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Circulating genuine multiparty entanglement in a quantum network
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We propose a deterministic scheme of generating genuine multiparty entangled states in quantum networks
of arbitrary size having various geometric structures—we refer to it as entanglement circulation. The procedure
involves optimization over a set of two-qubit arbitrary unitary operators and the entanglement of the initial
resource state. We report that the set of unitary operators that maximize the genuine multipartite entanglement
quantified via generalized geometric measure (GGM) is not unique. We prove that the GGM of the resulting state
of arbitrary qubits coincides with the minimum GGM of the initial resource states. By fixing the output state as
the six-qubit one, we find the optimal way to create such states according to the available resource. Moreover,
we show that the method proposed here can be implemented by using logic gates, or by using the time dynamics
of realizable spin Hamiltonians. In case of an ordered system, GGM varies periodically with time while the
evolution via disordered models lead to a low but constant multipartite entanglement in outputs at a critical time,
which decreases exponentially with the increase of the strength of the disorder.
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I. INTRODUCTION

Distributing information with minimal errors between sev-
eral parties (nodes) situated in distant locations remains a
challenging problem both in the classical and quantum do-
mains [1]. In recent times, quantum networks with promising
applications in fields ranging from secure communication
[2], exponential gains in communication complexity [3], and
clock synchronization [4] to distributed quantum computing
[5] and distributed function computing [6,7] have become an
active direction of research. It has also been established that,
similar to the initial proposals of quantum communication
schemes with a single sender and a single receiver [8–11]
requiring bipartite entanglement as resource [12], multipartite
entanglement can be a key ingredient in most of the quantum
information processing tasks in quantum networks. Therefore,
generating a multipartite state via appropriate quantum oper-
ations from states having lesser number of parties with the
assurance of multipartite entanglement is one of the important
enterprises in the development of quantum networking test
beds.

Towards creating a quantum network having genuine mul-
tipartite entanglement, several proposals have been developed
in the last few years. There are broadly two methods by
which genuine multiparty entangled states can be shared over
a quantum network. One of them is the probabilistic creation
of genuine multiparty entangled states [13–16], using either
projective, or unsharp, or positive operator valued measure-
ments [17], while the other one is the deterministic process
engaging unitary operations, or logic gate implementations
in a quantum circuit [18]. Specifically, starting from several
copies of noisy states, one can setup a quantum network
by employing quantum repeaters [19,20], which is either a

combination of entanglement distillation [21] and swapping
[22,23]. It was later generalized to the measurement-based
scheme on lattices of different dimensions [24]. A multiparty
entangled state can also be grown by performing projective
measurements in a star network [25–27], or by applying un-
sharp measurement on a single party of the multipartite state
and an auxiliary qubit [28]. On the other hand, there have
also been propositions and experimental demonstrations of
several techniques such as fusion and expansion producing
large multipartite entangled states, e.g., Greenberger Horne
Zeilinger (GHZ) [29], W [30], and cluster states [31], starting
from small entangled states [32–44]. However, notice that in
most of these works, the network-building mechanism have
been constructed to create a specific class of multipartite states
which are known to be important for quantum computation or
quantum communication tasks [45–52].

Going beyond the realm of creating specific entangled
states, in this work, we provide a generic method to determin-
istically generate multipartite entangled states. In particular,
we address the following questions:

(1) Does a protocol for designing a quantum network with
a fixed genuinely multipartite entanglement content, having a
fixed size and a geometry, exist?

(2) If such a protocol exists, is there an optimal resource?
(3) Is this protocol robust against imperfections in the

required operations?
In this work, we answer all three of these questions af-

firmatively. We provide a protocol for distributing genuinely
multiparty entangled states with a fixed generalized geomet-
ric measure (GGM) [53] over a large quantum network of
fixed number of parties and of particular geometry—we call
it as entanglement circulation. Moreover, we identify opti-
mal resource states according to the amount of multiparty
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FIG. 1. Schematic representation of the entanglement circulation
protocol (ECP) for constructing large multiqubit states by applying
arbitrary two-qubit unitary operation over a number of smaller unit
states (see Sec. II). Here, three unit cells of qubits, constituted of
N1, N2, and N3 qubits, are combined by a unitary operator U1

2 ⊗ U2
2

with M = 4 to create a larger multiqubit system of N = N1 + N2 +
N3 qubits. Our aim is to find out the optimal unitary operator, U1

2 ⊗
U2

2 such that the resulting multipartite state possess maximal genuine
multipartite entanglement.

entanglement present in the output states, and optimal two-
qubit unitary operators that can be implemented in terms of
single- and two-qubit logic gates in circuit models [54–56].
We also present a variant of this protocol where the output
entangled state can be generated by a time-evolution governed
by a chosen quantum many-body Hamiltonian with or without
disorder, which is realizable by currently available technolo-
gies based on photons [57], and trapped ions [58–61].

Precisely, by considering m initially entangled states, each
comprised with Ni, i = 1, 2, . . . , m qubits, we apply L(�m)
optimized two-qubit unitary operators acting on one qubit
of each of the Ni-party state (see Fig. 1) so that a genuine
multiparty entangled state having N = ∑m

i=1 Ni parties is pro-
duced. Existence of genuine multiparty entanglement in the
newly created state is confirmed by computing the generalized
geometric measure [53,62–65]. We prove that to establish a
network consisting of N parties with a fixed amount of GGM,
one needs to create a resource state having lesser number of
parties containing at least the same amount of GGM, since the
minimum entanglement among the resource states coincides
with the GGM of the resulting state, obtained after applying
optimal unitary operators on the resource states. Starting with
arbitrary three-qubit pure states as the resource, we provide a
recursion relation for obtaining the network with a large num-
ber of parties. In this scenario, we also identify the optimal
region in the parameter space of the unitary operators to obtain
the maximum possible entanglement in the resultant state. To
assess the effectiveness of the method, we generate multipar-
tite initial states in a Haar uniform way and demonstrate that
there is a trade-off between the initial resource states of N1

and N2 parties, and the resulting state having N1 + N2 parties.

In situations where the two-qubit unitary operation is dic-
tated by an interacting ordered spin Hamiltonian instead of
an arbitrary unitary operators, our analysis again presents the
recursion relation for the final state with 3m parties starting
from m copies of three-qubit initial entangled resource states.
We also determine the optimal time in which the maximal
GGM can be created from a given initial state by investigating
the dynamics of the multipartite entanglement of the result-
ing state. Extending our investigation into nonideal scenarios
where disorder can naturally appear in the interaction strength
of the spin Hamiltonian [66–69], we show that even in the
presence of disorder in the operation, few copies of initially
entangled states with lesser number of parties can lead to a
finite amount of quench-averaged genuine multipartite entan-
glement in the output state. Interestingly, we observe that in
the ordered case, maximal entanglement can only be produced
during certain time intervals, while for evolution governed by
a disordered spin models, quench-averaged genuine multipar-
tite entanglement in the output state remains almost constant
after a certain critical time. Furthermore, we provide a pre-
scription for obtaining multipartite entangled states over a
quantum network that is obeying a triangular geometry.

The rest of our paper is presented as follows. In Sec. II, we
introduce the procedure to extend multiparty entangled states
over large quantum networks and prove bounds on entangle-
ment of the output state in terms of the entanglement in the
resource states. We present a recursion relation in Sec. III
where three-qubit states are used as inputs, and investigate
the features of the two-qubit unitary operations as well as
the optimal distribution of the resource states over the quan-
tum network for obtaining the desired output state. We also
comment on the possibility of growing the output quantum
state following a triangular geometry in Sec. III C. In Sec. IV,
we explore the possibility of obtaining the desired genuinely
multiparty entangled state over a quantum network of fixed
number of parties as a result of a time evolution governed by
a quantum many-body Hamiltonian and discuss the effect of
the presence of disorder in the Hamiltonian on the output state.
The concluding remarks can be found in Sec. V.

II. ENTANGLEMENT CIRCULATION PROTOCOL

We now introduce a procedure for preparing large mul-
tiparty entangled states, starting from a number of genuine
multiparty entangled states of small number of qubits, using
unitary operations. Let us consider a system of N = ∑m

i=1 Ni

qubits constituted of m disconnected groups of qubits, where
the group i has Ni qubits. Each group of qubits is represented
by an entangled state |�〉Ni

, such that the initial state |�〉N of
the N-qubit system is given by

|�〉N =
m⊗

i=1

|�〉Ni . (1)

An M-qubit unitary operator UM is operated on the state |�〉N ,
where the M-qubit support of UM is constituted of taking at
least one qubit from each of the m groups of qubits, i.e.,
m � M � N (see Fig. 1). For the ease of discussion, we
refer to these groups of qubits to be the unit cells and the
corresponding states {|�〉Ni

} to be the unit states. Note that
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the unit states can be considered to have identical sizes in
typical quantum network building exercises, so that Ni = Nj ,
(i �= j), although we will also deal with unit states of different
sizes, i.e., Ni �= Nj , (i �= j), as demonstrated in the following
section. The resultant N-qubit pure state reads

|�〉N = UM ⊗ IM |�〉N , (2)

which depends on the parameters involved in the quantum
states {|�〉Ni

, i = 1, 2, . . . , m} as well as UM , where IM̄ de-
notes the identity operator in the qubit Hilbert space acted on
the rest of the qubits except M, we denote the set by M̄. We
claim that a unitary operation UM and the suitable initial state
can lead to a genuine multipartite entangled state, |�〉N , as
will be shown in subsequent section. In a network, a node
may be a collection of qubits made by taking at least one
from each of a subset of unit cells and UM can act on a subset
of the set of qubits constituting a node of the network. We
refer this method of creating multipartite entangled state as the
entanglement circulation protocol (ECP). Since any arbitrary
unitary operators can be decomposed in terms of single and
two qubit logic gates [54], repetitive applications of these
gates can implement UM , thereby create multiparty entangled
states [55,56]. Notice that since the ECP is based on unitary
operations, the number of parties in the process is conserved,
which may not be the case for some of the measurement-based
protocols [19,24].

In situations where any of the m genuinely multiparty
entangled states is k separable (see Appendix A), say, |�〉Ni

,
this protocol can be applied to first create an Ni-qubit genuine
multiparty entangled state by designing an appropriate unitary
operator UM ′ (M ′ � Ni), and subsequently apply UM to cre-
ate the N-qubit genuine multiparty entangled state following
Eq. (2). Note also that, although we discuss the protocol in
detail with arbitrary multiqubit pure states in the subsequent
sections, the protocol has the potential for generalization to
mixed states of qubits as well as in higher-dimensional sys-
tems.

In this work, to quantify genuine multipartite entanglement
of the resulting state, a distance-based entanglement measure,
namely the generalized geometric measure (GGM) (see Ap-
pendix A for a definition) is computed [53].

Bounding GGM of output states with GGMs of inputs

Let us illustrate the multipartite entanglement circulation
protocol described above with the minimal support for the uni-
tary operator by fixing M = 2. An arbitrary two-qubit unitary
operator U2 can be written as

U2 = (A1 ⊗ A2)Ud (A3 ⊗ A4), (3)

with {Ai ∈ U (2), i = 1, 2, 3, 4}, and Ud being a “nonlocal”
component of the operator, given by

Ud = exp

[
−i

∑
j=x,y,z

α jσ j ⊗ σ j

]
, (4)

where 0 � α j � π
2 , σ j are the Pauli matrices, and α j ∈ R for

j = x, y, z. Note that A1 and A2 being local unitary operators
that keep entanglement unchanged, an implementation of Ud

is sufficient to carry out the proposed protocol, which can

be achieved by a nontrivial combination of five elementary
single-qubit (rotation) gates and three CNOT gates [55]. These
local rotations introduce the entanglement controlling param-
eters (αx, αy, αz ) in the ECP.

Let us first consider two arbitrary unit states, |�〉N1
and

|�〉N2
, with N1, N2 � 2, such that the initial state |�〉N having

N = N1 + N2 qubits can be represented as

|�〉N = |�〉N1
⊗ |�〉N2

. (5)

The resultant state

|�〉N = U2 |�〉N (6)

is obtained by applying the two-qubit unitary operator U2 on a
qubit-pair constituted of one qubit from each of the unit cells.
Let the GGMs of the two units states |�〉N1

and |�〉N2
be G1

and G2, respectively, while the GGM of the final state |�〉N
is given by G. We present Proposition I that conditionally
expresses G in terms of G1 and G2.

Proposition I. The GGM of an arbitrary pure multiqubit
state |�〉N resulting from two arbitrary pure unit states |�〉N1

and |�〉N2
via the application of an optimal unitary operator

U2 on two qubits, one from each of the unit states, turns out to
be

max
{U2}

G = min {G1,G2}, (7)

with the condition that the values of G, G1, and G2 corre-
spond to the eigenvalue of any one of the single-qubit reduced
density matrices obtained respectively from |�〉N , |�〉N1

, and
|�〉N2

by tracing out the rest of the qubits from them.
Proof. We assume here that the GGM for any arbitrary

multiqubit quantum state always corresponds to one of the
single-qubit reduced density matrices computed from the
quantum state by tracing out the rest of the qubits except one.
Hence we write the Schmidt decomposition of an arbitrary N1-
qubit pure state considering the bipartition between a single
qubit and the rest as

|�〉N1
= √

γ1 |x〉 |0〉 +
√

δ1 |y〉 |1〉 , (8)

where {|0〉 , |1〉} is the computational basis for the two-
dimensional Hilbert space. Similarly, one can also write, for
an N2-qubit state,

|�〉N2
= √

γ2 |0〉 |u〉 +
√

δ2 |1〉 |v〉 , (9)

and the joint initial state of N = N1 + N2 qubits reads

|�〉N = √
γ1γ2 |x00u〉 +

√
γ1δ2 |x01v〉

+
√

δ1γ2 |y10u〉 +
√

δ1δ2 |y11v〉 . (10)

The resultant state |�〉N = U2 |�〉N is obtained by applying
the arbitrary two-qubit unitary operator U2 on a pair of qubits
which is constituted of one qubit from each of |�〉N1

and
|�〉N2

. However, note that the local unitary operators {Ai, i =
1, 2, 3, 4} have no effect on entanglement and therefore can
be ignored. The nonlocal unitary Ud , when expanded, takes
the form

Ud =

⎛
⎜⎝

μ1 0 0 μ2

0 μ3 μ4 0
0 μ4 μ3 0
μ2 0 0 μ1

⎞
⎟⎠, (11)
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where

μ1 = e−iαz cos (αx − αy), μ2 = −ie−iαz sin (αx − αy),

μ3 = eiαz cos (αx + αy), μ4 = −ieiαz sin (αx + αy). (12)

Determining the explicit effects of Ud on the two-qubit com-
putational basis as

Ud |00〉 = μ1 |00〉 + μ2 |11〉 , Ud |01〉 = μ3 |01〉 + μ4 |10〉 ,

Ud |10〉 = μ3 |10〉 + μ4 |01〉 , Ud |11〉 = μ1 |11〉 + μ2 |00〉 ,

(13)

and applying Ud on two parties having dimension two in the
state |�〉N , each from one of |�〉N1

and |�〉N2
, the resultant

state of the joint system can be written as

|�〉N = √
γ1γ2(μ1 |x00u〉 + μ2 |x11u〉)

+
√

γ1δ2(μ3 |x01v〉 + μ4 |x10v〉)

+
√

δ1γ2(μ3 |y10u〉 + μ4 |y01u〉)

+
√

δ1δ2(μ1 |y11v〉 + μ2 |y00v〉). (14)

Let us assume, without any loss of generality, that γ1 � δ1,
and γ1 � γ2 � δ2, which implies min{G1,G2} = 1 − γ1. Note
also that |�〉N is written as an effective four-party state in
Eq. (14), implying that considering all possible 1 : rest and
2 : rest bipartitions is sufficient for computing the GGM of
the state |�〉N , 1 and 2 denoting the number of parties. Let
us denote the single- and two-party density matrices, corre-
sponding respectively to the 1 : rest and 2 : rest bipartitions,
by ρ i

1 (i = 1, 2, 3, 4) and ρ
i j
2 (i = 1; j = 2, 3, 4), and the cor-

responding maximum eigenvalues by λi
1 and λ

i j
2 . Maintaining

the assumption that the GGM of the state |�〉N comes from
the single-party reduced density matrices, we investigate the
density matrices ρ i

1s only. Clearly,

λ1
1 = max [γ1, 1 − γ1],

λ2
1 = max [ε1, 1 − ε1],

λ3
1 = max [ε2, 1 − ε2],

λ4
1 = max [γ2, 1 − γ2], (15)

with

ε1 = 1
2 [1 + (γ1 + γ2 − 1) cos 2(αx − αy)

+ (γ1 − γ2) cos 2(αx + αy)],

ε2 = 1
2 [1 − (γ1 + γ2 − 1) cos 2(αx − αy)

+ (γ1 − γ2) cos 2(αx + αy)]. (16)

Let us first assume αz to be constant, and focus on the behavior
of ε1 and ε2 on the (αx, αy) plane. The determinant of the
Hessian for ε1 and ε2 can be constructed as

det H =
∣∣∣∣∣

∂2ε1,2

∂α2
x

∂2ε1,2

∂αx∂αy

∂2ε1,2

∂αy∂αx

∂2ε1,2

∂α2
y

∣∣∣∣∣. (17)

From here onward, we present calculations only for ε1, while
the calculations for ε2 are similar. Upon computation of the
derivatives for ε1, the determinant of the Hessian for ε1

reads

det H = 8(γ1 − γ2)(−1 + γ1 + γ2)[cos 4αx + cos 4αy].

(18)

Note that under the conditions, γ1 � δ1 and γ1 � γ2 � δ2,
γ1 > γ2 > 1/2. Within the range 0 � αx, αy � π , the local
maxima of ε1 are denoted by

∂ε1

∂αx
= ∂ε1

∂αy
= 0,

∂2ε1

∂α2
x

< 0, det H > 0, (19)

which occurs at (0,0), (0, π ), (π, 0), ( π
2 , π

2 ), and (π, π ). At
these points, ε1 = γ1. On the other hand, the saddle points of
the ε1 landscape over the (αx, αy) plane are denoted by

∂ε1

∂αx
= ∂ε1

∂αy
= 0,

∂2ε1

∂α2
x

< 0, det H < 0, (20)

which occurs at the points ( π
4 , π

4 ), ( π
4 , 3π

4 ), ( 3π
4 , π

4 ), and
( 3π

4 , 3π
4 ), yielding ε1 = γ2. Lastly, the local minima of the

ε1 landscape are given by the points ( π
2 , 0), (0, π

2 ), (π, π
2 ),

( π
2 , π ), satisfying

∂ε1

∂αx
= ∂ε1

∂αy
= 0,

∂2ε1

∂α2
x

> 0, det H > 0, (21)

and yielding ε1 = 1 − γ1. A similar analysis can also be done
for ε2 such that

max
αx,αy

ε1 = γ1,

max
αx,αy

ε2 = γ2 < γ1,

max
αx,αy

1 − ε1 = γ1,

max
αx,αy

1 − ε2 = γ2 < γ1, (22)

and (1 − γ1) < (1 − γ2) < γ2 < γ1. Hence it is proved that,
among all eight eigenvalues obtained from the single party
density matrices, γ1 is the maximum over the allowed ranges
of αx, αy, with αz being fixed and under the conditions γ1 �
δ1 and γ1 � γ2 � δ2. Therefore, the GGM in this case reduces
to

G = 1 − γ1 = min {G1,G2}. (23)

�
In situations where G, G1, and G2 are not obtained from

the eigenvalues of a single-qubit density matrix, one needs
to investigate all possible bipartitions of |�〉N , |�〉N1

, |�〉N2
,

respectively, and the corresponding eigenvalues obtained from
appropriate reduced density matrices. The dependence of
these eigenvalues on the state parameters as well as the param-
eters of the unitary operators makes analytical investigation of
the GGMs difficult. Let us estimate here how the numerical
complexity grows when one wants to perform ECP over N
unit cells. For achieving this, one needs to operate N − 1 en-
tangling unitaries, i.e., the number of optimization parameters
is 3(N − 1). Also, for N m-qubit unit cells, the calculation
of GGM demands eigenvalues of 2Nm−1 − 1 reduced density
matrices and the corresponding maximum eigenvalues. We
optimize the GGM function over the real (αx, αy, αz ) pa-
rameter space using a derivative-free optimization algorithm,
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where we sample the initial points of this search via a random
global search by choosing α j from random uniform distribu-
tion in the range between 0 and π

2 . See Appendix B for a
detailed discussion on the numerical analysis. Our extensive
numerical analysis involving randomly generated quantum
states of small to moderately high number of parties (N � 6)
suggests that, for specific values of the parameters defining
the unit states, a unitary operator U2 can always be designed
such that G = min{G1,G2}. Assuming this to be true for quan-
tum states with arbitrary number of qubits, the condition
in Proposition I can be relaxed, and Proposition II can be
proposed.

Proposition II. For two arbitrary pure unit states |�〉N1
and

|�〉N2
, an optimal unitary operator U2 can always be designed

such that the resulting state |�〉N , obtained by operating U2

on a pair of qubits constituted with one qubit from each of the
unit states, gives the maximal GGM given by

max
{U2}

G = min {G1,G2}, (24)

where the maximization is performed over the set of parame-
ters in U2 to maximize the GGM in the output state.

Proposition II can be recursively used to create multiqubit
genuinely multiparty entangled states starting from more than
two arbitrary multiqubit pure unit states, thereby establishing
a connection between the GGM for the output and the input
states.

Proposition III. For m arbitrary pure unit states {|�〉Ni
}

having GGMs, {Gi}, i = 1, 2, . . . , m, with Ni � 2 and Gi >

0 ∀ i, a set of m − 1 two-qubit unitary operators {U j
2 , j =

1, 2, . . . , m − 1} can be constructed such that the resulting
state

|�〉N =
m−1⊗
j=1

U j
2 |�〉N (25)

obtained by operating the two-qubit unitary operators {U j
2 }

on m − 1 pairs of qubits with each pair constituted with two
qubits from two different unit states, is genuinely multiparty
entangled with the maximum GGM,

max
{U j

2 }
G = min

i
{Gi}. (26)

Let us now stress some of the important points about these
propositions.

(P1) Proposition III implies that the resulting multiqubit
state |�〉N will always be genuinely multiparty entangled as
long as both Gi > 0 ∀ i. Note, however, that if the initial unit
state, Ni, is k separable having vanishing GGM, as mentioned
before, it is again possible to apply a two-qubit unitary opera-
tor to first produce a Ni-party state with Gi > 0.

(P2) Proposition III requires neither the m − 1 two-qubit
unitary operators used to create the N-qubit state, nor the m
unit states to be identical to each other. However, in terms
of resource, it is indeed useful to be able to create large
quantum networks using identical unitary operators, or only
one type of unit states with fixed number of qubits. We
shall explore the occurrence of these situations in subsequent
sections.

(P3) Note here that the optimal unitary operator U2 for
joining two specific multiqubit states is turned out to be not
unique. This nonuniqueness of U2 for fixed pair of unit states
is a crucial point which we shall elaborate in the next section.

(P4) Note also that the above propositions does not in-
clude the situation where one intends to merge a single-qubit
state with a multiqubit state. However, large multiparty state
can also be created by adding one auxiliary qubit at a time
with a multiqubit state of N � 2. In the next sections, we shall
point out that such a construction is rather special and discuss
its performance.

(P5) Let us point out here that, in our numerical search,
both Haar uniformly sampled states as well as states like the
generalized GHZ and the generalized W states that constitute
sets of measure zero are separately taken as unit states. In all
these cases, our assumption that the GGM is governed by the
single-qubit reduced density matrices are found to be valid. It
indicates that Proposition II potentially holds for a wide range
of states.

(P6) It is important to note that applying the same unitary
operator at different steps of the ECP requires the same values
of the control parameters (αx, αy, αz ). However, there is no
intuition to assume that the optimization of the GGM would
lead to the same values of these parameters. Therefore, we
expect Ud to be controlled by different values of (αx, αy, αz )
for different steps of the protocol, while the form of Ud being
the same in every step.

III. BUILDING NETWORKS WITH
THREE-QUBIT UNIT STATES

To build a genuinely multiparty entangled quantum states
using unit states of fixed number of qubits, we consider three-
qubit genuinely multiparty entangled unit states and two-qubit
unitary operators as resource. We start with identical three-
qubit unit states of the form

|�〉3 =
8∑

i=1

ai |bi〉 , (27)

where {ai ∈ C ∀ i}, and {|bi〉} is the product basis for three-
qubits constituted of the single-qubit computational basis. To
simplify the notation, we skip the subscript 3 from |�〉3. It is
convenient to write |�〉 as

|�〉 = |A〉 |0〉 + |B〉 |1〉
= |0〉 |E〉 + |1〉 |F 〉 , (28)

· · ·

· · ·
1

2 3 4

5

6
i = 1 i = 2 i = 3 i = m

7

8

9 3m

3m − 1

3m − 2

FIG. 2. Building a linear network with unit cells constituted of
three qubits described by the state |�〉 via application of two-qubit
unitary operators of the form U2 on qubit-pairs shared by two con-
secutive unit states.
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where

|A〉 = a1 |00〉 + a2 |01〉 + a4 |10〉 + a7 |11〉 ,

|B〉 = a3 |00〉 + a5 |01〉 + a6 |10〉 + a8 |11〉 ,

|E〉 = a1 |00〉 + a3 |01〉 + a2 |10〉 + a5 |11〉 ,

|F 〉 = a4 |00〉 + a6 |01〉 + a7 |10〉 + a8 |11〉 . (29)

Let us consider the initial state of the system to be made of
m disconnected identical three-qubit pure unit states given
by |�〉3m = |�〉⊗m. To create the 3m-qubit pure state, |�〉3m

(see Sec. II), m − 1 two-qubit unitary operators {U j
2 , j =

1, 2, . . . , m − 1} are applied on m − 1 pairs of qubits such
that each pair is consisting of one qubit from two different
unit states (see Fig. 2 for the specific labels used for the qubits
in different unit cells). We now present the recursion relation
to obtain |�〉3m (see Appendix C for a derivation).

Proposition IV. Applying the two-qubit unitary operator,
U2, m − 1 times on the initial state, |�〉3m = |�〉⊗m, a 3m-
qubit state of the form

|�〉3m = |X 〉m−1 |E〉 + |Y 〉m−1 |F 〉 (30)

is obtained, with

|X 〉m−1 = [|X 〉m−2 (a1 |0〉 + a2 |1〉) + |Y 〉m−2 (a4 |0〉 + a7 |1〉)]U m−1
d |00〉

+ [|X 〉m−2 (a3 |0〉 + a5 |1〉) + |Y 〉m−2 (a6 |0〉 + a8 |1〉)]U m−1
d |10〉 ,

|Y 〉m−1 = [|X 〉m−2 (a1 |0〉 + a2 |1〉) + |Y 〉m−2 (a4 |0〉 + a7 |1〉)]U m−1
d |01〉

+ [|X 〉m−2 (a3 |0〉 + a5 |1〉) + |Y 〉m−2 (a6 |0〉 + a8 |1〉)]U m−1
d |11〉 , (31)

where |X 〉m−1 and |Y 〉m−1 can be obtained for arbitrary m
starting from

|X 〉1 = |A〉U 1
d |00〉 + |B〉U 1

d |10〉 ,

|Y 〉1 = |B〉U 1
d |11〉 + |A〉U 1

d |01〉 . (32)

It is clear from Proposition III that |�〉3m is genuinely
multiparty entangled provided the initial resource state |�〉 is
genuinely multiparty entangled. Note here that identical unit
states is an idealized scenario where no error in the prepara-
tion of three-qubit unit states is assumed. In reality, however,
the unit states may differ from each other due to imperfect
preparation and similar procedure can be opted for obtaining a
recursion relation for different three-qubit unit states although
the relation for the output state is much more involved.

A. Nonuniqueness of unitaries

We now discuss the set of optimal unitary operators which
lead to six-qubit output states, starting from the three-qubit
initial states. Note here that the three-qubit unit states may
belong to both the GHZ class and the W class [30] so that
different scenarios involving (a) two GHZ-class states, (b) two
W -class states, and (c) a combination of GHZ- and W -class
states can be considered. In the following, we demonstrate
the behavior of GGM of the resulting states obtained from
scenarios (a), (b), and (c).

1. Optimal unitaries for merging two GHZ-class states

Let us describe a set of optimal unitary operators, SU =
{U2}, which can generate a six-qubit state |�〉 having maximal
GGM, i.e., 0.5, from two copies of the initial GHZ states
given by |�〉GHZ = 1√

2
(|000〉 + |111〉). Determination of the

six-qubit state using Eq. (30) and subsequent computation of
the eigenvalues of the reduced density matrices for different
bipartitions of the state indicate that the GGM of the resul-
tant state in terms of parameters of U2, i.e., α j, j = x, y, z

reduces to

G = 1 − max
{
λ1

1, λ
123
3 , λ124

3

}
, (33)

with λ1
1 = λ2

1 = λ5
1 = λ6

1 = 1
2 , λ123

3 = 1
4 [1 +

cos 2αy cos 2αz + cos 2αx(cos 2αy + cos 2αz )], and
λ124

3 = 1
4 [1 + sin 2αy sin 2αz + sin 2αx(sin 2αy + sin 2αz )],

originating from only single- and three-qubit reduced density
matrices. A large number of convenient choices of the
parameters α j, j = x, y, z is possible, providing a set SU

of nonunique two-qubit unitary operators of the form Ud

and ensuring that the GGM of the resulting state is (as per
Proposition III) G = min{G1,G2} = G(|�〉) = 1/2.

To see how the values of the GGM of |�〉 varies with
the parameters of Ud , we plot the GGM as a function of
{α j, j = x, y, z} in Fig. 3(a). This figure clearly indicates that
a high value of GGM is favorable if any one of the unitary
parameters {α j} vanishes. It also shows that the number of
unitary operators that can produce a six-qubit genuinely mul-
tiparty entangled state with the maximum GGM is very small
(approximately 4.7% unitaries belong to the set SU among the
total number of Ud generated which is 3.2 × 104).

We now establish that such a set of unitary operators which
maximizes the GGM of the resulting state exists irrespective
of the initial states. For this analysis, we Haar uniformly
generate two arbitrary three-qubit states, denoted |�〉1

c and
|�〉2

c , which eventually belong to the GHZ class. We randomly
generate a large number of such pairs of states and, for each
such pair, a large set SU consisting of two-qubit unitary oper-
ators U2 is found such that for each U2 ∈ SU , the GGM of the
resulting state is given by G = min{G1,G2}, G1 (G2) being the
GGM of |�〉1

c (|�〉2
c) (see also Appendix B).

Observation. It is interesting to observe that there is a
large overlap between these sets SU corresponding to different
pairs of (|�〉1

c , |�〉2
c ), implying the existence of two-qubit

unitary operators that can combine pairs of large numbers of
randomly generated three-qubit states from the GHZ class, so
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FIG. 3. Nonuniqueness of unitary operators. (a) The set SU corresponding to two copies of three-qubit GHZ states is demonstrated on
different (αx, αy, αz ) space in the range 0 � α j � π

2 , j = x, y, z. The colors of different points (αx, αy, αz ) signify the values of GGM of the
output six-qubit state joined by the unitary operator corresponding to that point. (b) The number of output states whose GGMs get maximized
at the specific triplets (αx, αy, αz ) belonging to the set SU is depicted for 500 pairs of randomly chosen three-qubit states. Panel (c) corresponds
to results similar to those of panel (a), where a GHZ and a W state are joined. See Sec. III A. All the axes are dimensionless.

that the Proposition III remains valid for the resulting states.
For ease of reference, we call these unitary operators universal
unitary operators. Second, this observation is useful in terms
of resource minimization while creating large quantum net-
works using three-qubit unit states (see point P2 in Sec. II).
We demonstrate this in Fig. 3(b), where we count the number
of output states whose GGMs get maximized for specific
values of αx, αy, and αz belonging to the set SU . The analysis
is performed by generating 5 × 102 random three-qubit states
|�〉c.

2. Merging a GHZ state and a W state

Unlike identical copies, if the initial state of the six-qubit
system is given by the product of a GHZ state, |�〉GHZ and a

W state given by |�〉W = 1√
3
(|001〉 + |010〉 + |100〉), similar

observations as discussed in the case of two GHZ-class states
(see Sec. III A 1) emerge. The GGM of the resultant six-qubit
state, given by

G = min {G(|�〉GHZ), G(|�〉W )} = G(|�〉W ) = 1
3 , (34)

follows Proposition III, while the eigenvalues contributing in
the computation of G

λ5
1 = λ6

1 = 2
3 ,

λ123
3 = 1

48 (12 + 12 cos 2αx cos 2αy +
√

2A),

λ124
3 = 1

48 (12 + 12 sin 2αx sin 2αy +
√

2B), (35)

with

A = 42 + 40[cos 2(αx − αy) + cos 2(αx + αy)] + cos 4(αx − αy)

+ cos 4(αx + αy) + 18(cos 4αx + cos 4αy)

+ 32(cos 2αx + cos 2αy)2 cos 4αz, (36)

B = 42 + 40[cos 2(αx − αy) − cos 2(αx + αy)] + cos 4(αx − αy)

+ cos 4(αx + αy) − 18(cos 4αx + cos 4αy)

− 32(sin 2αx + sin 2αy)2 cos 4αz, (37)

which are obtained by diagonalizing the reduced states corre-
sponding to qubit 5 (or qubit 6), qubits 123, and qubits 124 of
the six-qubit system, respectively. Similar numerical analysis
again reveals that a larger volume of the α j space ( j = x, y, z)
(i.e., approximately 41.3% of the generated set of unitary
operators, 3.2 × 104, leading to maximum G), compared with
the merging of two copies of the GHZ states, correspond to
SU when a GHZ and W states are combined [see Fig. 3(c)].

B. Optimal distribution of resources

To create a genuinely multiqubit entangled state |�〉N of N
qubits, multiple choices for the set of values {N1, N2, . . . , Nm}
denoting the number of qubits in the unit states are possible.

However, it is not at all clear whether all these choices are
equivalent, or a subset of these choices are more beneficial in
order to obtain higher multiparty entanglement in the resultant
state. This information can be useful in situations where one
is forced to prepare smaller multiqubit states in the laboratory
in order to create larger multiqubit entangled state using our
protocol. It can be due to the fact that creating large multiqubit
states in certain physical substrates like photons is difficult.
We now address this issue and demonstrate the effect in the
distribution of the support of the unit states on the GGM of
the final state.

For the purpose of demonstration, we consider the case of
N = 6, which can be obtained from different unit cells of sizes
(a) (N1 = 3, N2 = 3), (b) (N1 = 4, N2 = 2), and (c) (N1 =
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FIG. 4. Optimally distributing resource states. Normalized
frequency distribution (vertical axis) against optimized
GGM, Gm (horizontal axis) of six-party genuinely multiparty
entangled state as output with different initial resources.
Labels for different plots (i)–(v) respectively represent the
unit states as (|�〉5 , |�〉1), (|�〉3,GHZ , |�〉3,GHZ), (|�〉4 , |�〉2),
(|�〉3,GHZ , |�〉3,W ), (|�〉3,W , |�〉3,W ) (see Table I). In each case, we
create 5 × 104 output states from Haar uniformly generated initial
resource states. Both axes are dimensionless.

5, N2 = 1). For each combinations of (N1, N2), we Haar uni-
formly generate a large number of quantum states |�〉N1

and
|�〉N2

. For each pair of such unit states {|�〉N1
, |�〉N2

}, we
apply a two-qubit unitary operator U2 on a pair of qubits
shared by the two unit states and determine the maximum
GGM of the resultant state over the set SU as

Gm = max
SU

{G}. (38)

In the case of two nonidentical three-qubit states, we consider
three specific scenarios—(i) a pair of different unit states both
belonging to the GHZ class, (ii) a pair of different unit states
both belonging to the W class, and (iii) a pair of unit states,
one from the GHZ class and the other from the W class. Fig-
ure 4 depicts the normalized frequency distribution of Gm in
all of these scenarios, where a set of 5 × 104 Haar uniformly
generated unit states are used in each cases.

It is clear from Fig. 4 that the mean of the distributions,
〈Gm〉, which is tabulated in Table I along with the standard
deviation σGm , is maximum for the case (N1 = 5, N2 = 1),

TABLE I. Mean and standard deviation corresponding to differ-
ent resource distribution.

No. Types of unit states 〈Gm〉 σGm

(i) |�〉5, |�〉1 0.295 0.041
(ii) |�〉3,GHZ, |�〉3,GHZ 0.122 0.052
(iii) |�〉4, |�〉2 0.111 0.076
(iv) |�〉3,GHZ, |�〉3,W 0.056 0.046
(v) |�〉3,W , |�〉3,W 0.033 0.032

Step 1

Step 2

Step 3

N = 9

N = 27

N = 81

FIG. 5. Triangle network. Protocol for building a triangle net-
work, starting from unit cells constituted of three qubits and
described by the state |�〉. In Step 1 (see Sec. III C), three unit states
are combined via two-qubit unitary operators to form a nine-qubit
state. In Step 2, the nine-qubit states are used as unit states. The
network up to Step 3 is shown, finally producing a state of 81 qubits.

and is minimum for (N1 = 3, N2 = 3) when both the states
belong to the W class. Also, the case of (N1 = 3, N2 = 3)
with both states coming from the GHZ class is better than
the case of (N1 = 4, N2 = 2) for generating higher multiparty
entangled states on average. Note here that the situation (N1 =
5, N2 = 1) is different from the rest of the combinations of
N1 and N2 since the Proposition III (see Sec. II) does not
apply to this case. Furthermore, (N1 = 5, N2 = 1) is the most
expensive one according to the number of the qubits of the ini-
tial resource, since it is difficult to create genuine multiqubit
entangled states with higher number of parties. However, this
bottleneck can be resolved by noting that one can use two
genuinely multiqubit entangled states, one of three qubits and
the other of two qubits, to create the five-qubit entangled state
using the same protocol.

C. Quantum networks of different geometry

We now demonstrate how the protocol proposed and dis-
cussed over Sec. III can be used to create large quantum
networks of a geometry other than the linear geometry (see
Fig. 2 and the discussion in Sec. II). More specifically, we
illustrate how a quantum network of triangular geometry can
be constructed starting from the three-qubit GHZ states as
unit states and by using two-qubit unitary operators. This
protocol can also be modified for any three-qubit unit states,
although the computation of the resultant state will be more
cumbersome.

The steps of the method are given as follows:
(1) In the first step, take three GHZ states and apply two-

qubit unitary operators of the form U2 on three pairs of qubits
(see Fig. 5), such that each pair is shared by two different GHZ
states. This gives rise to a nine-qubit genuinely multiparty
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entangled state |�〉1 given by

|�〉1 = U3
2U2

2U1
2 |�〉0 = U |�〉0 . (39)

Here, |�〉0 = |�〉⊗3, |�〉 is a three-qubit GHZ state, U j
2 ( j =

1, 2, 3) are the three unitary operators applied to three dif-
ferent pairs of qubits, U = U3

2U2
2U1

2 , and the superscripts to
|�〉 and |�〉 denote the step of the protocol. Note here that
the form of |�〉1 would be different from the |�〉 obtained
by joining three GHZ states using two unitary operators, as
described in Sec. III, and when simplified takes the form

|�〉1 = 1

2
√

2
[|000〉U |ξ0〉 + |001〉U |ξ1〉

+ |010〉U |ξ2〉 + |011〉U |ξ3〉 + |100〉U |ξ4〉
+ |101〉U |ξ5〉 + |110〉U |ξ6〉 + |111〉U |ξ7〉], (40)

where the states |ξi〉, i = 0, . . . , 7 correspond to the qubits on
which the two-qubit unitaries act and are given by

|ξ0〉 = |000000〉 , |ξ4〉 = |111111〉 ,

|ξ1〉 = |010001〉 , |ξ5〉 = |101110〉 ,

|ξ2〉 = |000110〉 , |ξ6〉 = |111001〉 ,

|ξ3〉 = |010111〉 , |ξ7〉 = |101000〉 . (41)

(2) In the next step, take |�〉1 as the unit state, and merge
three of them using three unitary operators, similar to step 1
(see Fig. 5).

(3) Continue step 2, every time replacing the unit state
with the multiqubit state obtained in the previous step.

Remark. At the end of the kth step of the protocol, one
is able to create a 3k+1-qubit state using only 3k two-qubit
unitary operators, implying that the size of the network in
terms of number of qubits grows exponentially with steps of
the protocol, while the number of unitary operators required
to carry out these steps grow only linearly with the number
of steps. Note, however, that such a relation between number
of qubits and unitary operators depends on the geometrical
structure of the network.

IV. ENTANGLEMENT CIRCULATION USING
MANY-BODY INTERACTIONS: ORDER VS DISORDER

We now consider the growth of genuinely multiparty en-
tangled states in networks via unitary operators emerging
from many-body interactions between the qubits and deter-
mine the optimal time which leads to maximum GGM for a
given Hamiltonian. The motivation lies in the fact that entan-
gling unitary operations such as the controlled NOT and the
controlled phase gates can be implemented via evolving the
system using spin-spin interaction Hamiltonians [70]. It is,
therefore, logical to explore the possibility of implementing
the ECP in a similar fashion, which we address here. The
specific Hamiltonian considered in this section is either or-
dered or disordered. The ordered case can be considered as the
ideal situation while the evolution according to the disordered
model incorporates the imperfections in the operations.

A. Creating output states via ordered spin models

Let us first present the prescription of the scheme for gener-
ating genuine multipartite entangled states when the evolution
of the system is governed by the spin model without disorder.

(1) Preparation. Prepare m number of Ni-qubit unit states
|�〉Ni

with N = ∑
i Ni so that the initial N-qubit state can be

represented as |�(0)〉 = |�〉N1
⊗ · · · ⊗ |�〉Nm

at initial time
t = 0. We assume that they are genuinely multiparty entan-
gled.

(2) Evolution. m′ number of two-qubit quantum spin
Hamiltonian H (r)

kl (r = 1, . . . , m′) involving spin-exchange
interactions between the qubits k and l belonging to two
different unit cells is turned on at t > 0 such that the state
|�(0)〉 evolves as

|�(t )〉 =
⊗

r

e−iH (r)
kl t |�(0)〉 , (42)

where the values of the spin-exchange interaction strengths in
H (r)

kl are tuned for optimal time interval to obtain the desired
value of the genuine multipartite entanglement in |�(t )〉.

Note. As mentioned in the case of arbitrary unitary dy-
namics, if multipartite entanglement of one of the unit state
is not genuine, the second step can be applied first to make the
unit cell multipartite entangled, and then evolution is again
performed between different unit cells.

For the purpose of demonstration, let us consider the
two-qubit ordered XY Z model, given by the Hamiltonian
connecting two unit cells, say, the rth one, as

H (r)
kl = J

4

[
(1 + γ )σ x

k σ x
l + (1 − γ )σ y

k σ
y
l

] + �J

4
σ z

k σ z
l , (43)

where σμ (μ = x, y, z) are the Pauli matrices, J is the inter-
action strength between qubits k and l while γ and � are
respectively the xy- and the z-anisotropy parameters. Notice
that there can be a situation where the spin-exchange interac-
tion strength can be different for all qubit pairs in the N-qubit
system.

Let us now investigate the pattern of GGM when the ini-
tial unit states are chosen to be three-qubit and a interacting
Hamiltonian Hkl is applied between two unit cells. (Since the
connection is made between two unit cells, we skip the super-
script for simplicity.) First, we consider Hkl with γ = 0 and
� = 0 for manifestation, where the two-qubit computational
basis is transformed as

e−iHkl t |0k0l〉 = |0k0l〉 ,

e−iHkl t |1k0l〉 = cos
Jt

2
|1k0l〉 − i sin

Jt

2
|0k1l〉 ,

e−iHkl t |0k1l〉 = cos
Jt

2
|0k1l〉 − i sin

Jt

2
|1k0l〉 ,

e−iHkl t |1k1l〉 = |1k1l〉 . (44)

Using Eq. (44) and Proposition IV, the form of the six-qubit
resultant state |�(t )〉 can be determined as a function of time,
and the GGM of |�(t )〉 can also be computed. Over the time
evolution of the state, we observe that a competition takes
place between the maximum eigenvalues originating from the
single-qubit and three-qubit density matrices. During the time
intervals where the maximum among all eigenvalues comes
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FIG. 6. Dynamics of GGM. Patterns of GGM (ordinate) of the six-qubit evolved state as a function of t (abscissa), with (a) two GHZ states
and (b) two W states as resource. The evolution happens according to the Hamiltonian Hkl with γ = 0, and � = 0. Different lines indicate
different values of interaction strengths J (solid blue line: J = 2.0, dot-dashed green line: J = 1.0, and dashed red line: J = 0.5). Both axes
are dimensionless.

from the single-qubit density matrices and is a constant, GGM
exhibits constancy over time. The duration in which GGM
remains constant can be tuned by controlling the value of
interaction strength, J [see Figs. 6(a) and 6(b) when the ini-
tial unit states are the GHZ and the W state, respectively].
From the perspective of implementation, such control over
the parameters in the Hamiltonian can be important since
certain quantum information processing tasks require fixed
amounts of genuine multiparty entanglement as resource.
Overall, GGM exhibits a periodic behavior over time with a
period of T = 2π

J for γ , � = 0. Notice that, for both the cases
of GHZ and W states, Proposition III remains valid at every
time instant, bounding the GGM of the resultant state via the
GGM of the initial unit states.

In presence of γ and �, the GGM of the output state
after the evolution according to the Hamiltonian Hkl again
exhibits periodic behavior with time having period of the form
2π/ f (J, γ ,�).

Creation of single-excitation Dicke states

In recent times, several proposals have been made to create
the N-qubit W states in networks [32,33,40,41]. We now
illustrate that the method proposed here is also capable to
deterministically produce Dicke states with single excitation.
To do so, let us first take a three-qubit W state |�〉W and
single qubit auxiliary state |0〉 so that the initial state is |�〉4 =
|�〉W

⊗ |0〉. When the third qubit of the W state and the
auxiliary qubit evolve according to the Hamiltonian Hkl with
γ = � = 0, the resulting state turns out to be the four-qubit
Dicke state having single excitation given by

|�〉D1
4 =

√
2

3
|ψ+〉 |00〉 +

√
1

6
|00〉 |Z1〉 , (45)

where

|Z1〉 = (
e−i J

2 t |ψ+〉 + ei J
2 t |ψ−〉 )

, (46)

with |ψ±〉 = 1√
2
(± |01〉 + |10〉), |11〉, |00〉 being the eigen-

states of the Hamiltonian. Notice that, instead of the third

qubit, if the Hamiltonian dynamics involves any other qubits
of the W state and the auxiliary qubit, the resulting state still
remains same due to the symmetry of the W state. More-
over, the number of excitation in the resulting state remains
conserved after the evolution since the total spin angular mo-
mentum commutes with the Hamiltonian.

Let us now move further, and instead of single aux-
iliary qubit, let us add two auxiliary qubits, i.e., |�〉5 =
|�〉W

⊗ |0〉 ⊗ |0〉. If the dynamics happens according to the
Hamiltonian independently on the pair of qubits, (3, 4) and
(4, 5), the output five-qubit state reads as

|�〉D1
5 =

√
2

3
|ψ+〉 |000〉

+ 1

2
√

6
|00〉 (

e−i J
2 t {|0〉 |Z1〉 +

√
2 |1〉 |00〉}

+ ei J
2 t {− |0〉 |Z1〉 +

√
2 |1〉 |00〉}). (47)

Taking N such auxiliary qubits |0〉 and evolving N pairs
according to Hkl , the (3 + N )-qubit Dicke state with single
excitation can be created as

|�〉D1
3+N =

√
2

3
|ψ+〉 |0〉

⊗
N+1 + 1

2
2N−1

2

√
3

|00〉 |ZN 〉 , (48)

where for N � 1,

|ZN 〉 = e−i J
2 t (|0〉 |ZN−1〉 + 2

2N−3
2 |1〉 |0〉

⊗
N )

+ ei J
2 t (− |0〉 |ZN−1〉 + 2

2N−3
2 |1〉 |0〉

⊗
N ), (49)

and

〈ZN | ZN 〉 = 22N−1. (50)

Remark. Although the method presented here is for the
Dicke state with a single excitation, the suitable initial and
auxiliary qubits (entangled state) can lead to the N-qubit
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FIG. 7. Dynamical states via disordered systems. (a) Quench-averaged GGM 〈G〉 (vertical axis) of the resulting state against time
(horizontal axis) when two copies of the W state are chosen as the initial states. The evolution occurs according to Hkl with the interaction
strength being chosen randomly from Gaussian distribution with mean 0.5 and varying standard deviation, σJ = 0.01 to σJ = 0.1. (b) Squares
represent the critical time tc above which 〈G〉 saturates (ordinate) with respect to σJ (abscissa) for the same initial state as in panel (a). Solid
line is the χ -square fit of tc (see text for details). Both axes are dimensionless.

Dicke state with other excitations after the evolution. For ex-
ample, starting with |�〉W = 1√

3
(|011〉 + |110〉 + |101〉) and

N auxiliary qubits, we can generate (3 + N )-qubit Dicke state
with two excitations via Hamiltonian dynamics.

B. Entanglement circulation with imperfect operations

The protocol described in the previous section works as
long as the value of the spin-exchange interaction can be
changed instantaneously from zero to a constant value. How-
ever, in real situations, there may be fluctuations in the
nonzero value of J at t > 0. Also, a perfect preparation of
the unit states is assumed in the above protocol, which may
be difficult to achieve, thereby hindering the efficiency of this
protocol.

We now investigate the effects of such imperfections on
the performance of this protocol. More specifically, we focus
on the time-dependence of GGM of the state |�(t )〉 in the
presence of quenched disorder in J , where the timescale of
the change of a particular realization is much larger than the
evolution timescale of the whole system. Such a disordered
system is accessible also in current experimental setups using
substrates like cold atoms and trapped ions [66–69], which
are ideal to create the unit entangled states as well as the
two-qubit unitary operators. Moreover, our studies reveal that
imperfections can lead to certain advantages in the entangle-
ment properties of the final states.

A quenched disorder in the spin-exchange interaction
strength J implies that the time taken by the disordered param-
eter J to achieve equilibrium is much larger compared with the
observation time for the evolution of the system. Therefore,
one may consider the value of the disordered parameter to be
effectively fixed during the dynamics of the system, thereby
making it possible to carry out an averaging of the quantity
of interest, Q, over the distribution of different values of the
disordered parameters. For randomly chosen spin-exchange
interactions J from a probability distribution P(J ) with mean
〈J〉 and standard deviation σJ , the quench-averaged Q denoted

by 〈Q〉 is given at every time instant by

〈Q〉 =
∫

Q(J )P(J )dJ, (51)

where σJ = 0 corresponds to the ordered case discussed in
Sec. IV A. We choose the values of J from a Gaussian distri-
bution with mean 〈J〉 and standard deviation σJ . The recursion
relation for arbitrary resource states guarantees that the re-
sulting state for a given realization can also be obtained and
hence we have the functional form of the integrand in Eq. (51)
for GGM. To investigate the patterns of the quench-averaged
GGM for the disordered case, we only numerically compute
the integration over the Gaussian distribution.

In contrast with the ordered case discussed in Sec. IV A, the
averaged GGM after quenching of the six-qubit state |�(t )〉,
originating from either a pair of GHZ-, or a pair of W -, or a
GHZ- and a W -class state, is found to oscillate at first and then
saturate to a value Gs at a critical time tc (as shown in Fig. 7).
This feature is interesting since it exhibits a clear advantage of
evolving a system via a disordered Hamiltonian instead of a
ordered one. It may also turn out to be important in situations
where a quantum protocol requires the GGM of a state to be
almost constant over a long period of time.

The saturation value 〈Gs〉 depends on the GGMs of the
initial state(s), although no proposition similar to the Propo-
sition III can be put forward to provide a bound on 〈G〉. To
demonstrate the dependence of 〈Gs〉 over the GGM of the
resource states G, we consider two identical copies of a gen-
eralized GHZ (gGHZ) state given by |�〉gGHZ = cos θ |000〉 +
sin θ |111〉. First of all, we notice that, like the initial resource
states, 〈Gs〉 increases with the increase of θ . Towards con-
necting the saturated value with the initial GGM, we study
the trends in the ratio 〈Gs〉/G as θ is varied. In particular,
we observe that the ratio between the saturated value of the
quench-averaged GGM and the initial GGM increases with
an increasing θ although the increase is not monotonic with
θ [see Fig. 8(a)]. We also test this feature by using gen-
eralized W (gW ) states of the form |�〉gW = cos θ1|001〉 +

032604-11



PRITAM HALDER et al. PHYSICAL REVIEW A 106, 032604 (2022)

FIG. 8. Suppression of GGM due to disorder. (a) Trends of
〈Gs〉/Gi (vertical axis) as a function of θ (horizontal axis) when
two copies of the gGHZ states |�〉gGHZ are merged. The evolu-
tion is according to the Hamiltonian with 〈J〉 = 0.5 and σJ = 0.1
(b) The same quantities are plotted for |�〉gW . In this case, 〈J〉 = 0.5
and σJ = 0.3. In both the cases, we observe that the ratio behaves
nonmonotonically with state parameters although they also show
differences (see text for details). Both axes are dimensionless.

cos θ2 sin θ1|010〉 + sin θ2 sin θ1|100〉, as depicted in Fig. 8(b).
The figure shows a clear distinction between the gGHZ and
the gW states—in the case of the gGHZ states as inputs, the
suppressed averaged value of GGM for the output state due to
disorder decreases with the increase of the GGM in the inputs
while for the gW states as initial, the overall opposite behavior
emerges.

Furthermore, we also investigate how tc varies with the
distribution of J , find it to be decreasing with increasing σJ ,
and eventually saturate at a constant value [see Fig. 7(b)]. By
employing the χ -square curve fitting, we realize the functional
form of tc with σJ to be b + c exp[−d (σJ − 0.01)] with b =
33.2, c = 226.2, and d = 52.2 having maximum 10% errors
in parameters. Note, however, that, for a fixed initial resource
states, 〈Gs〉 is found to be invariant under a change in the value
of σJ .

Remark. Note that we have performed the analysis for
disordered operations assuming disorder to be present in one
of the evolution operator. Typically in a network, disorder
appears in multiple parameters of the Hamiltonian, denoted by
{x1, x2, . . . , xn}. In such cases, the quenched averaged Q can
be obtained by performing average over different realizations
of all these parameters.

V. CONCLUSION

Classical networks are rigorously present to establish com-
munication among different parts of the world, and, on
a moderately smaller scale, among multiprocessor devices.
However, in this second quantum revolution, the significant
advantages of using genuine multiparty entangled states, and
in tandem, multiparty quantum networks for performing var-
ious quantum information processing tasks are established.
Therefore, characterization and implementation of quantum
networks play a crucial role for achieving a communication
system with or without security for the future world.

In this paper, we presented a deterministic protocol, re-
ferred to as entanglement circulation procedure (ECP), for

creating genuine multiparty entangled states, and distributing
them in the form of a quantum network. Given a fixed value
of entanglement and limited amount of resources, we showed
that our method can generate genuine multiparty entangled
states with the application of optimal unitary operators, which
is confirmed via computing generalized geometric measure
(GGM) of the generated state. Specifically, we proved a bound
on the GGM of the resulting state in terms of the GGMs of
the initial resource states constituting the network. We also
showed that the unitary operators which can generate maxi-
mum GGM in the output state is not unique. Starting from
the arbitrary three-qubit initial state, we provided a recursion
relation for the output state produced after arbitrary number of
steps in this process, thereby spreading genuinely multipartite
entangled states in networks. We found that apart from im-
plementing logical gates, these states can also be created by
using interacting quantum spin Hamiltonians. Although we
rigorously worked out all the results for a linear geometry
of the network, we showed that the ECP remains equally
powerful for other geometries, e.g., triangle-shaped networks.
Going beyond the traditional notion of noisy resources, we
considered the scenario where unitary operations are not ex-
act, which can be caused via a disordered spin Hamiltonian.
Counterintuitively, we observed that although disordered spin
Hamiltonian can produce a lesser amount of genuine multi-
partite entanglement on average compared with the ordered
model, in contrast with the latter, the quench-averaged GGM
of the resulting state obtained via the evolution of the disor-
dered system can saturate to a constant value after an initial
time period. The saturation values of GGM depend on the
initial resource states while the saturation time is governed
by the strength of the disorder.

The protocol presented in this paper shows an avenue to
create genuine multipartite entangled quantum networks. In
near future, it will be interesting to find whether all the multi-
partite resources required for quantum information processing
tasks can be generated via this method even in presence of all
kinds of noisy environments as well as imperfect operations.
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APPENDIX A: GENERALIZED GEOMETRIC MEASURE

An N-qubit pure state is said to be k separable if the
multiqubit state can be written as product of pure states corre-
sponding to k partitions (2 � k � N). The geometric measure
of entanglement, referred to as the k geometric measure (k
GM) of entanglement and quantifying multipartite entangle-
ment in a multiqubit state |�〉, is defined as [53,62–65]

Gk = 1 − max |〈�k|�〉|2, (A1)
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where the maximization is taken over the set of all possible k-
separable states, {|�〉k}. For k = N , the original definition of
the geometric measure of entanglement can be obtained when
the maximization is performed over the set of fully separable
states [62].

On the other hand, k = 2 corresponds to the generalized
geometric measure (GGM) of entanglement, which quantifies
the maximum distance of the quantum state from the set of
all possible nongenuinely multipartite entangled states. In this
paper, we focus on the GGM as the multiparty entanglement
quantifier of a multiqubit state and denote it G. It can be shown
that in case of GGM, the maximization over the set {|�k}〉
reduces to the maximization over the Schmidt coefficients of
all possible bipartitions of |�〉 [53]. Mathematically,

G = 1 − max
SA:B

{η2}, (A2)

where SA:B is the full set of all arbitrary bipartitions A : B
of the N-qubit system such that A ∩ B = ∅ and A ∪ B =
{1, 2, 3, . . . , N}, and η is the maximum Schmidt coefficient
corresponding to this bipartition.

The above simplification makes the GGM one of the
computable multiparty entanglement measures for pure states
with arbitrary number of parties in arbitrary dimensions (cf.
[71,72]). However, for an N-qubit state, one needs to cal-
culate a total of 2N−1 − 1 reduced density matrices, which
increases exponentially with N , thereby computing the value
of G is difficult for large N . Note that the computational
challenge can be reduced by restricting to only single- and
two-qubit reduced density matrices corresponding to |�〉 for
the computation of G. Note also that, while G remains a
multiparty entanglement measure even under this restriction,
it may not detect the genuine multipartite entanglement in |�〉.
Interestingly, numerical evidence indicates that the value of G
computed in this fashion coincides with the actual value of
GGM in several physical systems.

APPENDIX B: EXTENSION OF PROPOSITION I

In situations where the GGM of |�〉N [Eq. (14)] is not
obtained from the eigenvalues of a single-party density ma-
trix, one needs to investigate all of the eigenvalues {λi

1, λ
jk
2 },

i = 1, 2, 3, 4, j = 1, k = 2, 3, 4 (see Sec. II) obtained from
the four single-party and three two-party reduced density ma-
trices. A general analytical treatment is difficult since different
eigenvalues contribute to the computation of GGM for dif-
ferent ranges of the state as well as the unitary parameters.
However, using the proof of Proposition I, it is clear that
G = 1 − max{λ1

1, λ
12
2 , λ13

2 , λ23
2 }. A numerical search over ap-

propriate ranges of the relevant parameters indicates that only
three among these four eigenvalues, given by

λ1
1 = γ1,

λ13
2 = 1

4 (1 + (2γ1 − 1)(2γ2 − 1) cos 2αx cos 2αy

+ sin 2αx sin 2αy + 2
√

F ),

λ12
2 = 1

4 (1 + (2γ1 − 1)(2γ2 − 1) sin 2αx sin 2αy

+ cos 2αx cos 2αy + 2
√

G), (B1)

FIG. 9. Variations of eigenvalues, λ1
1, λ12

2 , and λ13
2 (z axis) of the

output state as functions of αx (x axis) and αy (y axis), with αz = 0.4,
γ1 = 0.7, and γ2 = 0.6. See Proposition I for details. All the axes are
dimensionless.

where

F = (γ1 + γ2 − 1)2 cos4 (αx − αy) − 2 cos2 (αx − αy)

× sin2 (αx + αy) f + (γ1 − γ2)2 sin4 (αx + αy),

G = (γ1 + γ2 − 1)2 cos4 (αx − αy) + 2 cos2 (αx − αy)

× cos2 (αx + αy)g + (γ1 − γ2)2 cos4 (αx + αy), (B2)

with

f = (2γ1γ2 − γ1 − γ2)(1 + 2γ1γ2 − γ1 − γ2)

+ 4γ1γ2(1 − γ1)(1 − γ2) cos 4αz,

g = (γ1 + γ2 − 2γ1γ2)(1 + 2γ1γ2 − γ1 − γ2)

+ 4γ1γ2(1 − γ1)(1 − γ2) cos 4αz, (B3)

contribute in the computation of GGM, subject to the con-
ditions γ1 � δ1 and γ1 � γ2 � δ2 (see Sec. II). While the
eigenvalue in Eq. (B1) emerges from the single-party density
matrix corresponding to one of the two-dimensional subsys-
tems of |�〉N [Eq. (14)], the other two [Eq. (B1)] hail from the
two-party reduced density matrices. We consider the possible
ranges of γ1 and γ2 within the normalization condition of
the pair of states |�〉N1

and |�〉N2
. For each pair of states

|�〉N1
and |�〉N2

, we numerically search for a set of values
of {αx, αy, αz}, such that the GGM of |�〉N = Ud [|�〉N1

⊗
|�〉N2

] is obtained from a single-qubit reduced density matrix.
We find the search to be successful for all pairs of states
in the set, and for each pair, multiple instances of Ud are
found. As a demonstration, consider Fig. 9, where we plot
the variations of the eigenvalues in Eq. (B1) as functions of
αx and αy for typical fixed values of αz, γ1, and γ2. The
figure clearly indicates that λ1

1 is the minimum among the
three eigenvalues for a set of values of α j , j = x, y, z, im-
plying that the GGM of |�〉N is 1 − λ1

1, thereby validating
Proposition III.

The above numerical search assumes that the GGMs of
the unit states |�〉N1

and |�〉N2
are obtained from the single-

qubit density matrices [see Eqs. (8) and (9) in Sec. II]. To
check whether the GGM of the resultant state is given by
the minimum of the GGMs of the unit states even when
this assumption is relaxed, we Haar uniformly generate
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FIG. 10. Scattered plot of maximum output GGM Gm (vertical
axis) against the initial GGM of two unit states, min{G1,G2} (hor-
izontal axis). The output GGM is obtained after optimizing the
two-qubit unitary operators, U2 when the initial states are Haar
uniformly generated (total number of states generated is 5 × 104).
The size of the unit cells are either N1 = 3, N2 = 3 (red crosses) or
(N1 = 4, N2 = 2) (black diamonds). Both axes are dimensionless.

two-, three-, and four-qubit quantum states (a sample of size
5 × 104 in each case) to produce six-qubit resultant states

and check Proposition III for pairs of states from these sets.
Our numerical result suggests that Proposition III holds in
all of these cases, which is also demonstrated in Fig. 10. We
elaborate more on the implications of this numerical analysis
in Sec. III B.

APPENDIX C: PROOF OF PROPOSITION IV

Here we derive the recursion relation describing the form
of the 3m-qubit state |�〉3m, constituted of m identical three-
qubit pure unit states by applying m − 1 unitary operators
{U j

2 ; j = 1, 2, . . . , m − 1} (see Proposition IV). Let us first
consider two identical three-qubit states of the form

|�〉 =
8∑

i=1

ai |bi〉 , (C1)

where {ai ∈ C ∀ i} and {|bi〉} is the product basis for
three qubits, constituted of the single-qubit computational
basis. The initial state of the six-qubit system is given by
|�〉(123456) = |�〉(123) ⊗ |ψ〉(456), where in our notation, sub-
scripts and superscripts in brackets respectively for states and
unitary operators represent the labels of the qubits (see the
first two blocks of Fig. 2), and we have temporarily dropped
the number of qubits from the subscripts of the unit states for
brevity. It is convenient to write |�〉 as

|�〉(123456) = |A〉(12) |0〉(3) + |B〉(12) |1〉(3) = |0〉(1) |E〉23 + |1〉(1) |F 〉(23) , (C2)

where

|A〉 = a1 |00〉 + a2 |01〉 + a4 |10〉 + a7 |11〉 , |B〉 = a3 |00〉 + a5 |01〉 + a6 |10〉 + a8 |11〉 ,

|E〉 = a1 |00〉 + a3 |01〉 + a2 |10〉 + a5 |11〉 , |F 〉 = a4 |00〉 + a6 |01〉 + a7 |10〉 + a8 |11〉 . (C3)

Noting that applying the unitary operator Ud is enough to investigate entanglement of the resulting state |�〉(123456) and applying
U 1

d on qubits 3 and 4 (see Fig. 2), where the superscript “1” represents the value of the unitary index j in U2 (see Secs. II and
III),

|�〉(123456) = U1
(34) |�〉(123456)

= U1
d (34)

[
(|A〉(12) |0〉(3) + |B〉(12) |1〉(3) ) ⊗ (|0〉(4) |E〉(56) + |1〉(4) |F 〉(56))

]
= [|A〉(12) U 1

d (34) |00〉(34) + |B〉(12) U 1
d (34) |10〉(34)

] |E〉(56)

+ [|B〉(12) U 1
d (34) |11〉(34) + |A〉(12) U 1

d (34) |01〉(34)

] |F 〉(56)

= |X 〉1
1234 |E〉(56) + |Y 〉1

1234 |F 〉(56) , (C4)

where

|X 〉1
1234 = |A〉(12) U 1

d (34) |00〉(34) + |B〉(12) U 1
d (34) |10〉(34) ,

|Y 〉1
1234 = |B〉(12) U 1

d (34) |11〉(34) + |A〉(12) U 1
d (34) |01〉(34) , (C5)

and the superscripts to the states |X 〉 and |Y 〉 represent the number of U2 operators applied so far. Moving a step further and
applying U2 on the qubits 6 and 7 in the state |�〉(123456) |ψ〉(789), one obtains an nine-qubit state as (see Fig. 2)

|�〉(123456789) = |X 〉2
(1234567) |E〉(89) + |Y 〉2

(1234567) |F 〉(89) , (C6)

where

|X 〉2
(1234567) = [|X 〉1

(1234) (a1 |0〉 + a2 |1〉)(5) + |Y 〉1
(1234) (a4 |0〉 + a7 |1〉)(5)

]
U 2

d (67) |00〉(67)

+ [|X 〉1
(1234) (a3 |0〉 + a5 |1〉)(5) + |Y 〉1

(1234) (a6 |0〉 + a8 |1〉)(5)

]
U 2

d (67) |10〉(67) , (C7)
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|Y 〉2
(1234567) = [|X 〉1

(1234) (a1 |0〉 + a2 |1〉)(5) + |Y 〉1
(1234) (a4 |0〉 + a7 |1〉)(5)

]
U 2

d (67) |01〉(67)

+ [|X 〉1
(1234) (a3 |0〉 + a5 |1〉)(5) + |Y 〉1

(1234) (a6 |0〉 + a8 |1〉)(5)

]
U 2

d (67) |11〉(67) . (C8)

This procedure can be continued for an arbitrary number of three-qubit states belonging to the GHZ class, where after applying
l unitary operators U2, a multiparty state of 3(l + 1) qubits having the form

|�〉3(l+1) = |X 〉l |E〉 + |Y 〉l |F 〉 (C9)

is obtained. Here,

|X 〉l = [|X 〉l−1 (a1 |0〉 + a2 |1〉) + |Y 〉l−1 (a4 |0〉 + a7 |1〉)]U l
d |00〉

+ [|X 〉l−1 (a3 |0〉 + a5 |1〉) + |Y 〉l−1 (a6 |0〉 + a8 |1〉)]U l
d |10〉 ,

|Y 〉l = [|X 〉l−1 (a1 |0〉 + a2 |1〉) + |Y 〉l−1 (a4 |0〉 + a7 |1〉)]U l
d |01〉

+ [|X 〉l−1 (a3 |0〉 + a5 |1〉) + |Y 〉l−1 (a6 |0〉 + a8 |1〉)]U l
d |11〉 , (C10)

where each of the states |X 〉l and |Y 〉l can be derived for an arbitrary value of l starting from

|X 〉1 = |A〉U 1
d |00〉 + |B〉U 1

d |10〉 , |Y 〉1 = |B〉U 1
d |11〉 + |A〉U 1

d |01〉 . (C11)

Clearly, for |�〉3m, l = m − 1.
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Lett. 117, 100502 (2016).
[4] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen,

J. Ye, and M. D. Lukin, Nat. Phys. 10, 582 (2014).
[5] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, Phys.

Rev. A 59, 4249 (1999).
[6] R. Van Meter, J. Touch, and C. Horsman, Prog. Inf. 8, 65 (2011).
[7] C. Crepeau, D. Gottesman, and A. Smith, in Proceedings of the

Thiry-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’02 (Association for Computing Machinery, New York,
NY, USA, 2002), pp. 643–652.

[8] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[9] C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett.

68, 557 (1992).
[10] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881

(1992).
[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and

W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[12] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[13] A. Acín, J. I. Cirac, and M. Lewenstein, Nat. Phys. 3, 256

(2007).
[14] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188

(2001).
[15] P. Walther, K. Resch, T. J Rudolph, E. Schenck, H. Weinfurter,

V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature (London)
434, 169 (2005).

[16] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M.
Van den Nest, Nature (London) 5, 19 (2009).

[17] K. Kraus, A. Böhm, J. D. Dollard, and W. H. Wootters, States,
Effects, and Operations Fundamental Notions of Quantum The-
ory (Springer-Verlag, Berlin, 1983), Vol. 190.

[18] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, 2010).

[19] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
81, 5932 (1998).

[20] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A 59,
169 (1999).

[21] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722
(1996).
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