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with an optoelectromechanical system

Najmeh Eshaqi-Sani ,1 Stefano Zippilli ,1 and David Vitali1,2,3

1Physics Division, School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia, Italy

3Consiglio Nazionale dell Richerce-Instituto Nazionale di Ottica, L.go Enrico Fermi 6, I-50125 Firenze, Italy

(Received 26 February 2022; revised 24 June 2022; accepted 26 August 2022; published 7 September 2022)

Nonreciprocal systems breaking time-reversal symmetry are essential tools in modern quantum technologies
enabling the suppression of unwanted reflected signals or extraneous noise entering through detection ports. Here
we propose a scheme enabling nonreciprocal conversion between optical and radio-frequency (rf) photons using
exclusively optomechanical and electromechanical interactions. The nonreciprocal transmission is obtained by
interference of two dissipative pathways of transmission between the two electromagnetic modes established
through two distinct intermediate mechanical modes. In our protocol, we apply a bichromatic drive to the
cavity mode and a single-tone drive to the rf resonator, and use the relative phase between the drive tones to
obtain nonreciprocity. We show that perfect nonreciprocal transduction can be obtained in the limit of large
cooperativity in both directions, from optical to rf and vice versa. We also study the transducer noise and show
that mechanical thermal noise is always reflected back onto the isolated port. In the limit of large cooperativity,
the input noise is instead transmitted in an unaltered way in the allowed direction; in particular one has only
vacuum noise in the output rf port in the case of optical-to-rf conversion.
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I. INTRODUCTION

Reciprocity is the two-way symmetry of transmission of
light (photon) or sound (phonon) between forward and back-
ward paths and is a common useful property exploited in a
plethora of devices. However, when the time-reversal symme-
try or reciprocity is broken, one can have novel functionalities
that attracted considerable attention in engineered photonic
systems [1–6].

In fact, nonreciprocal transmission and amplification of
signals are useful in communication, signal processing, and
measurement because, in nonreciprocal systems unwanted
signals or spurious modes can be suppressed, thereby protect-
ing the system from interference with extraneous noise [7].
Typically, nonreciprocal devices require an element-breaking
Lorentz reciprocal symmetry [8,9] such as a d.c. magnetic
field, but this method typically require bulky elements which
are hard to integrate and miniaturize. Therefore, there is
a strong motivation to realize alternative and more flexible
implementations of nonreciprocity [10]. Various nonrecipro-
cal devices were proposed and realized including magnetic
materials [11–17], or Josephson nonlinearities [18,19], using
temporal modulation [20–25], physical rotation [26], chiral
atomic states [27], and the quantum Hall effect [28].

Recently the authors of Ref. [29] showed that a general
recipe for obtaining nonreciprocal transmission is balancing
any given coherent interaction with a properly tuned collective
dissipative process. This insight led to propose and imple-
ment nonreciprocity using optomechanical devices where
these ingredients were available and controllable. Multimode

optomechanical and electromechanical schemes were pro-
posed to achieve nonreciprocity and directionality, with or
without relying on the direct coherent coupling between the
electromagnetic input and output modes [30–39]. Here, simi-
larly to the approach used in Refs. [30,32,33], which does not
require any direct interaction between electromagnetic modes,
we consider a four-mode optoelectromechanical system com-
posed of an optical cavity and an rf resonator, each coupled
to two intermediate mechanical modes. Two distinct paths of
transmission between the two electromagnetic modes through
the two mechanical modes are established and their relative
phase forms the basis of nonreciprocity and directionality.
Differently from the authors Refs. [32,33] who demonstrated
the scheme in the microwave regime, here we exploit the pos-
sibility of mechanical modes to couple to fields of disparate
wavelength and we show the possibility of nonreciprocal
conversion between optical and rf photons. A similar, optical-
microwave, four-modes nonreciprocal conversion scheme was
proposed in Ref. [30], which, however, considered a four-tone
driving scheme in which both the optical and the microwave
cavity are bichromatically driven. Here we simplify such a
scheme and we consider an rf resonator driven by a single
tone. In an appropriate parameter regime where the rotating
wave approximation (RWA) also is valid, the system effec-
tively becomes nonreciprocal and the transmission between
the cavity and rf resonator is directional. In this way one can
add also the additional feature of nonreciprocity to the variety
of optoelectromechanical devices, which were proposed and
demonstrated for the transduction of rf and microwave signals
to the optical domain [40–58].
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The outline of the paper is as follows. In Sec. II, the system
and its Hamiltonian are introduced. In Sec. III, the dynamics
of our model described by Langevin-Heisenberg equations is
studied, and the effective linearized model of the interacting
four bosonic modes is obtained. In Sec. IV we analyze an-
alytically the possibility to achieve nonreciprocity with this
system, and in Sec. V we study its noise properties. Section VI
is devoted to the numerical analysis where we determine
the conditions where nonreciprocal optical-rf conversion is
achieved, while concluding remarks are given in Sec. VII.

II. SYSTEM

We consider a hybrid optoelectromechanical system com-
posed of an optical cavity coupled by radiation pressure to
a mechanical element able to sustain multiple vibrational
modes, which is, in turn, capacitively coupled to an rf-
resonant LC circuit. Focusing on the case when only two
nearby vibrational modes are coupled to the optical and rf res-
onators, the total Hamiltonian of the system can be written as
the sum of an optical, mechanical, and electrical contribution
respectively,

Ĥ = Ĥopt + Ĥmech + ĤLC. (1)

In more detail,

Ĥopt = h̄ωc(x1, x2) â†
1â1 (2)

+ h̄[(E1e− i(ωL1t−φ11 ) + E2e− i(ωL2t−φ12 ) )â†
1 + H.c.],

(3)

where we considered a specific cavity mode, described by
the photon annihilation (creation) operator â1 (â†

1), with
the usual bosonic commutation relations [â1, â†

1] = 1, and
bichromatically driven at two frequencies ωL1 and ωL2, with
corresponding driving rates given by Ej = √2κinP j/h̄ωL j ,
with P j the jth tone power and κin the cavity amplitude decay
rate through the input port. The mechanical term is

Ĥmech =
∑
j=1,2

p̂2
j

2mj
+ mjω

2
j x̂

2
j

2
, (4)

where each mechanical resonator has effective mass mj ( j =
1, 2), displacement operator x̂ j , and conjugated momentum
p̂ j , with commutation relations [x̂i, p̂ j] = ih̄δi j . Finally, the rf
circuit term is

ĤLC = φ̂2

2L
+ q̂2

2C(x1, x2)
− q̂VAC cos(ωX t − φX ), (5)

where L is the inductance of the rf resonator, the dynamical
variables of the LC circuit are given by the total charge and
flux operators q̂ and φ̂ respectively, with commutation relation
[q̂, φ̂] = ih̄, and the rf resonator is driven by a single-tone
drive at frequency ωX and with voltage amplitude VAC.

Such a configuration can be realized, for example, in
the membrane-in-the-middle (MIM) optomechanical system
case [59–63], i.e., a driven optical Fabry-Perót cavity with
a thin semitransparent membrane inside. The membrane is
metalized [40,44,45,49,64,65] and capacitively coupled via
an electrode to an LC resonant circuit formed by a coil and
additional capacitors, see Fig. 1.

FIG. 1. (a) Scheme of the proposed optoelectromechanical sys-
tem. (b) Transmission pathways contributing to the nonreciprocal
conversion. The transmission from the optical input to the rf output or
vice versa from the rf input to the optical output are mediated by the
two mechanical resonators. These two transmission paths may inter-
fere destructively in one direction but not in the opposite [depending
on the phases and amplitudes of the complex interaction strengths
g�, j , see Eq. (22)], hence realizing the nonreciprocal transduction.

The optomechanical and electromechanical couplings arise
due to the dependence of the cavity mode frequency ωc(x1, x2)
and of the circuit capacitance C(x1, x2), respectively, upon the
displacement x j of the vibrational modes of the membrane. As
in the scheme of Fig. 1, the effective capacitance of the circuit
is the parallel of a tunable capacitor C0 with the membrane
capacitor formed by the metalized membrane and an electrode
in front of it, Cm(x̂1, x̂2),

C(x̂1, x̂2) = C0 + Cm(x̂1, x̂2). (6)

The system Hamiltonian of Eq. (1) can be simplified by
making two approximations: (i) the two displacements x j are
typically small and one can develop both the cavity frequency
and the capacitance at first order in x j ; (ii) one can neglect
fast oscillating terms in the LC circuit driving. Moreover, one
can rewrite Eq. (1) in a more convenient form by introducing
the phonon annihilation and creation operators b̂ j and b̂†

j ,
j = 1, 2, such that

x̂ j ≡ xzp f , j (b̂ j + b̂†
j ), (7)

p̂ j ≡ pzp f , j

b̂ j − b̂†
j

i
, (8)

where xzp f , j ≡
√

h̄
2mjω j

and pzp f , j ≡ mω jxzp f , j and the LC

photon annihilation and creation operators â2 and â†
2, such that

q̂ ≡ qzp f (â2 + â†
2), (9)

φ̂ ≡ φzp f
â2 − â†

2

i
, (10)
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where the rf resonant frequency of the LC circuit is de-

fined as ω
(0)
LC = 1/

√
LC(0, 0), and qzp f ≡

√
h̄

2 L ω
(0)
LC

and φzp f ≡√
L h̄ω

(0)
LC

2 . In the reference frame, for the optical mode, rotat-
ing at the frequency halfway between the two driving tones
ωL = (ωL1 + ωL2)/2 one finally obtains

Ĥ = h̄�Lâ†
1â1 + h̄

∑
j=1,2

g0,1 j (b̂ j + b̂†
j )â

†
1â1

+
∑
j=1,2

h̄ω j b̂
†
j b̂ j + h̄ω

(0)
LCâ†

2â2

− h̄
∑
j=1,2

g0,2 j (b̂ j + b̂†
j )(â2 + â†

2)2

+ h̄[(E1eiω+t + E2e−iω+t )â†
1 + H.c.]

− h̄(V ′∗ eiωX t + V ′ e−iωX t )(â2 + â†
2), (11)

where we introduced the bare cavity detuning �L ≡
ωc(0, 0) − ωL, ω+ ≡ ωL1 − ωL = −(ωL2 − ωL ), the single-
photon optomechanical coupling rates g0,1 j ≡ ∂ωc

∂x j
|xi=0xzp f , j ,

the single-photon electromechanical coupling rates g0,2 j ≡
ω

(0)
LC

4C(0,0) xzp f , j
∂C
∂x j

|xi=0, the rf complex driving rate V ′ ≡
(qzp f VAC/2h̄)eiφX , and the complex optical driving rates E1 ≡
E1eiφ11 and E2 ≡ E2eiφ12 .

III. APPROXIMATED MODEL

We now derive the quantum Langevin equations for the
system operators by supplementing the Heisenberg equa-
tions of motion stemming from Eq. (11) with fluctuation and
dissipation terms describing the coupling of the two mechan-
ical modes and of the two electromagnetic cavity modes with
their own independent environment. We assume the ideal sit-
uation in which the optical cavity looses photons only from
the input port with amplitude decay rate κin ≡ κ and it is
characterized by the input noise operator â1,in. We introduce
damping and Brownian noise in a similar way for the two
mechanical resonators, with energy decay rates γm, j and noise
operators b̂ j,in, j = 1, 2. For what concerns the LC circuit,
we exploit the quantum electrical network theory found in
Ref. [66] and model dissipation with an RLC series circuit in
which the input-output port is represented by an infinite trans-
mission line with purely resistive characteristic impedance
Z = √

LT /CT , where CT and LT are the capacitance and the
inductance per unit length along the transmission line, respec-
tively. The input noise operator entering the circuit through
the transmission line is â2,in. In an RLC series resonator the
damping rate is γLC ≡ Z/L, and the rf-circuit quality factor is
given by QLC = ω

(0)
LC/γLC .

All the noise operators are uncorrelated from each
other and characterized by thermal noise correlations at
temperature T , where the only nonzero correlation func-
tions are 〈b̂ j,in(t )b̂†

j,in(t ′)〉 = 〈b̂†
j,in(t )b̂ j,in(t ′)〉 + δ(t − t ′) =

[1 + n̄b j]δ(t − t ′), and 〈â j,in(t )â†
j,in(t ′)〉 = 〈â†

j,in(t )â j,in(t ′)〉 +
δ(t − t ′) = [1 + ña j]δ(t − t ′), with the number of thermal
phonons given by n̄b j = {exp[h̄ω j/kBT ] − 1}−1, j = 1, 2, a
similar expression for the mean thermal number of rf photons,

ña 2 = {exp[h̄ω
(0)
LC/kBT ] − 1}−1, while ña 1 � 0 because at op-

tical frequencies h̄ωc 	 kBT .
The quantum Langevin equations can then be written as

˙̂a1 = −(κ + i�L ) â1 − i[E1eiω+t + E2e−iω+t ]

− i
∑
j=1,2

g0,1 j (b̂ j + b̂†
j )â1 +

√
2κ â1,in

˙̂a2 = −
(γLC

2
+ iω(0)

LC

)
â2 + 2i

∑
j=1,2

g0,2 j (â2 + â†
2)(b̂ j + b̂†

j )

+ i(V ′∗eiωX t + V ′e−iωX t ) +√
γLCâ2,in

˙̂b j = −
(γm, j

2
+ iω j

)
b̂ j − ig0,1 j â

†
1â1 + ig0,2 j (â2 + â†

2)2

+√
γm, j b̂ j,in. (12)

Here we are interested in the dynamics of the fluctuations
δâ j = â j − α j (t ) and δb̂ j = b̂ j − β j (t ) about the correspond-
ing mean amplitudes α j (t ) = 〈â j〉 and β j (t ) = 〈b̂ j〉. To study
the corresponding dynamics we employ several approxima-
tions as detailed below (see also Appendix A).

A. Linearization

First, we linearize the equations for the fluctuations by
assuming sufficiently large mean amplitudes. In particular, we
analyze the fluctuations in the interaction picture with respect
to the Hamiltonian

Ĥ0 = h̄� δâ†
1 δâ1 + h̄ωLC δâ†

2 δâ2 + h̄(ω1 + δ) δb̂†
1 δb̂1

+h̄(ω2 − δ) δb̂†
2 δb̂2, (13)

where � ≡ �L + 2
∑

j g0,1 jRe{β (dc)
j } and ωLC ≡ ω

(0)
LC −

4
∑

j g0,2 jRe{β (dc)
j }, with β

(dc)
j the time-independent part of

the mean mechanical amplitude β j (t ) and where δ is a small
detuning which is used to tune the nonreciprocity as discussed
in the following sections. In this representation, the linearized
quantum Langevin equations take the form

δ̇â1 = −[κ + i �1(t )] δâ1

− i
∑
j=1,2

[G(−)
1 j (t ) δb̂ j + G(+)

1 j (t ) δb̂†
j] +

√
2κ â1,in,

δ̇â2 = −
[γLC

2
+ i �2(t )

]
δâ2 + (t ) δâ†

2

− i
∑
j=1,2

[G(−)
2 j (t ) δb̂ j + G(+)

2 j (t ) δb̂†
j] + √

γLC â2,in,

δ̇b̂ j = −
[γm, j

2
+ i(−1) j δ

]
δb̂ j

− i
∑
�=1,2

[G(−)
� j (t )∗δâ� + G(+)

� j (t ) δâ†
�] + √

γm, j b̂ j,in,

(14)

where the time-dependent coefficients can be expressed in
terms of the mean-field amplitudes α j (t ) and β j (t ) as (see
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FIG. 2. Frequency configuration. Above the horizontal axis the
radio-frequency scale. Below the axis the optical scale.

Appendix A)

��(t ) = −(−2)�
∑
j=1,2

g0,� j Re
{
β j (t ) − β

(dc)
j

}
for � ∈ {1, 2},

G(±)
1 j (t ) = g0,1 j α1(t ) ei [�±(ω j−(−1) j δ)] t for j ∈ {1, 2},

G(±)
2 j (t ) = −4 g0,2 j Re{α2(t )} ei [ωLC±(ω j−(−1) j δ)] t

for j ∈ {1, 2},
(t ) = −4

∑
j=1,2

g0,2 j Re{β j (t )} ei ωLC t . (15)

In particular, we remark that these parameters can be ex-
panded as a sum of the many terms each oscillating at a
different frequency as

X (t ) =
∑

ξ

Xξ ei ω(X )
ξ t for X ∈ {��, G(±)

�, j , }, (16)

where the sum is over all the possible frequency components
ω

(X )
ξ of each parameter and Xξ indicate the corresponding am-

plitudes (specific expressions for these quantities are reported
in Appendix A, see also Ref. [67]).

B. Rotating wave approximation

Then we neglect all the time-dependent terms. To be spe-
cific, we note that when the system frequencies are selected
such that (see Fig. 2)

� − ω+ = ω1 + δ,

� + ω+ = ω2 − δ,

ωLC − ωX = ω1 + δ,

ωLC + ωX = ω2 − δ, (17)

which entail

� = ωLC = ω2 + ω1

2
,

ω+ = ωX = ω2 − ω1 − 2δ

2
, (18)

only the terms G(−)
� j (t ) in Eq. (15) have a time-independent

part. In the following we indicate the time-independent part
of G(−)

1 j (t ) and of G(−)
2 j (t ) with the symbols g1 j and −g∗

2 j ,
respectively (see Appendix A for details). Moreover, all the
remaining time-dependent terms can be neglected when (see
Appendix A)

|g� j | � ω1, ω2, |ω1 − ω2|. (19)

Correspondingly, the quantum Langevin equation for the fluc-
tuations reduce to the form

δ̇â1 = −κ δâ1 − i
∑
j=1,2

g1 j δb̂ j +
√

2κ â1,in

δ̇â2 = −γLC

2
δâ2 + i

∑
j=1,2

g∗
2 j δb̂ j + √

γLC â2,in

δ̇b̂ j = −
[γm, j

2
+ i(−1) j δ

]
δb̂ j − i g∗

1 j δâ1 + i g2 j δâ2

+√
γm, j b̂ j,in. (20)

We also note that this equation can be valid only if the detun-
ing δ is not too large, that is, it should be of the same order or
smaller than the effective coupling coefficients

|δ| � |g� j |. (21)

C. Perturbative expansion in powers of the bare couplings

Finally, we compute explicit expressions for the interaction
coefficients g� j by expanding the mean amplitudes α j (t ) and
β j (t ) in powers of the bare interaction coefficients g0,� j . In
particular, if the bare couplings are sufficiently small, then it
is justifiable to consider only the corresponding leading zeroth
order terms. In this way we find the following approximated
expressions:

g1 j = −i g0,1 j χ1 E j,

g21 = −4 g0,21 Im{χLC}V ′∗, (22)

g22 = −4 g0,22 Im{χLC}V ′,

where we introduced the susceptibilities

χ1 ≡ [κ + i�L]−1,

χLC ≡
[γLC

2
+ iω(0)

LC

]−1
. (23)

Thereby, we find an approximated model analogous to that
of Refs. [30,32,33] which demonstrate nonreciprocity in a
similar system where each mode of the electromagnetic field
is driven by two pumps. Here we demonstrate the same behav-
ior, when the low-frequency mode (the rf mode) is driven by
a single pump. This is due to the fact that, when the frequency
of the electromagnetic field is comparable to the mechanical
frequencies, the counterrotating terms in the pump can also
resonantly drive specific electromechanical processes.

IV. NONRECIPROCITY

In this section we study in detail the conditions for
the nonreciprocal conversion, which can be derived from
Eq. (20), and we report results analogous to that discussed in
Refs. [32,33]. The Eqs. (20) can be easily solved in Fourier
space, and together with the standard input output relation
â1,out = −√

2 κ δâ1 + â1,in and â2,out = −√
γLC δâ2 + â2,in, it

is possible to express the output operators in terms of the input
ones (see Appendix B). In general, each output operator can
be expanded as

â�,out(ω) =
∑
j=1,2

[S� j â j,in(ω) + T� j b̂ j,in(ω)]. (24)
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Here we are interested in the coefficients S12 and S21, which
describe, respectively, how a radio-frequency input signal is
converted into an optical field, and conversely, how an optical
signal is converted into a radio-frequency field. Nonreciproc-
ity corresponds to the situation in which one of these two
coefficients is zero while the other is finite. In general these
quantities take the form

S� j = −
√

2 κ γLC
F� j

D
, (25)

with

F12 = g11 χm,1 g21 + g12 χm,2 g22, (26)

F21 = g∗
11 χm,1 g∗

21 + g∗
12 χm,2 g∗

22, (27)

and

D = (∣∣g2
11

∣∣χm,1 + ∣∣g2
12

∣∣χm,2 + κ − i ω
)

×
(∣∣g2

21

∣∣χm,1 + ∣∣g2
22

∣∣χm,2 + γLC

2
− i ω

)
− F12 F21,

(28)

and where we introduced the mechanical susceptibility in the
interaction picture

χm, j =
{γm, j

2
+ i[(−1) j δ − ω]

}−1
. (29)

Equations (26) and (27) indicate that each coefficient is the
result of the interference of two transmission processes me-
diated by the two mechanical resonators. Here we look for
situations in which the interference is destructive in one di-
rection but not in the other.

We also note that S21 is equal to the complex conjugate
of S12 evaluated at the opposite values of ω and δ, i.e., as
functions of the frequency ω and of the detuning δ these
coefficients fulfill the relation

S21(ω, δ) = S∗
12(−ω,−δ). (30)

This relation shows that to have nonreciprocity at ω = 0 [68],
it is necessary to have δ �= 0, otherwise the transmission in the
two directions is necessarily symmetric.

If we introduce the parameters

ϕ = φ11 − φ12 − 2 φX ,

r = g0,12 g0,22

g0,11 g0,21

E2

E1
, (31)

we find that S21 = 0 when

e−i ϕ = −
∣∣∣∣χm,1

χm,2

∣∣∣∣ χm,2

χm,1
,

r =
∣∣∣∣χm,1

χm,2

∣∣∣∣ =
√√√√γ 2

m,2 + 4(ω − δ)2

γ 2
m,1 + 4(ω + δ)2 . (32)

Similarly, S12 = 0 when ei ϕ = −r χm,2/χm,1.
Let us now study the conditions under which S12 achieves

its maximum value when S21 = 0. This can be done analyti-
cally when the two mechanical dissipation rates are equal

γm, j ≡ γm for j ∈ {1, 2}, (33)

and all the bare couplings g0,� j are equal, i.e.,

g0,� j ≡ g0 for �, j ∈ {1, 2}. (34)

Moreover, we assume the suppression of the transmission
from optical to rf (S21 = 0) at [68]

ω = 0. (35)

In this case r = 1 [see Eq. (32)], which entails E2 = E1 [see
Eq. (31)]. Thereby the transmission coefficient |S12|2 can be
written in terms of the cooperativity parameters

1 = 2 |g1 j |2
κ γm

,

2 = 4 |g2 j |2
γLC γm

(36)

(note that in this case both |g11| = |g12| and |g21| = |g22|) as

|S12|2 = 4 1 2 δ2 γ 4
m

( γ 2
m
4 + δ2

)
[
(1 + 2 1) γ 2

m
4 + δ2

]2[
(1 + 2 2) γ 2

m
4 + δ2

]2 . (37)

The maximum of this expression is found for equal coopera-
tivities

 j ≡  = 2
γ 2

m
4 + δ2

γ 2
m

for j ∈ {1, 2} (38)

and it is given by |S12|2max = δ2/( γ 2
m
4 + δ2). The equality of

the cooperativities can be realized by properly tuning the
strength of the rf pump |V ′| [see Eqs. (22) and (36)]. More-
over, Eq. (38) can be used to find the value of the detuning,
which maximizes S12 when S21 = 0,

δ = ±γm

2

√
2  − 1, (39)

and with this expression one can rewrite the maximum of the
conversion coefficient as

|S12|2max = 1 − 1

2 
. (40)

This expression shows that perfect conversion can be achieved
in the limit of large cooperativity  → ∞.

We also note that Eq. (30) can be used to find the analogous
results corresponding to the suppression of S12 and the corre-
sponding maximization of S21. Finally, we point out that when
the transmission in one direction is suppressed according to
Eq. (32) and in the other direction is maximized according
to Eqs. (33) to (35), (38), and (39), then also the reflection
coefficients [S11 and S22 in Eq. (24)] are suppressed [see
Eqs. (B11) and (B14)] [32,33] as required by an isolator.

V. OUTPUT NOISE SPECTRAL DENSITY

So far we identified the conditions under which the trans-
mission coefficient in one direction can be suppressed while
the transmission in the opposite direction remains finite. How-
ever, the full characterization of the capability of this system
to be used as a nonreciprocal converter requires the study
of how the noise associated to the various components (in
particular, the mechanical and the rf noise) is redistributed
in this system. Here we analyze the noise spectral density at
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FIG. 3. (a)–(c) Transmission coefficients (|S21|2, blue dashed lines and |S12|2, red solid lines). (d)–(f) Noise spectral density of the fields
at the output of the optical cavity (red solid line) and of the rf-resonator (blue dashed line), when Eqs. (33) and (34) are true, the values of
E2 and ϕ are set to fulfill Eqs. (31) and (32) for the suppression of the optical-to-rf transmission (S21 = 0) at ω = 0, and |V ′| and δ are set to
fulfill Eqs. (38) and (39) for the maximization of S12. In all plots ωm,1 = 2 MHz, ωm,2 = 8 MHz, γLC = 6 kHz, κ = 200 kHz, γm = 500 Hz, and
g0 = 3.5 Hz. In (a,d) E1 = 10 GHz ( = 1). In (b,e) E1 = 17.5 GHz ( = 3). In (c,f) E1 = 80 GHz ( = 62.6). In (d)–(f) the temperature is
0.1 K, corresponding to n̄a2 = 2618, n̄b1 = 6545, and n̄b2 = 1636. In all the plots the other frequencies are fixed by the resonance conditions
(18).

the output of both the optical cavity and of the rf resonator.
Differently from the results of the authors Refs. [32,33], here
the two modes of the electromagnetic field have very different
frequencies and the corresponding thermal noise is very dif-
ferent. Correspondingly, as shown below, the noise properties
of the system are different when one suppresses either the
rf-to-optical transmission (S12 = 0) or the optical-to-rf trans-
mission (S21 = 0).

The symmetrized output noise spectral density is given by

N (out)
� (ω) = 1

2

∫ +∞

−∞
d t ei ω t 〈â�,out(t )â†

�,out(0)

+ â†
�,out(0)â�,out(t )〉

= 1

2
|S�1(ω)|2 + |S�2(ω)|2

(
ña2 + 1

2

)
+ |T�1(ω)|2

(
n̄b1 + 1

2

)
+ |T�2(ω)|2

(
n̄b2 + 1

2

)
,

(41)

where S� j and T� j were introduced in Eq. (24) (and are explic-
itly defined in Appendix B) and � = 1 (� = 2) is for the noise
at the output of the optical cavity (rf resonator).

When S21 = 0 (suppression of optical-to-rf transmission)
and S12 (rf-to-optical conversion) is maximized according to
Eqs. (32) to (35), (38), and (39), one finds (see Appendix B)

N (out)
1 (0) =

(
1 − 1

2 

)(
ña2 + 1

2

)
+ 1

2 

(
n̄b1 + n̄b2

2
+ 1

2

)
N (out)

2 (0) = n̄b1 + n̄b2

2
+ 1

2
, (42)

which shows that in the limit of large cooperativity  → ∞
and around ω = 0, the rf noise goes only into the optical
output while the mechanical noise goes only into the rf output.
This means that when this system is used, in this configu-
ration, to convert a rf signal to the optical regime, the same
number of thermal excitations of the rf field are also trans-
ferred to the optical output. At the same time, the noise in
the backward direction is increased because of the mechanical
noise. In fact, since the frequency of the rf resonator is equal
to the average mechanical frequencies, see Eq. (18), then
necessarily (n̄b1 + n̄b2)/2 > n̄a2.

On the other hand, when S12 = 0 (suppression of rf-to-
optical transmission) and S21 (optical-to-rf conversion) is
maximized, one finds (see Appendix B)

N (out)
1 (0) = n̄b1 + n̄b2

2
+ 1

2

N (out)
2 (0) = 1

2

(
1 − 1

2 

)
+ 1

2 

(
n̄b1 + n̄b2

2
+ 1

2

)
. (43)

Interestingly, in this case the contribution of the rf noise in
the output fields is completely suppressed around ω = 0. In
addition, in the limit of large cooperativity  → ∞, the me-
chanical noise affects only the optical output such that the rf
output reaches the vacuum noise level. Thus, in this limit the
system realizes a quantum-limited optical-to-rf converter.

VI. NUMERICAL RESULTS

We verified the nonreciprocity in this system numerically.
We studied both the rf-to-optical conversion with S21 = 0 and
the optical-to-rf conversion with S12 = 0.

Figure 3 corresponds to parameters for which the optical-
to-rf transmission is suppressed (S21=0), and the rf-to-optical
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FIG. 4. Transmission coefficients (|S21|2 blue dashed lines and |S12|2 red solid lines) as a function of (a) the detuning δ, (b) the strength of
the first driving field E1, and (c) the phase of the first driving field φ11, for ω = 0. The other parameters are as in Fig. 3(b). The values of the
parameters in the x axis for which the dashed blue lines are zero are the values used in Fig. 3(b). In (c) φ12 = φX = 0, so that φ11 = ϕ.

conversion coefficient S12 is maximized according to Eqs. (32)
to (35), (38), and (39). Figures 3(a) to 3(c) correspond to the
increasing strength of the driving fields (i.e., increasing coop-
erativities). They show how, in agreement with Eq. (40), the
value of the conversion coefficient, at ω = 0 [68], increases
with the cooperativity and approaches the value of 1 for large
. These results are achieved by carefully tuning the driving
strengths, frequencies, and phases to their optimal working
points. In Fig. 4 we varied the values of the system parameters
so that the condition for the suppression of S21, Eq. (32), and
for the maximization of S21, Eq. (39), are no longer satisfied
(they are satisfied only in the points in which the dashed
blue line is exactly zero). This figure demonstrates that the
nonreciprocal conversion is relatively robust to variation of
the system parameters around their optimal values.

The output noise spectral density corresponding to
Figs. 3(a) to 3(c) is reported in Figs. 3(d) to 3(f). As expected
from the analysis of the previous section, both the optical and
the rf outputs show increased noise around ω = 0. Moreover,
at large frequency, the two output noise signals approach the
level of noise of the free fields. Both the double peak structure,

in the optical output, and the asymmetry of the plots iare due
to the mechanical noise: The noise components associated
to the two mechanical resonators are not peaked at ω = 0
because of the finite detuning δ, and are asymmetric because
of the different mechanical frequencies (which correspond to
different numbers of thermal excitations). We also note that
by increasing the cooperativity, the width of the thermal peak
increases in the optical output and its maximum is reduced to
the level of the rf noise.

These plots demonstrate the nonreciprocal conversion of
an electromagnetic signal from the radio frequency to the
optical regime in an optoelectromechanical system which use
only three driving fields. In particular we observe that, for
sufficiently large cooperativity, the conversion is perfect with
S12 = 1 and with a level of noise in the optical output which
is equal to the noise of the rf input. However, while at the
same time no optical signal can be transmitted to the rf out-
put (hence realizing the nonreciprocal conversion), significant
mechanical noise reaches the rf output. Thus the isolation of
the rf port is not perfect. In principle, this noise can be reduced
using additional sideband cooling of the resonators [33].

FIG. 5. (a)–(c) Transmission coefficients (|S21|2 blue dashed lines and |S12|2 red solid lines) and (d)–(f) noise spectral density of the field
at the output of the optical cavity (red solid line) and of the rf-resonator (blue dashed line), when the values of E2 and ϕ are set to suppress the
rf-to-optical transmission (S12 = 0) at ω = 0, and |V ′| and δ are set to maximize S21. The other parameters are as in Fig. 3.

032606-7



ESHAQI-SANI, ZIPPILLI, AND VITALI PHYSICAL REVIEW A 106, 032606 (2022)

The results corresponding to the suppression of the rf-to-
optical transmission (S12 = 0), and the maximization of the
optical-to-rf conversion coefficient S21 are reported in Fig. 5.
According to Eq. (30) these results are found by selecting the
value of δ, and correspondingly, the value of ϕ [see Eq. (32)],
opposite to those used in Figs. 3 [see Figs. 4(a) and 4(c)].
We observe that the curves for the transmission coefficients
in Fig. 5 are equal to those in Fig. 3, but with the exchanged
role of S12 and S21. Moreover, the power spectral density of
the output fields show that the noise of the rf field close to
ω = 0 decreases with the strength of the driving fields, and
as discussed in the previous section, approaches the vacuum
noise level at large cooperativity. However, at the same time,
the mechanical noise is observable in the optical output.

VII. CONCLUSION

In conclusion, we analyzed the possibility of achieving
nonreciprocal transmission and conversion between optical
and rf photons in an optoelectromechanical system composed
of an optical cavity, a rf LC-circuit, and two mechanical res-
onators.

In this system the mechanical resonators mediate an in-
direct interaction between optical cavity and LC circuit and
the nonreciprocity relies on the interference between differ-
ent transmission processes mediated by the two mechanical
resonators and which result in different relative phases in the
forward and backward directions.

We demonstrated that nonreciprocity is achievable also
when only three fields (two optical and one rf) are used to
drive the system. This is possible because of the relatively
small frequency of the rf mode, which is comparable to the
frequencies of the mechanical resonators. In this case, coun-
terrotating terms of the rf driving field may play the role
of the fourth pump used in Refs. [30,32,33]. Moreover, we
showed that, for sufficiently large cooperativity, the nonre-
ciprocal transduction is perfect in both directions, with the
mechanical noise which affects only the isolated port, and
the input noise which is perfectly transmitted in the allowed
direction. In particular, when the parameters are tuned to
suppress the rf-to-optical transmission, this system can realize
a quantum-limited optical-to-rf converter.

ACKNOWLEDGMENTS

We acknowledge the support of the European Union Hori-
zon 2020 Programme for Research and Innovation through the
Project No. 862644 (FET Open QUARTET). N.E.S acknowl-
edges the TRIL support of the Abdus Salam International
Centre of Theoretical Physics (ICTP).

APPENDIX A: APPROXIMATIONS

The average amplitude of the electromagnetic and me-
chanical fields, α j = â j − δâ j and β j = b̂ j − δb̂ j , fulfill the
equations [see Eq. (12)]

α̇1 = −(κ + i�L )α1 − i[E1eiω+t + E2e−iω+t ]

− i
∑
j=1,2

g0,1 jα1(β j + β∗
j ), (A1)

α̇2 = −
(

γLC

2
+ iω(0)

LC

)
α2 + 2i

∑
j=1,2

g0,2 j (α2 + α∗
2 )(β j + β∗

j )

+ i[V ′e−iωX t + V ′∗eiωX t ], (A2)

β̇ j = −
(

γm, j

2
+ iω j

)
β j − ig0,1 j |α1|2

+ ig0,2 j (α2 + α∗
2 )2. (A3)

The corresponding solutions enter into the equations for the
fluctuations δâ and δb̂ as modulations of the interaction co-
efficients between different operators. When these rescaled
interaction coefficients are sufficiently large, it is legitimate
to linearize these equations by neglecting nonlinear terms in
the fluctuations. In this way we find the linearized quantum
Langevin equations for the fluctuations

δ̇â1 = −
{

κ + i

[
�L + 2

∑
j=1,2

g0,1 j Re{β j (t )}
]}

δâ1

−i α1(t )
∑
j=1,2

g0,1 j (δb̂ j + δb̂†
j ) +

√
2κ â1,in,

δ̇â2 = −
{

γLC

2
+ i

[
ω

(0)
LC − 4

∑
j=1,2

g0,2 j Re{β j (t )}
]}

δâ2

+4 i
∑
j=1,2

g0,2 j Re{β j (t )} δâ†
2

+4 i Re{α2(t )}
∑
j=1,2

g0,2 j (δb̂ j + δb̂†
j ) + √

γLC â2,in,

δ̇b̂ j = −
(γm, j

2
+ i ω j

)
δb̂ j − ig0,1 j[α j (t ) δâ†

1 + α j (t )∗δâ1]

+2 i g0,2 j Re{α2(t )}(â2 + â†
2) + √

γm, j b̂ j,in, (A4)

which are equivalent to the equations in the interaction pic-
ture reported in the main text [see Eqs. (14) and (15)]. As
discussed in the main text, we evaluated explicit expressions
for the coefficients (15) by solving the equations for the mean
amplitudes (A1). This can be done recursively by expanding
the amplitudes in powers of the bare interaction coefficients
g0,i j . When the interactions’ coefficients g0,� j are sufficiently
small it is possible to consider only the first few terms of this
expansion and neglect the rest. Here we consider coefficients
up to their leading order [67], that is, the zeroth order for α j

and the first order for β j . We find that in the long time limit
the mean amplitudes α j (t ) and β j (t ) are composed of a sum
of terms which oscillate at multiples of the driving frequencies
and at their sums’ end differences.

Specifically, we obtain the following expressions for the
mean fields in the long time limit, up to the second order in
g0,i j :

α1(t ) ≈ α
(0)
1,+ e−i ω+t + α

(0)
1,− ei ω+t ,

α2(t ) ≈ α
(0)
2,X e−i ωX t + α

(0)
2,−X ei ωX t ,

β j (t ) ≈ βdc
j + β

(1)
j,+2 e−2 i ω+t + β

(1)
j,−2 e2 i ω+t

+β
(1)
j,2X e−2 i ωX t + β

(1)
j,−2X e2 i ωX t , (A5)
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where the zeroth order terms are

α
(0)
1,+ = −i χ1 E1,

α
(0)
1,− = −i χ1 E2,

α
(0)
2,X = i χLC V ′,

α
(0)
2,−X = i χLC V ′∗ , (A6)

and the first order terms are

βdc
j = −i χ ′

m, j

{
g0,1 j

[∣∣α(0)
1,+
∣∣2 + ∣∣α(0)

1,−
∣∣2]

−2g0,2 j

∣∣α(0)
2,X + α

(0)
2,−X

∗∣∣2,
β

(1)
j,± 2 = −i χ ′

m, j g0,1 j α
(0)
1,± α

(0)∗
1,∓ ,

β
(1)
j,±2X = i χ ′

m, j g0,2 j
[
α

(0)
2,±X + α

(0)
2,∓X

∗]2
. (A7)

Correspondingly, we find that the time-dependent coeffi-
cients (15) of the linearized quantum Langevin equations (14)
can be written as sums of many terms oscillating at different
frequencies as in Eq. (16). To be specific, we find that the
shifts of the electromagnetic frequencies can be written as

��(t ) =
∑
ξ∈{±}

��,ξ ei ω(�)
ξ t for � ∈ {1, 2}, (A8)

with frequencies

ω
(�)
ξ = ξ 2 ω+ for ξ ∈ {±}, (A9)

and corresponding coefficients

��,± = −(−2)�
∑
j=1,2

g0,� j
[
β

(1)
j,±2 + β

(1) ∗
j,∓2 + β

(1)
j,±2X + β

(1) ∗
j,∓2X

]
.

(A10)

The field-enhanced interaction strengths are

G(±)
�, j (t ) =

∑
ξ∈{±}

G(±)
�, j,ξ eiω(G� j±)

ξ t for �, j ∈ {1, 2},

(A11)

with frequencies

ω
(G1 j±)
ξ = � + ξ (ω+ − 2 ωX ) ± ω̃ j for ξ ∈ {±},

ω
(G2 j±)
ξ = ωLC − ξ ωX ± ω̃ j for ξ ∈ {±}, (A12)

where

ω̃ j = ω j − (−1) j δ, (A13)

and corresponding coefficients

G(±)
1, j,ξ = g0,1 j α

(0)
1,ξ ,

G(±)
2, j,ξ = −2 g0,2 j

[
α

(0)
2,ξX + α

(0) ∗
2,−ξX

]
. (A14)

Finally, the self-interaction strength of the rf mode (t ) is
zero at this order of approximation. We note that when the
resonance conditions (17) are fulfilled the frequencies

ω
(G11−)
+ = � + ω+ − 2 ωX − ω̃1,

ω
(G12−)
− = � − ω+ + 2 ωX − ω̃2,

ω
(G21−)
+ = ωLC − ωX − ω̃1,

ω
(G22−)
− = ωLC + ωX − ω̃2, (A15)

are zero. All the other frequencies, instead, are different form
zero. The frequencies in Eq. (A15) correspond, respectively,
to the coefficients

G(−)
1,1,+ = g0,11 α

(0)
1,+,

G(−)
1,2,− = g0,12 α

(0)
1,−,

G(−)
2,1,+ = −2 g0,21

[
α

(0)
2,X + α

(0) ∗
2,−X ,

]
G(−)

2,2,− = −2 g0,22
[
α

(0)
2,−X + α

(0) ∗
2,X

]
. (A16)

In the main text we used the symbols g� j to indicate these
coefficients, specifically, we used these definitions

g11 ≡ G(−)
1,1,+,

g12 ≡ G(−)
1,2,−,

g21 ≡ − G(−) ∗
2,1,+,

g22 ≡ − G(−) ∗
2,2,−, (A17)

which are equal to the definitions in Eq. (22). In our numer-
ical simulations we verified that all the other coefficients in
Eqs. (A8) and (A11) are much smaller than the corresponding
frequencies, i.e., |Xξ | � ω

(X )
ξ , for X ∈ {��, G(±)

j,� } and for all
corresponding �, j, and ξ . In particular, it is easy to check that
these conditions are fulfilled when the conditions in Eq. (19)
are true.

APPENDIX B: MODEL IN FOURIER SPACE

Equation (20) can be easily solved in Fourier space [33].
To be specific one can express the mechanical operators in
terms of the susceptibilities (29) and of the optical and rf mode
operators as

δb̂1(ω) = χm,1 {−ig∗
11â1 + ig21â2 +√

γm,1b̂1,in},
δb̂2(ω) = χm,2 {−ig∗

12â1 + ig22â2 +√
γm,2b̂2,in}. (B1)

These expressions can be replaced into the equation for the
electromagnetic fields and one obtains the following closed
equation for the vector of operators A = [δâ1(ω), δâ2(ω)]T :

−i ω A = M A + L Ain + K Bin, (B2)

where Ain = [â1,in(ω), â2,in(ω)]T , Bin = [b̂1,in(ω), b̂2,in(ω)]T ,

M =
(−(κ + |g11|2χm,1 + |g12|2χm,2) g11g21χm,1 + g12g22χm,2

g∗
11g∗

21χm,1 + g∗
12g∗

22χm,2 −( γLC

2 + |g21|2χm,1 + |g22|2χm,2
)),

L =
(√

2κ 0
0

√
γLC

)
,
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and

K =
(−ig11χm,1

√
γm,1 −ig12χm,2

√
γm,2

ig∗
21χm,1

√
γm,1 ig∗

22χm,2
√

γ m,2

)
,

from which one finds the expressions of the modes operators
in terms of the input noise operators

A = −[i ω 1 + M]−1 (L Ain + K Bin). (B3)

Finally, using the input-output relations

Aout = Ain − LT A, (B4)

with Aout = [â1,out(ω), â2,out(ω)]T , one finds the expression
for the output fields (24)

Aout = S Ain + T Bin, (B5)

with

S = 1 + LT [i ω 1 + M]−1 L (B6)

and

T = LT [i ω 1 + M]−1 K

= (S − 1) L−1 K. (B7)

Specifically, we find

S = 1 − 1

D
L

(
F11 F12

F21 F22

)
L

= 1 − 1

D

(
2 κ F11

√
2 κ γLC F12√

2 κ γLC F21 γLC F22

)
, (B8)

where F12, F21, and D = F11F22 − F12F21 are defined in
Eqs. (26) to (28) and

F11 = γLC

2
− i ω + |g21|2 χm,1 + |g22|2 χm,2,

F22 = κ − i ω + |g11|2 χm,1 + |g12|2 χm,2, (B9)

and

T = − 1

D
L

(
F11 F12

F21 F22

)
K

= i

D

(√
2 κ γm,1 χm,1[g11 F11 − g∗

21 F12]
√

2 κ γm,2 χm,2[g12 F11 − g∗
22 F12]

√
γLC γm,1 χm,1[g11 F21 − g∗

21 F22]
√

γLC γm,2 χm,2[g12 F21 − g∗
22 F22]

)
. (B10)

This expression shows that each coefficient of the matrix T ,
which describes the transfer of mechanical noise to the elec-
tromagnatic fields [see Eq. (B6)] is the sum of various terms
which can interfere, and as discussed in Ref. [33], in same
cases, certain terms can be suppressed. In particular, when the
parameters are chosen to suppress S21 and to maximize S12

according to Eqs. (32) to (35), (38), and (39), one finds, for
ω = 0 (see also Refs. [32,33])

S = P
(

0
√

1 − 1
2 

0 0

)
,

T = 1√
2
P
( 1√

2 

1√
2 

1 −1

)
Q, (B11)

with P and Q diagonal matrices, which include additional
phases

P = i

(
ei(φ�+φ12+φX ±φ ) 0

0 ±1

)
,

Q = −i

(
ei(φX ±φ ) 0

0 e−i(φX ±φ )

)
, (B12)

where the sign ± corresponds to the sign in Eq. (39), and

ei φ� = κ − i �√
κ2 + �2

,

ei φ =
√

1 − 1

2 
− i√

2 
. (B13)

Equation (B11) shows that, in the limit of large cooperativity
, the optical output is not affected by the mechanical noise
[33]. Similarly, when one suppresses S12 and maximizes S21,
one finds

S = P̃
(

0 0√
1 − 1

2 
0

)
,

T = 1√
2
P̃
( −1 1

1√
2 

1√
2 

)
Q̃, (B14)

with

P̃ = −i

(±1 0
0 e−i(φ�+φ12+φX ∓φ )

)
,

Q̃ =
(

ei(φ�+φ12+2 φX ∓φ ) 0
0 ei(φ�+φ12∓φ )

)
. (B15)

The matrix S in Eqs. (B11) and (B14) shows that the
system behaves as a perfect isolator, where the transmis-
sion in one direction is large and both the transmission in
the other direction and the reflection coefficients are sup-
pressed [32,33]. Equations (B11) and (B14) can be used to
compute the noise spectral density at the output of the op-
tical and rf cavities (see Sec. V). In particular, we note that
the phases in Eqs. (B12) and (B15) are irrelevant for this
calculation and one finds the expressions reported in Eqs. (42)
and (43).
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