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Optimal strategy for multiple-phase estimation under practical measurement
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Quantum multiple parameter estimation can achieve an enhanced sensitivity beyond the classical limit.
Although a theoretical ultimate sensitivity bound for multiple phase estimation is given by the quantum Cramer-
Rao bound (QCRB), experimental implementations to saturate the QCRB typically require an impractical
setup including entangled measurements. Since it is experimentally challenging to implement an entangled
measurement, the practical sensitivity is given by the Cramer-Rao bound (CRB) relevant to the measurement
probabilities. Here, we consider the problem of practical sensitivity bound for multiple phase estimation with
quantum probe states and a measurement setup without entanglement, which consists of a beam splitter followed
by the photon-number-resolving measurement. In this practical measurement scheme, we show that lower CRB
can be achieved with a quantum probe state even with higher QCRB.
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I. INTRODUCTION

Quantum metrology is a promising quantum technology,
which offers a sensitivity outperforming a classical metrology
in a parameter estimation [1,2]. While a single parameter
estimation has been widely studied [3–5], recent progress
extended the scope of quantum metrology to the simultaneous
estimation of multiple parameters [6–21]. The main motiva-
tion for this extension is the improved sensitivity in terms
of quality of estimates as compared to individual estimation
of each parameter by utilizing the same number of total re-
sources [22,23].

For a single parameter estimation, the fundamental limit
is given by the quantum Cramer-Rao bound (QCRB) [24,25],
which can be saturated by a NOON state due to its largest
number variance between the two modes [3–5]. However,
for a multiple parameter estimation, the fundamental limit
(QCRB) on the sensitivity is given by a matrix inequality
between the quantum Fisher information matrix (QFIM) and
the covariance matrix of the estimates [22,26,27]. It was
shown that the multimode NOON states are optimal in mul-
tiple parameter estimation due to their lowest value of the
QCRB [2,22,28–32].

However, the QFIM, and consequently the QCRB, are
independent of the measurement setting employed in a metro-
logical setup. This makes the saturation of the QCRB in
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multiple parameter estimation scenario highly nontrivial as
one needs to find the optimal measurements, if they exist, to
extract all the information encoded in the probe states. Al-
though, the existence of optimal measurements was found, the
resulting measurements might still be experimentally difficult
or even outright infeasible [27]. Then, the design of experi-
mentally feasible measurement settings that allow to achieve
the best sensitivity becomes more important and crucial in
practical applications. That is, a feasible experimental setup
with the best achievable sensitivity is more desirable than a
setup with the lowest QCRB, but experimentally challenging
or infeasible. The achievable sensitivity of a setup is char-
acterized by the classical Cramér-Rao bound (CRB), which
takes into account measurement statistics as well as the probe
state [27,32,33].

In this work, we consider the simultaneous estimation of
d unknown phases in an m-mode (m = d + 1) interferometric
experimental setup with limited resources, i.e., limited photon
number. Here, we analyze the QCRB and the CRB with three
different probe states: coherent states as a classical strategy,
single-photon Fock states, and multimode NOON states with
limited photon number. In particular, for multimode NOON
states, instead of optimizing the QCRB and then finding an
optimal measurement setting of interferometric phase estima-
tion, we fix a realistic measurement setting and then optimize
the input probe states for this particular measurement. The
measurement setting we consider is an m × m balanced beam-
splitter (BS) followed by a photon number resolving (PNR)
measurement. We first begin with the classical case with
coherent states as a classical comparison. Then we consider
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FIG. 1. (a) General scheme for multiple phases estimation. (b) A
coherent state is inserted in one mode of UBS. (c) Generation of
|ψFock〉 is achieved by exciting two modes of UBS. (d) A generalized
multimode NOON state occupies the ith output mode of UBS with
probability |αi|2.

single-photon Fock states in two distinct modes and obtain
its sensitivity bound. Then, we utilize the general multimode
NOON states that are known to be optimal in terms of the
QCRB and optimize them for our measurement setting. We
find that a lower QCRB cannot guarantee better practical
sensitivity considering a realistic measurement. Finally, we
introduce a tunable unbalanced BS in our measurement and
optimize both the input probe state and the split ratio of the
BS. In this measurement setup, we find that a better practical
sensitivity can be achieved with quantum probe state even
with worse QCRB.

The remainder of this article is organized as follows. In
Sec. II we describe our general scheme. In Sec. III, we pro-
vide examples of quantum metrology with a balanced BS
and derive the QFIM and classical Fisher information matrix
(CFIM) for single-photon Fock state in two excite modes
and generalized multimode NOON state, respectively. This is
followed by Sec. IV, where we derive the output state of an
unbalanced BS. Finally, we conclude in Sec. V and discuss
interesting potential future directions.

II. GENERAL SCHEME

Let us begin by introducing simultaneous multiple phase
estimation for φ = {φ0, φ1, . . . , φd}, where φ0 = 0 serves as
the reference phase and d unknown phases φ j ∈ [0, 2π ] for
1 � j � d . We utilize the m × m multimode interferomet-
ric phase estimation scheme, with m = d + 1, as shown in
Fig. 1(a). In general, the quantum-enhanced multiple phase
estimation scheme consists of three steps: (i) preparation of
quantum probe state; (ii) interaction with unknown phases
φ; and (iii) measurements. First, the probe state |ψin〉 is pre-
pared and the phases φ are encoded in the probe state with
phase encoding unitary transformation Uφ. Then the phase
encoded state becomes |ψφ〉 = Uφ|ψin〉. Finally, |ψφ〉 is mea-

sured to infer the transformed state. These three steps are
repeated μ times to construct statistics of measurement re-
sults. This quantum part is followed by a postprocessing step,
where the estimated φ̂ of the vector of phases φ is obtained
using appropriate estimators such as maximum likelihood es-
timation (MLE) and Bayesian estimation over measurement
data [30,34,35].

For an unbiased estimator, the total variance for multiple
phase estimation is given by the CRB and the QCRB as
follows [31]:

d∑
j=1

|�φ j |2 � Tr
[
F−1

C (φ)
]

μ
�

Tr
[
F−1

Q (φ)
]

μ
, (1)

where |�φ j |2 is the variance in the estimates of φ j , FC (φ) is
the CFIM whose ( j, k)th entry is

FC( j,k) =
∑

�

1

P�

(
∂P�

∂φ j

)(
∂P�

∂φk

)
, (2)

where P� is the probability of obtaining measurement result �,
and FQ(φ) is the QFIM whose ( j, k)th entry is defined as

FQ( j,k) = 4 Re
{〈

∂φ j ψ
∣∣∂φk ψ

〉− 〈
∂φ j ψ

∣∣ψ 〉〈ψ∣∣∂φk ψ
〉}

, (3)

for a pure probe state |ψ〉.
The first inequality in Eq. (1) defines the CRB and the

second defines the QCRB. It can be seen from the expressions
for FQ and FC that QFIM depends only on the phase-encoded
state whereas the CFIM depends on the measurement statis-
tics, i.e., the set of all P�. Note that P�, in turn, is dependent
on the phased-encoded state as well as the employed mea-
surement scheme. Hence, to achieve the maximum sensitivity,
it is important to optimize the probe state, which gives the
lowest QCRB, and finding an optimal measurement scheme
to saturate the QCRB. For the probe states, the multimode
NOON states were shown to provide a better sensitivity than
other quantum probe states [22,32], i.e., they provide a lower
QCRB. However, a practical implementation of an optimal
measurement to saturate the QCRB is highly challenging
considering a realistic measurement scheme since it requires
quantum-correlated measurements and a priori knowledge of
the encoded phases [22,27,32]. It indicates that the QCRB
cannot always be saturated under a practical measurement
scheme.

This motivates us to consider a realistic measurement set-
ting as shown in Fig. 1(a), and then optimize the tunable
components such as probe states and/or split ratios of the BS
before measurement to achieve the highest sensitivity. In this
work, we mainly explore three possible candidate probe states
for multiple phase estimation and compare them to a coherent
state, which is a classical probe states with limited photon
number N = 2. First, we consider a coherent state to show
the quantum enhancement as a classical probe state as shown
in Fig. 1(b). Then we explore a single-photon Fock state as
shown in Fig. 1(c), where two input modes of an m × m BS
are excited by single-photon Fock states [35], i.e.,

|ψFock〉 = |x0, x1, . . . , xd〉 ,

where x j = xk = 1 for any two j �= k, and x� = 0, other-
wise. The last probe state that we consider here is the
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generalized multimode NOON state of the form as shown in
Fig. 1(c) [22,32]∣∣ψd

N

〉 = α0 |N, 0, . . . , 0〉 + α1 |0, N, 0, . . . , 0〉 + · · ·
+ αd |0, . . . , 0, N〉 , (4)

where αk ∈ R are the tunable probability amplitudes. Our
measurement setup consists of a tunable multimode BS fol-
lowed by a PNR detector as shown in Fig. 1(a). In the
following section, we investigate the sensitivity bound of our
multimode BS with an equal split ratio in each mode.

III. OPTIMIZATION OF PROBE STATES

In this section, we investigate the sensitivity bound of sys-
tem shown in Fig. 1, i.e., multiple phase estimation where the
phase encoding unitary Uφ is followed by an m × m balanced
BS. We first derive the input-output relation of this system
when the input probe state in experimental scheme as shown
in Fig. 1. Note that we consider the limited resources with
photon number N = 2. We denote by |ψQN〉, the QCRB-
optimized NOON state of [22]. The CRB-optimized NOON
state that we obtain here is denoted by |ψCN〉. Furthermore,
we use |�φ j |2 to denote the fundamental limit, i.e., the QCRB
value, of variance in estimating φ j . In the multiple phases
setting, we use |�Q|2 ≡ ∑

j |�φ j |2 = Tr[F−1
Q ] to denote the

total variance. We use |�Q|2 as the main figure of merit in
evaluating the quality of multiple phase estimation setup.

A. Coherent states

We consider a coherent state as a classical probe state. The
coherent states are the eigenstates of annihilation operators
and are important in quantum information processing [36]. A
coherent state with mean photon number N = |α|2 is defined
as

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉 , (5)

where α ∈ C, and |n〉 is the nth Fock basis state. In a dy-
namical system, coherent states are the most classical of all
states. Thus, they provide no quantum enhancement in sen-
sitivity. Here, we investigate the sensitivity of Fock states
with distinguishable single photons when coherent states are
inserted in one of the input ports of the multimode BS. The
coherent state |α〉 with N = |α|2 = 2 can be considered as two
distinguishable photons at the first input port of multimode BS
in Fig. 1(b).

Here, we give the QFIM for Fig. 1(b), when the input state
is the single-photon Fock states in the first input port of the
multimode BS with photon number N = 1, i.e., in the Fock
basis we have

|	in〉 = |1, 0, . . . , 0〉 .

The CFIM of a single-photon Fock state can be obtained by
plugging the last expression into Eq. (2). The QFIM of this

state can be obtained as

FQ = 4

⎡
⎢⎢⎢⎣

1
m − 1

m2 − 1
m2 · · · − 1

m2

− 1
m2

1
m − 1

m2 · · · − 1
m2

...
...

. . .
...

− 1
m2 − 1

m2 · · · 1
m − 1

m2

⎤
⎥⎥⎥⎦. (6)

The total variance (|�Q|2 = Tr[F−1
Q ]) of this system is m(m +

1)/2. We calculate the QCRB and the CRB with single-mode
Fock state. Since the coherent state |α〉 with N = |α|2 = 2 can
be considered as two distinguishable photons, the sensitivity
bounds of coherent states with N = 2 are equivalent to the val-
ues of the CRB and the QCRB from |1, 0, . . . , 0〉 multiplied
1/2 when N = 2, i.e., m(m + 1)/4.

B. Single-photon Fock state

Here, we give the QFIM for Fig. 1(c), when the input state
is the two-mode single-photon Fock states in two modes with
limited photon number N = 2, i.e., in the Fock basis we have

|	in〉 = |x0, x1, . . . , xd〉
where x j = xk = 1 for any two j �= k, and x� = 0, otherwise.

For a pure state |ψ〉, the (y, z)th entry of the QFIM is given
by Eq. (3). Since the QFIM is invariant under the action of
a parameter-independent unitary, we can ignore the final BS,
and obtain the QFIM at the output of the parameter encoding
unitary Uφ. With this simplification, we can obtain (detailed
derivation is given in Appendix B) the QFIM as

FQ(y,z) =
{ 8

m , if y = z,
8

m2

{
cos

[
2π
m ( j − k)(y − z)

]− 1
}

otherwise,
(7)

where j and k are the two excited modes. Setting j − k = 1,
we find the total variance to be

|�Q|2 =
d∑

j=1

|�φ j |2 =
{ 1

4 , if m = 2,
m(m−1)

4 − m
6 , otherwise.

(8)

The CFIM for this setup can be obtained numerically from
Eq. (2), by fixing some input modes j, k and utilizing the
input-output relations of Fig. 1 derived in Appendix A. Bound
on the total variance both by the QCRB and the CRB are
shown in Fig. 2.

C. Multimode NOON states

Since it is not always possible to saturate the QCRB under
realistic measurement settings [27], it is essential to evaluate
the CRB of the implemented measurement setup. The QCRB
with multimode NOON states is given in Ref. [22]. Here, we
calculate the CRB of this setup with multimode NOON states.
The CRB bounds the achievable sensitivity limit of a given
phases estimation setup including the phase encoding and the
measurement statistics. We derive the CFIM at the output of
an m × m BS when its input ports are excited by

|ψin〉 =
d∑

j=0

α je
ι̇Nφ j

(a†
j )

N

√
N!

, (9)
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where as before φ = {φ1, φ2, . . . , φd} are the phases to be estimated. We obtain the CFIM of this scheme to be (detailed
derivation is given in Appendix C)

FC(h,k) =
∑

�x

1

P�x

(
∂P�x
∂φh

)(
∂P�x
∂φk

)

= 4αhαkN2

N! mN

∑
�x

n2(�x)b2(�x)

∑
j,� α jα� sin

[
N (φ j − φh) + 2π

d c(�x)( j − h)
]

sin
[
N (φ� − φk ) + 2π

d c(�x)(� − k)
]

1 +∑
j,� cos

[
N (φ� − φ j ) + 2π

d c(�x)(� − j)
] , (10)

where �x ∈ {0, 1, . . . , N}m, s.t.
∑ �x = N : Possible output vec-

tor, e.g., [1, 0, 2] for 1 photon in 0 mode, 0 photons in mode 1,
and 2 photons in mode 2. n(�x) number of possible configura-
tions of creations operators of output mode that all create the

output vector �x. b(�x) =
√∏d

j=0 �x( j)! and c(�x) = ∑d
j=0 j�x( j).

From Eq. (10), it is possible to numerically optimize
the total variance

∑ |�φ|2 by varying the parameters α j

while satisfying the constraint
∑

j |α j |2 = 1. We perform the
numerical optimization for N = 2 and d = 1, 2, 3, 4. The re-
sulting CRB-optimized NOON states are denoted by |ψCN〉.
We plot the CRB and the QCRB of these states in Fig. 2.
For comparison we also plot the CRB and the QCRB of
QCRB-optimized NOON states of [22], denoted by |ψQN〉,
two-mode single-photon Fock states |ψFock〉, and coherent
states with N = 2 |ψcoh〉. Here, note that |ψQN〉 is defined

with α j = 1/
√

d + √
d for j �= 0 and α2

0 + d
∑

j=1 α2
j = 1,

and it gives the |�Q|2 = (m − 1)(
√

m − 1 + 1)2/4N2 [22].
From Fig. 2, it is clear that |ψCN〉 provides the lowest CRB
value, achievable with the proposed practical setup.

In Fig. 3, we plot the total variance
∑ |�φ|2 of multiple

phase estimation with |ψQN〉 and |ψCN〉 for different values
of d with N = 3 in Fig. 3(a) and for different values of N
with d = 2 in Fig. 3(b). It is clear from Fig. 3 that, despite
an inferior sensitivity limit as predicted by the QCRB, |ψCN〉
outperforms |ψQN〉 in terms of the CRB. This shows that the

FIG. 2. Total variance of multiple phase estimation with different
probe states. Here, |ψCN〉 denotes the CRB-optimized NOON state,
|ψQN〉 denotes the QCRB-optimized NOON state in [22], |ψFock〉 is
the single-photon Fock state in two modes, and |ψcoh〉 is the coherent
state with N = 2.

achievable sensitivity with |ψCN〉 is better than that with |ψQN〉
in the proposed measurement setup.

IV. OPTIMIZATION OF MEASUREMENTS

By comparing the CRB and the QCRB with different probe
states, we find that the multimode NOON states give better
sensitivity than other probe states. In addition, by comparing
the QFIM and CFIM of multimode NOON states, it is clear
that this setup fails to achieve the QCRB. In principle, one can
construct a set of measurements that can saturate the QCRB.
However, these measurements are generally difficult to im-
plement practically as they are entangled and/or dependent
on the phases. More critically, the optimal probe states that
minimize the QCRB not necessarily minimize the CRB for
a given measurement setting. In such situations, it is more
appropriate to optimize the probe states for practical measure-
ment settings.

FIG. 3. Total variance of multiple phase estimation with different
probe states. We compare the total variance |�φ|2 of |ψCN〉 and
|ψQN〉 for (a) different values of d with N = 3 and (b) different values
of N with d = 2.
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FIG. 4. Experimental scheme for multiple phase estimation with
a split-ratio tunable multimode BS. A m × m unbalanced BS is
shown. Split ratio of this component can be tuned by varying the
phases θi.

From the results of Appendix A, the input-output relation
of a multimode BS with single-photon Fock state input is
given by

Ak,� = 1

m

d∑
j=0

exp

[
−ι̇

(
φ j + 2π j(k + �)

m

)]
. (11)

This setup can also be used as an unbalanced BS whose split
ratio can be tuned by changing the values of θk [37]. Figure 4
shows the multiple phase estimation setup with an unbalanced
BS. The split ratio denotes the ratio of intensity of the output
ports when only the first input is excited. For example, in the
case of a tritter, the split ratio is a : b : c, where the a, b, and c
are the fractions of photons leaving the first, second, and third
output ports when the input is fed only in the first input port.
Mathematically, the fraction Tj of photons leaving port j in
this setting can be obtained as

Tj = A0, jA
∗
0, j (12)

= 1

m2

d∑
k=0

d∑
k′=0

exp

[
ι̇

(
θk′ − θk + 2π j

m
(k′ − k)

)]
(13)

= 1

m2

[
m + 2

d∑
k=0

∑
k′<k

cos

(
θk′ − θk + 2π j

m
(k′ − k)

)]
.

(14)

Note that we use θk to denote the phases when used for tuning
the split ratio of an unbalanced BS. By varying the values of
θk , we can control the split ratio. For example, setting θk =
θ j for all k and j, we get T0 = 1 and Tj = 0 for all j �= 0
for arbitrary d . For m = 2, setting θ0 = 0 and θ1 = π/2 gives
50:50 split ratio. Clearly, an unbalanced BS is a passive and
lossless elements since

∑
j Tj = 1.

Now we derive the probability amplitudes at the output of
an unbalanced BS which is excited by the input state of the
form

	† |0〉 = 1√
N!

d∑
�=0

α�e−ι̇Nφ� (a†
� )N |0〉 , (15)

i.e., an m-mode generalized NOON state where the phases of
interest φ� are modulated by a unitary phases encoding. Then,

TABLE I. Minimum QCRB and CRB values depending on prob-
ability amplitudes of input states and split ratios of a BS with N = 2
and d = 2.

Probe state BS QCRB CRB

|ψQN〉 Balanced 0.729 0.947
|ψCN〉 Balanced 0.808 0.933
|ψBN〉 Unbalanced 0.75 0.844

we have

(a†
� )N =

∑
j1, j2,··· , jN

A�, j1 A�, j2 · · · A�, jN b†
j1

b†
j2

· · · b†
jN

. (16)

Utilizing Eq. (11), we get

(a†
� )N = 1

mN

∑
�j

∑
�k

exp

[
−ι

(
N∑

h=1

θkh

+2π

m

N∑
h=1

kh(� + jh)

)]
b†

�j, (17)

where the summation over �j = { j1, j2, . . . , jN } should be un-
derstood as the individual summation over its components and
b†

�j = b†
j1

b†
j2

· · · b†
jN

.

Substituting Eq. (17) into Eq. (15), we get the probability
amplitudes of system output as

	† |0〉 = 1√
N!mN

d∑
�=0

∑
�j

∑
�k

exp

[
−ι̇

(
N∑

h=1

θkh + Nφ�

+2π

m

N∑
h=1

kh(� + jh)

)]
b†

�j |0〉 . (18)

Any further simplification of this expression seems cumber-
some. However, numerical calculations can be carried out to
obtain the total variance for different values of N and d .

In Table I, the QCRB and the CRB with N = 2 and d = 2
for different configurations of input probe states and mea-
surement settings are provided. Here, |ψBN〉 is the balanced
NOON state, which has the same amplitude [32]. It is clear
from Table I that both |ψCN〉 and |ψBN〉 provide better achiev-
able sensitivity than |ψQN〉, which provides the lowest QCRB.
Furthermore, the tunable split ratio of the unbalanced BS
provides additional advantage with |ψBN〉 in the achievable
precision.

V. CONCLUSION

In simultaneous quantum multiple parameter estimation,
both quantum probe states and measurements are important
to enhance the sensitivity. While multimode NOON states are
considered as an optimal state to have the maximum QCRB,
the practical sensitivity given by the CRB cannot be saturated
to be QCRB under a realistic measurement scheme. Here we
considered a multiple phase estimation scenario with multi-
mode NOON states under a practical measurement setting.
We fixed the measurement scheme for estimating multiple
phases estimation and compared the sensitivity bound of
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different probe states. We found that the QCRB-optimized
NOON states, |ψQN〉, fail to provide the best sensitivity in
this setup. Instead, the probe states obtained by optimizing the
CRB provide better sensitivity. This results establishes that the
CRB is the correct figure-of-merit to choose the probe states
in practical multiple phases estimation schemes. Our results
can pave the way for various applications of multiple phase
estimation to achieve the practical maximum sensitivity.
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APPENDIX A: INPUT-OUTPUT RELATIONS
OF SYSTEM OF FIG. 1

Here, we derive the input–output relations of system of
Fig. 1(a) with the single-photon Fock state as the input. In this
setup, the photon can be input to any of the m input ports a j ,
j ∈ {0, 1, . . . , d}. The input photon passes through an m × m
BS UBS, followed by a phases encoding unitary Uφ which
encodes d phases φ1, φ2, . . . , φd . The first arm of this setup
is considered as a reference, thus setting φ0 = 0. Finally, the
photon passes through another m × m BS before exiting this
system to ports labeled by b j , j ∈ {0, 1, . . . , m}. By deriving
the input-output relations of this setup we mean to derive the
probability Pj,k of the photon leaving from bk when it entered
the port a j .

The transfer matrices of the BS and the phases encoding
unitaries are given by

[UBS] j,k = 1√
m

ω jk and [Uφ] jk = δ jkeι̇φk ,

respectively, with ω = e
2πι̇
m , and φ0 = 0.

From system model,

�b = UBS Uφ UBS �a.

Since all matrices are unitary, we have

�a = U †
BS U †

φ U †
BS

�b.
Using the matrix multiplication we get

[U †
BS U †

φ ] j,k =
d∑

�=0

1√
m

ω− j�δk je
−ι̇φk = 1√

m
ω− jke−ι̇φk .

Similarly,

[U †
BS U †

φ U †
BS] j,k =

d∑
�=0

1√
m

ω− j�e−ι̇φ�
1√
m

ω−k�

= 1

m

d∑
�=0

exp

[
−ι̇

(
φ� + 2π�( j + k)

m

)]

= [A] j,k .

This last expression gives the probability amplitude of a pho-
ton at output mode k, when the input mode j is excited with a
single photon. Let, φ� + 2π�( j+k)

m = φ
j,k
� . Then, the probability

of photon exiting the output mode k when the input mode j is
excited is given by

Pi, j = [A] j,k [A]∗j,k

= 1

m2

[
m + 2

d∑
�=1

cos φ
j,k
� + 2

h−1∑
�=1

d∑
h=1

cos
(
φ

j,k
� − φ

j,k
h

)]
.

APPENDIX B: QFIM FOR TWO-EXCITED MODES’
SINGLE-PHOTON FOCK STATE

We have

a†
k =

d∑
j=0

Ak, jb
†
j,

where A = U †
φU †

BS, i.e.,

Ak, j = 1√
m

e−ι̇(φ j+ 2π
m k j).

Let us excite two input modes, ak and a�, then we can write

a†
ka†

� = 1

2

∑
h, j

(Ak,hA�, j + Ak, jA�,h)b†
hb†

j

= 1

2m

∑
h, j

e−ι̇(φh+φ j )(e−ι̇ 2π
m (kh+� j) + e−ι̇ 2π

m (k j+�h) )b†
hb†

j .

(B1)

The partial derivative ∂/∂φy of Eq. (B1) is

∂

∂φy
a†

ka†
�

= 1

m

∑
j

−ι̇e−ι̇(φ j+φy )(e−ι̇ 2π
m (k j+�y) + e−ι̇ 2π

m (ky+� j) )b†
jb

†
y.

(B2)

The inner product between ∂/∂φy of Eq. (B1) and ∂/∂φz of
Eq. (B1) is〈

∂φzψ
∣∣∂φyψ

〉
= 2

m2

{
δy,z

∑
j

[
1 + cos

(
2π

m
(k − �)( j − y)

)]
f 2( j, y)

+(1 − δy,z )

[
1 + cos

(
2π

m
(k − �)(z − y)

])}
, (B3)

where f ( j, k) = √
2 when j = k, and is equal to one other-

wise.
Similarly,

〈
∂φyψ

∣∣ψ 〉 = 2ι

m2

{∑
j

[
1 + cos

(
2π

m
(k − �)( j − y)

)]}

= 2ι̇

m
. (B4)
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Thus, 〈
∂φyψ

∣∣ψ 〉〈ψ∣∣∂φzψ
〉 = 4

m2
, (B5)

and we can calculate the quantum Fisher information matrix
as

Fy,z =
{ 8

m , if y = z,
8

m2

{
cos

[
2π
m (k − �)(y − z)

]− 1
}

otherwise.
(B6)

Setting k − � = 1, we find the total variance to be

|�φQ|2 =
{ 1

4 , if m = 2,
2m(m−1)

8 − m
6 , otherwise.

(B7)

APPENDIX C: CFIM FOR A MULTIMODE NOON STATE

Since the input-output relation of an m × m BS is

a†
k = 1√

m

d∑
j=0

eι̇ 2π
m k jb†

j,

we get

(a†
k )N = 1

mN/2

∑
j1

∑
j2

· · ·
∑

jN

eι̇ 2πk
m ( j1+···+ jN )b†

j1
b†

j2
· · · b†

jN

= 1

mN/2

∑
�x

B(�x)b†
�x, (C1)

where �x is an m elements vector whose entries are nonnegative
integers satisfying

∑ �x = N and correspond to the photon
number configuration in the output ports. The summation is
over all such vectors �x. The corresponding coefficient

B(�x) = n(�x)eι̇ 2πk
m

∑d
j=0 j�x( j),

where n(�x) is the total number of possible combinations of
( j1, j2, . . . , jN ) such that b†

j1
b†

j2
. . . b†

jN
generates b†

�x. Also,
define

c(�x) =
d∑

j=0

j�x( j).

Plugging Eq. (C1) in Eq. (9), we get

ψin = 1√
N!mN

∑
�x

n(�x)b†
�x

d∑
k=0

αkeι̇(Nφk+ 2π
m kc(�x)). (C2)

For a fixed photon number configuration �x, the probability
amplitude A(�x) is given by

A(�x) = 1√
N!mN

n(�x)b(�x)
d∑

k=0

αkeι̇(Nφk+ 2π
m kc(�x)),

where b(�x) accounts for the normalization factor from higher
(greater than 1) order creation operators [38].

The probability of output photon number configuration �x is
given by

P(�x) = A(�x)A∗(�x) = 1

N!mN
n2(�x)b2(�x)

d∑
k=0

αkeι̇(Nφk+ 2π
m kc(�x))

d∑
j=0

α∗
j e

−ι̇(Nφ j+ 2π
m jc(�x))

= 1

N!mN
n2(�x)b2(�x)

∑
j,k

αkα
∗
j e

ι̇(N (φk−φ j )+ 2π
m c(�x)(k− j))

= 1

N!mN
n2(�x)b2(�x)

⎛
⎜⎜⎝1 + 1

2

∑
j,k

j �=k

αkα
∗
j

(
eι̇[N (φk−φ j )+ 2π

m c(�x)(k− j)] + e−ι̇[N (φk−φ j )+ 2π
m c(�x)(k− j)])

⎞
⎟⎟⎠

= 1

N!mN
n2(�x)b2(�x)

⎛
⎜⎜⎝1 +

∑
j,k

j �=k

αkα
∗
j cos

(
N (φk − φ j )

2π

m
c(�x)(k − j)

)⎞⎟⎟⎠.

Assuming α j ∈ R for all j and after some trigonometric and algebraic tricks, we can write the partial derivative ∂P/∂φ j as

∂P(�x)

∂φ j
= 2N

N!mN
n2(�x)b2(�x)

d∑
k=0

α jαk sin

(
N (φk − φ j ) + 2π

m
c(�x)(k − j)

)
,

from where we are finally able to obtain the explicit form of the CFIM given in Eq. (2)

FC(h,k) =
∑

�x

1

P�x

(
∂P�x
∂φ j

)(
∂P�x
∂φk

)

= 4αhαkN2

N! mN

∑
�x

n2(�x)b2(�x)

∑
j,� α jα� sin

[
N (φ j − φh) + 2π

d c(�x)( j − h)
]

sin
[
N (φ� − φk ) + 2π

m c(�x)(� − k)
]

1 +∑
j,� cos

[
N (φ� − φ j ) + 2π

m c(�x)(� − j)
] , (C3)

where
(1) �x ∈ {0, 1, . . . , N}m, s.t.

∑ �x = N : Possible output vector, e.g., [1, 0, 2] for 1 photon in 0 mode, 0 photons in mode 1,
and 2 photons in mode 2.
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(2) n(�x) number of possible configurations of creations operators of output mode that all create the output vector �x.

(3) b(�x) =
√∏d

j=0 �x( j)!.

(4) c(�x) = ∑d
j=0 i�x( j).
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