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In this paper, we investigate the strong-coupling quantum thermodynamics of a hybrid quantum system far
from equilibrium, based on the renormalization theory of quantum thermodynamics we developed recently
[Phys. Rev. Research 4, 023141 (2022)]. The strong-coupling hybrid system consists of a superconducting
microwave cavity and a spin ensemble of the NV centers in diamond under external driving. The non-Markovian
dynamics of this strong-coupling hybrid system has been experimentally explored and theoretically investigated.
We apply the renormalization theory of quantum thermodynamics to study the transient quantum heat and work
in this strong-coupling hybrid system. We find that the dissipation and fluctuation dynamics of the system
induce the transient quantum heat current which shows significant non-Markovian effects. On the other hand,
the energy and driving field renormalization produces quantum work power. In particular, the driving-induced
work power can be largely enhanced by non-Markovian dynamics through the cavity coupling strongly with the
spin ensemble at the resonance. Our results show that non-Markovian dynamics makes faster energy conversion
of the heat and work.
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I. INTRODUCTION

The investigation of quantum thermodynamics far from
equilibrium has attracted great attention in the last decade
[1–12], especially, the understanding of nonequilibrium en-
ergy conversion of heat and work in nanoscale devices is
the key for building quantum heat engines. Incorporating
with quantum features, nonequilibrium thermodynamics of
nanoscale systems can exhibit exotic properties. For example,
quantum coherence and entanglement could enhance the en-
ergy conversion efficiency of heat engines in comparison with
classical counterparts [13–19]. It was also argued that quan-
tum interference boosts the energy conversion efficiency in
photosynthesis as a quantum engine [20–25]. However, these
exotic quantum thermodynamics properties are usually ex-
tracted from the systems weakly coupled with their reservoirs.
For the strong coupling between system and reservoir, the
energy conversion of heat and work is not clearly understood.
One of the main motivations in the study of quantum thermo-
dynamics is to understand and manipulate energy conversion
of heat and work in nanoscale and atomic-scale quantum
systems when they strongly couple to their environment.

In fact, the definitions of thermodynamics quantities, such
as heat and work, are quite ambiguous at quantum level. A
contradiction has been pointed out in evaluating specific heat
in strong-coupling system due to the different definition of
internal energy [26,27]. In the previous investigations, the
concept of heat and work has been focused on how to take
into account properly the coupling energy between the sys-
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tem and its reservoir [28–33]. Even for a system operating
at steady-state limit, the definition of heat and work is still
debated within the framework of quantum mechanics [27,34–
41]. For the system far from equilibrium, the transient pro-
cesses of energy exchange become much more complicated
in the strong coupling [42,43]. More detailed discussions can
be found from the recent reviews [5–8]

In fact, the system-environment coupling will not only
modify the system Hamiltonian, but also induce dissipa-
tion and fluctuations to the system dynamics at the same
time. The renormalization of system Hamiltonian changes
the energy spectrum distribution and interactions but does
not change the unitary property of the system dynamics. The
environment-induced dissipation and fluctuations make the
system evolution nonunitary. It is the latter leads to the system
thermalization [3,9] so that quantum thermodynamics can
emerge. Furthermore, quantum mechanically, work is done
by the system Hamiltonian renormalization, and heat arises
from dissipation and fluctuations, as the consequence of en-
tropy production. The lack of a consistent description of the
system Hamiltonian renormalization together with dissipation
and fluctuation for nonequilibrium evolution of open systems
is perhaps the main problem faced in most of the previous
investigations.

Very recently, we developed a renormalization theory of
nonequilibrium quantum thermodynamics from the weak to
strong couplings [12], based on the exact dynamics and
thermalization of open quantum systems [44–49]. In this the-
ory, the exact dynamics of open quantum systems is solved
by nonperturbatively and exactly tracing over all reservoir
states from the density matrix of the total system [44–49]
through the coherent-state path integral [50]. Thus, all the
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environmental effects on the system are taken into account
without any ambiguity. Not only the renormalized system
Hamiltonian, but also the dissipation and fluctuation dynamics
naturally emerge together in the exact master equation of
the reduced density matrix for the system. Consequently, we
have provided rather unique definitions for various quantum
thermodynamics quantities, including quantum heat and work
[12]. In this paper, we shall extend the study to the tran-
sient energy conversion of heat and work in nonequilibrium
quantum thermodynamics with an experimentally realized
strong-coupling hybrid system in quantum optics.

The strong-coupling hybrid system is a superconducting
microwave cavity interacted strongly with a spin ensemble
made of NV centers in diamond. This system has been experi-
mentally used to measure decoherence dynamics and quantum
memory [51,52]. In particular, they measured how the de-
coherence dynamics is suppressed in the strong-coupling
regime. The corresponding non-Markovian decoherence dy-
namics are analyzed in details [53,54], where theoretical
solution also precisely reproduces the experiment results.
Thus, it is interesting to see if this strong-coupling hybrid
system controlled by external driving can serve as a quantum
heat machine for studying energy conversion of heat and work
quantum mechanically. We apply our exact description of
non-Markovian decoherence dynamics [54] incorporating the
theory of strong-coupling quantum thermodynamics [12] to
this natural strong-coupling quantum system. We are also in-
terested in providing a practically reliable physical system for
further experimental measurement on non-Markovian quan-
tum thermodynamics in the transient processes.

The non-Markovian dynamics, as a very important feature
of open quantum systems, has been extensively studied in re-
cent years. Most of the studies focus on the non-Markovianity
with the concepts of divisibility or distinguishability, defined
mathematically from completely positive and trace-preserving
dynamical maps [55,56]. These dynamical maps lack the con-
nection to the detailed spectral density of the open system.
Physically, it is well known that the spectral density encap-
sulates all the effects of environment on the open system
dynamics [57]. We have developed the general theory of
non-Markovian dynamics in open quantum systems [58,59],
where the general features of non-Markovian dynamics are
determined by the spectral density. In this strong-coupling
hybrid system, the spectral density has been experimentally
fitted [51]. Therefore, it is particularly interesting to see
how non-Markovian dynamics affects quantum thermody-
namics, and how the heat and work transfers are influenced
by non-Markovian dynamics. We find that the non-Markovian
dynamics plays a significant role in the energy conversion
of heat and work under the external driving. In a series of
case studies, we also provide a direction for experimentalists
to measure the transient heat and work in strong-coupling
systems.

The rest of this paper is organized as follows. In Sec. II,
we present a generalized Tavis-Cummings model for the hy-
brid system of a superconducting microwave cavity coupling
strongly to the spin ensemble. The general nonequilibrium
theory for such a strong-coupling system is reviewed and the
features of non-Markivan dynamics and its physical meaning
in transient transport processes are discussed. In Sec. III, we

FIG. 1. A schematic diagram of the strong-coupling hybrid sys-
tem consisting of a superconducting microwave cavity coupled with
a spin ensemble of NV centers in diamond.

apply the quantum thermodynamics based on the nonequilib-
rium theory to study the transient quantum heat and work in
the strong coupling. We find that the dissipation and fluctu-
ation dynamics of the system induce quantum heat current
which involves strong non-Markovian effects. On the other
hand, the quantum work power arises from the renormal-
ized energy and the renormalized driving field in the system
Hamiltonian. Through the renormalization of the cavity en-
ergy and the driving field, the quantum work power is also
affected significantly by non-Markovian dynamics. Experi-
mental setup for the separate measurement of the quantum
work power and heat current is also proposed. By tuning the
driving and cavity frequency as well as the coupling strength
between the cavity and spin ensemble, we show how non-
Markovian dynamics is manifested in the energy conversion
of heat and work in strong-coupling quantum thermodynam-
ics. Finally, a conclusion is drawn in Sec. IV.

II. NONEQUILIBRIUM NON-MARKOVIAN THEORY OF
THE STRONG-COUPLING HYBRID SYSTEM

The strong-coupling hybrid system concerned in this paper
is investigated experimentally by Putz et al. [51,52]. It is a
superconducting microwave cavity strongly coupled to a spin
ensemble of the NV centers in diamond (see Fig. 1). Also,
the cavity is driven by an external pulse so that one can
manipulate and measure the nonequilibrium photon dynam-
ics. Theoretically, the cavity photon dynamics can be well
described by the generalized Tavis-Cummings model with the
following Hamiltonian [60]:

H (t ) = h̄ωca†a + [ f (t )a† + H.c.]

+
∑

i

h̄�iσ
z
i +

∑
k

h̄ωkb†
kbk

+
∑

i

(Via
†σ−

i + V ∗
i σ+

i a) +
∑

k

(Vka†bk + V ∗
k b†

ka).

(1)

Here, a† (a) is the creation (annihilation) operator of cavity
photon mode ωc, and f (t ) is the external driving field ap-
plied to the cavity. The operators σ z

i , σ±
i represent the three

Pauli matrices of the ith spin in the spin ensemble with spin
energy-level splitting h̄�i. The parameter Vi is the coupling
strength between the cavity mode and the ith spin of the
spin ensemble. We also include the cavity leakage effects in
Eq. (1) due to the weak coupling between the cavity and the
free-space electromagnetic (EM) modes ωk , where b†

l (bl ) is
the corresponding creation (annihilation) operator and Vk is
the coupling strength between the cavity and EM modes.
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In the practical experimental setup [51,52], spins of the
NV centers in diamond are surrounded by Helmholtz coil
which supplies a strong magnetic field to make all the spins
into the polarized ground state. The total spin number is the
order of 1012. The external driving field applying to the cavity
can excite about a small number of spins (≈106) [51,52].
This implies that the spin ensemble is a highly polarized spin
ensemble. Thus, the Holstein-Primakoff approximation [61]
σ+

i ≡ c†
i (1 − c†

i ci )−1/2 � c†
i , and σ z

i ≡ c†
i ci − 1

2 can be ap-
plied to bosonalize the spin ensemble, where c†

i (ci ) represents
the bosonic creation (annihilation) operator of the correspond-
ing ith spin. As a result, the Hamiltonian (1) can be reduced
to

H (t ) = h̄ωca†a + [ f (t )a† + H.c.]

+
∑

i

h̄�ic
†
i ci +

∑
k

h̄ωkb†
kbk

+
∑

i

(Via
†ci + V ∗

i c†
i a) +

∑
k

(Vka†bk + V ∗
k b†

ka).

(2)

The nonequilibrium theory of this system has been formu-
lated [46,54]. The cavity photon dynamics can be described
by the cavity density matrix ρc(t ) = TrE[ρtot (t )]. The total
density matrix ρtot (t ) is determined from the Liouville–von
Neumann equation of the total system (i.e., the cavity plus the
spin ensemble and the free-space EM modes)

ih̄
d

dt
ρtot(t ) = [H (t ), ρtot(t )]. (3)

After tracing over all the environment degrees of freedom
(including the spin ensemble and the free-space EM modes),
we obtain the exact master equation of the cavity photonic
state [46,54]

d

dt
ρc(t ) = 1

ih̄

[
Hr

c (t, t0), ρc(t )
]

+ γ (t, t0)[2aρc(t )a† − a†aρc(t ) − ρc(t )a†a]

+ γ̃ (t, t0)[aρc(t )a† + a†ρc(t )a − a†aρc(t )

− ρc(t )aa†]. (4)

Here, the first term describes the unitary evolution of the cav-
ity density matrix with the renormalized system Hamiltonian

Hr
c (t, t0) = h̄ωr

c(t, t0)a†a + f ∗
r (t, t0)a + fr (t, t0)a†. (5)

The renormalization is given by the renormalized frequency
ωr

c(t, t0) and the renormalized driving field fr (t, t0) arisen
from the cavity coupling to the spin ensemble. The second and
third terms in Eq. (4) give the nonunitary evolution of the cav-
ity induced by the spin ensemble and also the leakage effect,
which are characterized by the dissipation and fluctuation co-
efficients γ (t, t0) and γ̃ (t, t0), respectively. They describe the
cavity spontaneous emission into the spin ensemble (including
the free-space leakage) and the induced cavity emission and
absorption from the thermal fluctuations of the spin ensemble
and the free space.

All the time-dependent parameters in the exact master
equation (4), i.e., the renormalized frequency and the renor-
malized driving field, as well as the dissipation and fluctuation

coefficients are nonperturbatively and exactly determined by
the nonequilibrium Green functions [46]

iωr
c(t, t0) + γ (t, t0) = − u̇(t, t0)

u(t, t0)
, (6a)

fr (t, t0) = ih̄ẏ(t, t0) − ih̄

[
u̇(t, t0)

u(t, t0)
y(t, t0)

]
, (6b)

γ̃ (t, t0) = v̇(t, t ) −
[

u̇(t, t0)

u(t, t0)
v(t, t ) + c.c.

]
. (6c)

The Green functions u(t, t0), v(τ, t ) and the driving-induced
cavity field y(t, t0) obey nonperturbatively the following time-
convolution equations of motion:

d

dt
u(t, t0) + iωcu(t, t0) +

∫ t

t0

dτ g(t, τ )u(τ, t0)

= 0, (7a)

d

dτ
v(τ, t ) + iωcv(τ, t ) +

∫ τ

t0

dτ ′g(τ, τ ′)v(τ ′, t )

=
∫ t

t0

dt ′̃g(τ, t ′)u∗(t, t ′) (t0 � τ � t ), (7b)

d

dt
y(t, t0) + iωcy(t, t0) +

∫ t

t0

dτ g(t, τ )y(τ, t0)

= 1

ih̄
f (t ), (7c)

subjected to the initial condition u(t0, t0) = 1, v(t0, t ) =
0, and y(t0, t0) = 0. Because of the boundary conditions
v(t0, t ) = 0 and y(t0, t0) = 0, Eqs. (7b) and (7c) can be an-
alytically solved in terms of u(t, t0) [46]:

v(τ, t ) =
∫ τ

t0

dt1

∫ t

t0

dt2u(τ, t1)g̃(t1, t2)u∗(t, t2), (8a)

y(t, t0) = 1

ih̄

∫ t

t0

dτ u(t, τ ) f (τ ). (8b)

The integral kernels in the above time-convolution equa-
tions are given by the two-time system-environment correla-
tion functions

g(t, τ ) =
∫ ∞

0

dω

2π
J (ω)e−iω(t−τ ), (9a)

g̃(t, τ ) =
∫ ∞

0

dω

2π
J (ω)n̄(ω, T )e−iω(t−τ ) (9b)

are the time-correlation functions between the cavity and the
spin ensemble (also include the free space for the leakage).
The spectrum density of the environment (spin ensemble plus
the free space)

J (ω) = 2π

h̄2

[ ∑
i

|Vi|2δ(ω − �i/h̄) +
∑

k

|Vk|2δ(ω − ωk )

]
= Js(ω) + Je(ω) (10)

represents the spectrum densities of the spin ensemble and
the free-space EM field coupled with the cavity. The particle
distribution n̄(ω, T0) = 1/(eh̄ω/kBT0 − 1) is the distribution of
boson mode ω with temperature T0 at the initial time t0.
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The non-Markovian memory due to the back-reaction
between the cavity and environment is described by the
time-convolution equations (7) and (8). It crucially depends
the structure of spectral density. The spectrum density of
the spin ensemble characterizes the inhomogeneous spectrum
broadening due to the local magnetic dipole-dipole couplings
between NV centers and the residual nitrogen paramagnetic
impurities. It can be measured and manipulated in exper-
iments [52]. It was found in the experiment [51] that the
spectrum density of the spin ensemble Js(ω) is a q-Gaussian
spectrum, which is an intermediate form between a Gaussian
spectral density (q = 1) and a Lorentzian spectral density
(q = 2):

Js(ω) = 2π
2C

[
1 − (1 − q)

(ω − ωs)2

�2

] 1
1−q

, (11)

where q = 1.39 is experimentally fitted, C is a normalization
constant of the density of state, ωs is the main frequency of
the spin ensemble, � is determined by the full width at the

half-maximum of Js(ω) which is given by d = 2�
√

2q−2
2q−2 , and

the coupling strength is 2
. The free EM spectrum Je(ω) is
taken by the decay constant κ , describing the cavity leakage.
Thus, J (ω) = Js(ω) + 2κ .

In the experimental setup [51,52], the main frequency of
spin ensemble is resonant with the cavity frequency ωs =
ωc = 2π × 2.69 GHz, the full width of the spin spectrum
is fitted by d = 18.8π MHz. Both the coupling strength
and the temperature of the spin ensemble are experimentally
adjustable. When the coupling strength is smaller than the
half-width of the spectral density 2
 < d/2, it is weak cou-
pling and the cavity dynamics is Markovian. When 2
 > d/2
which corresponds to the strong coupling and induces non-
Markovian memory dynamics [54]. Specially, the stronger
coupling induces the stronger non-Markovian dynamics that
can suppress decoherence of the cavity field, as observed
in experiment [51]. Theoretically, the decoherence suppres-
sion comes from the rapid oscillations between positive and
negative values of the dissipation and fluctuation coefficients
γ (t, t0) and γ̃ (t, t0) in our exact master equation and deter-
mined by Eq. (6). Such rapidly transport oscillations keep
energy and information (heat) flowing forth and back between
the cavity and ensemble, as we will show in the next section.
This is the physical picture of how strong non-Markovian
dynamics can alter significantly the decoherence features [54].

It may be worth pointing out that in the literature, tremen-
dous effects have been focused on the study of the so-called
non-Markovianity based on divisibility and distinguishability
arguments [55,56]. Both concepts come from the completely
positive trace-preserving dynamical maps in open systems,
which are mathematically defined for Markovian processes.
Because these dynamical maps do not address the behaviors
of non-Markovian processes, the physics of non-Markovian
dynamics is often misinterpreted. In fact, the dynamics of
open quantum systems is fully determined by their spectral
densities with environments [57]. The non-Markovian dynam-
ics is then controlled not only by the coupling strength, but
also the profile of spectral density arisen from the environment
spectral structure. This is shown in the theory of general non-
Markovian dynamics we developed [58].

Specifically, consider the spectral density of Eq. (11). For

the fixed spectral width d = 2�
√

2q−2
2q−2 which is determined

from experiments, the strong or weak coupling (2
 > d/2
or 2
 < d/2) results in the non-Markovian dynamics or
Markovian dynamics, characterized by the time-dependent
dissipation and fluctuation coefficients γ (t, t0) and γ̃ (t, t0),
which oscillate between the positive and negative values or os-
cillate with positive values all the time. The former describes
the information (entropy or heat) and energy flowings forth
and back between the system and environment that generates
the memory, the latter makes the information and energy loss
into the environment all the time so that no memory can be
generated. Thus, non-Markovian dynamics is not simply given
by oscillations. It is given by these transport oscillations in the
dissipation and fluctuation processes that describe the flows of
the energy and information forth and back between the sys-
tem and environment [54,58]. All these transport phenomena
crucially depend on the coupling strength and the profile of
the spectral density. If the spectral width of the environment
is very large (e.g., the white band limit) such that strong
coupling does not make the height of the spectral density
greater than the spectral width, the decoherence dynamics of
open systems is always Markovian.

More precisely speaking, non-Markovian dynamics of an
open system is a memory effect characterizing the correlation
of event(s) at different times through the coupling to the
surrounding environment. It is described by time-convolution
equations of motion. The time-convolution kernels are the
two-time system-environment correlation functions. For any
open quantum system, if the dynamics is not described by
time-convolution equation(s), it should not be able to describe
non-Markovian dynamics. In our theory, the time-convolution
equations are Eqs. (7), from which the open system dynamics
is fully determined by the exact master equation (4) through
various coefficients given in Eq. (6), including the the renor-
malized energy and driving field in the system Hamiltonian as
well as the dissipation and fluctuation coefficients. This is a
rigorous theory that encompasses all possible non-Markovian
dynamics of open systems. Experimentally, measuring the
two-time correlation functions is the direct physical obser-
vation of non-Markovian dynamics, as we also proposed
[54,62].

Furthermore, as shown by Eqs. (6) and (7), the dissipation
and fluctuation dynamics of open quantum systems are fully
calculated from the nonequilibrium Green functions u(t, t0)
and v(t, t ). Because these time-convolution equations of the
nonequilibrium Green functions can be generalized to arbi-
trary interacting open quantum systems in quantum transport
theory [63–65], our nonequilibrium non-Markovian theory
can be applied to investigate non-Markovian dynamics for any
open system, by simply calculating its nonequilibrium Green
functions of the system in the standard many-body theory.
It also recovers the quantum transport theory in many-body
systems [45–47] so that nonequilibrium energy conversion
of heat and work can be fully addressed. Specifically, the
Green functions u(t, t0) and v(t, t ) correspond precisely to
the retarded and correlation Green functions in nonequilib-
rium Green functions technique in many-body systems, as
we have shown [45,46]. The retarded Green function u(t, t0)
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specifies the energy and driving field renormalization and
the dissipation dynamics. The correlation Green function
v(t, t ) of Eq. (8a) is the nonequilibrium generalization of
the fluctuation-dissipation theorem [58], a theorem that any
dynamics of open quantum systems must obey as a conse-
quence of the unitary property of the total system. Hence,
the system Hamiltonian renormalization and the dissipation
and fluctuation dynamics are determined together from these
nonequilibrium system Green functions, without the need to
know the detailed reduced states of the system [58,59]. With
such a general nonequilibrium theory, we are now able to
explore the nonequilibrium quantum thermodynamics and en-
ergy conversion of heat and work in this hybrid system under
the external driving field.

III. TRANSIENT QUANTUM WORK AND HEAT

A. General definition of quantum heat and quantum work

In the convention thermodynamics, the internal energy of a
system is solely determined by the system Hamiltonian where
it is assumed that the system interacts only very weakly with
the reservoir. Beyond the weak-coupling regime, however, the
internal energy must take into account system-environment
coupling effect. In the literature, this is a difficult problem
that has not been solved because it is not clear how much the
coupling energy should be included in the system’s Hamil-
tonian [26,27,30–32]. Based on our exact master equation,
this difficult problem has been unambiguously overcome in
our recent theory of renormalized quantum thermodynamics
from weak to strong couplings [12]. In this renormalized
quantum thermodynamics theory, the modification of the sys-
tem Hamiltonian due to the strong system-reservoir coupling
is given by the renormalization of the system Hamiltonian
together with the dissipation and fluctuations, as shown in the
exact master equation (4). The renormalized system Hamil-
tonian takes into account all possible energy renormalized
effects arisen from the coupling to the reservoir, as did in the
standard renormalization procedure in the many-body theory
and in the quantum field theory [12,66,67]. The dissipation
and fluctuation dynamics describes how the system is ther-
malized and thereby determine the energy conversion of the
heat and work through transient transport nonequilibrium pro-
cesses.

Explicitly, the internal energy Er (t ) can be defined as the
average of the renormalized cavity Hamiltonian in Eq. (4):

Er (t ) ≡ 〈
Hr

c (t, t0)
〉 = TrS

[
Hr

c (t, t0)ρc(t )
]

= h̄ωr
c(t, t0)n̄(t ) + 2 Re[ f ∗

r (t, t0)〈a(t )〉], (12a)

where

n̄(t ) = TrS [a†aρc(t )] = |u(t, t0)|2n̄(t0) + |y(t, t0)|2

+ [u∗(t, t0)〈a†(t0)〉y(t, t0) + c.c.] + v(t, t ) (12b)

and

〈a(t )〉 = TrS [aρc(t )] = u(t, t0)〈a(t0)〉 + y(t, t0). (12c)

The notation TrS denotes the trace over the cavity states,
and ωr

c(t, t0) is the renormalized cavity frequency determined
by Eq. (6a). The average photon number n̄(t ) describes the

cavity field intensity which is related to the initial cav-
ity field and the initial cavity occupation number, 〈a†(t0)〉
and n̄(t0), and the driving-induced cavity field y(t, t0). The
nonequilibrium Green functions u(t, t0), v(t, t ), and y(t, t0)
are determined by the time-convolution equations (7) and
(8), from which the non-Markovian dynamics is precisely
described.

Thermodynamically, energy can enter into or leave from a
system through heat and work. Heat is arisen from the change
of the entropy in state populations. Quantum mechanically,
work corresponds to the changes in energy levels of the sys-
tem and also the driving field. Accordingly, we can introduce
the quantum work power and quantum heat current as follows
[12]:

Pw(t ) ≡ TrS

[
dHr

c (t, t0)

dt
ρc(t )

]
, (13a)

Ih(t ) ≡ TrS

[
Hr

c (t, t0)
dρc(t )

dt

]
. (13b)

Based on the exact master equation (4), the above transient
work power and the heat current can be expressed explicitly
as

Pw(t ) = n̄(t )
d

dt

[
h̄ωr

c(t, t0)
] + 2 Re

[
〈a(t )〉df ∗

r (t, t0)

dt

]
, (14a)

Ih(t ) = h̄ωr
c(t, t0)γ̃ (t, t0) − 2γ (t, t0)[Er (t )

− Re[〈a(t )〉 f ∗
r (t, t0)]]. (14b)

In the weak coupling, if one ignores the energy and the driving
field renormalization, and also takes simply the dissipation as
a constant decay rate and ignores the thermal fluctuations, can
can easily reproduce the results introduced early by Alicki
based on the Markov master equation for the weak coupling
[28].

In Eq. (14a), the quantum work power consists of two
contributions, the intrinsic contribution arisen from the energy
renormalization and the extrinsic contribution generated from
the renormalization of driving field, denoted, respectively, by

Pe
w = n̄(t )d

[
h̄ωr

c(t, t0)
]
/dt, (15a)

Pd
w(t ) = 2 Re[〈a(t )〉df ∗

r (t, t0)/dt]. (15b)

As the system interacts with its environment, the system and
the environment do the work on each other through the shift
of their energy levels. In addition, the extrinsic work is given
by the driving-induced work power where the renormalization
of the driving field coming from the back-action from the
spin ensemble. Thus, the non-Markovian cavity dynamics also
changes significantly the driving-induced work power through
Eqs. (6b) and (7b).

On the other hand, the quantum heat current in Eq. (14b)
also consists of two contributions: h̄ωr

c(t, t0)γ̃ (t, t0) and
−2γ (t, t0)[Er (t ) − Re[〈a(t )〉 f ∗

r (t, t0)]]. They are propor-
tional to the fluctuation coefficient γ̃ (t, t0) and the dissipation
coefficient γ (t, t0), respectively [see Eqs. (4) and (6)]. It
shows that quantum heat is induced not only from fluctua-
tions, but also from dissipation dynamics. The internal energy
consists of the driving and initial-cavity-state related energy
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as well as the energy arisen from thermal fluctuations, as
shown in Eq. (12) in which v(t, t ) is the thermal fluctuation
correlation. Thus, we can define, respectively, the fluctuation
heat current IF

h (t ) and the dissipation heat current ID
h (t ) as

follows:

IF
h (t ) = h̄ωr

c(t, t0)[γ̃ (t, t0) − 2γ (t, t0)v(t, t )]

= h̄ωr
c(t, t0)v̇(t, t ), (16a)

ID
h (t ) = −2γ (t, t0)[Er (t )|T =0 − Re[〈a(t )〉 f ∗

r (t, t0)]], (16b)

where

Er (t )|T =0 = h̄ωr
c(t, t0)[|u(t, t0)|2n̄(t0) + |y(t, t0)|2

+ [u∗(t, t0)〈a†(t0)〉y(t, t0) + c.c.]] (16c)

is obtained from Eq. (12). It is the part of the internal en-
ergy that depends on the initial cavity state and the driving
field but independent of the thermal fluctuations. As one can
see, the fluctuation heat current IF

h (t ) is fully determined
by the thermal fluctuation correlation v(t, t ). The dissipa-
tion heat current ID

h (t ) is governed by various dissipation
processes. The above formulation for the energy conversion
of work and heat is valid for both the weak and strong
couplings.

Moreover, the transient work power and heat current given
above can be measured separately in experiments. As shown
in the previous experiments [51,52], the cavity frequency ωc

and the temperature of the spin ensemble are adjustable, the
coupling strength 
 in Eq. (11) can be taken from a few
MHz to a few tens MHz (from the weak to strong cou-
plings), and the driving field can be turned on and off. Thus,
one can measure work power and heat current separately as
follows:

(1) Measure the fluctuation heat current IF
h (t ): Because

the experimentally fitted spectral density Js(ω) is a symmetric
function with respect to the main spin frequency ωs, as shown
by Eq. (11), the cavity frequency shift is zero (no energy
renormalization) if one sets ωs = ωc (this setup was done in
the experiment [51]). Thus, ωr

c(t, t0) = ωc (as one can also see
the numerical calculation given in the next section). Mean-
time, turning the driving field off, f (t ) = 0, so that y(t, t0) =
0 and fr (t, t0) = 0. Then, no work power can be produced,
i.e., Pw(t ) = 0 [see Eq. (14a)]. Let the cavity initially be in
vacuum, i.e., n̄(t0) = 0 and 〈a†(t0)〉 = 0. The energy change
one can measure only comes from the heat current induced by
thermal fluctuation, given by IF

h (t ) = h̄ωcv̇(t, t ).
(2) Measure the dissipation heat current ID

h (t ): With the
same condition as given in step 1 but let the cavity initially not
be empty [i.e., n̄(t0) 
= 0], then the energy change one mea-
sured is given by the total heat current Ih(t ) = h̄ωc[v̇(t, t )−
2γ (t, t0)|u(t, t0)|2n̄(t0)]. Subtracting the fluctuation heat cur-
rent IF

h (t ) measured in step 1 from Ih(t ), one can find the
heat current purely induced by the cavity dissipation ID

h (t ) =
−2γ (t, t0)|u(t, t0)|2n̄(t0). Or, alternatively, one can cool down
the spin ensemble to very low temperature such that v(t, t ) →
0 which was indeed done in experiments [51,52] (also see
our previous theoretical calculation [54]). Then, the energy
change measured is only the dissipation heat current ID

h (t ).
(3) Measure the renormalized work power Pe

w(t ): Now
turn the cavity frequency ωc away from the main frequency

of the spin ensemble ωs, i.e., let ωc 
= ωs, then cavity-spin
ensemble coupling induces the cavity frequency shift: ωc →
ωr

c(t, t0). Meantime, keep the spin ensemble in very low tem-
perature v(t, t ) → 0. The energy change one measured is
given by n̄(t ) d

dt [h̄ωr
c(t, t0)] − 2γ (t )h̄ωr

c(t, t0)|u(t, t0)|2n̄(t0) =
Pe

w(t ) + ID
h (t ). Substracting the dissipation heat current

ID
h (t ) measured in step 2, one can find the renormalized

work power Pe
w(t ) induced by the the cavity-spin ensemble

coupling.
(4) Measure the driving-induced work power Pd

w(t ): Now,
turning the driving field on, but keep the cavity initially in vac-
uum state and the spin ensemble in very low temperature with
ωc = ωs, then we have 〈a(t )〉 = y(t, t0) and n̄(t ) � |y(t, t0|2.
One can measure the average cavity photon number or the
cavity field amplitude y(t, t0), which can be used to determine
the renormalized driving field fr (t, t0). Then, one can find the
driving-induced work power and the dissipation heat current
from the following relations:

Pw(t ) = Pd
w(t ) = 2 Re[y(t, t0)df ∗

r (t, t0)/dt], (17a)

Ih(t ) = ID
h (t ) = −2γ (t, t0)[h̄ωc|y(t, t0)|2

− Re[y(t, t0) f ∗
r (t, t0)]]. (17b)

With such solutions extracted from experiments, one can also
determine the efficiency of this strong-coupling hybrid system
under the driving, as a quantum heat machine.

Now, we can investigate the transient energy exchange in
this strong-coupling hybrid system.

B. Transient quantum work and heat at strong coupling

We consider first a simple situation of the cavity being ini-
tially in a coherent state |z0〉 and decoupled with the reservoir
[J (ω) = 0] to understand the pure driving dynamics. For sim-
plicity, we also set the initial time t0 = 0. The cavity is driven
by an external time-dependent field f (t ) = Ae−iωd t with the
constant amplitude A and the frequency ωd . In this trivial
case, we obtain the free Green function u(t, τ ) = e−iωc (t−τ )

from Eq. (7) for the cavity. There is no energy renormal-
ization to the system because the cavity is decoupled from
the reservoir. Also, the driving field fr (t ) = f (t ) remains un-
changed. The cavity photon state evolves into a coherent state
|ψ (t )〉 = exp{z(t )a† + z∗(t )a}|0〉 where z(t ) = [z0 + A

h̄δ
(1 −

eiδt )]e−iωct is the field amplitude and δ = ωc − ωd is the de-
tuning. From these results, we obtain the internal energy of
the cavity and the cavity work power driving by the external
field

E (t ) = 〈Hc〉(t )

= h̄ωc|z0|2 + 2 Re

[
A∗z0

δ
(wc − wd e−iδt )

]

+ 2|A|2
h̄δ2

ωd [1 − cos(δt )], (18a)

Pw(t ) = 2 Re
[
z(t )

df ∗(t )

dt

]
= 2|A|2

h̄δ
ωd sin(δt ) − 2 Im[A∗z0e−iδt ]wd , (18b)

Ih(t ) = 0. (18c)
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FIG. 2. The cavity is strongly coupled to the spin ensemble with
main frequency ωs = ωc. (a) The dissipation coefficient γ (t ), (b) the
fluctuation coefficient γ̃ (t ), (c) the dissipation heat current ID

h (t ),
and (d) the fluctuation heat current IF

h (t ) are plotted as a function
of time. In (c) and (d), the units are h̄ωc/ns. The system is initially
prepared in a vacuum state |0〉 and a coherent state |z0〉 with z0 = 1
[corresponding to the blue dashed line and the red solid line in (c),
respectively]. Also, the temperature T0 = 0.05 and 0.1 K [corre-
sponding, respectively, to the blue dashed lines and the red solid lines
in (b) and (d)]. We also take the coupling strength 
 = 17.2π MHz
(strong coupling), and the decay constant κ = 0.8π MHz. No driving
is applied in this case.

Of course, there is no heat production in an isolated system
as one expected. By tuning the driving field frequency, we
can control the power dynamics and drive the cavity system
cyclically as an ideal optical engine. Furthermore, Eq. (18) is
reduced to E (t ) = h̄ωc|z0|2 + |A|2

h̄ ωct2, Pw(t ) = 2|A|2
h̄ ωct if we

tune the driving field to the resonance and in phase with the
system, i.e., δ = 0 and Im[A∗z0] = 0. Thus, the cavity behaves
as an ideal optical resonator.

1. Quantum work power and the quantum heat currents

We now return to the hybrid cavity system. We first con-
sider that the spin ensemble is at a finite temperature T0, and
meantime we also turn off the driving. Because the spectrum
density of the spin ensemble is a symmetric function with
respect to the main spin frequency ωs [see Eq. (11)], if we turn
the cavity frequency ωc to resonant with the main frequency
of the spin ensemble, i.e., let ωs = ωc, we find that there is
no cavity frequency shift by the cavity-spin coupling due to
the symmetric property of the spectral density. In this case,
there is no energy renormalization so that the quantum work
is zero. As a result, the changes of internal energy are caused
only by the dissipation heat and the fluctuation heat, i.e.,
dEr (t )/dt = ID

h (t ) + IF
h (t ) in the nonequilibrium evolution.

In Fig. 2, we show the dissipation coefficient γ (t ) and
the fluctuation coefficient γ̃ (t ) in the left panel and plot the
dissipation heat current ID

h (t ) and the fluctuation heat current
IF

h (t ) in the right panel as a function of time. In the strong
coupling, 2
 = 34.4π MHz > d/2 = 9.4π MHz used in the
experiment [51]. The dissipation and fluctuation coefficients
show oscillations between positive and negative values with
the spiky amplitudes [see Figs. 2(a) and 2(b)]. These spiky

FIG. 3. The cavity is weakly coupled to the spin ensemble with
main frequency ωs = ωc. (a) The dissipation coefficient γ (t ), (b) the
fluctuation coefficient γ̃ (t ), (c) the dissipation heat current ID

h (t ),
and (d) the fluctuation heat current IF

h (t ) are plotted as a function of
time. The coupling strength 
 is 1.72π MHz (weak coupling). Other
parameters and units are the same as in Fig. 2

features characterize indeed the strongest non-Markovian dy-
namics in the strong coupling, as we have observed previously
[54,68]. It indicates how the system and the environment
rapidly exchange information and energy each other, as the
memory effect. Such rapid oscillations accompany system
information and energy fast flowing into and out of the spin
ensemble, describing entropy production, the source of heat
as a non-Markovian effect. In quantum thermodynamics, the
non-Markovian dynamics leads to entropy production that
generates heat currents flows forth and back between the
cavity and the spin ensemble, as demonstrated in Figs. 2(c)
and 2(d). Figures 2(c) and 2(d) also show that the dissipation
heat current is always out of phase with the fluctuation heat
current. This out-of-phase phenomenon indicates that the dis-
sipation and fluctuation dynamics both bring the energy and
fluctuation flows back and forth between the system and en-
vironment, will eventually make the system and environment
approach to thermal equilibrium. It also shows explicitly that
if the initial cavity is empty, one can measure the fluctuation
heat current alone. On the other hand, making the spin ensem-
ble initially in a very low temperature, the dissipation heat
current dominates the heat flowing.

As a comparison, we also present the results in the weak
coupling 2
 = 3.44π MHz < d/2 (see Fig. 3). In contrast
to the strong coupling, the dissipation and fluctuation coef-
ficients in Figs. 3(a) and 3(b) monotonically approach to a
steady value, i.e., no oscillation between positive and negative
values. In other words, there are no transport oscillations of
the work and heat flowing forth and back between the system
and environment. As a result, the dissipation heat current is
always negative, carrying energy and information left away
from the system, as shown by Figs. 3(c) and 3(d). How-
ever, the fluctuation heat current is always positive, namely,
it brings energy and information from the environment back
into the system. These single-direction energy and informa-
tion transfers are typical Markovian processes in the weak
coupling.
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FIG. 4. The cavity is strongly coupled to the spin ensemble
with main frequency ωs = 0.998ωc. (a) The renormalized frequency
�ωr

c(t ) = ωr
c(t ) − ωc, (b) the dissipation coefficient γ (t ), (c) the

fluctuation coefficient γ̃ (t ), (d) the quantum work power Pe
ω(t ), (e)

the dissipation heat current ID
h (t ), and (f) the fluctuation heat current

IF
h (t ) are plotted as a function of time. In (d)–(f), the units are

h̄ωc/ns. The system is initially prepared in a coherent state |z0〉 with
z0 = 0 and 1 [corresponding to the blue dashed line and the red solid
line in (c) and (d), respectively; other quantities are independent of
the cavity initial state]. Other parameters are the strong-coupling
strength 
 = 17.2π MHz, the decay constant κ = 0.8π MHz, and
the temperature T = 0.1 K.

To show a more complete picture of energy and informa-
tion exchange between the system and environment, we next
discuss the nonresonance case ωs 
= ωc in Eq. (11). In the non-
resonance case, the energy renormalization occurs. In the left
panel of Fig. 4, we show the renormalized frequency ωr

c(t ), the
dissipation coefficient γ (t ), the fluctuation coefficient γ̃ (t ),
and in the right panel, it shows the quantum work power
Pe

w(t ), the dissipation heat current ID
h (t ), and the fluctuation

heat current IF
h (t ), respectively. We can see that, in addition

to heat, intrinsic quantum work also contributes to the change
of the internal energy, i.e., dEr (t )/dt = Pe

w(t ) + ID
h (t ) +

IF
h (t ). As shown by Figs. 4(b) and 4(c), non-Markovian

oscillations between positive and negative values for the dis-
sipation and fluctuation coefficients are still significant for the
nonresonance case, but the effect is weakened in comparing
with the resonance case with the spiky features shown in
Figs. 2(a) and 4(b). The oscillation amplitudes of dissipa-
tion and fluctuations show that the exchange of energy and
information is not as dramatic as in the resonance case but
is still significantly observable. Despite this, the behavior of
heat currents is similar for both the resonance and nonres-
onance cases. Furthermore, the magnitudes of the quantum
work power is very small. In other words, the dissipation
effect γ (t ) and the fluctuation effect γ̃ (t ) are much stronger
than the energy renormalization in this hybrid system. If we

FIG. 5. The cavity is weakly coupled to the spin ensemble
with main frequency ωs = 0.998ωc. (a) The renormalized frequency
�ωr

c(t ) = ωr
c(t ) − ωc, (b) the dissipation coefficient γ (t ), (c) the

fluctuation coefficient γ̃ (t ), (d) the quantum work power Pe
ω(t ), (e)

the dissipation heat current ID
h (t ), and (f) the fluctuation heat current

IF
h (t ) are plotted as a function of time. The coupling strength 
 is

1.72π MHz. Other parameters and units are the same as in Fig. 4.

let the cavity initially be in vacuum state, the dissipation heat
current vanishes and the fluctuation heat current is the same
as that in the resonance case (no energy renormalization)
[see Fig. 2(d)]. Thus, by measuring the total energy changes,
one can extract the renormalized energy-induced work power,
even though it is a small effect.

To compare the results in strong coupling for the non-
resonance case, we present the corresponding results for the
weak coupling in Fig. 5. As one can see, the dissipation
and fluctuation coefficients in Figs. 5(a)–5(c) have positive
values all the time so that the cavity dynamics is Markovian,
even though the energy has been renormalized. Comparing
Figs. 4(a) and 4(d) with Figs. 5(a) and 5(d), the energy renor-
malization and the quantum work power both are smaller
by two orders of magnitude for the weak coupling. In other
words, the environment-induced thermodynamical effects are
negligible in the weak coupling, as one expected. As a sum-
mary of the results presented in Figs. 2–5, we show how
the non-Markovian dissipation and the fluctuation dynamics
dominate the heat current transfer. In the strong coupling,
both energy and heat flow forth and back rapidly between
the system and the environment, manifesting the significance
of non-Markovian dynamics in the strong-coupling quantum
thermodynamics.

2. Transient energy exchanges due to non-Markovian dynamics

Next, we consider the transient thermodynamics under
driving. The system is prepared in a vacuum state and applied
by an oscillating driving field f (t ) = fme−iωctθ (t − ts), where
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FIG. 6. A driving f (t ) = fme−iωctθ (t − ts ) is applied to the cav-
ity which is strongly coupled to the spin ensemble with main
frequency ωs = 0.998ωc. (a) The driving amplitude f̃ (t ) = f (t )eiωct ,
(b) the induced cavity field amplitude ỹ(t ) = y(t )eiωct , (c) the renor-
malized field amplitude f̃r (t ) = fr (t )eiωct , where y(t ) and fr (t ) are
determined by Eqs. (6b) and (7b), (d) the internal energy Er (t ), (e)
the quantum work power Pw (t ) (blue solid line), and (f) the quantum
heat current Ih(t ) (red dashed line) are plotted as a function of time.
In (a)–(c), the blue solid and orange dashed lines correspond to
the real and the image part, respectively. The units in (d)–(f) are
h̄ωc/ns. The system is initially prepared in the vacuum state |0〉.
Other parameters are the driving amplitude fm = h̄ωc/10, the turn
off time ts = 900 (ns), the coupling strength 
 = 17.2π MHz, the
decay constant κ = 0.8π MHz, and the temperature T0 = 0.1 K.

ωc is the cavity photon frequency and θ (t − ts) means that the
driving is applied only in the time interval t0 → ts. After ts, the
driving is turned off. Because the renormalization of energy is
very weak as shown in Fig. 4, the total quantum work power
is dominated by the driving. On the other hand, the fluctuation
heat current IF

h (t ) does not depend on the driving field. It can
be suppressed by lowering the spin-ensemble temperature, as
shown in Fig. 2(d). That is, the total energy change is mainly
determined by dEr (t )/dt ≈ Pd

w(t ) + ID
h (t ). In Figs. 6(a)–

6(f), we show the driving field amplitude f̃ (t ), the driving
induced cavity field amplitude ỹ(t ), the renormalized driving
field amplitude f̃r (t ) as a feedback of the cavity coupling with
the spin ensemble, and also the internal energy of the cavity
Er (t ), the work power Pw(t ), and the heat current Ih(t ), The
latter three thermodynamic quantities are controllable by the
driving.

Applying the driving f (t ) as shown Fig. 6(a), all quantities
exhibit oscillations in the beginning [see Figs. 6(b)–6(d). As
we have discussed in general on non-Markovian dynamics,
the oscillations in the renormalized driving field fr (t ), the
heat current and the work power manifest the strong non-
Markovian dynamics. The oscillations of the renormalized
driving, work power, and heat current between positive and

FIG. 7. A driving f (t ) = fme−iωctθ (t − ts ) is applied to the
cavity which is weakly coupled to the spin ensemble with main fre-
quency ωs = 0.998ωc. (a) The induced cavity field amplitude ỹ(t ) =
y(t )eiωct , (b) the renormalized field amplitude f̃r (t ) = fr (t )eiωct ,
(c) the internal energy Er (t ), (d) the quantum work power Pw (t )
(blue solid line) and the quantum heat current Ih(t ) (red dashed
line) are plotted as a function of time. The coupling strength 
 =
1.72π MHz. Other parameters and units are the same as in Fig. 6.

negative values describe the energy, work, and heat (infor-
mation) flowing forth and back between the cavity and the
spin ensemble, as shown in Figs. 6(c), 6(e), and 6(f). On the
other hand, the cavity field y(t ) and the internal energy Er (t )
also oscillate but these two quantities represent effectively the
cavity field amplitude and the cavity field intensity. They do
not directly describe the transport so that the oscillations be-
have different from that of the renormalized driving, the work
power, and the heat current. But, these oscillations do arise
from the non-Markovian dynamics through the renormalized
driving, the work power, and the heat current.

Due to the non-Markovian decoherence, all physical quan-
tities reach the steady values after a certain time, as a
consequence of the balance between the external driving en-
ergy and the dissipation of the cavity and the fluctuations of
the spin ensemble. In the steady state, the magnitudes of the
renormalized driving, the work power, and the heat current
approach almost to zero, which seems to make the system not
so useful as a heat machine. When the driving is turned off at
t = ts, the steady cavity state will decay again and meantime
the spin-ensemble energy retrieves back to the cavity. It still
shows the non-Markovian oscillations after ts, as shown in
Figs. 6(b) and 6(d), but the magnitude is much smaller without
the original driving.

As a comparison, we show the corresponding results in the
weak-coupling regime in Fig. 7. Because of the Markovian
dynamics in the weak coupling, in contrast to Fig. 6, there is
no signal to show the energy transfer forth and back between
the cavity and the spin ensemble, as shown in Fig. 7. Because
we apply the same driving field, it shows that the oscillations
in Fig. 6 are purely induced by non-Markovian dynamics. Fur-
thermore, comparing the result of Fig. 7(b) with Fig. 6(a), one
can see the renormalized driving field is almost the same as
the original driving field. In other words, the renormalization
effect is negligible in the driving field in the weak coupling.
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FIG. 8. A driving f (t ) = fme−iωr
ctθ (t − ts ) is applied to the cav-

ity which is strongly coupled to the spin ensemble with main
frequency ωs = 0.998ωc. (a) The driving f̃ (t ) = f (t )eiωr

ct , (b) the in-
duced cavity field ỹ(t ) = y(t )eiωr

ct , (c) the renormalized field f̃r (t ) =
fr (t )eiωr

ct , where y(t ) and fr (t ) are determined by Eqs. (6b) and (7b),
(d) the internal energy Er (t ), (e) the quantum work power Pw (t ), and
(f) the quantum heat current Ih(t ) are plotted as a function of time.
Other parameters and units are the same as in Fig. 6.

Furthermore, the results in Figs. 6(e) and 7(d) show that the
driving-induced work power is stronger in the weak coupling.
This is because the dissipation is very weak in the weak
coupling. This indicates that the enhancement of dissipation
reduces the driving-induced work power. As a result, the work
power in the strong-coupling system is lowered down, even
for the same driving source.

To get a more complete picture for the difference between
the strong and weak couplings, we consider the system with
a resonant driving field, i.e., modulating the driving field
frequency to match the steady value of the renormalized
frequency ωr

c(t ). In Fig. 8, we show the driving field ampli-
tude f̃ (t ), the cavity field amplitude ỹ(t ), the renormalized
driving field amplitude f̃r (t ), the internal energy Er (t ), the
work power Pw(t ), and the heat current Ih(t ) in the strong
coupling. Similar to Figs. 6(c), 6(e), and 6(f), the results in
Figs. 8(c), 8(e), and 8(f) show that the renormalized driving
field, the work power, and the heat current influenced by the
stronger non-Markovian oscillations with a longer oscillating
time and much larger amplitudes. In other words, the reso-
nance between the driving field and the renormalized cavity
frequency significantly enhances the non-Markovian dynam-
ics. As a result, the steady-state renormalized driving field in
the resonance case is only slightly smaller than the original
driving field, in comparing with the nonresonance one, where
the renormalized driving field almost vanishes as shown in
Fig. 6(c). Meanwhile, the magnitudes of heat current and work
power in the steady state [see Figs. 8(e) and 8(f)] are almost
three orders of magnitudes larger than that in the nonresonant

FIG. 9. A driving f (t ) = fme−iωctθ (t − ts ) is applied to the cav-
ity which is strongly coupled to the spin ensemble with main
frequency ωs = ωc. (a) The driving f̃ (t ) = f (t )eiωct , (b) the in-
duced cavity field ỹ(t ) = y(t )eiωct , (c) the renormalized field f̃r (t ) =
fr (t )eiωct , where y(t ) and fr (t ) are determined by Eqs. (6b) and (7b),
(d) the internal energy Er (t ), (e) the quantum work power Pw (t ), and
(f) the quantum heat current Ih(t ) are plotted as a function of time.
Other parameters and units are the same as in Fig. 6.

case [see Figs. 6(e) and 6(f)]. This is a very remarkable re-
sult: it indicates that making the driving field resonant with
the cavity field, the strong non-Markovian dynamics in the
strong coupling can significantly enhance the work power so
that the hybrid system becomes possible as a quantum heat
machine.

From the above discussion, we find that thermodynamics
quantities, especially the work power and the heat currents,
are so sensitive with the non-Markovian dynamics. In the last,
we shall look at the strong coupling that the cavity frequency
is resonant with the main frequency of the spin ensemble, i.e.,
ωc = ωs. The driving field is also set to be resonant with the
cavity, namely, ωs = ωc = ωd . This is indeed the conditions
taken in the experiments [51,52]. In this situation, frequency
shift is zero (no frequency renormalization) even through it
is the strong coupling. In Fig. 9, we show again the same
quantities as those in Fig. 8 but for the triple resonances.
With the same driving field as given in Fig. 9(a), the internal
energy given in Fig. 9(d) reproduces precisely the cavity field
intensity measured in experiment [see Fig. 2(b) of Ref. [51]].
Furthermore, as one can see from Figs. 9(c), 9(e), and 9(f),
the renormalized driving field, the work power, and the heat
current oscillate with spiky positive and negative values. This
directly shows how the energy and information (heat) flowing
forth and back very rapidly between the cavity and the spin
ensemble, as the strongest non-Markovian memory dynamics.
Also comparing the results of Figs. 9(e) and 9(f) with those in
Figs. 2(c) and 2(d), it shows that the driving field maintains
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the work power and heat current do not decay, as one expects
for a heat machine.

On the other hand, the above results also show how the
strongest non-Markovian dynamics suppress the decoherence
of the cavity field, as observed in experiment with such an
experiment setup in the strong coupling [51]. It is the heat and
work oscillating for long-time forth and back rapidly between
the cavity and spin ensemble that leads to the suppression of
the decoherence in the strong coupling. Also, the larger mag-
nitudes of the work power and heat current in the resonance
indicate the high-energy conversion in this strong-coupling
hybrid system, which may serve as a better heat machine. We
will leave this problem for further investigation.

IV. CONCLUSIONS

We apply the renormalization theory of quantum ther-
modynamics we developed recently to investigate transient
quantum work power and quantum heat current for a strong-
coupling system under external driving. The quantum work
arises from the energy renormalization and the renormalized
driving field. The heat current is induced by the dissipation
and fluctuation dynamics between the system and environ-
ment. Without the driving, the work power is contributed only
by the energy renormalization of the system but eventually ap-
proaches to zero. On the other hand, the driving-induced work
power is strongly influenced by the non-Markovian dynamics
and makes the system as a non-Markovian heat machine.
Furthermore, the heat current consists of the dissipation and
the fluctuation heat currents, contributed from dissipation and
fluctuations dynamics, respectively. Consequently, the investi-
gation of nonequilibrium energy conversion of heat and work
and heat engines should not simply be limited to the problem
of how to include the system-environment coupling energy
into the system Hamiltonian. It must also take into account

the dissipation and fluctuation dynamics induced from the
system-environment coupling. With the system Hamiltonian
renormalization incorporating the dissipation and fluctuation
dynamics together, the energy conversion of heat and work in
quantum heat engine can be fundamentally addressed

We study further the transient quantum heat and work in
the strong-coupling hybrid system under driving, which con-
sists of a superconducting microwave cavity coupled with a
spin ensemble of NV centers in diamond. With the control-
lability of this hybrid system, one can experimentally tune
the coupling strength and the cavity frequency to examine
the transient energy conversion. We find that the strong cou-
pling between the cavity and the spin ensemble induces the
strong non-Markovian memory effects on the renormalized
driving field and the corresponding work power and heat
current through the dissipation and fluctuation dynamics of
the system. We also find that the energy renormalization
in this particular system is negligible. On the other hand,
the renormalized driving field is very sensitive when it is
resonant with the cavity and the spin ensemble. The driving-
induced work power and the heat current are thus enhanced
significantly by the non-Markovian dynamics in the reso-
nance conditions. This may provide a new avenue in studying
the non-Markovian transient quantum heat and work through
quantum engineering for strong-coupling quantum thermody-
namics.
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