
PHYSICAL REVIEW A 106, 032610 (2022)

Direct counterfactual quantum-communication protocol beyond a single-photon source
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The direct counterfactual quantum-communication protocol involving double-chained Mach-Zehnder inter-
ferometers requires a single-photon input. Here, we show that even with multiphoton light sources, including a
strong coherent light source as input, the counterfactual communication can be achieved with success probability
approaching unity in the ideal asymptotic limit. The path evolution of multiple photons is nonlocally controlled.
Thus, information is transmitted without any photons, or any other auxiliary information carriers, appearing in
the public transmission channel. The effect is quantum since quantum measurements are an essential requirement
for this protocol. Furthermore, a modified scheme is proposed in which the number of interferometers is reduced.
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I. INTRODUCTION

Measurement plays a unique role in quantum mechanics
and leads to many counterintuitive quantum phenomena. One
of them is the direct counterfactual quantum-communication
SLAZ protocol originally proposed by Salih et al. [1]. This
protocol is inspired by interaction-free measurement [2,3]
along with the use of quantum Zeno effect [4,5]. It can
transmit one bit of information remotely without any phys-
ical particles traveling between two communicating parties,
Alice and Bob. The probability of obtaining the informa-
tion correctly in the ideal asymptotic limit approaches 100%
[1]. Although the SLAZ protocol requires time to transmit
information, the nonlocal quantum effect that it presents in
it has triggered intense research interest in fundamental re-
search [6–17]. As a nonlocal quantum control method for a
single photon, the SLAZ protocol has led to new ideas about
entanglement preparation [18–21] and quantum teleportation
[22–25]. Furthermore, further research has been done on top-
ics such as quantum gates [26–29], ghost imaging [30], and so
on [31,32]. In addition, there have been proof-of-principle ex-
periments that were carried out. In 2017, the research groups
of Pan and Zhu independently published verification experi-
ments [33,34].

In the SLAZ protocol, a single photon forms a three-path
superposition state, one of which is the public transmission
channel connecting Alice and Bob. The other two paths are
confined to Alice’s end. The basic idea is to force the photon
state to collapse to only these two paths through multiple mea-
surements of the photon in the transmission channel, so that
information can be transmitted without the photon appear-
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ing in the transmission channel. When multiple photons are
considered, however, the situation is no longer simple. Under
ordinary conditions, multiple photons cannot act collectively
(just like a single photon), resulting in forming a photon
number distribution in the three paths. In other words, the light
field is conventionally described by light intensity distribution
rather than the probabilistic description. Under the descrip-
tion of light intensity, there is always nonzero photon state
components in the public transmission channel. This leads to
the current mainstream view that multiphoton light sources,
especially strong coherent light sources, cannot achieve direct
counterfactual quantum communication [33,34].

In this work, we show that the above scenario is not always
the case. The aforementioned nonlocal quantum effect can
still be true for multiphoton light sources. It is possible to
nonlocally control the path evolution of multiple photons,
including strong coherent light field, so that information can
still be transmitted counterfactually. It should be emphasized
that, in this article, we focus on whether the nonlocal quantum
effects can theoretically occur, and hence unlock the physics
behind it. Therefore, our proof only considers ideal equipment
and environments. The reason why we write this article from
an information transmission perspective is to give the reader a
simple and intuitive example, and to illustrate the relevance to
Ref. [1]. Hence, we simply consider the model in which Bob
transmits 1-bit information to Alice, and our discussion does
not involve those recently developed protocols with modified
definitions and criteria [13–17]. On this basis, we first study
the SLAZ protocol with a multiphoton source instead of a
single-photon source, and hence analyze their similarities and
differences. Our study shows the conditions for counterfactual
communication are more stringent, requiring more resources.
Nonetheless, we then propose a modified scheme, which
can greatly reduce the resources that are required compared
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FIG. 1. (a) Basic scheme based on double-chained Mach-Zehnder interferometers. When the input state is a coherent state with average
photon number |α|2 = 10, we plot (b) the probability (P0) that only D0 clicks when s = 0 and (c) the probability (P1) that only D1 clicks when
s = 1 for different M and N . In the modified scheme, the communication is cut off at the red dashed line where D0 and D1 are repositioned.
In order to analyze the needed resources described by the total cycle number T in the modified scheme, we plot (d) the minimum log10T for
different P̃ = P̃0 = P̃1, when |α|2 = 200, where P̃s represents the probability that no photon enters the transmission channel and Ds detects at
least one photon for Bob’s signal s. The red solid curve is based on Eq. (8), and circle points come from the complete simulation without any
approximation.

with the SLAZ protocol despite using the same multiphoton
source.

II. BASIC SCHEME AND CALCULATION METHOD

In Fig. 1(a), SL stands for light source, MR stands for mir-
ror, BS stands for beam splitter, and D stands for detector. The
scheme has the structure of double-chained Mach-Zehnder
interferometers. There are M BSM constituting the outer chain,
and the lower arm of each interferometer in the outer chain is
embedded with an inner chain composed of BSN . The number
of BSN in each inner chain is N . According to Ref. [1], we
call M (N ) the outer (inner) cycle number, and T = MN the
total cycle number. For the description of the function of the
BSM(N ), we divide Fig. 1(a) into three zones. We assume that
the photon state |v0, v1, v2〉 =∏ j=0,1,2[(a†

j )
v j

/
√

v j!]|0, 0, 0〉
represents v j photons in zone j, and a†

j is the corresponding
creation operator. Then, the function of BSM(N ) can be de-
scribed as

a†
0(1) → a†

0(1) cos θM(N ) + a†
1(2) sin θM(N ),

a†
1(2) → a†

1(2) cos θM(N ) − a†
0(1) sin θM(N ), (1)

where θM(N ) = π/2M(N ) and cos2θM(N ) represents the reflec-
tivity of BSM(N ). In the lower arms of the inner chains, the
white belt stands for the public transmission channel connect-
ing Alice and Bob. At Bob’s end, the detector D2B is activated
for his signal s = 1, and deactivated (becomes transparent) for
signal s = 0. At Alice’s end, D0 and D1 are used to receive
Bob’s signal.

Before we consider the complete scheme, we first fo-
cus on the inner chain. The evolution of photons in the
outer chain obeys the same laws. Let us assume that the
input of the inner chain is a Fock state |0, v, 0〉. When
s = 0, it is easy to see that, after n BSN , the photon state
is (a†

1 cos nθN + a†
2 sin nθN )

v
/

√
v!|0, 0, 0〉. When n = N , all

photons entering the inner chain are routed to the D2A side.
However, when s = 1, interference in the chain is interrupted
by D2B’s continuous measurements. Unless otherwise speci-
fied, in this work we only require the detector to be able to
distinguish between the vacuum state (|0〉) and the nonzero
photon number state. If D2B cannot find any photons in the
transmission channel after N measurements, the photon state
becomes (a†

1cosNθN )
v
/

√
v!|0, 0, 0〉, where those terms con-

taining a†
2 are eliminated since the photon state in zone 2 must

collapse to |0〉. In addition, it is worth pointing out that when
N � 1, cosNθN ≈ 1 − π2/8N , and this approximation also
works for M.

III. THEORY AND DEMONSTRATION

In this section, we prove that even if Alice uses a multi-
photon light source, with the help of multiple measurements,
it is possible to transmit 1 bit of information directly from
one communicator (Bob) to the other (Alice) such that, dur-
ing the entire information transmission process, the photon
state at Bob’s end is a vacuum state. The probability of this
happening tends towards 100% as system resource (number
of interferometers) increases.
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Our calculations are based on the dynamical evolution of
Alice’s photons. The basic idea is as follows. Taking the case
that Bob’s signal s = 1 as an example, we notice that photon
exchange between zone 1 and the public transmission channel
occurs only when Alice’s photons pass through BSN . There-
fore, after each pass, D2B is used to ensure that no photons
appear in the transmission channel due to measurement, which
causes the quantum state to collapse. After the measurement,
if D2B does not click, the collapsed photon state becomes the
initial state for the next dynamical evolution. Eventually, we
can obtain P1, which is the probability of no detectors being
triggered except for D1 during the entire dynamical evolution
process. Since D2B is always silent, this ensures that Bob’s
state is always in a vacuum. As for the case where Bob’s
signal is 0, the situation is similar, except that we use D2A

to ensure that there are no photons in the entire zones 1
and 2 (including the transmission channel). In this case, the
corresponding probability is P0, i.e., only D0 clicks. We show
that the two final states of Alice’s photons according to Bob’s
different signals are orthogonal. Therefore, Alice can receive
Bob’s information correctly. More importantly, we show that
the probabilities P1 and P0 can both tend towards 1. In such
extreme case, Alice’s photons are manipulated nonlocally and
receive Bob’s information correctly. We consider this as the
realization of direct counterfactual quantum communication.

A. Fock state input case

Consider the situation where the input photon state of
Fig. 1(a) is a Fock state |v, 0, 0〉. According to the discussion
in Sec. II, when s = 0, any photons entering the inner
chain must be routed to D2A, so the inner chain and D2A

can be treated as a combined detector. Consequently,
after BSM , if D2A does not click, the photon state is
|φm

0 (v)〉 = cos(m−1)vθM (a†
0 cos θM + a†

1 sin θM )
v
/
√

v!|0, 0, 0〉.
When M � 1, it is approximately given by

∣∣φM
0 (v)

〉 = 1√
v!

[(
1 − π2

8M

)
a†

0 + π

2M
a†

1

]v

|0, 0, 0〉. (2)

Regarding the case s = 1, the photons entering the
transmission channel are measured by D2B. When N is
large, the photons have a large probability of being retained
on the upper side of the inner chain. However, as long as
N is finite, the multiple measurements must cause photon
loss and lead to the imbalance of the two arms of the
interferometer in the outer chain. To account for this, we do
power series expansion and discard all the second-order and
higher-order terms of 1/N . Consequently, after m BSM ,
if D2B does not click, the photon state is |φm

1 (v)〉 =
[a†

0(cos mθM + Am) + a†
1(sin mθM − Bm)]

v
/
√

v!|0, 0, 0〉
where Am = (π2/8N )

∑m−1
m′=1 sin m′θM sin(m−m′)θM and

Bm = (π2/8N )
∑m−1

m′=1 sin m′θM cos(m−m′)θM . When
m = M, the summations can be replaced by integrations
[35], which leads to AM ≈ πM/8N and BM ≈ Mπ2/16N .
Therefore, for M � 1, we have

∣∣φM
1 (v)

〉 = 1√
v!

[
πM

8N
a†

0 +
(

1 − π2M

16N

)
a†

1

]v

|0, 0, 0〉. (3)

More details on the calculations of Eqs. (2) and (3) can be
found in Appendix A.

Based on Eqs. (2) and (3), we calculate the probability
Ps that Ds detects at least one photon and no other detector
clicks when Bob’s signal is s. We emphasize that any photons
entering the transmission channel (zone 2) must cause D2A or
D2B to be triggered. Therefore, if both P0 and P1 approach 1,
it means that 1 bit of information can be transmitted directly
without any photon entering the transmission channel, which
leads to the direct counterfactual quantum communication. In
the Fock state input case, it is easy to see that P0(1) is equal
to the probability of Alice detecting the final state |v, 0, 0〉
(|0, v, 0〉). Then, under the condition that N � vM � v2,
we have P0 ≈ 1 − π2v/4M and P1 ≈ 1 − π2Mv/8N , which
approach unity. Consequently, the counterfactual communi-
cation can be realized with a Fock state input. Obviously, the
single-photon case proposed in Ref. [1] is a special case.

B. Arbitrary photon statistics input case

Consider the initial photon state
∑∞

v=0 cv|v, 0, 0〉, where∑∞
v=0 |cv|2 = 1. Since for a specific Fock state |v, 0, 0〉, the

total photon number v is conserved throughout the communi-
cation process if both D2A and D2B do not click, the dynamical
evolution of Fock states with different total photon numbers
cannot interfere with each other. Consequently, we obtain

P0 =
∞∑

v=1

|cv|2
∣∣〈v, 0, 0

∣∣φM
0 (v)

〉∣∣2 =
∞∑

v=1

|cv|2
(

1 − π2

8M

)2v

,

P1 =
∞∑

v=1

|cv|2
∣∣〈0, v, 0

∣∣φM
1 (v)

〉∣∣2 =
∞∑

v=1

|cv|2
(

1 − π2M

16N

)2v

.

(4)

It is worth mentioning that the summation is from v = 1,
since initial state |0, 0, 0〉 does not contribute to the trans-
mission of information. Accordingly, if we want Ps → 1, the
first requirement is that |c0|2 → 0 (this ensures that Alice’s
two final states are orthogonal). In addition to the above re-
quirement, a general condition for Ps → 1 is given as follows.
Consider the case where the light field has a cutoff vc satis-
fying

∑∞
vc

|cv|2v → 0, which means that the photon number
states with v > vc have no contribution to the average photon
number v̄ =∑∞

v=0 |cv|2v. Then, when N � vcM � v2
c (when

considering a specific photon number distribution, this con-
dition can be optimized, as shown in Appendix B), we can
obtain

P0 ≈ 1 − π2v̄/4M, P1 ≈ 1 − π2v̄M/8N. (5)

Consequently, both P0 and P1 can approach unity so that
the direct counterfactual quantum communication can be
achieved. More details are in Appendix C.

IV. DISCUSSIONS

A. Finite M and N scenario, and the role
of quantum measurement

We have shown that using the optical scheme proposed in
the SLAZ protocol, the counterfactual communication can be
achieved with multiphoton sources, and its success probability
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approaches unity in the ideal asymptotic limit. However, in
practice, M and N are finite. Under this condition, there is
a difference between a Fock state input and an input with
arbitrary photon statistics. For the Fock state case, when Alice
collects all v photons, she knows that no photons entered
the transmission channel. In other words, the measurement
results of D2A and D2B are not necessary. However, for a
more general input, only the result of local measurements
at Alice’s end cannot help her reach the same conclusion.
For example, if the input state is c1|1, 0, 0〉 + c2|2, 0, 0〉 and
Bob’s D2B detects one photon, this may result in the final state
|1, 0, 1〉. Unless Alice has Bob’s measurement results, she
cannot distinguish between |1, 0, 0〉 and |1, 0, 1〉. To ensure
that Bob delivers results to Alice without transferring any
physical particles, we require that Bob makes announcements
only when a photon is detected (it is worth emphasizing that
in this case, the counterfactual communication has already
failed), and to remain silent at other times. The key here is
that Bob has the ability to deliver both signals 0 and 1 to Alice
[7], while remaining silent, and the probability of Bob being
silent approaches unity as M and N increase. Evidently, since
Bob’s quantum measurement results are an essential part, the
effect is manifestly quantum.

As a result, having the Fock state as an input including the
special case when there is only a single photon (Ref. [1]) is an
extreme situation of the direct counterfactual quantum com-
munication. It is worth mentioning that such a light source has
quantum characteristics. On the contrary, the other extreme
case is the coherent light source case, where the counterfactual
effect is only determined by multiple quantum measurements.
Consider a coherent state input |α, 0〉 passing through a BS.
According to Eq. (1), the outputs |α cos θ, α sin θ〉 are still
coherent states. However, once we perform a measurement
on one side of the BS, the photon state has a probability of
exp(−|α|2sin2θ ) to collapse to |α cos θ, 0〉. Regardless of the
average number of photons, |α|2, of the input, this probability
can approach unity by reducing the transmittance (sin2θ ) of
the BS. As a result, in the coherent state input case, clicks at
D0 and D1 as well as the measurement results of D2A and D2B,
are essential to ensure counterfactuality.

B. Resources needed for the single-photon case
and the coherent light case

To fully demonstrate the nonlocal effect due to
the critical role of multiple measurements, we now
focus on the strong coherent input state |α, 0, 0〉 =
exp(−|α|2/2 )

∑∞
v=0 αv/

√
v!|v, 0, 0〉, which satisfies

|c0|2 = exp(−|α|2) ≈ 0. In Appendix B, we obtain the same
result as Eq. (5). However, the condition for counterfactual
communication changes to N � v̄M � v̄2. To verify our
results, in Figs. 1(b) and 1(c) we show the numerical
simulation results of P0 and P1 for |α|2 = 10 for different
M and N . For example, when M = 250 and N = 35 000,
the numerical results are P0 = 0.906 and P1 = 0.916, while
the approximate results given by Eq. (5) are P0 = 0.901 and
P1 = 0.912. All these results are in good agreement with each
other.

Based on Eq. (5), we can analyze the resources that are re-
quired and compare with the single-photon case. We note that

there are M−1 inner chains in the entire optical structure, and
N−1 interferometers in each inner chain as shown in Fig. 1(a).
Alice’s photons pass through these interferometers one by
one, thus we can use the total number of cycle T = MN to
describe the complexity of the optical system and the required
resources. Furthermore, T can also describe the time taken for
information extraction if we assume that the optical distance
of each interferometer is consistent.

Based on the above definition, we compare the coherent
light case and the single-photon case of the SLAZ protocol.
Regarding the single-photon case, we assume that its outer
(inner) cycle number is M ′ (N ′). Accordingly, the proba-
bilities of D0 and D1 detecting the single photon are P

′
0 =

1 − π2/4M ′ and P
′
1 = 1 − π2M ′/8N ′, respectively. Regard-

ing the case of coherent input state |α〉, if we want Ps = P
′
s ,

the requirement for the total cycle number is MN = |α|6M ′N ′.
Obviously, if the effect of the average photon number |α|2
is ignored and the experiment is performed with only the
parameters in the single-photon case, no counterfactual effect
can be observed. This is exactly what happened in Ref. [34].
In that experiment, a counterfactual-like effect is reported, in
which only the intensity distribution result is observed.

Going back to the current work, unfortunately, there is
a pitfall with the increase of |α|2, which leads the needed
resources to be greatly increased. To overcome this, we next
present a modified scheme, which can significantly reduce
resources comparing with the SLAZ protocol using the same
light source.

V. MODIFIED SCHEME

Here we propose a modified scheme for strong coherent
input state |α〉. The corresponding calculation details can be
found in Appendix D. In the original scheme, when s = 1,
photons are routed from zone 0 to zone 1, but when s = 0, at
the end of each inner chain, the photon number in zone 1 is ex-
actly zero. From the perspective of information transmission,
there is no need to wait for all the photons to move to zone 1,
and then confirm that Bob’s signal is s = 1. Based on this idea,
we reposition D0 and D1 at the red dashed line, after the mc th
inner chain in Fig. 1(a), and end the communication process
there. Here, we emphasize that, in this setup, the number of
BSM is determined by mc, but the reflectivity of BSM is still
determined by M. As for BSN , both the reflectivity and the
total number of BSN in each inner chain are determined by
N . Therefore, the total cycle number required in the modified
scheme is T = mcN . Apparently, the determination of an ap-
propriate value of mc is critical to minimize T , which will be
discussed below.

Based on previous discussions, the pho-
ton states on the red dashed line are |�̃mc

0 〉 =
exp[− 1

2 |α|2(1 − cos2mcθM )]|αcosmcθM, 0, 0〉 for s = 0, and

|�̃mc
1 〉 = exp[−|α|2 π2

8N

∑mc
m′=1 sin2m′θM]|α(cos mcθM + Amc ),

α[(1− π2

8N ) sin mcθM − Bmc ], 0〉 for s = 1. In the following,
we calculate the probability P̃s that D2A and D2B do not
click, and Ds detects at least one photon for Bob’s signal s.
Obviously, once D1 is triggered, Bob’s signal must be s = 1.
If the communication system can guarantee that P̃1 → 1,
then the silence of D1 indicates that Bob’s signal is s = 0
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according to |�̃mc
0 〉. As a result, the direct counterfactual

quantum communication can be achieved when both P̃0 and
P̃1 approach unity.

To get the expression of P̃s, we define the average photon
number expected in zone 1 at the end of the communication
process when s = 1 as k̄. If the probability of any photon leak-
ing out of Alice’s device is 0, we have k̄ ≈ (|α|mcθM )2 when
k̄ 	 |α|2 (see Appendix D). Based on this approximation, we
have

P̃0 = exp

(
−|α|2 mcπ

2

4M2

)
, (6)

P̃1 = exp

[
π2(mc + 1)(2mc + 1) ln P̃0

24N

]

×
{

1 − exp

[
mc ln P̃0

(
1 − π2 1 + mc

16N

)2]}
. (7)

In Eq. (7), we have used M =
√

−|α|2 mcπ2/4 ln P̃0,

which follows from Eq. (6). In addition, Eq. (6) also in-
dicates that mc = −k̄/ ln P̃0. Since the probability of not
triggering D1 tends towards zero when k̄ is large, i.e.,
exp(−k̄) = exp(mc ln P̃0) ≈ 0, it is not difficult to obtain N =
π2k̄2/12 ln P̃0 ln P̃1 from Eq. (7). This means that for given
values of |α|2 and k̄, even if P̃0 and P̃1 are very close to 1,
we can still have the corresponding parameters M, N , and
mc. Moreover, if we compare the single-photon case by as-
suming that P̃s = P

′
s , we can get that T = 32k̄3N ′M ′/3π4 ≈

k̄3N ′M ′/10. Note that for the SLAZ protocol using the same
light source, the total cycle number is |α|6M ′N ′. Since k̄ 	
|α|2, the modified scheme is more resource efficient than the
original SLAZ protocol with coherent input state |α〉 (see
Appendix D).

In the above discussion, the value of k̄ is given in advance.
However, Eq. (7) implies that there is an optimal k̄ (or mc)
for the minimum T when P̃0, P̃1, and |α|2 are given. To get
the minimum T , we derive an expression for N in terms of
mc from Eq. (7). We note that the first exponential term in
Eq. (7) comes from the probability that no photon enters the
transmission channel, which approaches unity when N � m2

c .
Under this condition, except the term exp(mc ln P̃0), other ex-
ponential terms in Eq. (7) can be replaced by their first-order
power series expansion of 1/N , leading to

N = π2(mc + 1)[(2mc + 1) + (mc − 1) exp (mc ln P̃0)] ln P̃0

24[P̃1 + exp (mc ln P̃0) − 1]
.

(8)
It follows from Eq. (8) that, for given values of P̃0, P̃1,

and |α|2, we only need to scan mc to get the minimum T .
Based on this idea, in Fig. 1(d), we plot the red solid curve of
minimum log10T versus P̃ = P̃0 = P̃1 with |α|2 = 200. As a
comparison, the circle points are derived from the numerical
simulation without any approximation. As shown in the figure,
the two curves almost overlap.

In the table of Fig. 1(d), we give the values of M, N,

and mc when T is the minimum for some values of P̃.
Our numerical simulation also shows that for P̃ = 0.5 and
|α|2 = 200, T is the minimum when mc = 2, N = 14, and
M = 38. We mention that this set of parameters is close to

the current experimental conditions in Ref. [34], except that
the reflectivity of BSM has changed drastically. Without this
change, the probability of detecting photons in the transmis-
sion channel is almost unity. Due to the above comparison
with Ref. [34], we expect that the modified scheme may be
beneficial for future proof-of-principle experiments. Another
change worth mentioning compared to Ref. [34] is the type
of the detector. It is not difficult to find that when s = 0, in
the last inner interferometer of the first outer interferometer,
the average number of photons appearing in the transmission
channel reaches its maximum value in our modified scheme.
It is |α|2sin2θM ≈ 0.34 when using the parameters mentioned
above. As for s = 1, the maximum value appears in the first
inner interferometer of the last outer interferometer, which
is |α|2 sin2 mcθMsin2 θN ≈ 0.017. Since our protocol only re-
quires the detector to distinguish between vacuum state and
nonzero photon state, a single-photon detector is sufficient
for this task. Consequently, compared with the experiment in
Ref. [34], the main changes are only the adjustment of the
reflectivity of BSM and the use of single-photon detectors.

VI. CONCLUSION

We have demonstrated that a single-photon source is not a
necessary condition for direct counterfactual quantum com-
munication; that is, when Bob’s photon state continues to
be in a vacuum state, even with a multiphoton light source,
he can transmit one bit of information to Alice without the
help of any physical carriers, and the success probability is
close to 100% in the ideal asymptotic limit. We show that
multiple quantum measurements play a critical role in the
above process. Moreover, we propose a modified scheme that
can reduce the needed resources compared with the SLAZ
protocol albeit using the same multiphoton source.
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APPENDIX A: CALCULATIONS FOR FOCK STATE
AS AN INPUT STATE

According to Fig. 1(a) in the main text, a0, a1, and
a2 represent the annihilation operators of the light field
in zones 0, 1, and 2, respectively. Based on this, the
function of the BSM(N ) can be described as a†

0(1) →
a†

0(1) cos θM(N ) + a†
1(2) sin θM(N ) and a†

1(2) → a†
1(2) cos θM(N ) −

a†
0(1) sin θM(N ), where θM = π/2M and θN = π/2N . Now, we

consider the initial photon state

|v, 0, 0〉 = 1√
v!

(a†
0)

v|0, 0, 0〉, (A1)

which represents that v photons appear in zone 0, while no
photons appear in zones 1 and 2. After the first BSM ,

∣∣φ1
0

〉 = ∣∣φ1
1

〉 = 1√
v!

(a†
0 cos θM + a†

1 sin θM )
v|0, 0, 0〉, (A2)
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where the superscript of |φm
s 〉 represents the m th outer inter-

ferometer, while the subscript represents Bob’s signal s.
In the first inner chain, after the first BSN , the photon state

becomes

1√
v!

[a†
0 cos θM + sin θM (a†

1 cos θN + a†
2 sin θN )]

v|0, 0, 0〉.
(A3)

1. Bob deactivates his detector D2B, i.e., his signal is s = 0

In the first inner chain, after n th BSN , the photon state
becomes

1√
v!

[a†
0 cos θM + sin θM (a†

1 cos nθN + a†
2 sin nθN )]

v|0, 0, 0〉.
(A4)

When n = N , we have

1√
v!

(a†
0 cos θM + a†

2 sin θM )
v|0, 0, 0〉

= 1√
v!

v∑
j=0

C j
v (a†

0 cos θM )
v− j

(a†
2 sin θM )

j |0, 0, 0〉

= 1√
v!

v∑
j=0

C j
v cosv− jθMsin jθM

√
(v − j)! j!|v − j, 0, j〉.

(A5)

Right now, D2A measures the photons appearing in zone 2.
If it does not click, the photon state collapses to

1√
v!

cosvθM (a†
0)

v|0, 0, 0〉, (A6)

i.e., all terms with a†
2 are eliminated. Here, we emphasize

that we do not perform normalization to facilitate probability
calculations. After the second BSM , the photon state becomes∣∣φ2

0

〉 = 1√
v!

cosvθM (a†
0 cos θM + a†

1 sin θM )
v|0, 0, 0〉. (A7)

The above process is repeated in each outer interferometer.
After m th BSM , we have∣∣φm

0

〉 = 1√
v!

cos(m−1)vθM (a†
0 cos θM + a†

1 sin θM )
v|0, 0, 0〉.

(A8)
When m = M, we have∣∣φM

0

〉 = 1√
v!

cos(M−1)vθM (a†
0 cos θM + a†

1 sin θM )
v|0, 0, 0〉

≈ 1√
v!

[
a†

0

(
1 − π2

8M

)
+ a†

1

π

2M

]v

|0, 0, 0〉. (A9)

This is Eq. (2) in the main text. In the second line, we have
used the approximation that

cosMθM ≈ 1 − π2

8M
(A10)

and

sin θM ≈ π

2M
. (A11)

We neglect all second- or higher-order terms of 1/M.
Now we can calculate the probability that D0 and only D0

clicks. Under such condition, it is easy to see that the photon
state has to be |v, 0, 0〉. Then, we have

P0 = cos2MvθM ≈
(

1 − π2

8M

)2v

≈ 1 − π2v

4M
. (A12)

To get the third equation, we require that M � v.

2. Bob activates his detector D2B, i.e., his signal is s = 1

Based on Eq. (A3), we consider the influence of Bob’s
measurement. If D2B does not click, we have

1√
v!

(a†
0 cos θM + a†

1 sin θM cos θN )
v|0, 0, 0〉. (A13)

After N th BSN , we have

1√
v!

(a†
0 cos θM + a†

1 sin θMcosNθN )
v|0, 0, 0〉

≈ 1√
v!

[
(a†

0 cos θM + a†
1 sin θM ) + a†

1

(
− π2

8N

)
sin θM

]v

× |0, 0, 0〉. (A14)

Here, in the second line, we have used the approximation

cosNθN ≈ 1 − π2

8N
, (A15)

which requires N � 1.
After the second BSM , we have

∣∣φ2
1

〉 = 1√
v!

[
a†

0 cos 2θM + a†
1 sin 2θM

+
(

− π2

8N

)
sin θM (a†

1 cos θM − a†
0 sin θM )

]v

|0, 0, 0〉.
(A16)

The above process is repeated in the next outer interferom-
eters. After the third BSM , we have

∣∣φ3
1

〉 = 1√
v!

[
(a†

0 cos 3θM + a†
1 sin 3θM )

+
(

− π2

8N

)
sin θM (a†

1 cos 2θM − a†
0 sin 2θM )

+
(

− π2

8N

)
sin 2θM (a†

1 cos θM − a†
0 sin θM )

]v

|0, 0, 0〉.
(A17)

Here we continue to use the approximation shown in
Eq. (A15) and we have also neglected all second- or higher-
order terms of 1/N .
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Similarly, after m th BSM , we have

∣∣φm
1

〉 = 1√
v!

{
(a†

0 cos mθM + a†
1 sin mθM )+

(
− π2

8N

) m−1∑
m′=1

sin m′θM [a†
1 cos (m − m′)θM − a†

0 sin (m − m′)θM]

}v

|0, 0, 0〉. (A18)

Since θM = π/2M, when m = M, we have

∣∣φM
1

〉 = 1√
v!

[
a†

1 − π2

8N

(
a†

1

M−1∑
m′=1

sin2m′θM − a†
0

M−1∑
m′=1

sin m′θM cos m′θM

)]v

|0, 0, 0〉

= 1√
v!

{
a†

1 − π2

8N

[
a†

1

(
−1 +

M∑
m′=1

sin2m′θM

)
− a†

0

M∑
m′=1

sin m′θM cos m′θM

]}v

|0, 0, 0〉. (A19)

Regarding these two summations in Eq. (A19), we can do the following approximation:

M∑
m′=1

sin2

(
m′π
2M

)
≈ 2M

π

∫ π/2

0
sin2m′dm′ = M

2
(A20)

and

M∑
m′=1

sin

(
m′π
2M

)
cos

(
m′π
2M

)
≈ 2M

π

∫ π/2

0
sin m′ cos m′dm′ = M

π
. (A21)

Consequently, Eq. (A19) can be rewritten as

∣∣φM
1

〉 = 1√
v!

[(
1 + π2

8N
− π2M

16N

)
a†

1 + πM

8N
a†

0

]v

|0, 0, 0〉 ≈ 1√
v!

[
πM

8N
a†

0 +
(

1 − π2M

16N

)
a†

1

]v

|0, 0, 0〉. (A22)

This is Eq. (3) in the main text. In the second line, we use the assumption that M � 1.
Now we can calculate the probability that D1 and only D1 clicks. Under such condition, it is easy to see that the photon state

has to be |0, v, 0〉, which results in having

P1 ≈ 1 − π2vM

8N
, (A23)

which requires that N � Mv and M � 1.

APPENDIX B: CALCULATIONS FOR COHERENT STATE AS AN INPUT STATE

We consider an initial coherent photon state

|α, 0, 0〉 = exp(αa†
0 − α∗a0)|0, 0, 0〉. (B1)

Here, we assume that |α, 0, 0〉 ≡ |α〉|0〉|0〉 with |α〉 = exp(− 1
2 |α|2)

∑∞
v=0

αv√
v!

|v〉 representing the coherent state.
After passing through the first BSM , the photon state is∣∣�1

0

〉 = ∣∣�1
1

〉 = exp[α(a†
0 cos θM + a†

1 sin θM ) − α∗(a0 cos θM + a1 sin θM )]|0, 0, 0〉 = |α cos θM, α sin θM, 0〉, (B2)

where the superscript of |�m
s 〉 represents the m th outer interferometer and the subscript represents Bob’s signal s.

After the first BSN in the first inner chain, we have

exp{α[a†
0 cos θM + (a†

1 cos θN + a†
2 sin θN ) sin θM]−α∗[a0 cos θM + (a1 cos θN + a2 sin θN ) sin θM]}|0, 0, 0〉

= |α cos θM, α sin θM cos θN , α sin θM sin θN 〉. (B3)

1. Bob deactivates his detector D2B, i.e., his signal is s = 0

It is not difficult to obtain that after n th BSN , the photon state is

exp{α[a†
0 cos θM + (a†

1 cos nθN + a†
2 sin nθN ) sin θM]−α∗[a0 cos θM + (a1 cos nθN + a2 sin nθN ) sin θM]}|0, 0, 0〉

= |α cos θM, α sin θM cos nθN , α sin θM sin nθN 〉. (B4)

032610-7



LI, FENG, AL-AMRI, AND ZUBAIRY PHYSICAL REVIEW A 106, 032610 (2022)

When n = N , we have

|α cos θM , 0, α sin θM〉 ≡ |α cos θM〉|0〉
[

exp

(
−1

2
|α sin θM |2

) ∞∑
v=0

(α sin θM )v√
v!

|v〉
]
. (B5)

Now, we consider the measurement performed by D2A. If the detector does not detect any photons, the photon state in zone 2
collapses to the zero-photon state, i.e.,

exp
(− 1

2 |α sin θM |2)|α cos θM〉|0〉|0〉 = exp
[− 1

2 |α|2(1 − cos2θM )
]|α cos θM, 0, 0〉. (B6)

The probability that no photons are detected by D2A is exp[−|α|2(1 − cos2θM )].
Then, after the second BSM , we have∣∣�2

0

〉 = exp
[− 1

2 |α|2(1 − cos2θM )
]|αcos2θM, α cos θM sin θM, 0〉. (B7)

After passing through the second inner chain, and if D2A still does not detect any photons, the photon state becomes

exp
[− 1

2 |α|2(1 − cos2θM ) − 1
2 |α|2cos2θMsin2θM

]|αcos2θM, 0, 0〉 = exp
[− 1

2 |α|2(1 − cos2θM )(1 + cos2θM )
]|αcos2θM, 0, 0〉

= exp
[− 1

2 |α|2(1 − cos4θM )
]|αcos2θM, 0, 0〉. (B8)

Then, after the third BSM , we have∣∣�3
0

〉 = exp
[− 1

2 |α|2(1 − cos4θM )
]|αcos3θM, αcos2θM sin θM , 0〉. (B9)

The above process is repeated many times. After m th BSM , we have∣∣�m
0

〉 = exp
{− 1

2 |α|2[1 − cos2(m−1)θM]
}|αcosmθM, αcosm−1θM sin θM, 0〉. (B10)

In addition, after the following inner cycle, if D2A does not click, the photon state becomes

exp
{− 1

2 |α|2[1− cos2(m−1)θM]
}

exp
{− 1

2 |α|2cos2(m−1)θMsin2θM
}|αcosmθM, 0, 0〉 = exp

[− 1
2 |α|2(1 − cos2mθM )

]|αcosmθM, 0, 0〉.
(B11)

This equation can be used to describe the final photon state in the modified scheme for s = 0 when m = mc.
Back to Eq. (B10), when m = M, we have

∣∣�M
0

〉 = exp

{
−1

2
|α|2[1 − cos2(M−1)θM]

}
|αcosMθM, αcosM−1θM sin θM, 0〉 ≈ exp

(
−|α|2π2

16M

)∣∣∣∣α
(

1 − π2

8M

)
, α

π

2M
, 0

〉
.

(B12)

In the second line, we have used the approximation

cosMθM ≈ cosM−1θM ≈ 1 − π2

8M
(B13)

and

sin θM ≈ π

2M
. (B14)

We neglect all second- or higher-order terms of 1/M.
Now, we can calculate the probability that D0 and only D0 clicks, which is

P0 = exp{−|α|2[1 − cos2(M−1)θM]} exp[−|α|2cos2(M−1)θMsin2θM][1 − exp(−|α|2cos2MθM )]

= exp[−|α|2(1 − cos2MθM )] − exp(−|α|2) ≈ 1 − |α|2π2

4M
. (B15)

The term in the second line comes from the requirement that D0 has to detect at least one photon. In addition, to get the third
equation, we require that M � |α|2 � 1.

2. Bob activates his detector D2B, i.e., his signal is s = 1

Based on Eq. (B3), we consider the influence of Bob’s measurement. If D2B does not click, we have

exp
[− 1

2 |α|2sin2θM (1 − cos2θN )
]|α cos θM, α sin θM cos θN , 0〉. (B16)
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At the end of the first inner chain, if D2B does not click, we have

exp

[
−1

2
|α|2sin2θM (1 − cos2NθN )

]
|α cos θM , α sin θMcosNθN , 0〉

≈ exp
(
− π

8N
|α|2sin2θM

)∣∣∣∣α cos θM, α sin θM +
(

− π2

8N

)
α sin θM, 0

〉
. (B17)

In the approximation, we do power series expansion and discard all the second- and higher-order terms of 1/N due to the
assumption N � 1.

After the second BSM , we have

∣∣�2
1

〉 = exp

(
− π2

8N
|α|2sin2θM

)∣∣∣∣α cos 2θM + π2

8N
α sin θM sin θM, α sin 2θM − π2

8N
sin θM cos θM, 0

〉
. (B18)

The above process is repeated in the next outer interferometer. With the same approximation, after the third BSM , we have

∣∣�3
1

〉 = exp

(
− π2

8N
|α|2sin2θM

)
exp

(
− π2

8N
|α|2sin22θM

)∣∣∣∣α cos 3θM + π2

8N
α sin θM sin 2θM + π2

8N
α sin 2θM sin θM

〉

⊗
∣∣∣∣α sin 3θM − π2

8N
α sin 2θM cos θM − π2

8N
α sin θM cos 2θM

〉
|0〉. (B19)

Similarly, after m th BSM , if D2B does not click, we have

∣∣�m
1

〉 = exp

(
− π2

8N
|α|2

m−1∑
m′=1

sin2m′θM

)∣∣∣∣∣α cos mθM + π2

8N
α

m−1∑
m′=1

sin m′θM sin (m − m′)θM

〉

⊗
∣∣∣∣∣α sin mθM − π2

8N
α

m−1∑
m′=1

sin m′θM cos (m − m′)θM

〉
|0〉. (B20)

In addition, after the following inner chain, if no D2B clicks, we have

exp

(
− π2

8N
|α|2

m−1∑
m′=1

sin2m′θM

)
exp

(
−1

2

∣∣∣ π

2N
α sin mθM

∣∣∣2)
∣∣∣∣∣α cos mθM + π2

8N
α

m−1∑
m′=1

sin m′θM sin (m − m′)θM

〉

⊗
∣∣∣∣∣α sin mθM − π2

8N
α

m∑
m′=1

sin m′θM cos (m − m′)θM

〉
|0〉

= exp

(
− π2

8N
|α|2

m∑
m′=1

sin2m′θM

)∣∣∣∣∣α cos mθM + π2

8N
α

m−1∑
m′=1

sin m′θM sin (m − m′)θM

〉

⊗
∣∣∣∣∣α sin mθM − π2

8N
α

m∑
m′=1

sin m′θM cos (m − m′)θM

〉
|0〉 (B21)

This equation can be used to describe the final photon state in the modified scheme for s = 1 when m = mc.
Back to Eq. (B20), when m = M, we have

∣∣�M
1

〉 = exp

(
− π2

8N
|α|2

M−1∑
m′=1

sin2m′θM

)∣∣∣∣∣ π
2

8N
α

M−1∑
m′=1

sin m′θM sin (M − m′)θM, α

[
1 − π2

8N

M−1∑
m′=1

sin m′θM cos (M − m′)θM

]
, 0

〉

= exp

[
− π2

8N
|α|2
(

−1 +
M∑

m′=1

sin2m′θM

)]∣∣∣∣∣ π
2

8N
α

M∑
m′=1

sin m′θM cos m′θM, α

[
1 − π2

8N

(
−1 +

M∑
m′=1

sin2m′θM

)]
, 0

〉
.

(B22)

Utilizing the approximation shown in Eqs. (A20) and (A21), we have

∣∣�M
1

〉 = exp

[
−|α|2

(
− π2

8N
+ π2 M

16N

)]∣∣∣∣απM

8N
, α

(
1 + π2

8N
− π2 M

16N

)
, 0

〉
≈ exp

(
−|α|2 π2 M

16N

)∣∣∣∣απM

8N
, α

(
1 − π2 M

16N

)
, 0

〉
.

(B23)
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Now, we can calculate the probability that D1 and only D1 clicks, which is

P1 = exp

(
−|α|2 π2 M

8N

)
exp

(
−|α|2 π2 M2

64N2

){
1 − exp

[
−|α|2

(
1 − π2 M

16N

)2
]}

≈ exp

(
−|α|2 π2 M

8N

)
− exp(−|α|2) ≈ 1 − |α|2 π2M

8N
. (B24)

In the first line of Eq. (B24), the first factor exp(−|α|2π2M/8N ) is derived from the probability amplitude in
Eq. (B23). The second factor exp(−|α|2 π2 M2/64N2) is due to the condition that D0 does not click. The third factor
{1− exp[−|α|2(1 − π2M/16N )2]} is due to the condition that D1 detects at least one photon. In the second line of Eq. (B24),
we have neglected all second-order terms of M/N since N � M. In the third line of Eq. (B24), we use exp(−|α|2) ≈ 0 since
we assume |α|2 � 1, and N � |α|2M. Combined with the requirement obtained in (B15), the condition for counterfactual
communication is N � |α|2M � |α|4.

APPENDIX C: CALCULATIONS FOR THE INPUT STATE AS ARBITRARY PHOTON STATISTICS

Consider an arbitrary photon statistics input, which is

∞∑
v=0

cv|v, 0, 0〉. (C1)

1. Bob deactivates his detector D2B, i.e., his signal is s = 0

Utilizing Eq. (A9), we have

∣∣�M
0

〉 = ∞∑
v=0

cv√
v!

[cos(M−1)θM (a†
0 cos θM + a†

1 sin θM )]
v|0, 0, 0〉 ≈

∞∑
v=0

cv√
v!

[
a†

0

(
1 − π2

8M

)
+ a†

1

π

2M

]v

|0, 0, 0〉. (C2)

Then, the probability that D0 and only D0 clicks is

P0 =
∞∑

v=1

|cv|2cos2MvθM ≈
∞∑

v=1

|cv|2
(

1 − π2

8M

)2v

. (C3)

When considering a light field in a real-life scenario, the average photon number is limited. Therefore, we can assume a cut-off
photon number vc such that the Fock states with v > vc have no contribution to the average photon number v̄ =∑∞

v=0 |cv|2v,
i.e.,

∞∑
v=vc

|cv|2v = 0. (C4)

Due to
∑∞

v=vc
|cv|2v �∑∞

v=vc
|cv|2, we have

∑∞
v=vc

|cv|2 = 0. Consequently, when M � vc, we can obtain

P0 ≈
vc∑

v=1

|cv|2
(

1 − π2

8M

)2v

=
vc∑

v=1

|cv|2
(

1 − vπ2

4M

)
= 1 − π2

4M
v̄ − |c0|2. (C5)

We emphasize that the above condition may be changed when we consider a specific photon statistic such as a coherent state.
Considering the coherent state |α〉 = exp(− 1

2 |α|2)
∑∞

v=0
αv√
v!

|v〉, based on Eq. (C3), the corresponding probability is

P0 = −|c0|2 +
∞∑

v=0

|cv|2cos2MvθM = − exp(−|α|2) +
∞∑

v=0

exp(−|α|2)
|α|2v

v!
cos2MvθM

= − exp(−|α|2) +
∞∑

v=0

exp[−|α|2(1 − cos2MθM + cos2MθM )]
|αcosMθM |2v

v!

= − exp(−|α|2) + exp[−|α|2(1 − cos2MθM )]
∞∑

v=0

exp(−|αcosMθM |2)
|αcosMθM |2v

v!

= − exp(−|α|2) + exp[−|α|2(1 − cos2MθM )], (C6)

which is in agreement with Eq. (B15).
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2. Bob activates his detector D2B, i.e., his signal is s = 1

Utilizing Eq. (A22), we have

∣∣�M
1

〉 = ∞∑
v=0

cv√
v!

[
πM

8N
a†

0 +
(

1 − π2M

16N

)
a†

1

]v

|0, 0, 0〉. (C7)

Then, the probability that D1 and only D1 clicks is

P1 =
∞∑

v=1

|cv|2
(

1 − π2M

16N

)2v

. (C8)

Based on the approximation shown in Eq. (C4), when N � Mvc, we have

P1 ≈
vc∑

v=1

|cv|2
(

1 − π2M

16N

)2v

= 1 − π2M

8N
v̄ − |c0|2. (C9)

When |c0|2 → 0, Eqs. (C5) and (C9) are Eq. (5) in the main text.
Next, we consider the coherent state. Based on Eq. (C8), the corresponding probability is

P1 = −|c0|2 +
∞∑

v=0

|cv|2
(

1 − π2 M

16N

)2v

= − exp(−|α|2) + exp

[
−|α|2

(
π2 M

8N
− π4 M2

162 N2

)] ∞∑
v=0

exp

[
−|α|2

(
1 − π2 M

16N

)2
]

1

v!

∣∣∣∣α
(

1 − π2 M

16N

)∣∣∣∣
2v

= − exp(−|α|2) + exp

[
−|α|2

(
π2 M

8N
− π4 M2

162 N2

)]

≈ 1 − |α|2 π2 M

8N
− exp(−|α|2), (C10)

which is in agreement with Eq. (B24).

APPENDIX D: CALCULATIONS FOR MODIFIED SCHEME FOR STRONG COHERENT STATE INPUT

In this calculation, we mainly compare between the SLAZ scheme and the modified scheme using the same light source.
As a frame of reference, we assume that the cycle numbers of the SLAZ protocol using a single-photon source are N ′ and M ′,
respectively. Accordingly, the probability of only D0 or D1 clicking are

P
′
0 = 1 − π2

4M ′ , P
′
1 = 1 − π2M ′

8N ′ . (D1)

1. Original SLAZ scheme with strong coherent input

Apparently, due to Eqs. (B15) and (B24), when |α|2 is large, the conditions for P0 = P
′
0 and P1 = P

′
1 are

M = |α|2M ′, (D2)

N = |α|2N ′M
M ′ = |α|4N ′. (D3)

Therefore, the total cycle number is

MN = |α|6M ′N ′. (D4)

2. Modified scheme for strong coherent input

Following the discussion in the main text, we define that ps is the probability that D2A and D2B do not click, which describes
the counterfactuality of the communication process, where s = 0, 1. In addition, we define that fs is the probability of at least
one photon being detected in zone s. Then, P̃s = fs ps.

According to Eqs. (B11) and (B21), which can describe the state of photons after mc th BSM and mc th inner chain for s = 0, 1,
respectively, we have

f0 = 1 − exp(−|α|2cos2mcθM ), (D5)
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p0 = exp[−|α|2(1 − cos2mcθM )], (D6)

f1 = 1 − exp

[
−
∣∣∣∣∣α sin mcθM − π2

8N
α

mc∑
m′=1

sin m′θM cos (mc − m′)θM

∣∣∣∣∣
2]

, (D7)

p1 = exp

(
− π2

4N
|α|2

mc∑
m′=1

sin2m′θM

)
. (D8)

In Eq. (D7), |α sin mcθM− π2

8N α
∑mc

m′=1 sin m′θM cos(mc−m′)θM |2 in the exponential term represents the average photon number
in zone 1. In the ideal case, this number is expected to be

k̄ = |α|2 sin2 mcθM . (D9)

When k̄ 	 |α|2, the approximation sin mcθM ≈ mcθM is valid. Based on this approximation, we calculate Eqs. (D5)–(D8) in
the following.

We first calculate Eq. (D8):

p1 = exp

(
− π2

4N
|α|2

mc∑
m′=1

sin2 m′θM

)
≈ exp

(
− π4

16NM2
|α|2

mc∑
m′=1

m′2
)

= exp

[
− π4

96NM2
|α|2 mc(mc + 1)(2mc + 1)

]
. (D10)

In the calculation, we have used
mc∑

m′=1

m′2 = 1

6
mc(mc + 1)(2mc + 1). (D11)

We next calculate Eq. (D7). Here we focus on its power exponent part∣∣∣∣∣α sin mcθM − π2

8N
α

mc∑
m′=1

sin m′θM cos (mc − m′)θM

∣∣∣∣∣
2

=
∣∣∣∣∣α sin mcθM − π2

8N
α

mc∑
m′=1

sin m′θM (cos mcθM cos m′θM + sin mcθM sin m′θM )

∣∣∣∣∣
2

. (D12)

Since mcθM is small and m′ < mc, we can neglect the second- and higher-order terms of mcθM and m′θM . Then, Eq. (D12) can
be approximated as

≈
∣∣∣∣∣αmcθM − π2

8N
α

mc∑
m′=1

m′θM

[(
1 − (mcθM )2

2

)(
1 − (m′θM )2

2

)
+ (mcθM )(m′θM )

]∣∣∣∣∣
2

, (D13)

≈
∣∣∣∣∣αmcθM − π2

8N
αθM

mc∑
m′=1

m′
∣∣∣∣∣
2

=
( |α|mcπ

2M

)2[
1 − π2

16N
(1 + mc)

]2

. (D14)

As a result, f1 can be rewritten as

f1 = 1 − exp

{
−
( |α|mcπ

2M

)2[
1 − π2

16N
(1 + mc)

]2
}

. (D15)

Accordingly, the expression of P̃1 is

P̃1 = exp

[
−|α|2 π4 mc(mc + 1)(2mc + 1)

96M2 N

]{
1 − exp

[
−|α|2 π2 m2

c

4M2

(
1 − π2 1 + mc

16N

)2]}
. (D16)

Similarly, we can calculate P̃0, which is

P̃0 = [1 − exp(−|α|2 cos2mc θM )] exp[−|α|2 (1 − cos2mc θM )]

= exp[−|α|2 (1 − cos2mc θM )] − exp(−|α|2)≈ exp
(−|α|2 mcθ

2
M

) = exp

(
−|α|2 mcπ

2

4M2

)
. (D17)

This is Eq. (6) in the main text. In the calculation of Eq. (D17), we have assumed that exp(−|α|2) ≈ 0 due to the strong input.
Above we have given the expressions for P̃0 and P̃1. However, it is often necessary to estimate the parameters M, N, and mc

according to the given P̃0, P̃1, and |α|2. To achieve this goal, we need further approximation.
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First, we convert the form of Eq. (D17) as follows.

M =
√

−|α|2 mcπ2

4 ln P̃0
. (D18)

We mention that M determines the transmittance of BSM , and we can see that M depends on mc.
By substituting Eq. (D18) into Eq. (D16), we have

P̃1 = exp

[
π2(mc + 1)(2mc + 1) ln P̃0

24N

]{
1 − exp

[
mc ln P̃0

(
1 − π2 1 + mc

16N

)2]}
. (D19)

This is Eq. (7) in the main text. We notice that the first exponential term exp[π2(mc + 1)(2mc + 1) ln P̃0/24N] is coming from
p1. In order to ensure that the probability of detecting photons in the transmission channel is small, i.e., p1 → 1, we require that
N � m2

c . Based on this assumption, we can rewrite Eq. (D19) by doing power series expansion according to 1/N and omitting the
second- and higher-order terms of 1/N . For example, the second exponential term in Eq. (D19) can be approximately rewritten
as

exp

[
mc ln P̃0

(
1 − π2 1 + mc

16N

)2]
≈ exp

[
mc ln P̃0

(
1 − π2 1 + mc

8N

)]

= exp

[
− π2

8N
(1 + mc)mc ln P̃0

]
exp (mc ln P̃0)

≈
[

1 − π2

8N
mc(1 + mc) ln P̃0

]
exp (mc ln P̃0). (D20)

Here, we mention that k̄ = |α|2 sin2 mcθM ≈ |α|2 m2
c θ2

M . In addition, according to Eq. (D17), we have ln P̃0 = −|α|2 mcθ
2
M .

Therefore, it is easy to see that

k̄ = −mc ln P̃0. (D21)

Since k̄ represents the average number of photons appearing in zone 1, the larger its value, the higher the probability that
Alice can successfully distinguish Bob’s signals. Therefore, the value of k̄ can be greater than 1, and we need to keep the term
exp(mc ln P̃0) in the calculation.

Regarding P̃1, similarly, we can obtain

P̃1 ≈
[

1 + π2(mc + 1)(2mc + 1) ln P̃0

24N

]{
1 −

[
1 − π2

8N
mc(1 + mc) ln P̃0

]
exp (mc ln P̃0)

}

≈ 1 −
[

1 − π2

8N
mc(1 + mc) ln P̃0

]
exp (mc ln P̃0)+ π2

24N
(mc+ 1)(2mc+ 1) ln P̃0− π2

24N
(mc+ 1)(2mc + 1) ln P̃0 exp (mc ln P̃0)

= 1 + π2

24N
(mc + 1)(2mc + 1) ln P̃0 − exp (mc ln P̃0)

[
1 − π2

24N

(
m2

c − 1
)

ln P̃0

]
. (D22)

Based on Eq. (D22), we can give the expression of N , which is

N = π2 (mc + 1)[(2mc + 1) + (mc − 1) exp (mc ln P̃0)] ln P̃0

24[P̃1 + exp (mc ln P̃0) − 1]
. (D23)

This is Eq. (8) in the main text.
Regarding the total cycle number T = Nmc, we have

T = π2 mc(mc + 1)[(2mc + 1) + (mc − 1) exp (mc ln P̃0)] ln P̃0

24[P̃1 + exp (mc ln P̃0) − 1]
. (D24)

Equation (D24) indicates that we can scan mc to get the
minimum T . When mc is determined, based on Eqs. (D18)
and (D23), we can get the corresponding M and N . In the
main text, the red solid curve in Fig. 1(d) is drawn in this way.
Regarding the circle points in the figure, we scan M, N, and
mc without any approximation.

Based on Eq. (D24), we prove that the modified scheme re-
quires much less resources than the original scheme using the

same light source. We utilize Eq. (D21) to rewrite Eq. (D24),
which leads to

T = π2k̄(ln P̃0 − k̄)[2k̄ − ln P̃0 + (k̄ + ln P̃0) exp (−k̄)]

24(ln P̃0)
2
[exp (−k̄) − (1 − P̃1)]

.

(D25)
Equation (D25) describes the relation between the re-

sources (T ) required by the modified scheme and the average
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number of photons expected to be detected in zone 1 (k̄). In
particular, when k̄ is very large, the probability that D1 does
not find any photons is negligible, i.e., exp(−k̄) ≈ 0 [when the
average photon number |α|2 of the light source is large, this
condition is not difficult to achieve, while ensuring k̄ 	 |α|2;
for example, when k̄ = 5, exp(−k̄) ≈ 0.007], we can obtain

T ≈ π2k̄3

12(ln P̃0)
2
(1 − P̃1)

. (D26)

By substituting (D1) into (D26), i.e., P̃s = P
′
s , we have

T ≈ 32

3π4
k̄3M ′N ′ ≈ 1

10
k̄3M ′N ′. (D27)

Obviously, due to k̄ 	 |α|2, the value given in Eq. (D27) is
much smaller than that given by Eq. (D4). Moreover, here T is
not necessarily the minimum. Therefore, the modified scheme
can save resources.

So far, we have obtained all the results shown in the main
text. Next, we discuss another situation, in which we only
consider the probability that the photon state at Bob’s end is
a vacuum state (ps) and ignore Alice’s detectors receiving the
photon or not. Based on the assumptions that mcθM is small
and ps is close to 1, we have

p0 = exp

(
−|α|2 mcπ

2

4M2

)
= exp

(
− k̄

mc

)
, (D28)

where we have used the relation k̄ ≈ |α|2m2
cπ

2/4M2, which
leads to

mc = − k̄

ln p0
. (D29)

Equation (D28) also indicates that

M =
√

−|α|2 mcπ2

4 ln p0
. (D30)

Regarding p1, according to Eq. (D10), we can approxi-
mately obtain

p1 = exp

[
− π4

96NM2
|α|2 mc(mc + 1)(2mc + 1)

]

≈ exp

(
− π4

48NM2
|α|2 m3

c

)
= exp

(
π2 k̄2

12N ln p0

)
. (D31)

In the second line, we have assumed that mc � 1 for sim-
plicity. Equation (D31) also leads to

N = π2k̄2

12 ln p0 ln p1
. (D32)

Then, the resources required in the current case are

T = − π2k̄3

12(ln p0)2 ln p1
. (D33)

Compared with the single-photon case, assuming ps =
P

′
s = P′, we have

log10T = log10

[
− π2k̄3

12(ln P′)3

]
. (D34)

FIG. 2. Comparison of resources. The blue dotted curve is plot-
ted for the original SLAZ protocol using the single-photon source.
The other two curves are plotted for the modified scheme. The red
solid curve is based on Eq. (8) in the main text with |α|2 = 200
[i.e., the red solid curve in Fig. 1(d)]. The black dashed curve is
plotted for Eq. (D34) with k̄ = 2. The difference is that for the black
dashed curve, P′ is the probability that no photon appears in the
public transmission channel whether or not Alice’s detectors receive
the photon. The blue dotted and black dashed curves are almost
overlapped. The steps shape of the blue dotted curve is the result
of the M ′ and N ′ with integer values in the simulation.

In addition, for a given k̄, we can rewrite Eqs. (D29), (D30),
(D32), and (D33) by using Eq. (D1), which leads to

mc ≈ 4M ′k̄
π2

, (D35)

M ≈ 2M ′√k̄|α|
π

, (D36)

N ≈ 8N ′k̄2

3π2
, (D37)

T = Nmc = 32

3π4
k̄3M ′N ′ ≈ 1

10
k̄3M ′N ′. (D38)

It is worth noting that Eqs. (D38) and (D27) are the same.
In order to verify our conclusion, we plot Fig. 2. The black

dashed curve is plotted for Eq. (D34) with k̄ = 2. The blue
dotted curve is plotted for the single-photon case, in which
we scan M ′ and N ′ for minimum log10T corresponding to
P′, where T = M ′N ′. We obtain this result without using any
approximation. As we expected, the black dashed curve and
the blue dotted curve almost coincide. When P′ is small, the
blue dotted curve starts off in steps-shape fashion. The reason
is that M ′ and N ′ are integers in the simulation. According to
Eq. (D1), as M ′ increases, N ′ must also increase subsequently
to ensure that P′ does not decrease. In the meantime, when P′
is small, the required M ′ and N ′ are also small, which leads
to a more obvious impact on T . These facts lead to the steps
shape seen in the figure. As P′ increases, the corresponding M ′
and N ′ also increase resulting in a smooth blue dotted curve
without further steps. In addition, for comparison, the red
solid curve is plotted for minimum log10T according to Eq. (8)
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in the main text by setting P̃s = P′ [i.e., the red solid curve in
Fig. 1(d)], which takes into account the probability that Alice
needs to receive at least one photon. Figure 2 indicates that
when using a multiphoton light source, a significant increase
in resources is not a necessary condition to ensure that no

photons enter the transmission channel. The real benefit of
increasing system resources is to improve the efficiency of
information transmission. In short, this is because k̄ is pro-
portional to the trigger probability of Alice’s detector. As k̄
increases, T also increases according to Eq. (D38).
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