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Demonstration of a quantum advantage by a joint detection receiver for optical communication
using quantum belief propagation on a trapped-ion device
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Demonstrations of quantum advantage have largely focused on computational speedups and on quantum
simulation of many-body physics, limited by fidelity and the capability of current devices. Discriminating
laser-pulse-modulated classical-communication code words at the minimum allowable probability of error
using universal-quantum processing presents a promising parallel direction, one that is of both fundamental
importance in quantum state discrimination and technological relevance in deep-space laser communications.
Here we present an experimental realization of a quantum joint detection receiver for binary phase shift keying
modulated code words of a 3-bit linear tree code using a recently proposed quantum algorithm: belief propagation
with quantum messages. The receiver, translated to a quantum circuit, was experimentally implemented on a
trapped-ion device—the recently released Honeywell LT-1.0 system using 171Yb+ ions, which possesses all-to-all
connectivity and midcircuit measurement capabilities that are essential to this demonstration. We conclusively
realize a previously postulated but hitherto not demonstrated joint quantum detection scheme and provide an
experimental framework that surpasses the quantum limit on the minimum average decoding error probability
associated with pulse-by-pulse detection in the low-mean-photon-number limit. The full joint detection scheme
bridges across photonic and trapped-ion-based quantum information science, mapping the photonic coherent
states of the modulation alphabet onto inner product-preserving states of single-ion qubits. Looking ahead, our
work opens new avenues in hybrid realizations of quantum-enhanced receivers with applications in astronomy
and emerging space-based platforms.
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I. INTRODUCTION

Optical laser communication is a critical component of
future space-based data communications [1]. It offers signif-
icantly higher communication rates compared to traditional
radio-frequency systems, with lower size, weight, and trans-
mission power requirements [2]. An ideal laser pulse is
quantum mechanically described by a coherent state |α〉 of
a spatiotemporal-polarization mode of the quantized elec-
tromagnetic field, where |α|2 is the mean photon number
[3]. Any two coherent states |α〉 and |β〉 of a mode are
known to be nonorthogonal; that is, their inner product
σ ≡ 〈α|β〉 = exp[−(|α|2 + |β|2 − 2αβ∗)/2] �= 0, which fun-
damentally precludes error-free discrimination of the states
[4]. The minimum achievable probability of error of distin-
guishing the above two states (assuming they are equally
likely to occur) by a physically realizable receiver as imposed
by the laws of quantum mechanics, the so-called Helstrom
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limit, is Pe,min = 1
2 [1 −

√
1 − |σ |2] = 1

2 [1 −
√

1 − e−|α−β|2 ].
This minimum probability of error is, in principle, attain-
able exactly by the all-photonic receiver proposed by Dolinar
[5], which employs a coherent-state local oscillator (LO), a
beam splitter, a shot-noise-limited photon detector, and an
electro-optic feedback from the detector output to drive an
electro-optic modulator that controls the amplitude and phase
of the LO. Each of these components is readily realizable
in a modern optics laboratory. In the context of discrim-
inating more than two coherent states, e.g., discriminating
{| − α〉, |0〉, |α〉}, or discriminating more than two coherent-
state code words, e.g., {|−α〉|α〉|−α〉|α〉, |α〉|α〉|α〉|−α〉, |α〉
| − α〉|α〉| − α〉}, a Dolinar-like all-photonic receiver is not
known to achieve the Helstrom limit. There has been
a large body of recent work on feedback-based optical
receivers for M-ary coherent-state discrimination [6–9]—
building upon the “conditional nulling” receiver designs for
M-ary coherent-state pulse-position-modulation [10,11] and
phase-shift-keying (PSK) [12] alphabets—whose achievable
error probability performance was shown to approach the
Helstrom limit in the limit of a high mean photon number of
the candidate states. In long-range transmissions, photon loss

2469-9926/2022/106(3)/032613(10) 032613-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3956-4594
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.032613&domain=pdf&date_stamp=2022-09-28
https://doi.org/10.1103/PhysRevA.106.032613


CONOR DELANEY et al. PHYSICAL REVIEW A 106, 032613 (2022)

renders the laser communication signals increasingly weak
with distance. This attenuation causes the coherent states
of the modulation alphabet to become highly nonorthog-
onal, making it nearly impossible to perfectly demodulate
coherent-state code words, thereby posing a critical challenge
to communicating reliably at a good rate with the distance
of the channel. In this regime of low mean photon number
per mode at the receiver, a receiver that employs a quantum
joint detection measurement on the entire code word can
attain the Helstrom limit of minimum error discrimination
of code words, and there emerges a large gap in the reliable
communication rate achievable with a quantum joint detec-
tion receiver (one that would require a true universal-capable
quantum processor or computer) versus that achievable with
conventional receivers, such as single-photon detectors (even
if such a conventional receiver is assumed to be operating at
its quantum-mechanics-mandated noise limit). Furthermore,
no known all-photonic receiver design can attain the mul-
tihypothesis coherent-state Helstrom limit in this aforesaid
regime. However, it is known that if each individual coher-
ent state of the modulation alphabet comprising the received
code word is transduced into a qubit register one by one
while maintaining their relative inner product σ (hence their
quantum-mandated distinguishability), followed by quantum
computing on that multiqubit register, one can achieve the
Helstrom limit of telling apart any set of M � 2 coherent-state
code words exactly [13].

Fundamental limits on the rate of reliable classical commu-
nication over a quantum channel with a modulation alphabet
consisting of highly nonorthogonal quantum states is given
by the Holevo-Schumacher-Westmoreland theorem [14,15],
often termed the “Holevo capacity” C, measured in bits per
channel use. For an optical channel with photon loss and
thermal noise, each “use” of which can be considered to
be the transmission of a single spatiotemporal-polarization
mode of light under a mean-photon-number constraint at
the transmitter, coherent-state modulation is known to attain
the Holevo capacity [16,17]. For any given coherent-state-
modulation alphabet, the structure of the optical receiver
governs the achievable reliable communication rate, given by
the Shannon capacity associated with a particular receiver.
Even though the receiver’s job is to tell apart a set of M =
2nR product code words, each being a product state of n
coherent states, there is a fundamental gap between the de-
coding performance achievable with a receiver that detects
each received modulated coherent state in the code word one
at a time and a receiver that collectively detects the entire
code word using a quantum-enabled processor, thus repre-
senting a provable quantum advantage scenario. A specific
realization of such a joint detection receiver would involve
optical domain quantum preprocessing of the modulated code
word prior to detection [6,18–20]. This gap can be quanti-
fied in terms of the communication capacity and the average
decoding error probability associated with the two types of
receivers and has been shown theoretically [16,18,21–23]
and verified experimentally [6,7]. With a receiver that at-
tains the Holevo capacity, the average probability of error
in discriminating the M = 2nR code words can be made to
approach zero, as n increases, as long the rate of the code
R < C.

II. FIDELITY-LIMITED JOINT DETECTION SCHEMES

Recently, a structured design of a quantum joint detection
receiver based on an algorithm known as belief propagation
with quantum messages (BPQM) [24] was proposed to dis-
criminate binary PSK (BPSK)-modulated coherent-state code
words of an exemplary 5-bit linear tree code. It was shown
not only to surpass the performance of the best possible
conventional receiver that detects the received coherent-state
pulses one at a time but also to attain the quantum limit
on the minimum average decoding error probability [25,26],
the code-word Helstrom limit. The design of the receiver
readily translates into a low-depth quantum circuit realiz-
able on current quantum devices, which are designed for
complex algorithms [27–32]. We specifically realize sec-
tions of joint detection receiver circuitry on Honeywell’s
LT-1.0 trapped-ion processor, leveraging all-to-all gate con-
nectivity and midcircuit measurements. The necessity of these
midcircuit measurements, currently not viable on supercon-
ducting quantum devices, makes trapped-ion processors the
ideal platform for this demonstration. We also propose a
concrete transduction mechanism to couple the states {|α〉,
| − α〉} of the BPSK alphabet to (one of two states of) a single
trapped-ion qubit. Although the coupling is not physically
realized, when coupling inefficiencies are accounted for in
the realization of the joint detection receiver circuitry, it still
demonstrates a fundamentally improved performance in the
decoding error probability achievable over any receiver that
demodulates the BPSK pulses in the code-word blocks one
at a time. This includes all conventional optical receivers
such as homodyne detection, heterodyne detection, and direct
detection receivers (for example, superconducting nanowire
single-photon detectors), as well as the Dolinar receiver
[5].

Realization of a true joint detection receiver in the near-
term requires heterogeneous quantum hardware, namely,
trapped-ion and photonic systems, in coupling with theoretical
efforts to map across them [33,34]. The ability to perform the
BPQM decoding algorithm, which effects a joint measure-
ment to distinguish the photonically encoded messages, is a
single step in the overall scheme. The general overview of the
scheme is presented in Fig. 1(a), which shows a long-distance
photonic communication being received and decoded. The
receiver here requires a method for transduction from the
photonic information domain into the trapped-ion quantum
device, as well as quantum hardware with minimal noise to
run the decoding efficiently and reliably. In this work we focus
on the use of trapped-ion devices, specifically the Honeywell
LT-1.0 system, although in theory this could be realized with
any quantum computer with low enough noise and the ability
to perform midcircuit measurements. The full joint detection
scheme relies on leveraging both photonic and trapped-ion-
based information, each of which has been explored in depth
[35–38] and will be addressed next.

A. BPQM decoding

To decode laser communication messages with BPQM, we
first present the specific implementation of the algorithm. The
photonic input states, namely, BPSK coherent states | ± β〉,
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FIG. 1. The schematic and operation of the quantum joint detection receiver for decoding a 3-bit laser-modulated code. (a) The encoded
photonic information is efficiently decoded using a trapped-ion quantum computer, which executes (b) the 3-qubit BPQM algorithm circuit.
Notation and circuit structure are discussed in the Appendix.

are represented as qubit states | ± θ〉 by the mapping

| ± β〉 → | ± θ〉 ≡ cos

(
θ

2

)
|0〉 ± sin

(
θ

2

)
|1〉, (1)

such that σ = 〈+β| − β〉 = 〈+θ | − θ〉 = cos θ �= 0. The task
is to find an efficient decoding algorithm that can discrim-
inate code words constructed using the alphabet defined by
these nonorthogonal quantum states. The decoder based on the
BPQM algorithm [24] was recently analyzed by Rengaswamy
et al. [25] for a 5-bit linear tree code, where in noiseless
simulations it was shown to surpass the classical bound for
decoding error rates at low mean photon numbers. This was
followed by a quantum gate decomposition for the various
unitary operators described, which provides a starting point
for implementation on a real device. These quantum gates ef-
fectively perform belief propagation by combining the beliefs
at the nodes of the factor graph of the code before iteratively
passing on the updated beliefs until the message is jointly
decoded, just as in the classical belief-propagation algorithm.
The difference here is the leveraging of the quantum regime,
where the decoder passes quantum “beliefs” and jointly pro-
cesses the quantum information present in the symbols before

measuring them individually. This allows us to bypass the
inevitable loss of information that comes from measuring the
individual symbols first, followed by processing the detection
outcomes classically. For an example three-bit code C, we
arrive at the circuit for the BPQM-based decoder based on
the development in Ref. [25], shown in Fig. 1(b). Further de-
scription of the code C and the implementation of the BPQM
algorithm for the decoder can be found in the Appendix.

B. Photon-to-ion transduction

Mapping the binary BPSK coherent-state alphabet onto
one of two single-qubit states—henceforth called the trans-
duction step—is necessary to fully realize the joint detection
receiver. In this step, it is essential that the inner product
between the nonorthogonal binary states of the qubits remain
the same as that of the received coherent states (under ideal
conditions). For coherent states | ± α〉 transmitted over a lossy
channel of transmissivity η, the received states are | ± β〉 =
| ± √

ηα〉 with an overlap of

〈+β| − β〉 = e−2|β|2 = e−2η|α|2 = e−2N , (2)
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with N being the received mean photon number. Below
we outline a process of performing the aforementioned
transduction using the simple and experimentally realizable
Jaynes-Cummings interaction between a qubit and a single
bosonic mode [39,40].

Based on prior results from [41], we can start by writing
down the product state of a single-photon mode and a two-
level atom (a trapped ion for our purposes), where the photon
mode has been initialized in one of the two coherent states

| ± β〉 =
∑

n

e−|β|2/2 (±β )n

√
n!

|n〉, (3)

the atom is initialized in its ground state |0〉, and the two
evolve with the following time-dependent Hamiltonian:

H = h̄�(t )(σ+a + σ−a†). (4)

Here σ± are the raising and lowering operators for the trapped-
ion qubit, and a and a† are photon creation and annihilation
operators. Time evolving the initial product state with the
above Hamiltonian, we get the following entangled state:

|�±(t )〉 =
∑

n

[cos(	
√

n)β±
n |0, n〉

− i sin(	
√

n + 1)β±
n+1|1, n〉], (5)

where

	(t ) =
∫ t

0
dt ′�(t ′) (6)

and

β±
n = e−|β|2/2 (±β )n

√
n!

. (7)

Since this time evolution is unitary, one can verify that the
state remains normalized. We now perform a projective mea-
surement on the photon in order to obtain the desired qubit
state. The inner product of the two binary qubit states after
will depend on the photon measurement result. Since n = 0
is the most likely measurement outcome, we will ultimately
tailor the interaction � accordingly, so that an n = 0 mea-
surement heralds a successful transduction. The probability
of achieving an n = 0 measurement result can be expressed
as

P(n = 0) = e−|β|2 [1 + sin2 	(t )β2], (8)

and the resulting normalized state of the qubit will be

P|n=0|�±(t )〉 = 1√
1 + sin2 	(t )β2

[|0〉 ∓ i sin 	(t )β|1〉].
(9)

For a given β, if we were to pick 	 so that the inner products
of the optical BPSK states match those of the posttransduction
states of the trapped-ion qubit, we would need to satisfy

[〈�−(t )|P|n=0]P|n=0|�+(t )〉 = 〈−β|β〉 = e−2|β|2 , (10)

which would imply the following must hold:

sin 	 = 1

β

√
tanh |β|2. (11)

Thus, we can tailor the time-dependent interaction �(t ) so
that its integral 	 satisfies the above relation [42]. Plugging
this condition into the n = 0 measurement probability, we
can compute the probability of a successful transduction (not
accounting for noise) to be as follows:

P(n = 0) = e−|β|2 (1 + tanh |β|2) = e−η|α|2 [1 + tanh(η|α|2)].
(12)

Note that when η � 1, the above probability decreases very
slowly with the transmitted coherent amplitude α since mea-
suring n = 0 will be highly probable.

With the inclusion of the transduction step, the overall
average probability of successful discrimination of the BPSK
alphabet binary coherent states is given by the probabil-
ity that the n = 0 outcome occurs in the transduction step
(heralding probability of successful transduction), multiplied
by the maximum success probability of discriminating the two
nonorthogonal qubit states within the trapped-ion quantum
computer given by 1 − Pe,min, where Pe,min is the Helstrom
limit associated with the error probability of discriminating
the transduced qubit states (here we assume that the quantum
gates and measurements on that trapped-ion qubit are perfect).
Thus, the overall average error probability is most generally

Perror = 1 − P(n = 0)(1 − Pe,min) (13)

= 1 − e−|β|2

2
[1 + sin2 	(t )β2]

×
[

1 +
√

1 − [1 − sin2 	(t )β2]2

[1 + sin2 	(t )β2]2

]
. (14)

For a 	 chosen according to Eq. (11), Perror in Eq. (14) corre-
sponds to the discrimination error probability associated with
an inner-product-preserving transduction step.

If we relax the requirement to preserve the inner prod-
uct before and after transduction, we can obtain even better
performance of overall discrimination of the BPSK coherent-
state alphabet states. By controlling the interaction time, and
hence 	, we can make the inner product of the transduced
states smaller than that of the optical BPSK states, which
increases the heralded success probability of state discrim-
ination in the ion domain. But this comes at the cost of a
smaller heralding probability P(n = 0), which ensures that
the product, i.e., the overall average error probability, remains
below the Helstrom limit associated with discriminating the
original BPSK binary coherent states. We can minimize Perror

of Eq. (14) with respect to 	 to find the minimum overall
probability of error. The optimal choice of 	, interestingly,
turns out to be not dependent on β, as shown below. The
minimum occurs when 	(t ) = π

2 and is given by

Perror � 1 − e−|β|2

2
(1 + |β|)2. (15)

For 	 = π
2 , the inner product of the qubit embeddings of the

coherent states is

〈�−|�+〉 = 1 − |β|2
1 + |β|2 , (16)

which, one can verify, is always smaller than e−2|β|2 . Despite
this, we have actually increased the average probability of
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FIG. 2. The single-symbol state discrimination error probability
as a function of the received mean photon number. The Helstrom
bound (dotted dark blue line) shows the absolute minimum error
probability of discriminating the BPSK alphabet binary coherent
states in the optical domain, whereas inner-product-preserving 	

(dashed light blue line) and optimized 	 for various points of trunca-
tion in the sum in Eq. (17) (solid lines between the dashed and dotted
lines corresponding to increasing values of Nmax) show the overall
average error probability of optical BPSK state discrimination, using
our receiver. The photon-to-ion transduction step uses two different
choices for 	, e.g., 	 given by Eq. (11) for the inner-product-
preserving transduction and 	 = π/2 for transduction that results
in the optimal overall average error probability when we truncate
Eq. (17) after n = 1. All of the above assume ideal quantum logic
gates and measurements once in the ion domain.

successfully discriminating the coherent-state BPSK alphabet
by optimally choosing 	. The improvement when compared
to 	 in Eq. (11), corresponding to inner-product-preserving
transduction, is shown in Fig. 2. The Helstrom limit associ-
ated with discriminating the original BPSK alphabet binary
coherent states is also plotted for comparison. In the following
sections we will consider the exact inner-product scenario
[Eq. (12)] as our probability of successful transduction, but
the above discussion shows that the experimentally obtained
performance reported in this paper can improve further only
if the optimal 	 is chosen for the transduction step.

If we have photon-number-resolving (PNR) detection
available, we can resolve higher (nonzero) values of n, and the
average error probability of discriminating the BPSK coherent
states attained by our transduction method followed by an
ideal trapped-ion quantum processor is given by

Pe,receiver (	) = 1 − 1

2

∑
n

Pn(	)
[
1 +

√
1 − σ 2

n

]
, (17)

which, as before, can be minimized by optimally choosing 	.
Above, σn is the inner product between the two possible ion
states heralded by a measurement of n photons, which is

σn = cos2(
√

n	) − β2

n+1 sin2(
√

n + 1	)

cos2(
√

n	) + β2

n+1 sin2(
√

n + 1	)
. (18)

Although the terms in the sum are rather complicated, for
a given value of β, one can easily numerically minimize the
above function and include arbitrarily many terms. This has

been done for several different levels of series truncation in
Fig. 2. This would ensure optimized performance assuming
the availability of PNR detection.

III. BPQM ON THE HONEYWELL LT-1.0
TRAPPED-ION PROCESSOR

Next, we present the demonstration of the BPQM al-
gorithm on a recently developed quantum device. The
implementation on a currently available quantum processing
unit provides a performance standard and outlook for these
joint detection receivers based on the scheme set forth in this
work. For this experiment, we utilized the Honeywell LT-
1.0 trapped-ion device, which uses 171Yb+ ions. The choice
of the device was motivated by the unique combination of
high-fidelity quantum gates, all-to-all qubit connectivity af-
forded by trapped-ion architecture, and the unique capability
to perform midcircuit measurements on selected qubits to
condition subsequent gate operations on their measurement
outcomes. The all-to-all connectivity enables a number of
circuit optimizations that allow the avoidance of costly SWAP

gates, resulting in the compact decomposition of the circuit
depicted in Fig. 1(b), which requires 81 two-qubit Mølmer-
Sørenson-like ZZ gates [43]. In the absence of a physical
implementation of the photon-to-ion transduction, the initial
states of the qubits are prepared directly based on the chosen
code word for every given run rather than created as a result of
the photon projective measurement. With the exception of the
noisy simulation, the data points were taken assuming lossless
transduction. While the proposed transduction scheme has
not been exactly experimentally implemented, the Jaynes-
Cummings coupling already serves as a reasonable model of
the laser-ion interaction in current trapped-ion devices [44],
making it a highly possible near-term development.

As a first step, we look at decoding only the first bit of
the full code word. For this we are able to use an abbreviated
version of the circuit that is truncated at the first measurement
on the top qubit. This gives us an estimate of how the decoder
and the unitary gates are performing on the device without
immediately evaluating the longer gate depth of the full de-
coder. This significantly reduces the gate count, allowing us to
exceed the classical bound for a range of low received mean
photon numbers, shown in Fig. 3(a). While this demonstra-
tion shows relatively modest improvements when compared
to classical approaches, these points give us confidence in
the implementation of the blocks and allow us to move
forward to the full circuit.

In the full decoder circuit, the code-word output is de-
termined by both the intermediate and final measurements.
This circuit gives us an accurate look at the performance of
BPQM on current devices. Noiseless simulations are shown
to beat the classical bound for error probability of decoding
over a range of low mean photon numbers for values within
the Moon to Mars downlink regime in Fig. 3(b). On the other
hand, running the circuit on hardware produces a curve that
trends at and peeks below the classical bound at very low
mean photon numbers, presenting a quantum advantage. We
note that the hardware curve shows anomalous behavior with
increasing mean photon number, where it trends worse than
the classical bound. This is due to the infidelities associated
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(a) (b)

Classical Bound (Single Bit)
Homodyne Limit
Moon Uplink
Moon Downlink
Mars Uplink
Mars Downlink
BPQM First Bit HWELL
BPQM First Bit SIM
JDR First Bit HWELL
JDR First Bit SIM

Classical Bound
Homodyne Limit
Moon Uplink
Moon Downlink
Mars Uplink
Mars Downlink
BPQM Codeword HWELL
BPQM Codeword SIM
BPQM Codeword SIM (Noisy)
JDR Codeword HWELL
JDR Codeword SIM
JDR Codeword SIM (Noisy)

FIG. 3. Experimental results for (a) the first-bit and (b) full 3-bit decoder with four code words, with 1000 and 512 shots per run,
respectively. The “classical” bound represents the error probability associated with measuring the individual symbols in the photonic domain
sans the trapped-ion receiver using the quantum-optimal Helstrom measurement followed by classical maximum-likelihood decoding (dotted
blue line). The Homodyne limit corresponds to a practical classical bound, where the Helstrom measurements are replaced by homodyne
measurements (solid orange line). “BPQM” points represent circuit runs as is with perfect transduction assumed, whereas “JDR” points account
for the probability of successful transduction based on our scheme [the cube of Eq. (12) in (b), to account for three qubits]. Experimental error
probabilities of decoding with the trapped-ion receiver (gray crosses, first bit; black crosses, full decoder) are averaged over four code words,
with error bars for standard deviation. Noiseless (purple crosses for the first bit, yellow crosses for the full decoder) and noisy (red crosses)
simulation results are shown for comparison. The dashed vertical lines denote typical values for the mean photon numbers associated with
Moon uplink, Moon downlink, Mars uplink, and Mars downlink (right to left, respectively).

with initializing the trapped-ion qubits in states | ± θ〉, cor-
responding to large coherent amplitudes β in states | ± β〉.
Additionally, the “JDR” points diverge from the “BPQM”
points as the mean photon number becomes larger due to
a rapidly decreasing probability of successful transduction.
However, when we consider the advantage scenario of low
mean photon numbers, our noisy simulations to find the op-
erating fidelities of one- and two-qubit depolarizing errors
that can bring us to the classical bound show a “checkpoint”
that can drive future experimental pushes. This is shown in
Fig. 3(b) along with the experimental data. We consider a
simple depolarizing error model with one- and two-qubit de-
polarizing noises set to 0.0001 and 0.005, respectively, while
the photonic input state preparation was given a 0.0001%
fail rate based on values of Jaynes-Cummings error rates
within existing ion traps being approximately equivalent to
a single-qubit gate. This checkpoint is intended to be viewed
as a more general noise level regime rather than a specific
benchmark, but it shows a clear path toward achieving fully
useful quantum advantage in the low-photon-number regime.
It is thus clear that the BPQM algorithm is mainly limited
by gate fidelity in achieving a lower error probability for
decoding messages for the types of channels highlighted.

Of particular interest in Fig. 3 is the projected mean photon
number corresponding to lunar and future Mars links based on
the specifications of optical elements used in NASA’s 2013
Lunar Laser Communication Demonstration [2] experiment.
For example, the Mars uplink corresponds to a received mean
photon number per pulse of 10−2. Notably, at this mean pho-
ton number, the BPQM-based receiver ideally surpasses the
classical limit in the average error probability of decoding the
codes of the example 3-bit code by approximately 2%–3%.
At the same mean photon number, by choosing a different

code—one that achieves the Holevo capacity—it would be
possible to reliably communicate at rates 5 times the best
possible rate for communication with classical decoders, as
depicted in Fig. 4. Note that the capacities plotted in Fig. 4 are
the Holevo capacities of the end-to-end channel between the
sender and the receiver subject to the probabilistic photon-to-
ion transduction. These are still better rates for all links except
the Moon uplink due to its higher mean photon number and
thus low P(n = 0).

FIG. 4. Link budgets based on LLC specs for an uplink and
downlink. The Holevo capacities plotted here denote the quantum
bound for classical communication capacity using joint detection
of symbols via probabilistic photon-to-ion transduction. The C1 ca-
pacities are the capacities associated with symbol-by-symbol optical
detection for the BPSK scheme at the given link distances.
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IV. CONCLUSIONS AND OUTLOOK

Here we conclusively realized a previously postulated
joint quantum detection scheme on a trapped-ion quantum
device and showed an experimental framework to surpass
the quantum limit on the minimum average decoding error
probability in the low-photon limit. By leveraging a combi-
nation of midcircuit measurement-enabled experiments, the
connectivity of trapped-ion devices, and a mapping of the rel-
evant photonic coherent states onto inner-product-preserving
single-qubit states, our work shows a quantum joint detection
receiver for a 3-bit BPSK modulated linear tree code using
the BPQM algorithm. Continued reduction of trapped-ion de-
vice error rates—particularly two-qubit gate infidelities and
midcircuit measurement-induced cross-talk error rates—will
push the noise boundary such that future experiments of this
scheme can reliably exceed the classical bound for low photon
numbers. Further, as gate fidelities improve, the postmea-
surement error-mitigation techniques and gate-decomposition
optimizations presented here will give us a distinct path to-
wards exceeding the classical bound for decoding in general
joint detection schemes with a larger codebook. Note that
we considered purely lossy optical transmissions, whereas in
practice there will also be additional thermal noise. For such
more realistic scenarios, the extent of quantum advantage that
is possible with joint detection schemes over the correspond-
ing classical bound for decoding is expected to be further
diminished, which in turn pushes the bar on gate fidelities
higher. However, for optical-frequency free-space communi-
cations, even at daytime temperatures, the Planck-law-limited
thermal noise is below 10−5 mean photons per mode, which is
in a regime where the results of our pure-loss-channel analysis
are fairly accurate.

The joint detection receiver protocol shown here provides
additional impetus for the development of photonic trans-
duction in trapped-ion hardware in the near future. Photonic
interconnects are already under development for the purpose
of constructing modular trapped-ion architectures [38,45],
and the basic functionality can, in principle, be extended to
connect a trapped-ion device to a photonic quantum device.
Regardless, photon-to-ion transduction will be an essential
feature of any technological realization of BPQM. Finally,
we highlight the promise of such schemes for deep-space
communications and upcoming space missions, a dedicated
Mars link, and advances in astronomy.
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APPENDIX: METHODS

1. BPQM

The factor graph defining the 3-bit code considered in this
paper is

(A1)

which generates the set of code words

C = {000, 110, 101, 011}. (A2)

The gates used for message combining at the check nodes and
bit nodes of the factor graph are the controlled-NOT (CNOT)
gate and a unitary , given by

(A3)

where

a± = 1√
2

cos
(

θ−θ ′
2

) ± cos
(

θ+θ ′
2

)
√

1 + cos θ cos θ ′ , (A4)

b± = 1√
2

sin
(

θ+θ ′
2

) ∓ sin
(

θ−θ ′
2

)
√

1 − cos θ cos θ ′ , (A5)

cos θ0 = cos θ + cos θ ′

1 + cos θ cos θ ′ , cos θ1 = cos θ − cos θ ′

1 − cos θ cos θ ′ . (A6)

In the above equations, θ captures the angle of the input qubits
and can be translated to the mean photon number N by the
relation e−2N = cos θ . In essence, this unitary compresses
the information of the two qubits into one, leaving the other in
a fixed state, the |0〉 state. For more details, refer to [24,25].

2. Classical limits

When decoding the first bit alone, the ideal classical bound
corresponds to performing the pulse-by-pulse detection based
on the quantum-optimal Helstrom measurement, followed by
inference of the bit using the classical belief propagation
algorithm. Since the code has a tree factor graph, classical
belief propagation amounts to maximum-likelihood decoding.
Likewise, the practical classical bound also corresponds to
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FIG. 5. Both decompositions for BPQM full decoder components. (a) U gate decomposition, where U3 is the QISKIT rotation gate and γ1

and γ2 are defined in Eq. (A9). (b) Km gate decomposition, utilizing ancilla qubit 3.

pulse-by-pulse detection, except where the Helstrom mea-
surement is replaced by coherent homodyne detection. The
relevant pulse-by-pulse discriminating measurement average
error probabilities are given by

pHel = 1
2 (1 − sin θ ),

pHomodyne = 1
2 erfc

√− ln cos θ, θ ∈ (0, π/2). (A7)

For the full decoder circuit, the classical bound is the aver-
age error probability associated with code-word maximum-
likelihood detection following either pulse-by-pulse Helstrom
(ideal) or homodyne (practical) measurements.

3. Quantum limits

A lower bound on the quantum-enhanced classical com-
munication capacity with the trapped-ion joint detection
receiver following photonic-to-ionic transduction is given by
considering the classical-input–quantum-output (cq) channel
analog of the “channel with random state” classical chan-
nel model, as defined in [46]. The latter is defined as a
discrete memoryless channel with state (X ,S, p(y|x, s),Y ),
with X ,Y,S denoting the input-, output-, and channel-state
alphabets, respectively (assumed to be finite), where the
channel-state sequence {Si} is an independent and identi-
cally distributed (i.i.d.) process with distribution PS (s), i.e.,
changing randomly for every use of the channel. For such
a channel, there are many possible scenarios with respect to
the availability of the state information to the encoder and
the decoder. The scenario that is relevant to us here is the one
where the information about the state sequence is available
only at the decoder. In this case, the capacity is given by
C = maxp(x)I (X ;Y |S). The achievability part follows triv-
ially from treating (Y n, Sn) as the output of the channel
p(y, s|x) = p(s)p(y|x, s). The achievability remains good also
when the channel output Y is quantum, i.e., for a cq channel
with random channel state, where the channel state is known
only to the decoder. Thus, a lower bound on the achievable
capacity for BPSK communications with a trapped-ion joint
detection receiver is

R = Pn=0 × h2

(
1 + e−2η|α|2

2

)
, (A8)

where Pn=0 is the transduction success probability, η is the
transmissivity of the channel, and |α| is the amplitude of the
transmitted laser pulse. This value is plotted in Fig. 4 after
calculating Pn=0 for the photon-to-ion transduction mecha-
nism discussed in the main text. We note that the converse
part of the coding theorem for the cq channel remains open.

4. Link budgets

To describe the various link values for practical appli-
cation, we calculated mean-photon-number values based on
specs from the 2013 NASA Lunar Laser Communications
Demonstration, i.e., laser wavelength (1.6 μm), dimensions
of telescopes (0.1 m on the Moon and Mars and 0.4 m on
Earth diameters), and laser powers (10-W uplink and 0.5-W
downlink). Additionally, we assume a modulation bandwidth
of (a) τ = 10 ps, i.e., a 100-GHz laser source, for the Moon
and (b) τ = 1 ns, i.e., a 1-GHz pulsed laser source, for Mars.

5. Circuit definitions and optimizations

For the first bit decoding in the circuit, it is equivalent to
conditionally applying the two gates based on a midcircuit
measurement on the third qubit following the initial CNOT

gate. This avoids the trouble of decomposing into native
two-qubit gates, and we can simply use itself, thanks
to the midcircuit measurement capabilities of the Honeywell
device. The resulting circuits have only six two-qubit gates.
It is important to note that although each individual point’s
circuits were run back to back, all points were not collected
during the same device session. Gate fidelities can drift from
day to day on the same device but not enough to significantly
impact our results.

For the full decoder circuit, the unitary was constructed
by taking its components and adding a control line onto each
gate, with the components shown in Fig. 5(a), where

γ1 = 2 sin−1(a−), γ2 = 2 sin−1(b+). (A9)

These circuit components were optimized through QISKIT’s
transpilation function and various pencil-and-paper optimiza-
tions, which produced a slightly different structure than
the original implementation shown in [25]. Km1 is given in
Fig. 5(b) and was applied as shown. The midcircuit mea-
surement on the first qubit required an active qubit reset to
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avoid drifting into a noncomputational subspace, and all mea-
surements were performed in the X basis. The final circuits
with a two-qubit gate count of 81 were submitted to the
Honeywell device via an application programming interface
(API) call to the Honeywell system in quantum assembly

language (QASM) form. Decomposition to native gates and
qubit gate specifics were handled by Honeywell’s internal
software. Honeywell qubits are shuttled between various gate
zones, which gives effective all-to-all connectivity. See their
release paper [47] for specifics.
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