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Using the quantum-brachistochrone formalism, we address the problem of finding the fastest possible (time-
optimal) deterministic conversion between W and Greenberger-Horne-Zeilinger (GHZ) states in a system of
three identical and equidistant neutral atoms that are acted upon by four external laser pulses. Assuming that
all four pulses are close to being resonant with the same internal (atomic) transition—the one between the
atomic ground state and a high-lying Rydberg state—each atom can be treated as an effective two-level system
(gr-type qubit). Starting from an effective system Hamiltonian, which is valid in the Rydberg-blockade regime
and defined on a four-state manifold, we derive the quantum-brachistochrone equations pertaining to the fastest
possible W -to-GHZ state conversion. By numerically solving these equations, we determine the time-dependent
Rabi frequencies of external laser pulses that correspond to the time-optimal state conversion. In particular, we
show that the shortest possible W -to-GHZ state-conversion time is given by TQB = 6.8 h̄/E , where E is the total
laser-pulse energy used, this last time being significantly shorter than the state-conversion times previously found
using a dynamical-symmetry-based approach [TDS = (1.33 − 1.66) TQB].

DOI: 10.1103/PhysRevA.106.032605

I. INTRODUCTION

The availability of fast, accurate protocols for the prepara-
tion of highly entangled quantum states is one of the crucial
prerequisites for the adoption of next-generation quantum
technologies [1]. In particular, maximally-entangled mul-
tiqubit states of W - [2] and Greenberger-Horne-Zeilinger
(GHZ) [3] type are of both conceptual and practical im-
portance in the realm of quantum-information processing
(QIP) [4]. Owing to their already proven usefulness in
QIP [5,6], a large number of schemes for the preparation
of W [7–15] and GHZ states [16–24] in various physical
platforms have been proposed in recent years. Among those
platforms, one of the most promising ones from the stand-
point of large-scale quantum computing and analog quantum
simulation is based on ensembles of neutral atoms in Ry-
dberg states [25–28]. Recent years have also seen growing
general interest in quantum-state engineering in systems of
this type [23,29–37].

Apart from various schemes for the efficient preparation
of W or GHZ states, which usually entail product states as
their starting point [32], the interconversion between those
two maximally entangled states constitutes another relevant
problem of quantum-state engineering. What makes the idea
of interconversion between the two states— which, for exam-
ple, in the three-qubit case represent the only two inequivalent
classes of genuine tripartite entanglement [2] — particularly
appealing is the apparent dissimiliarity as far as the char-
acter of entanglement in the two states is concerned [38].
For instance, three-qubit GHZ state has maximal distributed
(essential three-way) entanglement, while pairwise bipartite
entanglements all vanish [39]. On the other hand, for its W

counterpart the essential three-way entanglement vanishes,
while it has strong pairwise entanglements [40].

The pioneering attempt of carrying out the W -to-GHZ state
conversion pertained to a photonic system and its character
was probabilistic [41]. Following this initial investigation, an-
other work with photons was reported [42], as well as a study
devoted to a spin system [43]. In the realm of neutral-atom
systems, irreversible conversions of a W state into a GHZ
state were proposed [44,45], followed by two proposals for
the deterministic conversion between the two states in a laser-
controlled system of three equidistant gr-type Rydberg-atom
qubits [33,37]. The first among those proposals [33] utilized
the method of shortcuts to adiabaticity, more precisely an
inverse-engineering approach based on a Lewis-Riesenfeld-
type dynamical invariant. The second one [37] — advanced by
one of us and collaborators — was based on a Lie-algebraic
approach that, under the assumption of real-valued Rabi
frequencies of external laser pulses, explicitly takes into ac-
count the underlying dynamical symmetry su(2) ⊕ su(2) ∼=
so(4) of the effective system Hamiltonian defined on a man-
ifold of four states (a basis of the permutation-symmetric
subspace of the three-qubit Hilbert space). Importantly, the
latter approach was shown to outperform the former in the
sense of allowing the envisioned state conversion to be carried
out up to five times faster (for the same total laser-pulse
energy used), with a much simpler time dependence of the
corresponding Rabi frequencies of laser pulses used.

In this paper, aiming to find the time-optimal W -to-GHZ
state conversion in the same physical setting as Refs. [33,37],
i.e. for a system of three equidistant neutral atoms interact-
ing through van der Waals-type interaction, we employ the
quantum-brachistochrone (QB) formalism [46]. Inspired in
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part by the time-honored brachistochrone problem in classical
mechanics [47], this formalism was proposed by Carlini and
coworkers with the aim of finding the fastest possible quantum
evolution from a given initial to a desired final state [46]. It
allows one to find time-optimal control protocols under the
assumption that the system Hamiltonian has a bounded norm,
being at the same time restricted to a subspace of Hermitian
operators. Subsequently, the formalism was generalized so as
to treat the problem of finding time-optimal unitary opera-
tions [48] and utilized for solving realistic gate-optimization
problems [49]. It has also led to important insights into a wide
range of other problems of quantum physics [50–52].

Using the QB formalism we derive a system of first-
order ordinary differential equations connecting the physical
variables of interest in the problem at hand (namely, three
time-dependent Rabi frequencies of external laser pulses,
the corresponding auxiliary variables that have the nature
of Lagrange multipliers, and the projections of the relevant
quantum state of the system on the four relevant basis states).
We then solve the two-point boundary value problem that cor-
responds to the shortest possible W -to-GHZ state conversion
numerically using the shooting method (see, e.g., Ref. [53]),
where the computational burden involved is substantially al-
leviated by means of an unconventional, problem-specific
parametrization of the initial conditions. In this manner, we
demonstrate that the time-optimal W -to-GHZ state conversion
is 25–40 % faster than the protocol based on the dynamical-
symmetry approach of Ref. [37] that requires real-valued
Rabi frequencies. We also show that the three complex-
valued (time-dependent) Rabi frequencies corresponding to
the shortest-possible state conversion have time-independent
phases. Moreover, we show that two of those phases can be
chosen freely, with only the third one being constrained by
the chosen values of the first two.

The remainder of this paper is organized as follows. In
Sec. II we introduce the Rydberg-atom system under consid-
eration and state its previously derived effective Hamiltonian.
In Sec. III the QB equations governing the time-optimal con-
version of an initial W state into its GHZ counterpart in
the Rydberg-atom system under consideration are derived,
followed by a specific parametrization of their initial condi-
tions that facilitates their subsequent numerical solution. The
numerical solution of the QB equations is also discussed.
In Sec. IV we present and discuss the obtained results for
the time-dependent Rabi frequencies of external laser pulses
that correspond to the time-optimal state conversion. We also
compare the obtained minimal state-conversion time with the
corresponding times found in Refs. [33] and [37]. Finally,
we demonstrate the robustness of our state-conversion scheme
to deviations from the obtained optimal time-dependent Rabi
frequencies. Before closing, we summarize the paper and
underscore our main conclusions in Sec. V. The essential
details of the method employed to numerically solve the QB
equations are briefly reviewed in the Appendix.

II. SYSTEM AND ITS EFFECTIVE HAMILTONIAN

In what follows, we consider a system of three identical and
equidistant neutral atoms, e.g., of 87Rb [for an illustration, see
Fig. 1]. All three atoms are subject to the same four external

FIG. 1. Schematic of the system under consideration: Three
identical and equidistant neutral atoms with the ground state |g〉 and a
high-lying Rydberg state |r〉 (gr-type qubits) are acted upon by four
external laser pulses, all close to being resonant with the transition
between the states |g〉 and |r〉. h̄V is the magnitude of the vdW
interaction.

laser pulses, whose respective Rabi frequencies are denoted
by �r0, �r1, �r2, and �r3. It is hereafter assumed that the
Rabi frequencies �r1, �r2, and �r3 are time dependent, while
�r0 is time independent and envisioned to induce quadratic
Stark shifts.

The four laser pulses are assumed to be close to the
resonance with the same internal atomic transition, the one
between the electronic ground state |g〉 and a highly-excited
Rydberg state |r〉. Consequently, each atom can be treated
as an effective two-level system; a gr-type Rydberg-atom
qubit [27] where the states |g〉 and |r〉 play the role of logi-
cal |0〉 and |1〉 qubit states, respectively. The typical energy
splitting of such qubits in frequency units is in the range
900 − 1500 THz (the actual energy splitting depends on the
choice of atomic species and Rydberg states used), thus their
manipulation requires either an ultraviolet laser or a combina-
tion of visible and infrared lasers in a ladder configuration.

The Hamiltonian of the coupled atom-field system under
consideration in the interaction picture is given by

HI(t )/h̄ =
3∑

s=1

3∑
n=0

�rn(t )e−i(δn+�n )t |r〉ss〈g| + H.c.

+
∑
s<s′

V |rr〉ss′ 〈rr|. (1)

The first term describes the interaction between each of
the three atoms (indexed by s, s′ = 1, 2, 3) and the four
laser fields characterized by the Rabi frequencies �rn (n =
0, . . . , 3). The second one corresponds to the van der Waals
(vdW) atom-atom interaction with the pairwise interaction
energy h̄V . The detunings of the four laser pulses from the
relevant internal (g − r) transition are split into two parts δn

and �n (n = 0, 1, 2, 3), in keeping with Ref. [33].
As demonstrated in Ref. [33], through an appropriate

choice of the detunings δn and �n and under several con-
ditions on other relevant parameters (interaction strength,
laser-pulse duration, etc.) [37], the full system Hamiltonian of
Eq. (1) can be reduced via perturbation theory to an effective
one defined on a four-state manifold. The relevant four three-
qubit states are the three-atom ground state |ggg〉, the W state

|W 〉 = 1√
3

(|rgg〉 + |grg〉 + |ggr〉), (2)
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FIG. 2. Pictorial illustration of the effective system Hamiltonian
H (t ) defined on a manifold of four states, where only pairs of adja-
cent states have nonzero coupling [cf. Eq. (4)].

the two-excitation Dicke state

|W ′〉 = 1√
3

(|rrg〉 + |grr〉 + |rgr〉), (3)

and the state |rrr〉 with all three atoms occupying the Rydberg
state.

The effective Hamiltonian is given by [33]

H (t )/h̄ = �1(t )|ggg〉〈W | + �2(t )|W 〉〈W ′|
+�3(t )|W ′〉〈rrr| + H.c., (4)

where �1(t ) ≡ √
3 �r1(t ), �2(t ) ≡ 2 �r2(t ), and �3(t ) ≡√

3 �r3(t ). In what follows, the time-dependent quantities
�n(t ) (n = 1, 2, 3), which differ from the original Rabi fre-
quencies of external laser pulses only by constant prefactors,
will also be referred to as Rabi frequencies. The structure of
this last Hamiltonian, which is defined on a manifold of four
states and has nonzero coupling only between adjacent ones,
is illustrated in Fig. 2.

Importantly, one of the conditions of validity of the ef-
fective Hamiltonian in Eq. (4) is that |V |Tint 	 1, where Tint

is the relevant laser-pulse duration [37]. The last condition
is equivalent to demanding that the interaction-induced en-
ergy shift h̄V is much larger than the Fourier-limited width
of the laser pulses used, which precisely coincides with the
definition of the Rydberg blockade regime. Thus, the above
effective Hamiltonian is valid in the regime of primary interest
for QIP with neutral atoms [54].

Generally speaking, Hamiltonians that are defined on a
manifold of four states and have nonzero real-valued cou-
plings only between adjacent states are characterized by
the dynamical Lie algebra su(2) ⊕ su(2) ∼= so(4) [this gen-
eralizes to analogous Hamiltonians defined on an n-state
manifold, where the corresponding dynamical Lie algebra is
so(n)]. Under the assumption of real-valued Rabi frequencies,
this last dynamical symmetry was exploited in the context of
W -to-GHZ state conversion in Ref. [37]. In what follows, we
refrain from the restriction to real-valued Rabi frequencies
and aim to determine the fastest possible (time-optimal) de-
terministic conversion between an initial W state and its GHZ
counterpart.

Before embarking on the computation of the desired time-
optimal W -to-GHZ state-conversion protocol, it is pertinent
to make the following, symmetry-related remark. Namely,
it is important to note that the states |ggg〉, |W 〉, |W ′〉, and
|rrr〉 form an orthonormal basis of a four-dimensional sub-
space of the (eighth-dimensional) three-qubit Hilbert space
H ≡ (C2)⊗3 that comprises the states invariant under an ar-
bitrary permutation of qubits (i.e. invariant under the action
of the symmetric group S3); this four-dimensional subspace is
usually referred to as the symmetric sector of the three-qubit

Hilbert space [55,56]. It is also worthwhile noting that for
an arbitrary number of qubits — including the special case
N = 3 of relevance here — both W - and GHZ states are
invariant under an arbitrary permutation of qubits. Because
both the initial- and final states of our envisioned W -to-GHZ
state-conversion process belong to the symmetric sector, the
fact that the effective system Hamiltonian in Eq. (4) involves
the basis states of this particular subspace is pertinent from the
symmetry standpoint.

III. QB APPROACH TO THE W -TO-GHZ
STATE CONVERSION

In the following, we make use of the QB formalism [46]
to determine the time-dependent Rabi frequencies �n(t ) (n =
1, 2, 3) that pertain to the time-optimal conversion of an initial
W state |ψ (t = 0)〉 ≡ |W 〉 of the system at hand to the GHZ
state |ψ (t = TQB)〉 ≡ (|ggg〉 + eiϕ |rrr〉)/

√
2. Here TQB is the

shortest possible state-conversion time, to be determined in
what follows.

We first derive the QB equations pertaining to the time-
optimal W -to-GHZ state conversion (Sec. III A). We then
discuss the numerical scheme that we employ to determine
the solution to these equations (Sec. III B).

A. Derivation of the QB equations for the time-optimal
state conversion

We begin by representing the four three-qubit basis states
|ggg〉, |W 〉, |W ′〉, and |rrr〉 by column vectors:

|ggg〉 �→

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, |W 〉 �→

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

|W ′〉 �→

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, |rrr〉 �→

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. (5)

This allows us to express the effective system Hamiltonian
H (t ) [cf. Eq. (4)] as

H (t ) =

⎛
⎜⎜⎜⎝

0 �1(t ) 0 0

�∗
1(t ) 0 �2(t ) 0

0 �∗
2(t ) 0 �3(t )

0 0 �∗
3(t ) 0

⎞
⎟⎟⎟⎠ , (6)

where, for the sake of notational convenience, we set h̄ = 1 in
the last equation; we will also keep this convention throughout
the following derivation of the QB equations.

The original QB formalism [46] allows one to find the
Hamiltonian H (t ) whose corresponding dynamics enable the
shortest possible evolution of the system under consideration
from a given initial- to a desired final state. That formalism is
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based on a quantum action of the form

S[H, |ψ〉, |φ〉, λ]

=
∫

dt

[√
〈ψ̇ |ψ̇〉 − |〈ψ̇ |ψ〉|2

�E

+
M∑

j=1

λ j f j (H ) + (i〈φ̇|ψ〉 + 〈φ̇|H |ψ〉 + c.c.)

]
. (7)

Here �E ≡ 〈ψ |H2|ψ〉 − 〈ψ |H |ψ〉2 is the energy variance
corresponding to the state |ψ〉 of the system and λ the short-
hand for the set of M Lagrange multipliers λ j ( j = 1, . . . , M);
|φ〉 is an auxiliary quantum state (a costate) that plays a role
analogous to that of λ j . A variation of H and |ψ〉 minimizes
the Fubini-Study distance between the initial and final states,
governed by the first term, and varying |φ〉 in the third term en-
sures that |ψ〉 satisfies the Schrödinger equation. The second
term gives rise to M additional, problem-specific constrains
f j (H ) = 0 by varying the Lagrange multipliers λ j .

While in the original QB formalism Tr[H2(t )] is fixed at
any time [46], we weaken the latter restriction somewhat and
fix only the total energy expended in the conversion process.
In other words, the time-optimal state conversion is sought
under the constraint of fixed total laser-pulse energy used, this
last quantity being given by

E =
∫ T

0
dt

3∑
n=1

|�n(t )|2, (8)

where T is the, as yet undetermined, total evolution time of
the system. The last requirement is taken into account by
imposing the constraint

f1(H ) = 1

2
Tr H2 − E

T
, (9)

where Tr H2 = 2
∑3

n=1 |�n|2, and choosing a constant La-
grange multiplier λ1.

Moreover, we must ensure that the form of the Hamiltonian
is preserved during the entire process. In other words, the
time-dependent Hamiltonian of the system retains the form
of Eq. (4) throughout the conversion process. This is ensured
by imposing the constraint

∑M
j=2 λ j f j (H ) = Tr(	H ), with

	 =

⎛
⎜⎜⎜⎜⎝

λgg 0 λgW’ λgr

0 λWW 0 λWr

λ∗
gW’ 0 λW’W’ 0

λ∗
gr λ∗

Wr 0 λrr

⎞
⎟⎟⎟⎟⎠ , (10)

where each Lagrange multiplier in 	 is time-dependent
because Tr(	H ) = 0 ought to hold at all times. General

constraints of this type have already been investigated in con-
nection with quantum actions introduced in Ref. [46].

In line with Ref. [46], we perform the variation of all
variables in Eq. (7) and arrive at the identities

F = F |ψ〉〈ψ | + |ψ〉〈ψ |F − |ψ〉〈ψ |Tr F , (11)

0 = (Ḟ + i[H, F ])|ψ〉 , (12)

where the operator F involves the constraint functions f j (H )
and is given by

F =
M∑

j=1

λ j∂H f j (H ). (13)

Due to the fact that λ1 is a constant immaterial for our
further discussion, we set λ1 = 1, which further yields F =
H + 	. In particular, Eq. (12) implies that F |ψ〉 satisfies the
Schrödinger equation, which leads to the equation of mo-
tion [48]

Ḟ = −i[H, F ] . (14)

We first make use of Eq. (11) to derive the boundary values
of F . By inserting |ψ (0)〉 and |ψ (T )〉 into this last equation,
we readily obtain

F (0) =

⎛
⎜⎜⎜⎝

0 �1(0) 0 0

�∗
1(0) λWW(0) �2(0) λWr(0)

0 �∗
2(0) 0 0

0 λ∗
Wr(0) 0 0

⎞
⎟⎟⎟⎠,

F (T )=

⎛
⎜⎜⎜⎜⎝

λgg(T ) �1(T ) e−iϕ�∗
3(T ) λgr(T )

�∗
1(T ) 0 0 e−iϕ�∗

1(T )

eiϕ�3(T ) 0 0 �3(T )

λ∗
gr(T ) eiϕ�1(T ) �∗

3(T ) λrr(T )

⎞
⎟⎟⎟⎟⎠.

(15)

The next step is to bring the equation of motion in Eq. (14)
to a more explicit form. By evaluating the diagonal elements
of the matrix on the right-hand-side of this equation, one
straightforwardly finds that these elements have the form of
linear combinations Hjk	 jk , where either Hjk or 	 jk is zero
for each entry ( j, k). This leads to the conclusion that the
time derivatives of λgg, λWW, λW’W’, and λrr, which appear
on the left-hand-side of Eq. (14) are equal to zero. Therefore,
λgg, λWW, λW’W’, and λrr are constant. Moreover, by compar-
ing F (0) and F (T ) we conclude that λgg = λWW = λW’W’ =
λrr = 0. At the same time, Tr F n turns out to be constant
for each n ∈ N. In particular, by making use of the fact that
Tr F 3(0) = Tr F 3(T ) we find that λgr(T ) = ie−iϕ |λgr(T )|. On
account of these last results, Eq. (14) leads to the following
system of (nonlinear) ordinary differential equations (ODEs):

∂t

⎛
⎜⎜⎜⎜⎝

0 �1 λgW’ λgr

�∗
1 0 �2 λWr

λ∗
gW’ �∗

2 0 �3

λ∗
gr λ∗

Wr �∗
3 0

⎞
⎟⎟⎟⎟⎠ = −i

⎛
⎜⎜⎜⎜⎝

0 −�∗
2λgW’ −�∗

3λgr �1λWr − �3λgW’

�2λ
∗
gW’ 0 �∗

1λgW’ − �∗
3λWr �∗

1λgr

�3λ
∗
gr �3λ

∗
Wr − �1λ

∗
gW’ 0 �∗

2λWr

�∗
3λ

∗
gW’ − �∗

1λ
∗
Wr −�1λ

∗
gr −�2λ

∗
Wr 0

⎞
⎟⎟⎟⎟⎠ .

(16)
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The next step amounts to noticing that it is possible to
reduce the number of equations of motion by half by prov-
ing that the complex phases φ1, φ2, φ3, φWr, φgr, φgW’ of the
functions �1,�2,�3, λWr, λgr, λgW’ are constant in time. As-
suming that those phases are time-independent, Eqs. (15)
and (16) imply that the conditions

φWr = −φ1 − ϕ, φgW’ = −φ3 − ϕ,

φgr = −ϕ − π

2
, φ2 = −φ1 − φ3 − ϕ − π

2
, (17)

ought to be satisfied; these restrictions imply that two out
of three phases of the Rabi frequencies can be chosen ar-
bitrarily (i.e., treated as free phases), while the third one is
constrained by the chosen values of the first two. While the
fulfillment of the conditions in Eq. (17), i.e., the assumption
of time-independent complex phases leads to one solution of
the system in Eq. (16) (for each fixed choice of initial values),
the fact that the latter is a system of first-order equations guar-
antees the uniqueness of this solution. In other words, if the
complex phases of each entry of F (0) are consistent with the
restrictions in Eq. (17), then F is uniquely determined by its
initial value F (0).

In the following, we consider φ1 and φ3 as free phases,
while φ2 is determined from Eq. (17) based on the values
of φ1 and φ3. Given that the phases are found to be time-
independent, we can reduce the problem at hand to finding
the moduli of �n and λk . The equation of motion in Eq. (16)
then reduces to

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|�1|
|�2|
|�3|
|λWr|
|λgr|
|λgW’|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−|�2||λgW’|
|�1||λgW’| − |�3||λWr|

|�2||λWr|
−|�1||λgr|

|�1||λWr| − |�3||λgW’|
|�3||λgr|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Hence, we end up with the unknown initial values
|�1(0)|, |�2(0)|, |λWr(0)| and the unknown final values
|�1(T )|, |�3(T )|, |λgr(T )|. In addition, it is important to point
out that the ODE system in Eq. (18) does not depend on the
phase ϕ characterizing the GHZ state. This parameter can sim-
ply be determined by adjusting φ2, based on the constraints in
Eq. (17). Moreover, it is worthwhile to point out that the signs
of the complex phases in Eq. (17) were chosen in such a way
that the moduli in Eq. (18) remain positive during the entire
state-conversion process.

Generally speaking, finding solutions of QB equa-
tions amounts to solving a two-point boundary value problem
(BVP) in time. We now demonstrate that in this particular
problem — finding the time-optimal W -to-GHZ state conver-
sion in the system at hand — the relevant BVP can be reduced
to the one that involves only two unknown initial values that
are also bounded. To this end, we first derive an inequality to
bound |�1(0)| and |�2(0)|. From Eq. (18) it follows that

E

T
= |�1|2 + |�2|2 + |�3|2,

(19)
E	

T
= |λgW’|2 + |λgr|2 + |λWr|2,

are both time-independent quantities. By evaluating both of
these quantities at t = 0 and t = T , we obtain

E

T
= |�1(0)|2 + |�2(0)|2,

E

T
= |�1(T )|2 + |�3(T )|2,

E	

T
= |λWr(0)|2 ,

E	

T
= |λgW’(T )|2 + |λgr(T )|2 + |λWr(T )|2 . (20)

The constraints in Eq. (15) imply that |λWr(T )| = |�1(T )| and
|λgW’(T )| = |�3(T )|, which, when inserted in Eq. (20), yields

E	

T
= |λgr(T )|2 + E

T
. (21)

The last equation leads to the conclusion that E	 � E and,
accordingly, |�1(0)|2 + |�2(0)|2 � |λWr(0)|2.

The last conclusion enables us to bound the domain of the
remaining initial values. To this end, we eliminate |λWr(0)| by
scaling the ODE system, given by Eq. (18). We also define

un = |�n|
|λWr(0)| (n = 1, 2, 3),

wk = |λk|
|λWr(0)| (k = Wr, gr, gW’), (22)

ξ = |λWr(0)|t ,

and the scaled (dimensionless) process time  = |λWr(0)|T ,
such that the ODE system is invariant under the transforma-
tion |�n| �→ un, |λk| �→ wk , and t �→ ξ . It should be kept in
mind that the new variables ought to fulfill the initial condi-
tions

u3(0) = 0 , wgr(0) = 0 , wgW’(0) = 0, (23)

as well as the final conditions

u2(T ) = 0 , wWr(T ) = u1(T ) , wgW’(T ) = u3(T ) , (24)

which can be derived from Eq. (15).
Owing to the restriction |�1(0)|2 + |�2(0)|2 � |λWr(0)|2,

we know that the point [u1(0), u2(0)]T lies within the unit
circle, a bounded domain. It is thus pertinent to introduce
polar coordinates (u, φu), in which u1(0) = u cos φu, u2(0) =
u sin φu, and the following identity holds true:

u2 = |�1(0)|2 + |�2(0)|2
|λWr(0)|2 . (25)

In this manner, we have reduced the unknown initial values to
the values of the polar radius u and the polar angle φu, which
are both bounded, i.e.,

u ∈ [0, 1] , φu ∈ [0, 2π ] . (26)

Using the column-vector representation of Eq. (5) we ob-
tain the time-dependent Schrödinger equation

∂t

⎛
⎜⎜⎜⎝

ψg

ψW

ψW’

ψr

⎞
⎟⎟⎟⎠ = −i

⎛
⎜⎜⎜⎝

�1ψW

�∗
1ψg + �2ψW’

�∗
2ψW + �3ψr

�∗
3ψW’

⎞
⎟⎟⎟⎠ , (27)
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NAUTH AND STOJANOVIĆ PHYSICAL REVIEW A 106, 032605 (2022)

which governs the time evolution of the state

|ψ (t )〉 = ψg(t )|ggg〉 + ψW(t )|W 〉
+ψW’(t )|W ′〉 + ψr(t )|rrr〉 (28)

of the system. Once again, we simplify the ODE system
resulting from Eq. (27) by investigating, whether the phases
φg, φW, φW’, φr of the state components ψg, ψW, ψW’, ψr are
constant. The form of Eq. (27) bears out the assumption, if
these phases satisfy the constraints

φg = φW + φ1 − π

2
,

φW’ = φW + φ1 + φ3 + ϕ , (29)

φr = φW + φ1 + ϕ − π

2
,

where one of the phases can be chosen arbitrarily, e.g., φW.
We emphasize that φg and φr only differ by ϕ, which is of
crucial importance for generating the desired GHZ state.

By making use of the last conclusion about the phases
of the state components (ψg, ψW, ψW’, ψr ), and applying the
transformation in Eq. (22), we can reduce the above time-
dependent Schrödinger equation to an equation of motion that
involves only the moduli of (ψg, ψW, ψW’, ψr ):

∂ξ

⎛
⎜⎜⎜⎝

|ψg|
|ψW|
|ψW’|
|ψr|

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u1|ψW|
−u1|ψg| − u2|ψW’|

u2|ψW| − u3|ψr|
u3|ψW’|

⎞
⎟⎟⎟⎠ . (30)

The boundary conditions inherent to the W -to-GHZ state-
conversion problem under consideration are given by
|ψW(0)| = 1, |ψg(0)| = |ψW’(0)| = |ψr(0)| = 0, |ψg()| =
|ψr()| = 1/

√
2, and |ψW()| = |ψW’()| = 0. Once again,

it should be stressed that ϕ only occurs in the restrictions
of Eq. (29), whereas this phase does not appear in Eq. (30).
Similar to what was done in Eq. (18) above, the signs of the
complex phases in Eq. (29) are determined from the require-
ment that the moduli of the state components in Eq. (30) ought
to remain positive during the process.

B. Numerical solution of the QB equations

As already pointed out above, finding solutions of QB
equations amounts to solving a two-point BVP in time. Yet,
this BVP is of a rather unconventional type as its final end-
point, which, e.g., in the problem at hand corresponds to
the minimal state-conversion time, is unknown, being itself
subject to minimization. While even standard two-point BVPs
are far more demanding numerically than initial-value prob-
lems [53], this additional aspect of QB equations typically
renders such equations rather difficult to solve numerically.
This is the principal reason as to why only a handful of
problems of this type have as yet been efficiently solved
numerically and certain specialized approaches for the nu-
merical treatment of QB equations have been proposed. For
instance, in Ref. [49] an idea was proposed to treat QB
paths as geodesics on the constraining manifold and deter-
mine the solutions of the QB equations by solving a set of
geodesic equations. Another approach was proposed more

recently [57], which is based on a generalization of the orig-
inal QB variational principle [46] and also makes use of the
relaxation method [53] for solving the ensuing BVP.

In the problem under consideration, owing to the proposed
parametrization of initial conditions by only two variables
u and φu with bounded domains [cf. Eq. (26)], the relevant
QB equations (i.e., the corresponding two-point BVPs) can
efficiently be solved using the shooting method [53]. In other
words, the character of the initial conditions in this problem
obviates the need to use the aforementioned specialized nu-
merical schemes. In line with the general idea of the shooting
method, the initial values have to be chosen such that the
functions occurring in the ODE system given by Eqs. (18)
and (30) (Rabi frequencies, Lagrange multipliers, and state
components) satisfy the corresponding final conditions at ξ =
, where  itself is as yet undetermined.

Within the framework of the shooting method, the initial
conditions are modified iteratively in such a way that in the
end the boundary conditions are fulfilled [53]. For each value
of u and φu, the ODE system is solved within a certain time
interval [0, ξmax]. Through a global minimization we deter-
mine the dimensionless time within this interval for which
the functions in the ODE system have the smallest deviations
from their imposed final conditions (cf. the Appendix ). If the
obtained smallest deviations vanish (i.e., if the functions do
satisfy the final conditions) then the determined time is the
sought-after minimal (dimensionless) state-conversion time
QB. If such time cannot be found within the interval [0, ξmax]
for any choice of u and φu then a successful state conversion is
not possible and the upper bound ξmax of the interval has to be
increased. In other words, by varying the interval width ξmax

we can verify whether the smallest possible value for QB was
indeed obtained (for more details, see the Appendix).

It remains to clarify how to choose the starting points for
the initial values. To avoid nonglobal minima in the afore-
mentioned minimization of the deviation from the boundary
conditions, it is necessary to check the entire domain of the
initial values. In multidimensional problems, the shooting
method can thus be a time- and resource-consuming ap-
proach [57]. However, here the domain of initial values is
two-dimensional and bounded, which renders the problem at
hand significantly simpler than in the generic case. As a result,
we can perform the minimization starting from various ini-
tial values inside this domain with a moderate computational
effort. This numerical computation, performed independently
using three different minimization methods (for details, see
the Appendix), yields the following values for u and φu:
(u, φu) = (0.957, 0.311π ) and (u, φu) = (0.957, 1.689π ).

IV. RESULTS AND DISCUSSION

In the following, the principal findings of the present work,
based on the numerical solution of the QB equations, are pre-
sented and discussed. In Sec. IV A we first present the central
result of this article; the minimal state-conversion time TQB.
This is followed by the obtained results for the time-dependent
Rabi frequencies that enable the time-optimal state conver-
sion, and for the GHZ-state fidelity. To put the obtained results
in perspective, in Sec. IV B we compare them with those
found in the previously used dynamical-symmetry-based ap-
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FIG. 3. Time evolution of the moduli of the complex-valued Rabi
frequencies obtained numerically. The vertical dashed line marks the
obtained minimal W -to-GHZ conversion time TQB = 6.8 h̄/E .

proach. Finally, in Sec. IV C we demonstrate the robustness
of the obtained time-optimal state-conversion scheme to devi-
ations from the time-dependent Rabi frequencies found using
the QB formalism.

A. Minimal state-conversion time and time dependence
of Rabi frequencies

By inserting the obtained values for (u, φu) into the rele-
vant ODE system [cf. Eqs. (18) and (30)] we obtain QB =
2.72 for the scaled state-conversion time in the time-optimal
case. From this last value, it is straightforward to obtain the
minimal state-conversion time TQB in terms of the natural time
scale h̄/E in the problem at hand (we reinstate h̄ for this
purpose).

We first recall that |λWr(0)| = √
E	/(h̄TQB) and QB =

|λWr(0)|TQB [as follows from Eqs. (20) and (22), respec-
tively], which immediately implies that TQB = h̄2

QB/E	.
From Eqs. (20) and (25) it follows that E = u2E	. By com-
bining the last two expressions, we find that the minimal
state-conversion time is given by

TQB = u22
QB

h̄

E
. (31)

By inserting the obtained numerical results for u and QB into
the last expression, we finally obtain TQB = 6.8 h̄/E , which
represents the central result of this paper.

An equally important result of this paper pertains to
the time dependence of the Rabi frequencies �n(t ) ≡
|�n(t )|eiφn that corresponds to the shortest possible state-
conversion process. By making use of the solution (u0, φu0) =
(0.957, 0.311π ) for the underlying BVP we obtain the time
dependence of the moduli |�n(t )| of these Rabi frequencies
depicted in Fig. 3. It can easily be verified from this plot that
the obtained results are consistent with the boundary con-
ditions |�3(0)| = 0 and |�2(TQB)| = 0. Another interesting
feature of the obtained results is that |�3(t )| reaches a constant
finite value at t = TQB. The modulus |�1(t )| of the third Rabi
frequency does not vary appreciably during the process.

FIG. 4. Time dependence of the components |ψγ (t )| of the state
|ψ (t )〉 of the system obtained numerically. The vertical dashed
line marks the obtained minimal W -to-GHZ conversion time TQB =
6.8 h̄/E .

In view of the commonly occurring time-reversal-
symmetric (or antisymmetric) solutions to quantum-control
problems, it is pertinent to provide a comment as to why
the Rabi frequencies in the problem at hand cannot be ex-
pected to display such behavior. Namely, this is apparent
from Eq. (15), where F (0) = ±F (T ) would lead to |�2(0)| =
|λgr(0)| = |λgW’(0)| = 0, whereas Eq. (18) would imply that
|�2| = |�3| = |λgW’| = 0 are constant, which obviously does
not constitute a solution of the problem at hand. Generally
speaking, time-reversal-symmetric solutions for time-optimal
processes are only expected if the initial and final state are
related by a symmetry of the Hamiltonian [57].

While Fig. 3 only shows the moduli of the complex-valued
time-dependent Rabi frequencies, it is pertinent to also com-
ment at this point on their phases φ1, φ2, and φ3. As concluded
in Sec. III, these phases are constant (i.e., time-independent)
and two out of three of them (e.g., φ1 and φ3) can take arbitrary
values, while the remaining one is constrained by the chosen
values of the first two [cf. Eq. (17)]. Both of these last two
properties of the phases inherent to �n(t ) (n = 1, 2, 3) bode
well for a potential experimental implementation of the laser
pulses that correspond to the time-optimal state conversion.

The central figure of merit characterizing the envisioned
W -to-GHZ state-conversion process is the GHZ-state fidelity
FGHZ(t ), which at time t is given by the modulus of the
overlap of the target (GHZ) state and the actual state |ψ (t )〉 of
the system at that time t [cf. Eq. (28)]. The time dependence of
the four components (ψg, ψW, ψW’, ψr) of |ψ (t )〉 is illustrated
in Fig. 4, which, among other things, correctly reflects the
fact that at the very beginning of the state-conversion process
(t = 0) we have that |ψW| = 1, while at the end of this process
(t = TQB) we have |ψg| = |ψr| = 1/

√
2.

Starting from the defining expression FGHZ(t ) =
|〈GHZ|ψ (t )〉|, we straightforwardly find that the fidelity
can be expressed as

FGHZ(t ) = 1√
2
|eiφg |ψg(t )| + e−iϕeiφr |ψr(t )||. (32)
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FIG. 5. Time dependence of the GHZ-state fidelity FGHZ(t ) =
|〈GHZ|ψ (t )〉| obtained numerically. The vertical dashed line marks
the obtained minimal W -to-GHZ conversion time TQB = 6.8 h̄/E at
which the fidelity reaches unity.

On account of the fact that φr ≡ φg + ϕ, as implied by
Eq. (29), we finally obtain that

FGHZ(t ) = |ψg(t )| + |ψr(t )|√
2

. (33)

The GHZ-state fidelity—obtained numerically based on the
last expression—is displayed in Fig. 5, from which it can
be inferred that this fidelity shows monotonously increasing
behavior and reaches unity at t = TQB.

Importantly, the form of Eq. (33), which does not involve
the phase ϕ characterizing the target GHZ state, allows us to
draw an important conclusion. Namely, the GHZ-state fidelity
in the problem at hand does not depend on ϕ at all. What
makes this result plausible is the fact that only the phases φn

of the complex-valued Rabi frequencies �n(t ) depend on ϕ,
as can be inferred from the form of Eq. (17). Because these
three phases are time-independent it is plausible that they lead
to a ϕ-independent GHZ-state fidelity at an arbitrary time t
during the state-conversion process (0 � t � TQB). This also
seems to be consistent with the fact that the entanglement-
related properties of GHZ states (e.g., the fact that they have
maximal essential three-way entanglement, as quantified by
the 3-tangle [39]), also do not depend on ϕ.

B. Comparison to the dynamical-symmetry-based approach

The W -to-GHZ state-conversion problem in the Rydberg-
atom system under consideration has recently been addressed
using a dynamical-symmetry-based approach [37]. This ap-
proach allows one to carry out this conversion process up to
five times faster than within the previously used shortcuts-
to-adiabaticity approach [33]. It is thus pertinent to compare
the state-conversion times TDS found using that approach with
the minimal time TQB obtained here, where the comparison
should be made under the assumption that the total laser-pulse
energies used in both cases are the same.

Starting from the effective Hamiltonian in Eq. (4), the time
dependence of the (real-valued) Rabi frequencies �n(t ) found

in Ref. [37] was shown to be given by

�n(t ) = cn

TDS(1 − τ )
f

(
t

TDS

)
, (34)

where the function f is defined as

f (x) =

⎧⎪⎨
⎪⎩

x
τ
, 0 � x � τ

1, τ � x � 1 − τ

1−x
τ

, 1 − τ � x � 1

, (35)

with 0 � τ � 1/3. This last time dependence corresponds to
functions |�n(t )| that grow from zero to a maximal value over
the rise time τ T , then remain constant during the time interval
of the duration T (1 − 2τ ), and, finally decay to zero during
another interval of the duration τ T . In the limiting case of
vanishing rise/decay time (τ = 0), the corresponding pulse
has a rectangular shape.

By inserting the last functional form of |�n(t )| into the
expression for the total (fixed) laser-pulse energy [cf. Eq. (8)],
we obtain

E = h̄TDS

3∑
n=1

∣∣∣∣ cn

TDS(1 − τ )

∣∣∣∣
2 ∫ 1

0
dx | f (x)|2. (36)

After a straightforward evaluation of the integral in the last
equation, this finally leads to

E = h̄

TDS

3∑
n=1

|cn|2 3 − 4τ

3(1 − τ )2
. (37)

The coefficients |cn| in the last expression have the following
values: |c1| = 1.225, |c2| = 1.420, and |c3| = 2.352.

To be able to compare TDS determined from Eq. (37) to
the obtained minimal state-conversion time TQB, it is suffi-
cient to rearrange Eq. (37) in order to express TDS in units
of h̄/E . In this manner, we find that TDS/TQB = 1.66 for
τ = 1/3 and TDS/TQB = 1.33 for τ = 0. In other words, TQB

is in the range between 0.6 TDS (for τ = 1/3) and 0.75 TDS

(for τ = 0). Thus, we arrive at the conclusion that the min-
imal state-conversion time TQB is 25 − 40% shorter than the
state-conversion times previously found using the dynamical-
symmetry-based approach. Given that TDS is up to 5 times
shorter than the state-conversion times obtained using short-
cuts to adiabaticity [33], we can also conclude that the
minimal state-conversion time TQB is around 6.5 times shorter
than the latter times.

Generally speaking, the capability of creating entangle-
ment of a desired type on time scales significantly shorter
than the coherence time of a quantum system is one of the
prerequisites for QIP with that system. In particular, it has
already been estimated that characteristic durations of W -
to-GHZ state conversions using dynamical-symmetry-based
approach are in the range 0.1 − 1 μs, which is 2 − 3 orders
of magnitude shorter than the typical radiative lifetimes of
Rydberg states (around 100 μs for a state with the princi-
pal quantum number nq ∼ 50 [58]). The minimal conversion
times TQB found here are even shorter, thus being significantly
shorter than the relevant coherence times in Rydberg-atom
systems.
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FIG. 6. Time dependence of the distorted Rabi frequencies [cf.
Eq. (38)] for (a) n = 1, (b) n = 2, and (c) n = 3. The four curves
for each value of n correspond to the optimal Rabi frequency and
its three distorted counterparts (for κ = 1, 2, 3). The chosen value of
the parameter tn is equal to 0.1 TQB. The vertical dashed line marks
the obtained minimal W -to-GHZ conversion time TQB = 6.8 h̄/E at
which the fidelity reaches unity.

C. Robustness of the state-conversion scheme against deviations
from the optimal pulse shapes

Generally speaking, in applications where a high degree
of control over the dynamics of quantum systems is required
it is of interest to be able to quantify the error pertain-
ing to deviations from optimal-control solutions of various
problems [59–61]. In other words, it is often of paramount
importance to be able to design control pulses which, while
not being optimal, yield an error (compared to the optimal
solution) not larger than some predefined threshold value and
are, at the same time, more amenable to an experimental
implementation.

In the W -to-GHZ state-conversion problem under consid-
eration, using the QB formalism three time-dependent Rabi
frequencies �n(t ) (n = 1, 2, 3) have been determined that
lead to the time-optimal state conversion (cf. Fig. 3). In line
with the above general considerations it is worthwhile to
investigate the sensitivity of the state-conversion scheme at

�

�

�

�

�

�

�

FIG. 7. Deviation of the GHZ-state fidelity from unity (i.e., the
infidelity), when Rabi frequency |�n| is distorted (n = 1, 2, 3), at t =
TQB for different values of the parameter tn, shown for (a) κ = 1,
(b) κ = 2, and (c) κ = 3.

hand, quantified by the GHZ-state fidelity FGHZ at t = TQB,
with respect to deviations from the obtained optimal laser-
pulse shapes. To this end, we consider the following form
of (time-dependent) distortion from the optimal (QB) time
dependence �n(t ) of the three Rabi frequencies [60]:

δ|�n(t )| = tn sin
(

2πκ
t

T

) d

dt
|�n(t )| (n = 1, 2, 3). (38)

Here κ is an integer-valued parameter that describes the rate
of modulation of the optimal pulses, while the product of the
prefactor tn, which has units of time, and the first derivative of
the Rabi frequency �n(t ) represents the amplitude of distor-
tion for �n(t ) (n = 1, 2, 3). This last form of distortion is very
general, as it is capable of reproducing, through an appropriate
choice of the parameters tn and κ , almost any realistic pulse
shape.

The form of the distorted moduli |�n(t )| of the time-
dependent Rabi frequencies is illustrated in Fig. 6. The much
less pronounced distortion of |�1(t )| [Fig. 6(a)] compared
to |�2(t )| and |�3(t )| [Figs. 6(b) and 6(c), respectively] can
straightforwardly be understood based on the fact that the
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original, time-optimal (i.e., obtained using the QB formalism)
form of |�1(t )| is characterized by a nearly time-independent
behavior (cf. Fig. 3) and that the distortion in |�n(t )| is, by
design, proportional to its first derivative [cf. Eq. (38)].

The GHZ-state fidelity FGHZ(t = TQB) corresponding to
the distorted Rabi frequencies is straightforwardly obtained
once the state |ψ (t = TQB)〉 of the system at t = TQB is
determined. This is accomplished by propagating the time-
dependent Schrödinger equation for the effective Hamiltonian
of the system [cf. Eq. (4)] in a numerically exact fashion up to
t = TQB.

The obtained results for the deviation of the GHZ-state fi-
delity from unity at t = TQB [i.e., the infidelity 1 − FGHZ(t =
TQB)] as a result of distortion described by Eq. (38) are dis-
played for different values of tn and κ in Fig. 7. What can be
inferred from these results is that the reduction of the fidelity
due to the assumed distortion of Rabi frequencies is quite
small, being appreciable only for κ = 1 and extremely large
values of tn [cf. Fig. 7(a)]. The extremely large values of tn,
those close to TQB, correspond to rather drastic distortions
from the original time dependence of Rabi frequencies and are
in fact not of practical relevance; realistic distortions are those
corresponding to tn � TQB/(2πκ ), which for κ = 1 amounts
to tn � 0.15 TQB.

Therefore, through the numerical evaluation of the re-
sulting target-state fidelities we have demonstrated that
our time-optimal W -to-GHZ state-conversion scheme is ex-
tremely robust to possible deviations from the optimal shape
of the relevant Rabi frequencies of external lasers. This bodes
well for future experimental implementations of the proposed
state-conversion scheme.

V. SUMMARY AND CONCLUSIONS

Using the quantum-brachistochrone formalism we have
investigated the conversion of a W state into its GHZ counter-
part in a system that consists of three gr-type Rydberg-atom
qubits acted upon by four external laser pulses. Starting from
an effective system Hamiltonian, we derived the quantum-
brachistochrone equations describing the time-optimal dy-
namical evolution from the original W state to a GHZ state.
We have solved numerically the underlying two-point bound-
ary value problem using the shooting method and obtained
the three time-dependent Rabi frequencies of external laser
pulses that enable the desired, time-optimal state conversion.
We have demonstrated that the minimal state-conversion time
TQB = 6.8 h̄/E , where E is the total laser-pulse energy used,
is 25 − 40 % shorter than the state-conversion times recently
obtained using a dynamical-symmetry-based approach with
real-valued Rabi frequencies. In addition, we have also shown
that the proposed time-optimal state-conversion is extremely
robust to deviations from the optimal laser-pulse shapes.

Our work constitutes a highly nontrivial contribution to
the growing body of work on quantum-state engineering
in Rydberg-atom-based systems, one of the currently most
promising platforms for large-scale quantum computing and
analog quantum simulation. At the same time, the present
work represents one of the very few examples to date of
nontrivial quantum-control problems that have been fully
solved within the quantum-brachistochrone framework. Our

approach—exploiting the form of the underlying equations to
formulate a problem-specific parametrization of the initial
conditions that drastically alleviates the computational burden
that those equations entail–could possibly provide guidelines
for solving other nontrivial time-optimality-related problems
in the realm of quantum control.

The present work is likely to motivate future studies as it
can be generalized not only to other state-conversion prob-
lems in the Rydberg-atom system considered here, but also
to systems belonging to several other physical platforms for
quantum computing. An experimental implementation of the
time-optimal W -to-GHZ state-conversion protocol obtained
here is clearly called for.
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APPENDIX: DETAILS OF THE NUMERICAL
IMPLEMENTATION

In the following, we provide the essential details of our
numerical implementation of the shooting method for solving
the two-point BVP of interest.

By making use of the proposed parametrization of
initial conditions, we are now able to adjust the unknown
initial values x ≡ (u, φu)T, defined in Eq. (26), and the
scaled evolution time  with moderate computational ef-
fort. To guarantee that the final conditions of the variables
(u1, u2, u3,wWr,wgr,wgW’) in Eq. (24) and of the state com-
ponents (|ψg|, |ψW|, |ψW’|, |ψr|) are fulfilled, we list them in
the vector

dx(ξ ) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2(ξ )

u1(ξ ) − wWr(ξ )

u3(ξ ) − wgW’(ξ )

|ψW(ξ )|
|ψW’(ξ )|

|ψg(ξ )| − |ψr(ξ )|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

and minimize its Euclidean norm. To this end, it should be
borne in mind that all functions appearing in the components
of dx(ξ ) depend on the initial values x.

In the numerical implementation, we fix an upper bound
ξmax of ξ . For given initial values x, the ODE system in
Eqs. (18) and (30) can straightforwardly be solved using the
odeint solver from the scipy.integrate package [62] of
the SciPy library. We define the error as

D(x) = min
ξ∈[0,ξmax]

‖dx(ξ )‖2, (A2)

where ‖v‖2 is the l2-norm (i.e., Euclidean distance from the
origin) of the vector v. The scaled evolution time (x) ∈
[0, ξmax] is the time that corresponds to the minimum in
Eq. (A2), i.e., D(x) = ‖dx((x))‖2. We minimize D(x) with
respect to x starting from x0.
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FIG. 8. Illustration of the minimization of D(x) with initial val-
ues x0 = (u0, φu0)T using (a) the Newton method, (b) the BFGS
algorithm, and (c) the Nelder-Mead method. In the dark and the
white areas, respectively, the computation terminates with an error
D(x) smaller and greater than 0.1%. The two dots mark points
(u0, φu0) = (0.957, 0.311π ) and (u0, φu0 ) = (0.957, 1.689π ), where
the global minima are reached.

The minimization can be performed in several different
ways. For instance, in Ref. [57] the Newton method was
employed and the gradient of the function to be minimized
was computed numerically. In keeping with this procedure,
we compute the gradient of D(x) by evaluating the derivatives
of dx((x)) according to

∂ jD(x) = dx((x)) · ∂ jdx((x))
‖dx((x))‖2

,

(A3)

∂ jdx((x)) = dx+εe j ((x + εe j )) − dx((x))

ε
,

FIG. 9. The error D(x) ≡ D(u, φu) for initial values (u, φu) with-
out minimization with respect to x. The two dots mark points
(u0, φu0 ) = (0.957, 0.311π ) and (u0, φu0) = (0.957, 1.689π ), where
the global minima are reached.

with ∂ j ( j = 1, 2) being a shorthand for the partial derivative
∂/∂x j , where x1 ≡ u and x2 ≡ φu; e j denote the corresponding
unit vectors. It is important to stress that accurate numerical
evaluation of the derivatives in the last equation requires ε to
be sufficiently small and the value ε = 10−6 was used in the
actual evaluation. It is also worthwhile mentioning that we
adjust  in the course of our numerical procedure, in contrast
to Ref. [57] where x is computed for fixed .

In addition to the Newton method, we solved the same
problem independently using the Broyden-Fletcher-Goldfarb-
Shanoo algorithm and the Nelder-Mead method [53]. We
investigated various initial values u0 = ns/N and φu0 =
2πns/N , where ns = 0 . . . N and N = 500 was chosen. Fig-
ure 8 shows the areas in which a global minimum is found,
that is, the error D(x) drops below 0.1%. In these areas, the
numerical computation terminates successfully at (u0, φu0) =
(0.957, 0.311π ) and (u0, φu0) = (0.957, 1.689π ), where  =
2.72 and D(x0) = 0.03%. Hence, all three minimization
methods return the same values for global minima. For the
sake of completeness, the error D(x) itself (without minimiza-
tion over x) is displayed in Fig. 9.

To verify that TQB = 6.8 h̄/E indeed represents the shortest
possible state-conversion time, we perform numerical evalu-
ation for different upper bounds ξmax. Since x0 might vary,
we compute the global minimum minx D(x) of the error D(x)
for each τmax using different minimization methods. The cor-
responding state-conversion time T turns out to be as large
as possible for ξmax < 2.72 and stays constant for ξmax �
2.72. Along with the observation that our calculations consis-
tently show a strictly positive error until T = TQB = 6.8 h̄/E
is reached, this constitutes the evidence that 6.8 h̄/E is the
minimal state-conversion time.
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