0)T(1)S(0) (right panel) of Eq. (12b).

〈
HN T (0)T(1)S(0)

〉pq

va
+ 〈

HN T (0)T(1)S(0)
〉pq

va
=

∑
brs

gbprs
[(−t r

aτ
q
b − t q

b τ r
a

)
ss
v − (

t s
aτ

p
b + t p

b τ s
a

)
sr
v

] +
∑
brc

gbcar
(
t q
b τ p

c + t p
c τ

q
b

)
sr
v

+
∑
brcs

gbcrs
[(−t qr

abτ p
c + t qp

ab τ r
c

)
ss
v + (−t qp

ab τ s
c + t qs

abτ
p
c

)
sr
v + (

t rq
abτ

p
c + t r p

ac τ
q
b + t qp

bc τ r
a

)
ss
v

+ (
τ

qs
abt p

c − τ
qr
ab t p

c + τ
qp
ab t r

c − τ qp
ac t r

b + τ r p
ac t q

b + τ
qp
bc t r

a + τ
rq
abt p

c )ss
v

+ [−t r
bτ

p
c − t p

c τ r
b + t p

b τ r
c + τ

p
b t r

c

]
ssq
va + (−t q

b τ r
a − τ

q
b t r

a

)
ssp

cv + (t r
c τ

q
b + τ r

c t q
b )ssp

av

+ (
t s
bτ

r
a + τ s

bt r
a

)
sqp

cv + (
t r
aτ

q
b + τ r

a t q
b

)
sps

cv + (
t r
aτ

p
c + τ r

a t p
c

)
sqs

bv + (
t q
b τ p

c + τ
q
b t p

c

)
srs

av

]
. (23)

In the case of the PRCC equation for S(1)
2 , 72 Goldstone diagrams arise from this term. Out of these, 36 diagrams each arise

from the first and second terms. These diagrams are shown in the left and right panels, respectively, of Fig. 7. The algebraic
expression of the diagrams in the left panel is given in Eq. (22). Similarly, the algebraic expression of the diagrams in the right
panel is given in Eq. (23).
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FIG. 8. Double PRCC diagrams contributing to the terms HN S(1) + HN T (0)S(1) (left panel) and HN T (0)T (0)S(1) (right panel) of Eq. (12b).

5. H̄NS(1)

This term contains a perturbed operator, S(1), which subsumes dominant effects of perturbation for one-valence atomic
systems. Expanding H̄N

H̄N S(1) = HN S(1) + HN T (0)S(1) + 1

2!
HN T (0)T (0)S(1). (24)

In the PRCC equation of S(1)
1 , both the one- and two-body CC operators from the first and second terms contribute. From

the third term, however, only the term HN T (0)
1 T (0)

1 S(1)
1 contributes. There are 15 diagrams that contribute to the PRCC

equation of S(1)
1 , and these are shown in the right panel of Fig. 6. The algebraic expression of these diagrams is given

in Eq. (25).
For the PRCC equation of S(1)

2 , there are in total 59 diagrams. Out of these 29 diagrams arise from the first two terms. These
diagrams are shown in the left panel of Fig. 8. The remaining 30 diagrams arise from the third term and are shown in the right
panel of Fig. 8. The algebraic expression of diagrams in the left and right panels is given in Eqs. (26) and (27), respectively:

〈HN S(1)〉p
v + 〈HN T (0)S(1)〉p

v + HN T (0)T (0)S(1)〉p
v =

∑
aqr

gapqr
(
ξ qr

av − ξ rq
av + t q

a ξ r
v − t r

aξ
q
v

) +
∑
aqbr

gabqr
[(−t qp

ab + t pq
ab

)
ξ r
v + t q

a ξ
r p
bv

+ t q
b ξ r p

av − t q
a ξ

pr
bv + t p

a ξ
qr
bv − t p

b ξ qr
av + t q

b ξ pr
av + 1

2!

( − t q
a t p

b + t p
a tq

b

)
ξ r
v +

∑
q

gp
qξ

q
v ,

(25)
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〈HN S(1)〉pq
va + 〈HN T (0)S(1)〉pq

va =
∑

r

gpqraξ
r
v +

∑
rs

gpqrsξ
rs
va −

∑
rb

(gpbraξ
rq
vb + gbqarξ

pr
vb ) +

∑
br

[−t p
b gqbar − t q

b gpbra
]
ξ r
v

+
∑

rs

gpqrst
s
aξ

r
v +

∑
bsr

[
gbpsr (t s

bξ
rq
va − t r

bξ
sq
va − t s

aξ
qr
bv − t q

b ξ sr
av ) + gbqsr

(
t r
aξ

sp
bv − t p

b ξ sr
va − t r

aξ
ps
bv

−t s
aξ

r p
bv + t s

bξ
r p
av − t r

bξ
sp
av

)] +
∑
rbc

gbcra
[
t r
c ξ

qp
bv − t r

bξ
qp
cv + t q

c ξ
pr
bv + t q

b ξ r p
cv + t p

b ξ rq
vc − t q

c ξ
r p
bv + t qp

cb ξ r
v

]

+ gpbsr
[(

t rq
ba − t rq

ab

)
ξ s
v − t qs

abξ
r
v

] − gqbsrt
sp
ab )ξ r

v

] +
∑

r

gprt
rq
va, (26)

〈HN T (0)T (0)S(1)〉pq
va =

∑
brcs

gbcrs
[(

t qr
ab − t rq

ab

)
ξ sp

cv + t qs
abξ

r p
cv + t rs

abξ
qp
cv + t qr

bc ξ sp
av − t qr

abξ ps
cv + t qp

ab

(
ξ rs

cv − ξ rs
vc

) + t rq
abξ

sp
vc

+ t qs
abξ

r p
vc − t rq

bc ξ
sp
av − t rs

baξ
qp
cv

] +
∑
rbs

[−gbprst
r
at q

b ξ s
v − gbqrst

s
at p

b ξ r
v

] +
∑
cbr

gcbart
q
c t p

b ξ r
v +

∑
brcs

gbcrs
[( − t qr

abt p
c

+ t qp
ab t r

c )ξ s
v + ( − t qp

ab t s
c + t qs

abt p
c

)
ξ r
v + (

t r p
ac t q

b + t qp
bc t r

a + t rq
abt p

c

)
ξ s
v + (

t q
b ξ rs

av + t r
aξ

qs
bv − t r

bξ
sq
va

)
t p
c + t p

b ξ sq
vat r

c

+ t r
a

( − t q
b ξ sp

cv + t s
bξ

qp
cv

) + t q
b

(
t r
c ξ

sp
av + t r

aξ
ps
cv

)
. (27)

6. Folded diagrams

The terms on the right-hand sides of the PRCC Eqs. (12a)
and (12b) are referred to as the renormalization terms in the
CC equation of the one-valence systems. It is an important
term, and its nonzero value distinguishes the PRCC equa-
tions of open-shell systems from the closed-shell systems.
These contribute through the folded diagrams arising from
the contraction of the energy with the CC operators. This
contraction is not possible in the case of closed-shell systems
as the energy diagrams do not have free lines. Folded diagrams
contributing to Eqs. (12a) and (12b) are given in Figs. 9(a) and
9(b).

III. POLARIZABILITY FOR ONE-VALENCE USING PRCC

There are three key points for choosing PRCC to com-
pute polarizability over the finite-field approach. First, this is
computationally efficient. In this method the coupled-cluster
equations are solved only once. However, in the finite-field
(FF) approach, CC equations need to be solved at least
twice—at two different perturbation strengths—which require
more computational time. Second, once implemented, the
other properties such as magnetic and hyperfine can be com-
puted with minor change in the implementation to replace
the dipole operator. The FF approach, however, is more suit-
able for the calculation of the electric properties. For other
properties, however, its implementation is not that straight-
forward. And, third, in terms of accuracy, it is equivalent to
the FF approach when used with accurate wave functions. A

detailed comparison in terms of implementation, efficiency,
and accuracy between these two approaches can be found in
Refs. [46,47].

In the PRCC, the electric dipole polarizability α of an atom
or ion is defined as the expectation of the dipole operator with
respect to the perturbed state |�̃v〉. For the one-valence atomic
system

α = −〈�̃v|D|�̃v〉
〈�v|�v〉 . (28)

Using the expression of |�̃v〉 from Eq. (6) and retaining only
the terms with first order in λ, we get

α = 1

N 〈�v|D̄(S(1) + T(1) + T(1)S(0) ) + (S(1) + T(1)

+T(1)S(0) )†D̄ + S(0)†
D̄(S(1) + T(1) + T(1)S(0) )

+(S(1) + T(1) + T(1)S(0) )†D̄S(0)|�v〉, (29)

where

N = 〈�v|[eT (0)
(1 + S(0) )]†[eT (0)

(1 + S(0) )]|�v〉, (30)

is the normalization factor of the eigenstate |�v〉 and D̄,=
eT (0)†

DeT (0)
, is a dressed operator, which is a nonterminat-

ing series of the cluster operator T (0). In the present work,
however, we consider up to the second-order term D̄ = D +
DT (0) + T (0)†D + T (0)†DT (0). The higher order terms in T (0)

have negligible contributions, and this has been confirmed
through detailed computations [41]. In the CCSD approxima-
tion, Eq. (29) can be written as

α = 1

N 〈�v|
(
DS(1)

1 + DS(1)
2 + S(0)†

1 DS(1)
1 + S(0)†

1 DS(1)
2 + S(0)†

2 DS(1)
1 + S(0)†

2 DS(1)
2 + S(0)†

1 DT(1)
1 + S(0)†

2 DT(1)
1

+S(0)†
2 DT(1)

2 + T (0)†
1 DS(1)

1 + T (0)†
1 DS(1)

2 + T (0)†
2 DS(1)

2 + DT(1) + T (0)†
1 DT(1)

1 + T (0)†
1 DT(1)

2 + T (0)†
2 DT(1)

1

+T (0)†
2 DT(1)

2

) + H.c + DT(1)
1 S(0)

1 + DT(0)
1 S(1)

1 |�v〉. (31)
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FIG. 9. Folded diagrams contributing to PRCC Eqs. (12a) (a) and
(12b) (b).

Here the terms S(0)†
1 DT(1)

2 + H.c., T (0)†
2 DS(1)

2 + H.c., and
DT(1)

2 + H.c. are not included as these do not contribute to
the α of the one-valence system.

A. Diagrams for α

There are 128 Goldstone diagrams which contribute to
Eq. (31). As an example of the diagrams, in Fig. 10 we show
one diagram from each of the terms in Eq. (31). The diagrams
from the Hermitian conjugate (H.c.) terms are, however, not
shown as these are topologically equivalent. Among all the
terms in Eq. (31), the first four terms, DS(1)

1 , DS(1)
2 , and their

FIG. 10. Some example polarizability diagrams for one-valence
atomic system, contributing to Eq. (31)

FIG. 11. Perturbative S(1)
3 diagrams arising from gT(1)

2 and gS(1)
2

contractions. Panels (a), (c), and (f) correspond to the particle-
particle (p-p), whereas panels (b) and (e) correspond to the hole-hole
(h-h) type of contractions.

H.c., are expected to have the dominant contribution. The rea-
son for this is the large magnitude of the one-valence cluster
operators and the strong effect of the perturbation on these
operators. More importantly, the terms DS(1)

1 + H.c. subsume
the contributions from the Dirac-Fock (DF) and the random-
phase-approximation (RPA). The diagrams of the DS(1)

1 and
DS(1)

2 are shown in Figs. 10(a) and 10(b), respectively.
Among the terms with two orders of CC operators,

S(0)†
1 DS(1)

1 , S(0)†
1 DS(1)

2 , S(0)†
2 DS(1)

1 , S(0)†
2 DS(1)

2 , and their H.c.,
are expected to give dominant contributions. The example
diagrams of these four terms are shown in Figs. 10(c)–(f).
The next important contributions are expected from the terms
with one each of the T and S operators: S(0)†

1 DT(1)
1 , S(0)†

2 DT(1)
1 ,

S(0)†
2 DT(1)

2 , T (0)†
1 DS(1)

1 , T (0)†
1 DS(1)

2 , T (0)†
2 DS(1)

2 and their H.c.
and DT(1)

1 S(0)
1 and DT (0)

1 S(1)
1 . The representative diagrams

from these terms are shown in Figs. 10(g)–(n). The remaining
terms, DT(1)

1 , T (0)†
1 DT(1)

1 , T (0)†
1 DT(1)

2 , T (0)†
2 DT(1)

1 , T (0)†
2 DT(1)

2
and their H.c., having two orders of closed-shell operator, are
expected to have the lowest contribution to α. This is due
to the small magnitudes of these operators for the open-shell
systems. Some representative diagrams from these are shown
in Figs. 10(o)–(s).

B. Perturbative triples

To account for the corrections from the triple excitations
in PRCC we resort to perturbative triples. The perturbative
triples encapsulate dominant contributions from triples, how-
ever, at a much lower computational cost than full triples.
Since the effect of external perturbation is incorporated
through the perturbed operators in PRCC, for this we choose
perturbative triples arising from T(1) and S(1). At the level
of triples, only two-body operators contribute, and these lead
to 5 S(1)

3 diagrams (shown in Fig. 11) after the contractions
gT(1)

2 and gS(1)
2 . Here gi j = ∑

i< j[
1

ri j
+ gB(ri j )] is the two-

body residual interaction. The algebraic expressions for these
diagrams (in the sequence of Fig. 11) are

S(1)
3 ≈ a†

pa†
r a†

xavabaa


ε
prx
abv

∑
r

〈rx|g|qv〉〈pq|T(1)
2 |ab〉, (32a)

032801-10



FOCK-SPACE PERTURBED RELATIVISTIC … PHYSICAL REVIEW A 106, 032801 (2022)

FIG. 12. Polarizability diagrams contributing to the term S(0)†
2 DgT(1)

2 .

S(1)
3 ≈ a†

pa†
qa†

xavabaa


ε
pqx
abv

∑
c

〈cx|g|bv〉〈pq|T(1)
2 |ac〉, (32b)

S(1)
3 ≈ a†

xa†
pa†

qabaaav


ε
xpq
vab

∑
r

〈pq|g|rb〉〈xr|S(1)
2 |va〉, (32c)

S(1)
3 ≈ a†

xa†
pa†

qabaaav


ε
xpq
vab

∑
c

〈cq|g|ab〉〈xp|S(1)
2 |vc〉, (32d)

S(1)
3 ≈ a†

pa†
xa†

qabavaa


ε
xpq
vab

∑
r

〈xq|g|rb〉〈pr|S(1)
2 |av〉, (32e)

where 
ε
i jk
abc = εa + εb + εc − εi − ε j − εk . For the dipole

polarizability, the dominant contribution is expected from
the contraction of S(1)

3 with the unperturbed operator S(0)
2

and the dipole operator. This is due to the larger ampli-
tudes of the S(0) operators for the one-valence systems.
There are in total 17 diagrams from the term S(0)†

2 DgT(1)
2 .

These diagrams are shown in Fig. 12. Similarly, the

term S(0)†
2 DgS(1)

2 has 32 diagrams, and these are given in
Fig. 13.

IV. BASIS SET CONVERGENCE

A basis set which provides a good description of the single-
electron wave functions and energies is essential to obtain
accurate and reliable results using the PRCC theory. Some of
the basis sets used in atomic theory calculations are B-spline
[48], finite discrete spectrum [49], Slater-type orbitals [50], r
multiplied basis [51], and analytical Gaussian basis proposed
and optimized by Dyall [52] and Huzinaga [53]. The present
implementation of our RCC codes is using the numerical
Gaussian-type orbitals (GTOs) [54]. The advantage of the nu-
merical basis is the simplicity of extending the PRCC method
to compute other atomic properties like the parity noncon-
servation, intrinsic electric dipole moment, QED effects, etc.
The use of analytic basis sets in some of these would require
additional developments and approximations. Our previous
works have shown that the even-tempered GTOs converge
faster and predict reliable values of dipole polarizabilities and
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FIG. 13. Polarizability diagrams contributing to the term S(0)†
2 DgS(1)

2 .

other atomic properties. Considering this, in the present work,
we used even-tempered GTOs [38] as the single-electron
basis set. However, to ensure the accuracy of GTOs used
in our calculations, the basis parameters are optimized to
match the orbital energies as well as the self-consistent field

energies with the GRASP2K [55] results. We achieved an
excellent agreement between the GTO and GRASP2K ener-
gies. A detailed analysis and comparison of the energies of
the group-13 elements is reported in our recent work [31]. To
improve the quality of the basis set further, we incorporate
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TABLE I. Convergence trend of α (a.u.) and electron correlation
energy (cm−1) for ground state with basis size. The values listed are
calculated using the Dirac-Coulomb Hamiltonian.

Orbitals α

Basis Al 2P1/2
2P3/2 
E (corr)

98 18s, 18p, 9d , 6 f , 4g, 3h −58.852 −64.185 5138.25
120 20s, 20p, 11d , 8 f , 6g, 5h −59.433 −65.183 5310.54
142 22s, 22p, 13d , 10 f , 8g, 7h −58.762 −64.461 5544.10
164 24s, 24p, 15d , 12 f , 10g, 9h −58.347 −63.985 5649.74
175 25s, 25p, 16d , 13 f , 11g, 10h −58.273 −63.896 5665.85
181 27s, 27p, 16d , 13 f , 11g, 10h −58.273 −63.896 5665.34

In

110 18s, 18p, 13d , 6 f , 5g, 4h −67.934 −87.128 4378.54
132 20s, 20p, 15d , 8 f , 7g, 6h −68.339 −87.489 4554.95
154 22s, 22p, 17d , 10 f , 9g, 8h −67.203 −86.093 4912.85
176 24s, 24p, 19d , 12 f , 11g, 10h −64.678 −82.842 5393.83
187 25s, 25p, 20d , 13 f , 12g, 11h −64.024 −82.036 5522.92
192 26s, 26p, 21d , 13 f , 12g, 11h −64.027 −81.996 5522.97
197 27s, 27p, 22d , 13 f , 12g, 11h −64.027 −81.996 5522.97

the effects of Breit interaction, vacuum polarization (VP), and
the self-energy (SE) corrections in the basis set generation.
For the Breit interaction, we employ the expression given in
Ref. [37] and incorporate it at the level of orbital basis as
well as the PRCC calculations. The effects of the vacuum
polarization is considered using the Uehling potential [56],
modified to incorporate the finite size effects of nucleus [57].
To compute the corrections from vacuum polarization to the
single-electron energies we used the Uehling potential [56],
with the modification to incorporate the finite-size effect of
the nuclear charge distribution [57,58],

VUe(r) = −2α

3r

∫ ∞

0
dx xρ(x)

∫ ∞

1
dt

√
t2 − 1

(
1

t3
+ 1

2t5

)

×(
e−2ct |(r−x)| − e−2ct (r+x)

)
, (33)

where α is the fine-structure constant and should not be con-
fused with dipole polarizability. The nuclear charge density
ρ(x) is the finite-size Fermi density distribution

ρnuc(r) = ρ0

1 + e(r−c)/a
, (34)

with a = t4 ln(3). The parameter c is the half charge radius
such that ρnuc(c) = ρ0/2, and t is the skin thickness. The self-
energy corrections to single-electron energies are incorporated
through the model Lamb-shift operator introduced by Shabaev
et al. [59] and were calculated using the code QEDMOD [60].

Owing to the mathematically incomplete nature of the
GTO basis [61], it is essential to check the convergence of
properties with the basis size. In Table I we demonstrate the
convergence of α for Al and In by listing α for both the
fine-structure states as a function of the basis size. Similar
data are also presented for the electron correlation energy
for the ground state. For these calculations we have used the
Dirac-Coulomb (DC) Hamiltonian as using the DCB Hamil-
tonian is computationally more expensive. As evident from
the table, to achieve the convergence of α, we start with a
moderate basis size by considering up to the h symmetry and

FIG. 14. Convergence of properties as a function of basis size for
Al (a) excitation energies and (b) dipole polarizability. (c) Percentage
change in the ground-state energies of Al and In. (d) Difference in
the α values of spin-orbit split states, 2P1/2 and 2P3/2, of Al and In.
In (a) and (c), the plot with labels y1 (y2) corresponds to the values
indicated on the left (right) y axis.

then systematically increase the number of orbitals in each
symmetry until the change in α is � 10−3 a.u. For example, in
the case of Al, the change in α is 2 × 10−8 a.u. when the basis
set is augmented from 175 to 181 orbitals. So we consider the
basis set with the 175 orbitals as the optimal set and use it
in further calculations to incorporate the effects of the Breit
interaction and QED corrections. The same approach is also
adopted to achieve the convergence of excitation energies,
however, with a key difference. In this case, the basis set in-
cludes orbitals from j symmetry also. The convergence trends
of the excitation energies and α are shown in Figs. 14(a) and
14(b), respectively. As is discernible from the figure, both the
excitation energy and α converge well with the basis size.

V. RESULTS AND DISCUSSION

A. Excitation energies

The excitation energy of a state |�w〉 is defined as


Ew = Ew − Ev, (35)

where Ev is the energy of the ground-state wave function and
obtained from the solution of Eq. (2) for 3p1/2 and 5p1/2 states
for Al and In, respectively, and Ew is the energy of an excited
state |�w〉. In the RCC Ew is given by [41]

Ew = 〈�w|H̄DCB(1 + S(0) )|�w〉, (36)

where |�w〉 is an excited Dirac-Fock state. In Table II we have
listed the energy of the ground state and the excitation ener-
gies of a few low-lying states of Al and In. For comparison,
the experimental values from NIST [62] are also listed in the
table. For Al, our theoretical results are in excellent agreement
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TABLE II. Energy (cm−1) of the ground-state and the excitation
energies of low-lying atomic states of Al and In calculated using
RCC theory.

States RCC results NIST [62]

Al

3s2 3p1/2 48 147.69 48 275.20
3s2 3p3/2 111.93 112.06
3s2 4s1/2 25 363.81 25 347.76
3s2 4p1/2 32 927.34 32 949.81
3s2 4p3/2 32 938.49 32 965.64

In

5s2 5p1/2 46 633.75 46 670.20
5s2 5p3/2 2411.59 2212.59
5s2 6s1/2 24 413.48 24 372.96
5s2 6p1/2 31 864.31 31 816.96
5s2 6p3/2 32 179.48 32 115.22
5s2 5d3/2 32 912.20 32 892.21
5s2 5d5/2 32 921.59 32 915.54

with the experimental data for all states. The maximum rela-
tive error is 0.26%, in the case of the 3p1/2 state. For In also
we observe the same trend of relative errors except for the
state 5p3/2, where the error is 9%. This could be attributed to
the correlation effects from higher energy configurations not
included in the present work due to divergence issues.

To discern the electron correction effects as a function
of configurations included in the computations, energies are
computed with different configuration spaces in steps. For
this we start with the ground-state configuration in the con-
figuration space and include the higher energy configurations
in subsequent steps. For Al, we start with 3s23p and refer
to this as CF1. Then we include two configurations 3s24s

and 3s24p in two subsequent calculations (CF2 and CF3),
respectively. The inclusion of the configuration 3s23d , how-
ever, leads to the divergence in the FSRCC computations
due to the small energy denominator, and hence, we do not
compute the excitation energy of 3d . For In, 5s25p (CF1) is
the starting configuration, and the excited state configurations
5s26s, 5s26p, and 5s25d are included in the later computa-
tions with configuration spaces identified as CF2, CF3, and
CF4, respectively. The trend of contributions from the higher
energy configurations to the ground-state energies of Al and
In is shown in Fig. 14(c). As we observe from the figure, for
both atoms, the relative error decreases with the inclusion of
higher energy configurations. The reason for this is attributed
to the better inclusion of the core-valence and valence-valence
correlations with larger configuration space.

B. Polarizability

The values of α for the ground state, 2P1/2, and the
SO-coupled excited state, 2P3/2, are listed in Tables III and
IV, respectively. For comparison the other theoretical and
experimental results from the previous works are also in-
cluded. In the tables the results listed as PRCC are using
the DC Hamiltonian and the converged bases with orbitals
25s25p16d13 f 11g10h and 26s26p21d13 f 12g11h for Al and
In, respectively, and the results listed as PRCC+Breit+QED
incorporate the effects of Breit and QED corrections. The
values listed as estimated refer to the value after incorporating
the estimated contributions from the i-, j-, and k-symmetry
orbitals. The contributions from the DF and LPRCC are listed
separately to assess the electron correlations effects subsumed
by the nonlinear terms in the PRCC.

From the tables, we observe three important trends in the
DF, LPRCC, and PRCC α results of Al and In. First, except
for the 2P3/2 state of In, the LPRCC results are lower than

TABLE III. The value of α (a.u.) for the 2P1/2 state from the present work using PRCC and those reported in previous work.

Present work Previous work

Results Method Results Method
Al

57.083 DF 55.4 ± 2.2 [20] Multi-reference configuration interaction (MRCI)
51.537 LPRCC 57.74 [23] Coupled-cluster single-double with partial triples [CCSD(T)]
58.273 PRCC 57.8 ± 1.0 [22] State-interacting spin-orbit configuration interaction (SI-SOCI)
58.391 PRCC(T) 58.0 ± 0.4 [24] Coupled-cluster single-double with partial triples [CCSD(T)]
58.808 PRCC(T)+Br. 61.0 [25] Density functional theory with self-interaction correction (SIC_DFT)
58.808 PRCC(T)+Br.+QED 46 ± 2 [26] Exp.
58.814 Est. 55.3 ± 5.5 [27] Exp.
58.81(118) Reco.

In

62.756 DF 61.9 ± 1.2 [20] Multi-reference configuration interaction (MRCI)
58.544 LPRCC 62.0 ± 1.9 [21] Fock-space coupled-cluster with partial triples [FSCC(T)]
64.027 PRCC 61.5 ± 5.6 [63] Coupled-cluster single-double with partial triples [CCSD(T)]
64.098 PRCC(T) 66.4 ± 5.0 [22] State-interacting spin-orbit configuration interaction (SI-SOCI)
64.317 PRCC(T)+Br. 70.3 [25] Density functional theory with self-interaction correction (SIC_DFT)
64.340 PRCC(T)+Br.+QED 68.7 ± 8.1 [28] Exp.
64.299 Est. 62.1 ± 6.1 [29] Exp.
64.30(129) Reco.
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TABLE IV. The value of α (a.u.) for the 2P3/2 state from the
present work using PRCC and those reported in previous work.

Present work Previous work

Results Method Results Method
Al

57.655 DF 55.9 ± 2.2 [20] MRCI
57.421 LPRCC 58.0 ± 1.0 [22] SI-SOCI
63.896 PRCC
63.885 PRCC(T)
64.692 PRCC(T)+Br.
64.693 PRCC(T)+Br.+QED
64.682 Est.
64.68(129) Reco.

In

76.157 DF 69.7 ± 1.4 [20] MRCI
76.586 LPRCC 74.4 ± 8.0 [22] SI-SOCI
81.996 PRCC 69.6 ± 3.5 [21] FSCC(T)
81.760 PRCC(T)
82.309 PRCC(T)+Br.
82.257 PRCC(T)+Br.+QED
82.264 Est.
82.26(165) Reco.

the DF results. This could be attributed to the contraction
of the core with the inclusion of correlation effects within
the LPRCC. Second, for both atoms the PRCC values are
larger than the DF. This is due to the contribution of electron
correlations from the nonlinear terms. In particular, we find
the contributions from the nonlinear terms with one each of
the perturbed and unperturbed CC operators, viz., HN T(1)S(0)

and HN T (0)S(1), are most prominent. And, third, the difference
between the α of the fine-structure states, αFS, of In is more
than three times larger than Al. This is shown in Fig. 14(d).
The reason for this could be the larger difference in the radial
extents of the 2P1/2 and 2P3/2 states in In. In the DF results,
〈r〉2P3/2

− 〈r〉2P1/2
= 0.138 a.u. for In; however, it is only 0.007

a.u. for Al.

1. 2P1/2

For the 2P1/2 state of Al, there are two experimental results
of α. However, the reported results have a large difference.
The latest experimental result of α given in Ref. [27] is ≈20%
larger than the previous result reported in Ref. [26]. More
importantly, there is a significant difference in the experimen-
tal errors. The measurement in Ref. [27] has an experimental
error of ≈10%, whereas in Ref. [26] it is ≈4%. Our recom-
mended value of 58.70 is ≈6% larger than Ref. [27]. As listed
in the table there are five theoretical results from previous
works. These include two coupled-cluster results, similar to
the method we have employed in the present work, but with
a key difference in the computation of α. The two previous
works used a finite-field method. Like in the experimental
results, here as well, there is a wide variation in the reported
values. There is a difference of about 10% between the lowest
[20] and the highest [25] reported values. Although Refs. [20]
and [22] adopt the same quantum many-body method, the

value in Ref. [22] is larger than Ref. [20]. Our PRCC value of
58.27 is in good agreement with the CCSD(T) results reported
in Refs. [23] and [24] and the SI-SOCI result [22]. However,
our recommended value 58.70 is on the higher side of these
results. The reason for this is attributed to the inclusion of
the contributions from the Breit and QED corrections and the
large basis sets in our calculations.

For In also there are two experimental results for ground
state, and, like in Al, there is a large difference between the
two results. The recent measurement using the molecular-
beam electric deflection technique [29] is about 10.6% larger
in value than the result in Ref. [28]. Our recommended value
64.23 lies between the two results. Among the previous theo-
retical results, in terms of methods adopted, the results from
Borschevsky et al. [21] and Safronova et al. [63] are in
good agreement with our results. Considering uncertainties,
our recommended value 64.23 is in good agreement with the
previous results. The reason for a small difference could be at-
tributed to the difference in the basis set and the contributions
from the Breit and QED corrections. The other two results are
using the CI-based methods. The result of 66.4 from Ref. [22]
is the largest among all the results and differs by about 8%
from the smallest value 61.5, Ref. [20].

2. 2P3/2

The static dipole polarizability of the 2P3/2 state, unlike the
2P1/2 state, has contributions from the anisotropy components
associated with magnetic quantum numbers MJ = ±3/2 and
±1/2. In Table IV we have given the final value of α from
our calculation and compare with the previous theory results.
Analyzing the results we observe three important differences
in the trend of the electron correlation effects in comparison
with the 2P1/2 state. First, for both atoms, the DF and LPRCC
results have similar values. This indicates there is less con-
traction of the core orbitals with the inclusion of correlation
effects. Second, the percentage contribution from the nonlin-
ear terms in PRCC is less than 2P1/2. And, third, the overall
Breit+QED correction is twice larger.

To the best of our knowledge, for both the atoms, there are
no experimental results of α for the 2P3/2 state, and among
the previous results only a few are based on relativistic cal-
culations. In Refs. [20] and [21], the coupled-cluster method
is employed to obtain the energy of Al and In, respectively,
and then α is computed using the finite-field approach. In
Ref. [22], however, the configuration interaction method is
combined with the finite-field approach to calculate the α. For
Al, our LPRCC result is within the theoretical uncertainty of
Refs. [20,22]. There is, however, an important difference from
Refs. [20,22]. The value of α reported from our calculation
is independent of MJ , as it is calculated in terms of reduced
matrix elements. The values reported from Refs. [20,22], how-
ever, are the average of the α for two MJ values. A similar
trend is observed in the case of In as well; that is, our LPRCC
results are in agreement with the values reported in the pre-
vious works [20–22]. Our recommended values are larger
than the values in Refs. [20,21]. From the detailed analysis
of correlation effects in α for 2P3/2, we find the reason for
the larger value of α is the large core-polarization (CP) and
valence-virtual correlation (VC) effects. As discussed in the
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TABLE V. Contributions to α (a.u.) from different terms in
PRCC theory for Al and In.

Al In

Terms + H.c. 2P1/2
2P3/2

2P1/2
2P3/2

S(1)†D 85.3337 88.4131 90.0421 107.8206
S(1)†DS(0) −9.1048 −5.7448 −12.2584 −11.7265
T (0)†DS(1) −1.8365 −2.2499 −0.7316 −0.9715
S(0)†DT(1) −7.2333 −7.2820 −5.5342 −5.5331
T(1)†D −7.6424 −7.9950 −7.4631 −7.1608
T (0)†DT(1) 0.9567 1.1739 1.5013 1.5164
Normalization −0.9636 −0.9744 −0.9767 −0.9768
Total 58.2732 63.8955 64.0271 81.9959

next section, besides DF, these are the other important contri-
butions and these are accounted accurately in our computation
through the PRCC terms DS(1)

1 + H.c. and DS(1)
2 + H.c.

A sizable contribution from the Breit interaction and QED
corrections is also observed. Our recommended value 82.50
is within the theoretical uncertainty of Ref. [22].

C. Electron correlations

Next, we analyze and present the different electron correla-
tions effects incorporated in the calculations of α. For this, we
separate the expression in Eq. (31) into six different terms and
give their contributions in Table V. As evident from the table,
for both the atoms, the leading order (LO) term is S(1)†D +
H.c. The contribution from the LO term is ≈146%(138%)
and ≈141%(131%) of the PRCC value for the 2P1/2(2P3/2)
state of Al and In, respectively; that is, the contribution from
the LO term exceeds the total value. This is expected as it
incorporates the results from the DF term and CP effects.
Except for the 2P3/2 of Al, the next leading order (NLO)
term is S(1)†DS(0) + H.c. It contributes ≈ −10.6%(−6.5%)
and −13.6%(−10.8%) for the 2P1/2(2P3/2) state of Al and
In, respectively. For the next to NLO contribution, the terms
S(1)†DS(0) + H.c. and T(1)†D + H.c. give nearly equal con-
tributions. Like the NLO term, the contributions from these
terms are opposite in phase to the LO contribution and, hence,
reduce the total value of α. It is to be mentioned here that the
contributions from the core electrons to α are important. This
is unlike the properties of one-valence systems without an
external perturbation like the electromagnetic transitions. This
is reflected in the contribution from the term T(1)†D + H.c. for
both atoms.

1. Dominant contributions

To gain insights into the dominant contributions from the
virtual orbitals, we compute α using basis sets with selective
addition of orbitals in d-, f -, and g-symmetries; the results
are plotted in Fig. 15. For Al the dominant contribution, as
discernible from the figure, is from the d-virtual orbitals.
A similar trend in Al+ was reported in our previous work
[31]. The same trend is also observed for In, but with a key
difference. In this case the f orbitals also contribute, and this
is consistent with the trend reported in our previous work [31],
where the f -virtual electrons were found to have dominant

FIG. 15. Trend of contributions to α from virtual orbitals for Al
(a, b) and In (c, d) as basis is augmented.

contribution due to strong dipolar mixing with the core elec-
trons in the 4d orbital.

To quantify the orbital wise contributions, we identify the
dominant cluster amplitudes which contribute to the LO term
DS(1)

1 + H.c. As discernible from Fig. 17 below, for Al, at
40.9% (36.6%) the cluster operators with the virtual orbital
3d3/2(3d5/2) have the largest contribution to the 2P1/2(2P3/2)
polarizability, due to the strong dipolar mixing between the 3p
and 3d orbitals. The second largest contribution is observed
from the cluster amplitudes with the 4s1/2 virtual orbital; the
contribution is ≈25.3% (24.6%) for the 2P1/2(2P3/2) state.
The next three dominant contributions are from the 4d , 8d ,
and 7d virtual orbitals, and together they contribute ≈22.15%
(20.18%) for the 2P1/2(2P3/2) state. A similar trend is also
observed in the case of In, where the first two dominant
contributions are from the 5d and 6s orbitals. They contribute
≈38.7% (35.6%) and 25.6% (27.6%), respectively, for the
2P1/2(2P3/2) state. In contrast to Al, the third and fourth dom-
inant contributions are of the same order, and different d
electrons contribute to 2P1/2 and 2P3/2 states.

FIG. 16. The DF (a), CP (b, c), and VC (d) terms subsumed in
DS(1)

1 .
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FIG. 17. Five largest percentage contributions to DS(1)
1 + H.c. for

2P1/2 and 2P3/2 states of Al (a) and In (b). The percentage contribu-
tions from DF, CP, and VC for Al (c) and In (d).

2. Core polarization, valence-virtual correlation, QED effects,
and perturbative triples

Next we assess the contributions from core-polarization
and pair-correlation effects to α of Al and In. The term DS(1)

1
subsumes the contributions from DF, core-polarization, and
valence-virtual correlation effects. The diagrams contributing
to these are shown in Fig. 16. The other dominant contribution
to the core polarization is from the term DS(1)

2 , and the corre-
sponding diagram is shown in Fig. 10(b) and its exchange. The
contribution from the valence-virtual correlation is estimated
by subtracting the contributions of Figs. 16(a), 16(b), and
16(c) from DS(1). The percentage contributions of DF, CP, and
VC are shown in Fig. 17.

For both atoms, as to be expected, the DF has the largest
contribution. In terms of percentage, it constitutes ≈66.9%
(65.2%) and 69.7% (70.6%) of the DS(1) contribution for the
2P1/2(2P3/2) state of Al and In, respectively. Between CP and
VC, except for the 2P3/2 state of Al, the contribution from VC
effect is larger than CP, and it is more significant in the case
of In. In quantitative terms, it constitutes ≈22.8% (16.9%)
and 27.1% (43.4%) of the DS(1) for the 2P1/2(2P3/2) state of
Al and In, respectively. The CP contributions are ≈ 10.3%
(17.9%) and 3.2% (13.9%) of the DS(1) for the 2P1/2(2P3/2)
state of Al and In. It is, however, to be emphasized that the CP
contribution in In is smaller than Al. This indicates a better
screening of nuclear potential in In. The VC contribution,
on the contrary, is larger than Al. Further, as is discernible
from Fig. 17, except for VC in Al, the CP and VC effects are
larger in 2P3/2. For example, for the 2P3/2 state of In, the CP
contribution is 4.4 times larger than 2P1/2. Similarly, the VC
contribution is 1.6 times that of 2P1/2. This naturally leads to

TABLE VI. Contributions to α (a.u.) from Breit interaction,
vacuum polarization, and self-energy corrections from PRCC
calculation.

Al In

2P1/2
2P3/2

2P1/2
2P3/2

DC 58.2732 63.8955 64.0272 81.9959
Breit 0.4172 0.8072 0.2192 0.5490
Self-energy −0.0012 −0.0002 0.0025 −0.0380
Vacuum polarization 0.0013 0.0013 0.0205 −0.0139

a larger α for the 2P3/2 state, for both atoms, when compared
to the previously reported values.

The contributions from the Breit interaction, vacuum po-
larization, and self-energy corrections are listed in Table VI,
and, for easy comparison, the contributions in percentage are
plotted in Fig. 18. As is discernible from the figure, for both
states, the Breit contribution in Al is larger than In. This is
consistent with the trend reported in our previous work [31]
where we found that, among all the group-13 ions, Al+ has
the highest contribution. The largest contribution is ≈1.3% for
the 2P3/2 state. For the VP and SE contributions, in contrast to
the trend of Breit contribution, these are larger in In than Al.
The largest contribution from VP is ≈0.3% for the 2P1/2 state,
whereas SE has the largest contribution of ≈0.5%, for the
case of the 2P3/2 state of In. The largest combined contribution
from Breit interaction and QED corrections is ≈ 1.3%, in the
case of the 2P3/2 state of Al. Considering the need of accurate
α from theory calculations, this is a significant contribution
and cannot be ignored.

FIG. 18. Contributions from the Breit interaction, vacuum polar-
ization, and self-energy corrections for 2P1/2 and 2P3/2 states of Al
and In.
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TABLE VII. Contributions from the p-p and h-h types of pertur-
bative triples arising from S(0)†DgS(1)

2 and S(0)†DgT(1)
2 terms.

Al In

Terms + H.c. 2P1/2
2P3/2

2P1/2
2P3/2

S(0)†DgS(1)
2 (p-p) 0.0935 0.0616 0.0872 0.0986

(h-h) 0.0039 −0.0008 0.0031 −0.0020
S(0)†DgT(1)

2 (p-p) −0.02744 −0.08247 −0.01090 −0.34036
(h-h) −0.02381 0.01028 −0.00865 0.00739
Total 0.04615 −0.01139 0.07075 −0.23637

The contributions from the perturbative triples are listed
in Table VII. On closer inspection of the table, we observe
that the contribution from S(0)†DgT(1)

2 is opposite in phase to
S(0)†DgS(1)

2 for both p-p and h-h group of diagrams. This leads
to the cancellation and reduces the total contribution from
perturbative triples. The other important observation from the
table is that the 2P3/2 state has negative contribution for both
atoms. The largest contribution of ≈ 0.3% of PRCC values is
observed, in the case of the 2P3/2 state of In.

D. Theoretical uncertainty

Based on the various approximations used in the computa-
tions of α, we have identified four sources of uncertainties.
The first source of uncertainty is associated with the basis
set truncation. From the convergence of α we observe that
the change in α, with orbitals up to h symmetry, is � 10−3

(a.u.) when the optimal basis set is augmented, and, as listed
in Table IV, the largest overall contribution from the i, j,
and k symmetry orbitals is in the case of 2P3/2 of In and
amounts to ≈0.06%. Although the combined contribution
from the orbitals with higher symmetries, beyond the k sym-
metry, is expected to be smaller, we take 0.1% as an upper
bound from this source. The second source of uncertainty
is the truncation of the dressed operator D̄ to D + DT (0) +
T (0)†D + T (0)†DT (0). To estimate the uncertainty from this
source, we use the findings from our previous work [41]
where we showed that the terms with third order in T (0) and
higher together contribute less than 0.1%. We take this as the
upper bound from this source. The third source of uncertainty
is the truncation of CC operators to singles and doubles.
Among the higher excitations, triple excitations contribute
the most, and the dominant contribution is subsumed in the
perturbative triples. Therefore, in the present work we have
included the contributions from the perturbative triples arising
from S(0)†DgS(1)

2 and S(0)†DgT(1)
2 . Based on the analysis of the

contributions to α from the CC terms at the CCSD level, these
are expected to have dominant contributions. We observed the
largest contribution of 0.3%, in the case of the 2P3/2 state of
In. This is consistent with the observed largest contribution
of 0.28% for In+ in our previous work [31]. So, from this
source of uncertainty we take 1.0% as an upper bound for
the cumulative contribution from the missing correlation ef-
fects in perturbative triples and higher excitations and their
basis dependence. The last source of theoretical uncertainty
is associated with the frequency-dependent Breit interaction,

which is not included in our calculations. To estimate an upper
bound of this source we use the results in our previous work
[64], where using GRASP2K we estimated an upper bound
of 0.13% for Ra. As Al and In are lighter than Ra, the con-
tribution is expected to be smaller, and we take 0.13% as the
uncertainty from this source. There could be other sources of
theoretical uncertainties, such as the higher order coupled per-
turbation of vacuum polarization and self-energy terms, etc.
These, however, have much smaller contributions, and their
combined uncertainty could be below 0.1%. Combining the
upper bounds of all four sources of uncertainties, we estimate
a maximum theoretical uncertainty of 2% in the recommended
value of α.

VI. CONCLUSION

We have developed a relativistic coupled-cluster theory-
based method to compute the properties of one-valence atoms
and ions with an external perturbation. We employ this
method to calculate the electric dipole polarizability of ground
state and SO-split excited state of Al and In. In addition,
to test the quality of the wave functions, we also calculated
the excitation energy of few low-lying states. To improve the
accuracy of α further, contributions from the Breit interaction
and QED corrections are included, and, to ensure the con-
vergence of α with basis size, large bases up to k-symmetry
are used.

For the 2P1/2 state, our recommended value lies within the
range of the previous theoretical results for both atoms. In
particular, our results are closer to those reported in Refs. [22]
and [21] for Al and In, respectively. For the 2P3/2 state, how-
ever, our recommended value is lager than the previous values.
It is to be mentioned that our LPRCC values are closer to the
previous results. The reason for the larger PRCC values could
be attributed to better inclusion of correlation effects through
the inclusion of nonlinear terms.

From the analysis of the electron correlations, we find that
for both atoms, the VC contribution is larger than CP. Between
Al and In, the contribution from CP decreases, but VC effects
are found to increase. In terms of orbital contributions, for
Al, the first two dominant contributions to α come from the
3p-3d and 3p-4s dipolar mixings. For In, however, they are
from the 5p-5d and 5p-6s mixings. For the contribution from
the Breit interaction, the largest contribution is ≈ 1.3% of the
DC value, observed in the case of the 2P3/2 state of Al. The
largest contributions from the Uehling potential and the self-
energy corrections are ≈ 0.3% and 0.5%, respectively, in the
case of 2P1/2 and 2P3/2 states of In.
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Grant, New version: Grasp2K relativistic atomic structure pack-
age, Comput. Phys. Commun. 184, 2197 (2013).

[56] E. A. Uehling, Polarization effects in the positron theory, Phys.
Rev. 48, 55 (1935).

[57] L. Wayne Fullerton and G. A. Rinker, Accurate and efficient
methods for the evaluation of vacuum-polarization potentials of
order zα and zα2, Phys. Rev. A 13, 1283 (1976).

[58] S. Klarsfeld, Analytical expressions for the evaluation of
vacuum-polarization potentials in muonic atoms, Phys. Lett. B
66, 86 (1977).

[59] V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, Model
operator approach to the Lamb shift calculations in rel-
ativistic many-electron atoms, Phys. Rev. A 88, 012513
(2013).

[60] V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, Qedmod:
Fortran program for calculating the model Lamb-shift operator,
Comput. Phys. Commun. 189, 175 (2015).

[61] I. Grant, Relativistic atomic structure, in Springer Handbook
of Atomic, Molecular, and Optical Physics, edited by G. Drake
(Springer, New York, 2006), pp. 325–357.

[62] Nist atomic spectroscopic database, https://physics.nist.gov/
PhysRefData/ASD/levels_form.html (2013).

[63] M. S. Safronova, U. I. Safronova, and S. G. Porsev, Polarizabil-
ities, Stark shifts, and lifetimes of the In atom, Phys. Rev. A 87,
032513 (2013).

[64] S. Chattopadhyay, B. K. Mani, and D. Angom, Electric dipole
polarizability of alkaline-earth-metal atoms from perturbed rel-
ativistic coupled-cluster theory with triples, Phys. Rev. A 89,
022506 (2014).

032801-20

https://doi.org/10.1103/PhysRevLett.82.3589
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1080/00268976.2018.1535143
https://doi.org/10.1088/0022-3700/13/14/007
https://doi.org/10.1063/1.447865
https://doi.org/10.1103/PhysRevA.80.062505
https://doi.org/10.1103/PhysRevA.81.042514
https://doi.org/10.1103/PhysRevA.86.062508
https://doi.org/10.1016/0009-2614(80)80396-4
https://doi.org/10.1016/S0065-3276(07)53010-8
https://doi.org/10.1007/BF00527416
https://doi.org/10.1016/j.cpc.2015.12.023
https://doi.org/10.1103/PhysRevA.40.5559
https://doi.org/10.1103/PhysRev.36.57
https://doi.org/10.1103/PhysRevB.47.15404
http://dirac.chem.sdu.dk/basisarchives/dyall/index.html
https://doi.org/10.1016/0167-7977(85)90003-6
https://doi.org/10.1103/PhysRevA.59.1187
https://doi.org/10.1016/j.cpc.2013.02.016
https://doi.org/10.1103/PhysRev.48.55
https://doi.org/10.1103/PhysRevA.13.1283
https://doi.org/10.1016/0370-2693(77)90620-7
https://doi.org/10.1103/PhysRevA.88.012513
https://doi.org/10.1016/j.cpc.2014.12.002
https://physics.nist.gov/PhysRefData/ASD/levels_form.html
https://doi.org/10.1103/PhysRevA.87.032513
https://doi.org/10.1103/PhysRevA.89.022506

